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In this paper we present the results of a theoretical study of the nonradiative decay probability of a
single vibronic level of a large isolated molecule. Utilizing Feynman’s operator techniques, we were able
to derive a theoretical expression of the dependence of the electronic relaxation rate on the excess vibra-
tional energy in the excited electronic state for a “harmonic molecule”” which is characterized by displaced
potential surfaces. For a large effective electronic energy gap the nonradiative decay probability increases
with increasing excess vibrational energy, while for a small energy gap the nonradiative decay in higher
vibronic levels may be retarded. Our rough numerical calculations are found to be consistent with recent
experimental data on optical selection studies in the isolated benzene molecule.

I. INTRODUCTION

Radiationless electronic relaxation processes in large
molecules, which correspond to the statistical limit,
can be handled by the “golden rule” rate expressions
for the nonradiative decay. In earlier work!~® which
provided a general understanding of the diverse
phenomena related to the radiative (and nonradiative)
decay of excited electronic states of large molecules, it
has become fashionable to recast the nonradiative decay
probability in terms of a product of the square of the
nonadiabatic coupling, V, matrix element and the
density of states, p, in the dissipative quasicontinuum.
Such a factorization procedure is, of course, justified for
a case of a dissipative continuum (i.e., for radiationless
decomposition processes such as molecular predissocia-
tion and autoionization); however, in the case of
nonradiative decay in a large molecule where the huge
number of final states are characterized by widely
varying coupling terms, the nature of the ‘‘coarse
graining” procedure which will vield the properly
averaged (V?p) is by no means clear. Lin and Bersohn®’
and Englman and Jortner® have proposed that non-
radiative decay processes in the statistical limit can be
considered as intramolecular multiphonon processes in
a large molecule. Adopting the formalism of the Moss-
bauer effect® and the theory of optical line shapes and
thermal ionization processes in solid state theory,!04
it was demonstrated that the intramolecular nonradia-
tive decay probability in the statistical limit does not
have to be factored into a product V2% but rather
expressed as a weighted density of states function (i.e.,
the density of states where each term is weighted by the
appropriate coupling term). Such weighted density of
states function can be handled as a limiting form of a
generalized line shape function. Previous theoretical
studies of an “isolated’” molecule®~#' considered the
nonradiative decay from a vibrationless level of an
excited electronic state. When a molecule in an inert
medium was handled, %1 the nonradiative decay of a
manifold of thermally averaged Boltzmann spread
levels was considered.

A useful extension of the theorv of multiphonon

processes in a large molecule will involve the under-
standing of optical selection studies in an isolated
molecule. Electronic relaxation in different excited
vibronic levels, corresponding to the same electronic
configuration, can be experimentally studied by moni-
toring the fluorescence which results from narrow band
optical excitation. Schlag and Von Weyssenhoff’® have
provided the first study of the fluorescence of g-
naphthylamine at sufficiently low pressures so that the
optically excited gas molecules decay on a time scale
much shorter than the mean time between deactivating
collisions. Assuming that the radiative width, i.e.,
the pure radiative lifetime, is constant, these experi-
mental data demonstrate that the nonradiative decay
probability reveals a roughly exponential dependence
on the excess energy above the electronic origin of the
lowest excited singlet state. For this system the non-
radiative decay probability increases by about 2.5
orders of magnitude when the excess vibrational energy
is varied by 12 000 cm™.7 Similar experiments involv-
ing optical selection studies of an “isolated” benzene
molecule were performed by Parmenter, Selinger, and
Ware®® and by Spears and Rice,® where the excess
of vibrational energy above the electronic origin of the
lowest By, excited singlet state was varied by 2500
cm™.2® From a careful analysis of the experimental
radiative decay times and quantum yields, it was con-
cluded that the nonradiative decay probability exhibits
a monotonous increase (by about a factor of 2) over
this limited excess energy range.

We are aware of three recent theoretical studies con-
cerning the interpretation of optical selection experi-
ments in an isolated molecule. Fischer and Schlag®
have invoked the usual assumption of unimolecular
reaction theory regarding the excess vibrational energy
Ey to be randomly distributed over all internal degrees
of freedom. This treatment, which is analogous to
Englman and Jortner’s® weak coupling scheme at a
finite temperature k7 = Ey, is surveyed in Appendix I.
It is our opinion that the Fischer-Schlag scheme is
inadequate for the study of optical selection data
because of the following reasons: (a) The basic assump-
tion that the isolated molecule acts as ““its own heat
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bath” is not justified. (b) This “high temperature”
treatment neglects the temperature dependence of the
pre-exponential factor in the expression for the non-
radiative transition probability. It was demonstrated
by Lin® and later by Freed and Jortner! that this pre-
exponential factor is proportional to terms of the form
coth(fiw,/2kT) (where w; is the frequency of a pro-
moting mode) whereupon the Fischer-Schlag hypothesis
will imply that nonradiative decay probability will in-
volve an additional term of the form coth(fiws/2E,)
[which at large excess energy will reduce to (2F,/hwy) .
This result seems to be in variance with the experi-
mental data. (c¢) A rather serious approximation
introduced in this treatment involves the assumption
that the reduced displacements, A;, of the equilibrium
positions of each normal coordinate are small, i.e.,
A1 for all j.

Brailsford and Chang® have invoked the same
approximations as previously applied by Englman
and Jortner,® neglecting the dependence of the non-
radiative rate expression on the nuclear kinetic energy
operator, neglecting frequency changes between the
two electronic states, and assuming that the reduced
displacements A; are small. The last approximation
leads to a nonradiative rate expression (valid up to
A7) which has the same functional dependence as the
general thermally averaged transition probability,
except that the thermally averaged occupation number
of the jth vibrational mode has to be replaced by the
number of quanta in this excited state vibrational
mode, which is determined by the excitation process.
This approximation, first derived by Lax!3 for optical
line shapes in solids, is valid for nonradiative decay
processes in solid state theory and was applied in the
study of thermal ionization processes in solids; however,
it is not expected to be of general applicability for the
study of nonradiative decay in large molecules.

Gelbart et al.?® have utilized the analogy between the
general expression for nonradiative decay probability
in the statistical limit and the Boltzmann statistical
expression for the total number of states for a grand
canonical ensemble where the number of particles
(i.e., phonons) is arbitrary but the energy is fixed. In
view of the formal analogy with the Boltzmann statistical
distribution, Gelbart et al.*® were tempted to approxi-
mate the transition probability by the maximum term,
using the method of Lagrange multipliers. This method
is by no means quantitatively valid for the present

physical situation since the phonon occupation number '

is relatively small. Another approximation invoked by
Gelbart el al. in the derivation of their final expressions
1s qualitatively similar to that used by Brailsford and
Chang,” i.e., that the reduced displacements of the
equilibrium positions of the normal coordinates are
small relative to unity. This treatment is of interest as it
provides insight concerning the qualitative features of
the nonradiative rate constant and its dependence on
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the excess vibrational energy, which can be recast in
terms of a generalized energy gap form.

In view of current interest in optical selection studies
in large isolated molecules, we have extended the
formulation of radiationless transitions in an isolated
molecule. We have been able to derive an exact expres-
sion for the dependence of the nonradiative decay
probability on the excess vibrational energy in the
excited state for a “harmonic molecule,” characterized
by displaced potential surfaces. The results demon-
strate the conceptual value of the recent formulation of
the theory of radiationless transitions in terms of multi-
phonon processes in large molecules. The present
formulation is applicable both for electronic processes
and some unimolecular photochemical rearrangement
reactions in excited electronic states.

II. NONRADIATIVE DECAY FROM A SINGLE
VIBRONIC LEVEL

In what follows we shall adopt the physical model
system previously used by Englman, Freed, and Jort-
ner,'® which is characterized by the following features:

(a) A two-electronic states system is considered.
The higher electronic state | s) is characterized by the
zero-order Born—Oppenheimer vibronic levels,

| siy=[s5)|i)=d:(r, Q®)x::(Q®), (IL1)

each of which is coupled (via the nonadiabatic intra-
molecular interaction term V') to a manifold of zero-
order vibronic levels

| G)= D) |5)=dur, Q¥)xi;(Q®),  (IL2)

which correspond to a lower electronic configuration
| 7). Here r represents electronic coordinates, while
Q® and Q® correspond to the normal coordinates in
the electronic states | s} and | 7), respectively.

(b) The molecular vibrations are harmonic. The
molecular vibrational wavefunctions are thus displayed
as products of harmonic oscillator wavefunctions:

N
X::(Q®) = H Xou(Qu®, v54),
w=1

N
x1(Q¥) = H1 X1u(Qu®, i),
—
where v, and v, represent the vibrational quantum
numbers of the uth normal mode in the two electronic
states. This u mode is characterized by the vibrational
frequencies w,® and w,” and the effective masses
M., and M,®. N represents the total number of
normal modes.

(¢) The normal modes and their frequencies are
identical in the two electronic states except for the
displacement in the origins of the normal coordinates,
whereupon w,®=w,P=w, and M,9=M,O=M, for
each u=1, ---, N. Let the equilibrium configurations

(I1.3)
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in the (zero-order) states | s) and | /) be characterized
by 00® and Q0® (u=1,-.--, N), respectively. The
displacement of the origins of the potential surfaces is

AQ,=00®— (0,00, (11.4)

For large aromatic hydrocarbons where the molecular
symmetry (of the isolated molecule) is practically
unmodified between different low-lying electronically
excited states, we expect that AQ,#20 only for u modes
which correspond to totally symmetric vibrations.

(d) The electronic energy gap between the two
electronic states | s) and | 7) is sufficiently large so that
the {|Z7)}} manifold acts as an effective dissipative
quasicontinuum, whereupon the decay of each vibronic
level | si) corresponds to the statistical limit.

(e) As usual, we shall assume that the states in the
| 45) manifold do not carry oscillator strength from the
ground electronic state |00). Provided that |si) in-
volves only totally symmetric vibration, then in view
of the propensity rules for nonradiative decay, | 7j) has
to contain a single nontotally symmetric promoting
mode, whereupon the radiative transition | 00)—| ;)
is symmetry forbidden. Obviously, small Franck-
Condon vibrational overlap {0|j) factors [see (f)]
and spin selection rules when |!j) corresponds to a
triplet state are also helpful in this respect. We may
thus assert that narrow band optical excitation leads
initially to the population of a single (zero-order)
vibronic component | 57 ).

This initial state is characterized by the excess
vibrational energy

EV'__ Z ﬁwuvs“ (IIS)
n

above the pure electronic origin Eg of the | s) electronic
state.

(f) Interference effects between the resonances
which originate from the coupling of each zero-order
vibronic level |si) with the quasicontinuum |Ij) are
negligible. We are, of course, concerned with an isolated
molecule at room temperature. Rotational fine structure
should not worry us, and in view of angular momentum
conservation laws each rotational sublevel will decay
to its “own’ quasicontinuum. The vibrational levels
| s¢) which are accessible to direct optical excitation
from the ground state to a nondegenerate electron
excited state consist essentially of: (a) progressions of
the totally symmetric modes (and their combination
bands), (b) even number(s) of nontotally symmetric
modes, (c) hot bands, and (d) sequential series result-
ing from excitation of the thermally populated ground
state vibrational modes. It was usually assumed that
all these zero-order vibronic states are well separated
relative to their nonradiative width. However, in large
molecules (temperature dependent) sequence conges-
tion leads to excitation of very closely spaced levels
| si). In this case symmetry arguments will be of con-
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siderable assistance. The nonadiabatic coupling involves
nuclear momentum operators 9/9Q, of nontotally
symmetric promoting modes (which will be designated
by « and characterized by the symmetry T',). The direct
products I',®@T';®@T, and I';Q ;@ I, must contain the
totally symmetric representation of the molecular
point group.®” The first direct product, which involves
the symmetries of the electronic wavefunctions, just
provides a recipe for the selection of the promoting
modes. The second direct product, which involves the
vibrational symmetries, implies® that the coupled states
| si) and |Ij) have the following characteristics: (a)
They differ by one vibrational quantum number of the
promoting mode; (b) they have the same occupation
numbers of other nontotally symmetric vibrations®;
(c) only totally symmetric vibrational modes can be
characterized by arbitrary vibrational occupation
quantum numbers in the two coupled states. We may
thus assert that each of a sequence members in the
| si) manifold will be coupled to a different subset of the
|17} states, whereupon no interference effects in the
nonradiative decay will be exhibited between members
of the same sequence. On the other hand, members of a
totally symmetric progression will be so widely spaced
relative to their widths that although they decay to the
same subject of |Ij), no interference effects will be
encountered.

The features of nonradiative decay of the | si) level
can be experimentally monitored by observing the
energy integrated photon counting rate P9 (¢) and the
quantum yield ¥ which in the statistical limit will be
given by

Pe (1) =T,; exp{ —[(T'+W.:) /A )}
and
V6D = D (Tt W),

where T',; is the radiative decay probability of the
vibronic level | si), which in the case of a symmetry
allowed transition {(in view of vibrational sum rules)
is independent of the particular vibronic state. In the
case of vibronically induced transition, further com-
plications arise and the dependence of T.; on the
particular state has to be taken into account. In any
case, from Eqs (II.6) and (I1.7) the experimentalist
can extract the nonradiative width W,; of the particular
vibronic state. The purpose of this exercise is to provide
a theoretical calculation of the nonradiative decay
probability of a single vibronic level. In the statistical
limit the single level nonradiative transition probability
is related to the generalized line shape function

Ged(E)= X | (4§ |V | si) P8(Eij— Ei—E)  (I1.6)

by
W= (2w /R)G*(0). (I1.7)

Equation (I1.6) differs from the thermally averaged
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rate expressions for a molecule in an inert medium (or
for the decay of the vibrationless level of an excited
electronic state)® as thermal averaging has now to be
avoided. At this point we have to depart from previous
work on multiphonon processes in large molecules, as
the generating functions method introduces the thermal
averaging procedure at the initial stage. Instead, we
shall utilize Feynman'’s operator techniques® which are
directly applicable for the evaluation of the single sum
(I1.6). Similar methods have been previously applied
by Lax® in the study of optical line shapes in solids
and by Rickayzen® in the study of thermal ionization
processes in semiconductors.

Making use of the integral representation of the delta
function, Eq. (I1.6) can be rewritten in the form

G (E) = (2mh) /_ : exp (— %Et) L()d, (IL8)

where the generating function L(¢) is given by
L()= 2 (si | V14 | Vi)
7

X expli{ Ey—Ey) (t/R)]
= Z {si | Vexp[iHl(t/ﬁ)] | 177 | vt

X exp[—iH(t/R)] | si). (11.9)

The adiabatic Hamiltonians H, and H; for nuclear
motion in the two electronic states are given in the
form

62 N
H=13% (—%ﬁw,, P +%ﬁqu‘42> = > h, (I1.10)
u gy =1

H,= Z [—%ﬁwu(32/39u2)+%ﬁwu(9»+ Au)z:l_AE
u

=H+Ey—AE+ 3 vugy (IL.11)
»

The dimensionless normal coordinates and displace-
ments are defined by

Q= (Muwp/h)l/Z(Qu_‘ Q“()(s))’ (II.IZ)

A= (M0, /R)VEAQL. (I1.13)

The linear coupling terms v, (for each mode) are
expressed in terms of the reduced displacements

(I1.13):
(I1.14)

Finally, AE corresponds to the electronic energy gap

V= Fiw, Ay
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between the vibrationless levels of the two electronic
states,
AE=E—Ey, (I1.15)
while
Ey=13 hw,A2 (I11.16)
I
represents the molecular nuclear relaxation energy (or
half of the Stokes shift)® due to the displacement of the
potential surfaces.
The expression for the generating function can now
be recast in terms of the operators

Va(Q) = fdre.(r, Q@) Ve (r, Q®), (I1.17)

which can be expressed in terms of contribution from
all the promoting modes

Vsl(Q) = Z VSlK:

x=1

(IL.18)

where
V.r=Car(ih/MI%)(8/90.).  (I1.19)

The matrix elements C,* were previously given by
Freed and Jortner [Eqs. (11.18)-(11.20)1.%5 Equation
(I1.9) now takes the form

L(t)= 3 (| VaexpliH(t/R) 1| )G | V!

X exp[ —iH({/B)]] )
=i | VyexpliH,({/h) JVatexp[ —iH (¢/R)] | i),
(11.20)
and making use of Eq. (I1.18) we get

L) =3 (| Vor expli (/R 1 (Vo)

k=1

X expl—iBL(/M |+ 5 5 ] Vi

k=1 k7=

k7#EK!

¢
X exp (1H;%> (V' )texp (——iH%) | 4). (II1.21)

The diagonal matrix elements in Eq. (I1.21) can now
be expressed by invoking two approximations: (a) the
harmonic approximation for molecular vibrations;
(b) the Condon approximation, whereupon the elec-
tronic integrals Cy* (Eq. I1.19)] are weakly dependent
on the nuclear coordinates. Making use of Eqs. (I1.3),
(I1.10), and (II.11), we get

(| Vo exp[iH(t/R) (V) expl—il ((/R)] | i) =T.(8) I; (Xou(Qu®, veu) | expli(hutvugu) (¢/R) ]

where

Je(t)=

It

ol

it

X exp[—ih”(t/ﬁ)] | Xou(Qu®rsu)) exp[’i(EM—AE)(f/ﬁ):],

<sz(Qx, ’st) [ Vo exp[i(hx‘*")';ﬂx) (’f/ﬁ)](Vsl")Jr eXp[—ihx(t/ﬁ)] | sz(Q"y vsx))
> (X Qu, vax) | Ve exp[i(hx+7qu)(t/ﬁ)] | Xu(Qe va’") Y X 1 Qs 7’”) I (Va)t

Z I <sz(Qx; 1’3;&) | Vslx I XIK(QK; le”)> |2 exp'[iw,‘(vl"’—fu“)t].

(11.22)

X exp[-—ih,‘(t/ﬁ)] ‘ sz(Qx, vsx))
(I1.23)
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This result can be considerably simplified assuming that for aromatic hydrocarbons A,=+,=0for all the promoting
modes, whereupon utilizing the explicit form (II.19) of the coupling operators, Eq. (I1.23) reduces to the simple

form
T )= | d(vse, vsc+1) 2 exp(iaod)+ | d(Vox, vac— 1) 2 exp(—iwid), (11.24)
where :
d(vsx, vsxl) = <sz(Qx, vsx) l Vo l sz(Qu, vsx’))- (1125)
The nonvanishing matrix elements (I1.25) are
| d(vsxy Paxt1) 2= (] Cot* |Phew/4) (veet+1) (I1.26a)
and
| d(Vsxy Vax— 1) 2= (| Cor* [Phese/4) Ve (IL.26b)

The “mixed type” terms in Eq. (I1.21) (i.e., x#«") can be easily expressed in a similar manner, and again
invoking the assumption that only nontotally symmetric modes act as promoting modes (i.e., Ac=%, =0), it can
be demonstrated that the orthogonality property of the basis set X; immediately implies that these terms will
vanish.

The generating function for the decay of a single vibronic level takes the form

L= 5 1O 0] exp (iCEw—25) )
x=1 Bk

= i {} d{(Dex, 2c+1) 2 exp (i(EM-i-hw,‘—AE) %) + | d(vse, vse—1) |? exp (z’(EM—th—AE) %}} 1T .(8),

=1 BEK
(I1.27)
8u ()= (Xou(Qu, v5) | expli(hutvugu) (/%) ] expl—ihu(t/R) ] | Xou(Qpy ven))- (11.28)

The operators exp[i(A.+7v.q.) (¢/%)7] exp[ —i4,.t] which appear on the right-hand side of Eq. (IT1.28) will now be
represented by making use of Feynman’s theorem!?2¢

where

expl— il (/)] expLihut-vg0) (/)] =T exp [(i/n)( / Ahuu')dt')], (I1.29)
0
where Al (V)= exp[ ~ihu(t/R) A, expl+ih, (1/h)] (I1.30)
and
Ak, = (hu+7u9u) —hy= Yuqp, (11-31 )

while T represents the chronological time-ordering operator. Thus, making use of (11.29), Eq. (I1.28) can be
recast in the form

()= (Xau | T explivns, [ (1)) | X, (IL32)
0

Equations (I1.27) and (I1.32) involve a slight generalization of Lax’s line shape formula!® adopted for nonradiative
transitions in a large molecule. In solid state problems it is customary to assume! that A;<<1 for all j and to expand
the exponential in Eq. (I1.32) in a power series in A; retaining terms up to second order in A;. As already pointed
out, this procedure is unjustified in the case of nonradiative decay of a large molecule as it is common that A;~1
for some j. It has been previously demonstrated by Rickayzen” - that the matrix elements g,(¢) can be evaluated
in a closed form without invoking any approximate expansion procedures. g, can be expressed in terms of “phonon”
creation, a,f, and annihilation, a,, operators for the uth vibrational mode by substituting

= (1V2) (g, +a,")

in Eq. (I1.32). The time dependence of these operators in the Heisenberger presentation is simply a,(t')=
a, exp(iwd’) and a,f(#') =@, exp(—iw.d’). Equation (I1.32) now takes the form

Twul,

8= (Xl Texp (222 [ a1 (1) +a,(1)]) X,
o

oy [ . .
= (X | T exp (#/ dt'La," exp(—iwgdt' )+ a, eXP(lwut’)]) | Xo)
1]

= (X | exp(0u(t)a,t) exp (1?;;” /tdu(t’) exp(iw,.t’)dt’) | Xou), (1I1.33)
0
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where
M(8) = (A V2)[1— exp(—iwd)] (11.34)
and
au(t') = exp[—Nu(#")a, Jau exp[Au(t)a,']. (I1.35)
Making use of simple commutation relations,** one gets
() =a,4N(1). (I1.36)

From Egs. (I1.33), (I1.35), and (11.36) we obtain
g()= exp|— (it/V2)w A 434 exp(iwu) — 11} (X | exp[u(t)a,t] exp[ —2*(2)a,] | Xew). (IL.37)

The diagonal matrix element in Eq. (IT.37) is readily calculated by displaying the states | X.,) in the ¢ (number)
representation

| X&/J.)E i vsu>= (vsul)_llz(auf)““ I 0>!
(Xsu | = (0o | = (01)7750 | (@)%, (11.38)
whereupon the diagonal matrix element in Eq. (I1.37) takes the form

(X I exp[Au(t)a,'] expl:—)\,‘*(t)a,‘:l | Xou)= [1/(2:)!11€0 | (@u)7e exp[ A (£)aut] exp[—N*(#)a,J(a,T) 7o | 0).

(11.39)
Utilizing the following operator relations,
exp[—N*(1)a,] | 0)= | 0), (I1.40a)
(0] exp[Au(t)ant]= (0], (I1.40Db)
expl—Au()a, ](a.)" expI(t)a,T]={exp[— A, (1) 6" Jaw exp[Mu(Da, [} " =[aHM(D) I, (II.40c)
exp[—N*(1)a () exp(N* (1) ) = [a"—NH (D) I, (I1.40d)
the matrix element (I1.39) is recast in the form
Koo oo | Xod=[1/(2) 110 | Lawt-Na() I oL @T—NF(2) J72» 10). (IL.41)
Binomial expansion of (I1.41) and utilization of the relation
O] () (a,")7w | 0)=(veu—1)! (11.42)
leads to the result
(Ko | expD (00T expL A (D] | Xop) = (1)1 35 IO (11.43)

5 Gl
The nonradiative decay probability of a single vibronic level can now be expressed by invoking Eqgs. (I1.8),
(11.27), (11.37), and (I1.43):

W= (21 /R)G(0)
_1_ °°d[ < i((AE—E )i) 3 d(v +1 o)+ 3 d(2he, 1) (—ieod)]
= /;w exp| —i(AE—Ey P [‘ e, Vst 1) exp(iws K Ve, Tox exp(— it

= (—=1)r | (A,/V2)[1— exp(iwut)] |2r _

X IT {expl—3(it)wuut+ 34,2 Jexp(dwut) — 13} (vau) | 22 ; (11.44)
B r=0 (vsu_r>!<7!)
Simple algebraic manipulations (and invoking our basic assumption that A=0 for x=1---p) lead to the final
result
1 b ¢
W= ﬁ_} €xXp _% Z A#Z) / dt {[Z d('U“, vsx+1) exp (_Z(AE—ﬁwK) ﬁ) + Z d(‘u’“" Vsx— 1)
p —® I «
!
i 1— cos(wu) |
X exp (—i(AE-{—ﬁw,) —)] exp(3 X Al exp(iwd)] IT (v)! 22 (—A2)" E’“—(:‘)—'%lgl—} . (11.45)
% I ux =0 (vsp—7) (rh)

From this result we conclude that

(a) Equation (IT.43) represents the general expression for the nonradiative decay probability of a single
vibronic level of a harmonic molecule characterized by displaced identical potential surfaces.
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(b) The effective energy gap is modified by the frequency of the promoting mode(s) fiw.. The propensity rule®
for the promoting mode is satisfied for the decay of any single vibronic state.

(c) The nonradiative decay probability from the lowest vibronic component of the excited electronic state,
whereupon v, =0 for all g, is given from Eq. (11.45) in the form

Wi (-t a0 £ {0001 [ trewp | —itaB—ton) § el £ 4z explinnl], (1140

which just corresponds to the zero temperature case previously considered.:5

(d) The conventional thermally averaged nonradiative transition for a molecule in an inert medium which acts
as a heat bath can be readily derived by taking

W)= % Pl W, (IL.47)
where Py, are the Boltzmann weight factors
Pew= exp[—B(veut3)w,] I} 2 sinh(Bw,/2),
B=(ET), (11.47")

which leads (see Appendix IT) to the Englman-Freed-Jortner® ' expression

W= ”;h“" esp[—1 3 A2(25,4-1)] f " {[coth(%ﬂhwx)-i—l] exp (—i(AE—ﬁw,) %)
[ N —o0
+[coth(3Bhw,—1)] exp (—i(AE—l—hw,J %)} exp[ 2 (20,+1)3A,2 coswud+i Y. A2 sinw,t],  (I1.48)
M “
where

¥u=[exp(Bhw,)— 17" (11.48"
(e) When A1, the sum over 7 in Eq. (I1.45) can be retained up to r=1 leading to Lax’s equation’

W= %exm—% =8 [ S dlo, nt 1) expl—i(AB—hs) (B) H+ 5t 20 1)

X exp(—i(AE+Few) (/) ]} exp[ 2 3 (2044 1)A,2 coswud+i Y A2 sinw,t ], (11.49)
1 »
This result is formally analogous to the expression for the thermally averaged nonradiative transition probability
except that the occupation numbers 7,, replace the thermally averaged occupation numbers which appear in the
former treatment [see Eq. (I1.48)]. Finally, it is worthwhile to note that retaining terms up to A;# in the sum
appearing on the right-hand side of Eq. (I1.45) results in the expression previously derived by Brailsford and
Chang.2
(f) Our general expression (IL.45) can be recast in a form which exhibits energy conservation in a way similar
to Eq. (11) of Gelbart ef a1 We shall consider the simple case when only a totally symmetric single mode « is
optically excited, whereupon v,,=0 for every us2a. [See also section (g).] This situation corresponds to the case
previously considered by Gelbart el al.® Replacing the term (1— coswaf)” in Eq. (I1.45) by

(1— coswat)=[2 sin?(wat/2) T

= (—%)"[exp(iwat/z)— CXP(_%iwat)]QT

2r zr ! __1 2r—p
= Eﬂ L(%‘?)‘)T expl—; (7~ p)wdd ], (11.50)

we get
x (@2nt(=1)r

1 , . tae . _
W= o TE L A0 L e Patial 2 (38 T (o) H(71)] 'z (2r—p)1p!

X / dt exp (—i[AEe“— (p—7) hiwea] %) exp[2 X A2 exp(iwt) ],

I
where

AE 1= AE—Tics,. (IL51)
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Now taking
exp[2 > Al exp(iwd)]= {Z} M({v,}) expE(2 v )t], (I1.52)
where
M({n}) =TI (1/.) (34,2)7» (I1.52")
and

{vﬂ}:{vI)DZy"'avN}y vi=1,2,"', ® , i=1"°N,
we can easily perform the integration over ¢ to obtain

Wa=(4h)"exp(—§ 2 A2) X | ct* e
» x

b 1 237 2 1 < (21')’(—1)”
va!g (an ) [('Usa_r)!(r!) ]_ 1J2=0m
X L SL(AEwi/B) = (p—r)wa— T s IM ([5]).  (I1.53)

It is obvious that for u=#e, v, can be identified with the occupation number vy, for the uth oscillator in the final
electronic state. For u=a, let us define (for given » and p)

V1o = Vsg— PF-7— 24 (IL.54)
and

My (fon} )= TT (1/00) (BA2) 4@ (via—veat p—7) " (FALT) viaveat?, (IL3S5)
uFa

50 that finally we obtain

Wa= (1/4%) exp(—3% 3~ A2) 2 | cot* |Ps

Xoial 55 (A2 T(ou=n) T %;%

X Z Mrp/({vln})6[(AEeff/h)"'('Ula_vsa)wa— Z vl”w“]- (1156)

(o34} e

This is the general energy conservation law for the decay of a single (totally symmetric) vibronic state.

(g) The nonradiative decay probability for a single vibronic level depends on the occupation numbers of both
the promoting modes (s, k=1-++P) and of the accepting modes (ve; u7x, g=1---N) for which A,#0.The
dependence of W,; on the occupation numbers v, of the promoting mode is expressed in terms of the d(, vu=1)
terms [ Eq. (I1.26) ]. Now, two different situations are of interest:

(g') The single vibronic level | si) which results from optical excitation from the vibrationless level of the
ground electronic state, involves only totally symmetric modes in the excited electronic state. As the promoting
modes are nontotally symmetric we expect that 2,=0 for all x, whereupon [invoking (11.26)]

We= exp(—3 X 42 T (| e o/ 40)
(1= coswd)r
(Beu—7)1(r1)2"

(g'") The single vibronic level | si) contains excited promoting modes. This situation may result from excita-
tions of thermally excited vibrational levels of the ground electronic state. In this case we have

X ] ® dtexp (—i(AE-hw,‘) %) exp[2 3 A2 expliod) T (v0)! ;; (—A2) (IL57)

Wam exp(—3 = 42 % (| i) [ a [<vsx+1> exp (—i(AE—Tw) )

(1— cosw,t)"
(v )1 (rD)?

Now, when the electronic energy gap AE considerably exceeds the frequency of the promoting mode, we have

+ v, €xp (—i(AE—{—hw,) %)] exp [3 20 A2 exp(iwu) ] TT (vs0)! vz;: (—A2) (11.58)
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Wsi(vsx¢0)/Wsi(vsx=0)r——\— Z (szx"l_l)-

In a large “isolated” molecule where sequence broadening is appreciable, we may expect that in certain spectral
regions of the broadened ‘‘vibronic” bands corresponding to the totally symmetric vibration the promoting mode(s)
will be optically excited. This effect will give rise to an oscillatory behavior of the energy dependence of the non-
radiative decay probability, which will increase by a factor of ~3 in the region of the sequentially broadened
vibronic bands where a promoting mode is optically excited. Very narrow band excitation sources (spectral width

~1 ¢m™) are required to observe this effect.
III. A COMMENT ON THE STATISTICAL LIMIT

Up to this point we have implicitly assumed that the
manifold |Zj) acts as a statistical dissipative quasi-
continuum. As the manifold | ) is discrete, irrever-
sibility of the nonradiative process is not inherent in the
rate expression (II.6) or (II.7) for the isolated mole-
cule. In fact, from the mathematical point of view, it is
obvious that W,; diverges whenever energy conserva-
tion is ensued. The generalized delta functions in
Eq. (I1.6) provide just a means for bookkeeping. To
provide a physically acceptable and numerically
tractable expression for W,; we have to replace the delta
functions in (I1.6) by ordinary functions characterized
by a finite width. This can be accomplished by the sum
rule for the decay of a metastable state.® Equation
(I1.7) has to be replaced by the more general relation®®

W= (2/8) ZAL G |V | 58) Pri/L(Esi— B+ (ris]),
(T11.1)

where v;; corresponds to the sum of the total widths
(which include all radiative and all nonradiative con-
tributions) of the initial | si) and of the final | /§) states.
In the statistical limit the details of the dependence of
the widths v,; are immaterial. We shall invoke the
assumption that these widths are independent of the
final state |Ij), so that (%yy;)={(y) for all |Ij). A
completely analogous treatment to that presented
in Sec. II now leads a modified expression for the
nonradiative transition probability where the inte-
gral in Eq. (I1.45) contains an additional factor
exp[— ((v)/%) | {]|] in the integrand. In particular,
Eq. (I1.57) which describes the excitation of a single
vibronic level which consists of totally symmetric
vibrational modes can now be recast in the form

We= exp(—4 2 A2) 2 (| Cor* PPw/4R)1,, (111.2)

where

had {
I,= / dt exp [— ’iAEeffxﬁ —{y)

[ 1]
T] F(1) (IIL.3)

and
F(t)= exp[$ 2 A2 exp(iwgt)]
n

{1— cosw,t)®
(veu—1r)1(r1)2’

XIT (2! g (—A42)” (111.4)

while AE.*=AE—hw, corresponds to the effective
energy gap. In order to facilitate numerical calculations,
this result will be considered in some detail. The func-
tion F(t) [Eq. (II1.3)] is a periodic function of i,
being solely determined by sinw, and cosw,!, where the
w,’s correspond to the frequencies of the system. We can
now reduce the infinite integration limits in (II1.3) to
finite limits by adopting Lax’s procedure.”® Let &y be
any common integer divider of every frequency w,
which appears in F(¢). (For computational purposes it
will be advantageous to choose the largest normalizing
frequency which we shall denote by wy.) Now setting
t=x/wy, we get F(f)=F(x/wy) which is a periodic
function of the variable x, with a period of 2x. A
straightforward extension of Lax’s method leads to the

result
2 © 2m (n4-1) AEe x
.= —Re Y / exp (—27rm' o
N n=0 v 2rn th

—2mn ﬁyl x) F (i) dx
hoy WON
2 AE ¢ -1
= —Re [1— exp (—27ri a ) exp (——21r <'Y—>)]
wN ficow fion

o (_ APt ;1_; x) F(fv) (IIL5)

X dx exp
0
Several comments should be made at this point:

(a) Iyexpressed by Eq. (IT1.5) is independent of the
choice of the common normalizing frequency &x. We
shall use the maximum frequency wx.

(b) If Eet/fiow is not an integer, then we expect that
I—0 for {v)/fiwxy—0. This situation corresponds to the
violation of energy conservation and will be encountered
for a small molecule.

(c) Consider now the situation when energy con-
servation is ensued so that AE.*/fiwy is an integer
while {y)&hwy. Under these circumstances Eq.
(II1.5) leads to

fiwon

ﬁ 2
I(vKhwy )= —— Re/ dx
7"(7) 0

AR,
X exp (— i x) F (ﬁ) . (ITL6)
fiwy WN

so that the nonradiative transition (II1.6) probability
under these circumstances is proportional to {(y)™.
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F16. 1. Nonradiative decay rate as a function of the excess
vibrational energy for a model molecule characterized by the
accepting modes; w; =3000 cm; wy = 1500 cm™; 4;=0.8; A;=1.0;
AEc1=30000 cm™. w; is taken to be the optically excited fre-
quency.

This physical situation can be encountered in real life
for the nonradiative decay of degenerate levels in a
small molecule embedded in 2 medium. In what follows,
we shall utilize this result (II1.6) to provide a scheme
for numerical calculations of the decay in a large
molecule.

(d) In the statistical limit we expect that {y)>hwy
whereupon the following simplified result is obtained:

2 2
L(v>hoy)= —Re | dx

W 0

1AE ) ( {y) ) ( x )
— e S LA b ¥ el ) i
X exp( 5 x ) exp x (I11.7)

It was demonstrated by us® that the integral (IIL.7)
is independent of {y) over a wide region of this width
provided that {(y)<&#wy, for all the molecular fre-
quencies. The lower limit for {(v) corresponds to Bixon’s
condition® for the statistical limit, while the upper limit
is always realized in real life. Thus, for computational
purposes in the statistical limit we should, in principle,
utilize I,(fiw,>>{y>hwy) which is given by (II1.7).

IV. SOME NUMERICAL ESTIMATES

It is important to distinguish between the mathe-
matical and the physical implications of the formalism
derived herein for the semiquantitative estimates of the
nonradiative decay probability of a single vibronic level
of an isolated large molecule. In our approximate
treatment the function F [see Egs. (I11.2)-(II1.7)]
contains very few frequencies which correspond to the
totally svmmetric vibrational modes. Furthermore, it

NITZAN AND J.

JORTNER

will be convenient for computational reasons to ap-
proximate these frequencies by rounded-off numbers
so that wy will be as large as possible. The vibronic
levels in the dissipative channel can be arranged in
groups by taking the molecule frequencies to be integer
multiples of the (large) normalizing frequency wy.
Furthermore we shall assume that AE*/fwy is an
integer. To calculate J, we should note that: (a) The
present procedure yields contributions to (II1.7) from
states which in real life are distributed over the energy
region A *-fwy, while in fact the integral 7, should
contain contributions from the energy region A=+
{y). (b) Grouping together the molecular vibrations
corresponds to the case whereupon (y)<fwy. [See
Eq. (II1.6).] Thus a reasonable approximation for I,
in the statistical limit is

IKNIK( <7><<th) ( <7>/wN)a

(-2 (2),
th N

We have utilized this computational scheme for the
evaluation of the nonradiative decay probability from
single vibronic levels of the !B,, state to the 3By, state

(IV.1)

whereupon

27
IKN(WwN)—I/ dx exp

0

25 T T

23

2l

= W& N ©

NONRADIATIVE DECAY RATE
©

| 2
_ EXCESS VIBRATIONAL ENERGY
(In units of the excited frequency =000 cm-1)

Fic. 2. Nonradiative decay rate as a function of the excess
vibrational energy for a model molecule characterized by the
accepting modes; w1=1000 cm™; wo=3000 cn™. w, is taken to be
the optically excited frequency. ——, AE=6000 cm™; ---,
AE=17000 cm™; -, AE=8000 cm™; O, A;=0.24, A,=0.071; A,
A1=0.24, Az=0.6; ., A1=0.1, A2=0071, X, A1=0.9, Az=0071-
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in the benzene molecule,’®® assuming the validity
of the statistical limit. The accepting modes are®
fiw (@14 C stretching)=~1000 cm™; A ey, C stretching) =
0.24 and fiw (a1, H stretching)~3000 cm™; A (a1, H
stretching) =0.071, while A=0 for all the other modes.
The electronic energy gap is AE=8000 cm™! while the
promoting mode corresponds to an as, H bending mode
with fiw,= 1300 cm™, so that AE.#= 6700 cm™. Model
numerical calculations were performed utilizing Eqgs.
(I11.2), (111.4), and (IV.2). The (rounded-off) effec-
tive energy gap was taken to be AEq= 10% con™! (n=
6-8), so that the normalizing frequency was chosen to
be fiwy=1000 cm~. Our theoretical results correspond
to the nonradiative decay probability of the members
of the totally symmetric progression built on the false
electronic origin 6'1°, 6'11, 6!12- - - or of the members of
the totally symmetric progression 19, 11 12.... The
present theoretical model results for the nonradiative
decay of the level 61" should be identical to the non-
radiative decay probability of the level 1, as the e,,(6)
vibration does not act as a promoting mode and A=0
for this nontotally symmetric vibration. The numerical
results for a wide range of molecular parameters are
presented in Figs. 1 and 2, while in Fig. 3 we display
a more detailed comparison of the present calculations
with the available experimental data,®® for the
benzene molecule. From these results we conclude that:

(a) The experimental results of Selinger and Ware!s®
and of Parmenter'®® are consistent with the general
prediction of the present simple model (based on the
displaced potentials picture) concerning the equal decay
probabilities of the 6'1* and of the 1* levels. Thus
Selinger and Ware report that the nonradiative decay
times of the 6!1° and the 1° vibronic levels differ by
about 4%,. The experimental data of Spears and Rice?
reveal somewhat larger deviation for the 19 level.

(b) From the theoretical results presented in Figs.
2 and 3 for the 1B,,—?3Bj, transition in the benzene
molecule, we realize that the best fit to the experimental
data is obtained by the spectroscopic molecular param-
eters’®® and by an effective energy gap somewhere in
the region 6000-7000 cm. These conclusions concur
with the available experimental data. A better theoreti-
cal fit to the experimental results could be accomplished
by a slight variation of the A molecular parameters;
however, we feel that in view of the simplified theoret-
ical model, which neglects frequency changes, a better
agreement will be fortuitous.

{c) The nonradiative decay probability of a single
vibronic level is determined by the weighted density of
states function, the weighting factor corresponds to the
nonadiabatic coupling matrix elements V,; ;;. The latter
terms decrease while the density of states, p, in the
| Ij) dissipative manifold increases with increasing the
excess vibrational energy E,. For relatively small
effective energy gaps (see Fig. 2) the nonradiative
decay probability decreases or remains constant with
increasing E,, indicating that the dominant effect is

IN A LARGE MOLECULE 1365
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NON RADIATIVE DECAY RATE
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EXCESS VIBRATIONAL ENERGY
{In units of the excited frequency = 1000 cm-!)

Fi1c. 3. Nonradiative decay rate vs excess vibrational energy
for the !By, —3B1, nonradiative transition of benzene: (a) Spears
and Rice data for the decay of the 1°1!12? levels; (b) Selinger
and Ware data®® for the decay of the 611961116112 levels; (c) Spears
and Rice data® for the decay of the 611° 611! 6112 levels; (d)
theoretical data with AE.=7000 cm™; (e) theoretical data
with AE.¢=6000 cm™.

that of decreasing V. This situation corresponds
to the verge of the statistical limit. On the other hand,
for large effective energy gaps increase in p dominates
so that the nonradiative decay probability (see again
Fig. 2) increases with increasing E,. For extremely
large energy gaps the nonradiative decay probability
exhibits an increasing exponential dependence on the
excess vibrational energy. Thus the results presented
in Fig. 1 for reasonable molecular parameters roughly
reproduce the experimental features of the experi-
mental results of Schlag and Von Weyssenhoff.!

V. DISCUSSION

In this paper we have provided a theoretical study
of nonradiative decay of a single vibronic level of an
isolated, large ‘‘harmonic molecule” which is charac-
terized by identical displaced potential hypersurfaces.
This model elucidates the gross features of optical
selection studies in large isolated molecules. The effects
of frequency changes between electronic states!® will
lead to some qualitative modifications; however, the
resulting theoretical expressions will be very cumber-
some. It should be stressed that we have explicitly
assumed that the initial vibronic level | si), which is
accessible by optical excitation from the ground state,
is only coupled to the | Ij) dissipative continuum, while
anharmonic coupling effects which may lead to intra-
molecular relaxation and energy redistribution within
the |s) manifold in the isolated molecule were dis-
regarded. Such approximation, which is consistent with
the harmonic model, is justified for a medium-sized
molecule like benzene, which was studied here in
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some detail. However, in larger molecular systems
intramolecular vibrational relaxation effects may be of
considerable importance and deserve further study.

The most interesting conclusion emerging from the
present study is that the nonradiative decay prob-
ability can either increase (for large energy gaps) or
decrease (for a small energy gap) with increasing excess
vibrational energy. The available experimental data
correspond to the former case. It will be interesting to
check experimentally the theoretical prediction con-
cerning the decrease of the nonradiative decay prob-
ability in the higher vibronic components for medium
sized molecules characterized by a small effective
energy gap. Such a study has to be performed on a
molecule embedded in a medium (which will provide
the necessary line broadening effects in the |7} mani-
fold to make the decay statistical) and the molecule
has to be characterized by a nonradiative decay prob-
ability which exceeds the (medium induced) vibrational
relaxation probability within the | sz) manifold. Singlet-
triplet nonradiative decay processes in heterocyclic
molecules or ketones might provide such a case.

Finally, we would like to point out that the general
theoretical methods based on the Feynman operator
technique applied herein for the study of the nonradia-
tive decay probability are of wide generality and
will find further use in other studies related to molecular
processes. Similar methods can be applied for the study
of the nature of the Condon approximation in the
theory of electronic relaxation processes and of vibra-
tional relaxation problems.

APPENDIX A, ANALYSIS OF THE
SCHLAG-FISCHER SCHEME?X

We present a survey of the treatment of Fischer and
Schlag? recast in terms of our notation and terminology.
The basic assumption underlying this treatment is that
the excess vibrational energy is effectively randomly
redistributed among all the vibrational degrees of free-
dom. One can then define an effective temperature
Tete for which the molecule would have acquired the
same excess vibrational energy, so that in the initial
electron state

Vsu= [exp(Bh’wsn— 1]“1; B: (l/kTeff)

and the excess vibrational energy is given by (II.5), so
that
EV: Z hwsﬂ'l}w%ﬁ&)’l-)ll.
»

Here, L is the number of vibrational degrees of freedom
and o, 7 are averaged values.

The unimolecular reaction theory scheme is used by
Fischer and Schlag to obtain a result which is, as
expected, identical to Englman, Freed, and Jortner’s
expression (I1.48). We shall write it here in a slightly
different form including the width of the states, for
large energy gap (so that AE.s=AE) and for a single
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promoting mode
W=R f dt expl—i(AE/R)i+a(5-+1) exp(iat)+ab

X exp(—iat)—({y)/R) | 1|1, (A1)

where
R= (] csr* |x/28) coth(fiw,/2Ey)

X exp[—e(25+1)] (A2)
and
a=L;{A?),

where (A?) is an average over A2
Now we expand

expla(i+1) exp(iat)+ab exp(—iat) ]

=Y % (m) (P a(+1)

m=0 P=0

(A3)

X exp(iat) I ab exp(—int) ]F  (A4)

and integrate over ¢, using

® —iyz ,—b 2] — 21]
Lwe oblal = payY (AS)
to obtain
w=R$ & Ea<5+13]mtaﬁ]P
W ;=0 P=0 m! P!
2(4v)/har)
Gt ) I (a0
where e=AE/ha.

As {y)/ha<<1, we replace the Lorentzian in Eq. (A4)
bv dag/ka,m—p,°! to obtain

R =

W= =3 ——0

5 = PI(P+e)!

Now, when the excess vibrational energy is small

(ie., 7K1), the energy gap is large (i.e., &>1) and the

average origin shift is small (e~1, i.e., AK1), we can
neglect in Eq. (A6) all the terms with P>0, so that

W= (R/w)(as/e!) (3+1)

a?P-)—e

(®)P(@E+1)P (A7)

= (R/&)(a/€!) exp(ed), (A8)
where we have used for 7«1
(14-3)s~1+e~ exp{ed). (A9)

The final result is [substituting R from Eq. (A2)]
(] €aif [20x/20) coth (fice,/2Ey Yo
X exp[—a(20+1)+ev](a*/e!). (A10)

Apart from the mathematical approximations intro-
duced by Schlag and Fischer which we have just
reviewed, we strongly feel that the basis assumption
concerning the isolated molecule acting as ““its own heat
bath” is unjustified. Although intramolecular vibration
relaxation may occur in large molecules due to an-
harmonic coupling, this process will not result in an
effective Boltzmann distribution.
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APPENDIX B. THE THERMAL AVERAGING PROCESS

We shall demonstrate that thermal averaging of Eq. (I1.45) gives Eq. (I1.48). We can, of course, average
separately on each normal coordinate so that the « part of Eq. (I1.43) is averaged by taking #,=[exp(Bw,)—1]
instead of v, in the expressions (I1.26) for the d factors. The u dependent part of Eq. (I1.45) is averaged as follows:

Instead of Eq. (I1.43), we take

(s)=(X I eXp[ku(t)aMT] exp[ —\*(#)a,] | Xo)r

=[1- eXP(“B‘*’M)] Zw: eXp<_vsuﬂwu>v8pIZ

vsu=0

By substituting P=1,—7 and

we get

VSME:M (Bl)

20 (veu—r)l(r)?

et exp (=) 1) (= 1) P |, 200D

(5)=[1— exp(—Be,)] 3 >

ve,=0 P=0

o0 o0

Pl (ve— P)I

expl— (4+P)Buw, J(d+P)I(—1)* [ A, [

=[1—exp(=Buw)]1 2 2

b=0 P=0

=[1— exp(—ﬁwu)jgl B!

where we have set

e DI R

Pl(b1)z

exp(—bBw,) B (B2)

B= 3
P=0

By using the binomial theorem, it is easy to prove that

B=[1— exp(—Buw,) >,

so that

(=X

= exp(—PBu,) (b-+P)!
bIP! '

(B3)

(B4)

Hou—1 b!

b=0

iii (B (=5, | A )

exp[— I Nu(2) |25u:]

I

exp{ (—$4.220,) + 34,2, exp(dw.d )+ exp(—iwd)]}.

()

(BS)

Taking (BS) to replace Eq. (I1.43) and utilizing Eq. (I1.26), we easily get Eq. (I1.48) as the final result.
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The pressure dependences of the proton spin-lattice relaxation times have been measured at 30°C in
liquid bromobenzene and its mixtures with bromobenzene-d; up to 2.5 kbar, and in liquid toluene-d; and
its mixtures with toluene-ds up to 4.5 kbar. The separation of the intramolecular and intermolecular con-
tributions to proton dipolar relaxation allowed us to study the effect of pressure on reorientational and
translational motions of the molecular liquids investigated. Activation volumes for the intramolecular
and intermolecular 7i; and the rotational and translational correlation times were calculated. The data
obtained indicate that the molecular shape seems to play a decisive role on the degree of coupling between
the rotational and translational motions of these two model liquids. The effect of the difference in the
dipole moments on this coupling seems to be less important.

INTRODUCTION

In an earlier study’ in this laboratory the pressure
dependences of the proton spin-lattice relaxation times
in benzene and chlorobenzene in the liquid state have
been measured. Since the separation of the intra-
molecular and intermolecular contributions to the di-
polar relaxation was carried out the results were dis-
cussed in terms of pressure effects on rotational and
translational motions and the degree of coupling be-
tween these. This earlier study left, however, one im-
portant question unanswered, namely what is the
relative role of the molecular shape and the presence of
dipole moment on the coupling between the rotational
and translational motions.

In this study we attempted to provide some addi-
tional information on this question. For this purpose we
measured the pressure dependences at 30°C of the
proton spin-lattice relaxation in bromobenzene and its
mixtures with bromobenzene-d; up to 2.5 kbar, and in
toluene-d; and its mixtures with toluene-ds up to 4.5
kbar. The intramolecular and intermolecular contribu-
tions to proton dipolar relaxation rate were separated
and their pressure dependence compared with that of
viscosity and product of viscosity and density. The
reason for choosing bromobenzene and toluene-d; was to
find out whether the difference in their dipole moments
will affect the degree of the coupling between the

rotational and translational motions in these two
molecules, which are very similar in their shape. The
results of this limited study indicated that the differ-
ence in the permanent dipole moments had no pro-
nounced effect on the coupling. Activation parameters
and theoretical correlation times were also calculated.

EXPERIMENTAL

The 'H and *D spin-lattice relaxation times were
measured at 60 and 9.2 MHz, respectively, using a
pulsed spectrometer previously described.? A 180°—r-
90° pulse sequence was used; the logarithm of the
magnetization was plotted as a function of = to obtain
the relaxation times, T3 to (£5%). A Varian model
V-3800-1 high-resolution magnet system (air gap 3.8
in.) equipped with superstabilizer and shim coils was
used for the measurements.

The pressure apparatus consisted of a Berylco-25
pressure bomb with temperature-controlling jacket
through which ethylene glycol was circulated from a
constant temperature bath. Carbon disulfide was used as
a pressure-transmitting fluid in the bomb; a high-
pressure separator was employed. The pressures were
measured to =410 bar with a calibrated Heise-Bourdon
pressure gauge, and the temperature next to the sample
cell inside the bomb was continuously monitored
(£0.2°C) with a copper-constantan thermocouple. The
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