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In this paper we consider the general problem of a discrete state interacting with a continuum which
is bounded below in energy. We investigate the optical properties of the new state which splits off below
the threshold and determine its energy and oscillator strength in terms of the transition moments of the
zero-order states and the matrix elements of the level shift operator. We study in particular the case of
predissociation in diatomic molecules and provide numerical estimates and experimental criteria for the
observation of this new effect. Finally, we discuss certain more general situations in which this phenomenon
is expected to arise and suggest appropriate extensions of the present, semiempirical, treatment.

I. INTRODUCTION

It has been noted recently that the breakdown of
the Born-Oppenheimer approximation in molecular
systems can lead in principle to the appearance of
“new”” states.l? This general phenomenon is a direct
consequence of configuration interaction within a mani-
fold of zero-order states which are bounded below in
energy. Simple examples with which we shall be con-
cerned involve a discrete vibronic level (energy E;>0)
of a bound electron state mixing (through nonadiabatic
terms, e.g., the nuclear kinetic energy and spin—orbit
coupling in the case of predissociation, or by Coulomb
terms in the case of autolonization) with the nearly
degenerate continuum levels of a lower electronic state
whose threshold is taken as the zero of energy. In these
cases it can be shown that the spectrum of the exact
eigenstates consists of a new continuum plus a new
discrete state lying below the zero-order threshold.

Riess! has investigated several models of the coupling
of zero-order molecular states and has complemented
earlier work on the theory of nonradiative processes®
by taking into account the role played by the bottom
of the continuum in determining the properties of the
new spectrum. Similarly Rosenfield, Voigt, and Mead?
have considered in detail the breakdown of the adiabatic
separability conditions in small molecules and have
demonstrated certain mathematical features of the
splitting off of new states. They discuss general condi-
tions on the zero-order continuum wavefunctions and
the coupling energy, etc., which must be satisfied
in order for these new effects to arise.

In the more familiar case of configuration interaction
involving discrete levels, one simply finds a stabilization
of the lowest zero-order state. This situation is com-
monly observed in +v-ray spectroscopy, where for
example, in the case of the oxygen nucleus, the onset
of excited Hartree—-Fock states is calculated to be at
=12 MeV, whereas a single state (carrying most of the
zero-order oscillator strength) is observed at ~6 MeV .4
Here, of course, the dramatic level shifts are due to
the strong, short range, nuclear forces. Nevertheless, a
completely analogous situation arises in small molecules
such as NO, and SO.® even though one is dealing only

with the weaker nonadiabatic interaction. In these
triatomic systems there is configuration mixing between
discrete singlet and triplet vibronic levels due to spin-
orbit coupling terms and to favorable Franck-Condon
overlap integrals (large geometry changes). This
spreading out of oscillator strength and shifting of zero-
order states is directly observable since it leads to
anomalously long radiative lifetimes and many new
lines in the absorption spectrum.®b-°

While the effects of configuration interaction within
a manifold of zero-order discrete levels are well under-
stood, it is interesting to inquire under what circum-
stances a ‘“new’” discrete state, resulting from the
coupling of a zero-order level with a bounded zero-
order continuum, is amenable to experimental observa-
tion. In this paper we choose to depart from the more
formal, phenomenological, analyses of Riess! and
Rosenfield ef al.2 We feel that a semiempirical treatment
of the possibility of observing new states is desirable
and that numerical estimates for particular diatomic
molecules can lead to convenient experimental criteria
relevant to this new effect.

We shall focus attention on the case of predissociation
in which a bound electronic state is crossed by a lower
lying repulsive state [Herzberg® type I(c)]. We use
order of magnitude estimates appropriate to this prob-
lem in order to make quantitative predictions on the
observable properties of the new states, i.e., do their
energies and oscillator strengths satisfy the basic
criteria which will be specified in the following sections.

II. GENERAL THEORY

We consider a system which can be described in
zeroth order by a Hamiltonian H, with a discrete state
| ), E:>0, lying in a continuum { | E'}}, E'>0, all E.
Let V denote the set of interaction terms coupling these
zero-order states and let H=Hy+V be the total
Hamiltonian of the system. In order to determine the
manifold of new eigenstates, { | E}}, of H we define the

resolvent operator
G(E)y=(E—H)™. (1)

The matrix elements of G(E) in, say, the zero-order
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“C“NEW’ STATES IN
basis have the convenient property that they are analy-
tic everywhere in the complex energy plane except for
poles and a branch cut corresponding to the discrete and
continuous portions of the spectrum of H. More
explicitly, the eigenvalues of H are given by those
values of E at which the function

Gu(E)=(s | (E—H)7'|s) (2)

is not regular. Equivalently, to find the new discrete
energies we need only determine the isolated zeros of
[G+(E)T. Now, it is completely straightforward to
show that

Ge(E)=(E—E,—(s| R(E) | s))7, (3)

where
R(E) | )=V | )+ VQJ(E—QHQ,)T'QV | 5), (4)

with Qs(=1—|s){s|) projecting onto all zero-order
states except | 5). Thus we have simply that the eigen-
values {E} of H are solutions of the algebraic equation

E—E,={(s|R(E) | s)=Rs(E). (5)

This fundamental equation of infinite-order perturba-
tion theory allows us to interpret R as the “level shift”
operator.

Ry (E), asis well known, can be shown’ to be analytic
everywhere in the complex energy plane, except for a
branch cut running along the positive real axis. Ac-
cordingly, it satisfies the usual dispersion relation:

© ImR,.( E'+10*
ss( E) =1 / _m_(,__‘*‘_l_)
] E—F
Equation (6) defines the level shift function for all
0< arg(E) <2 in terms of the values assumed on the

upper lip of the cut. This result is convenient since one
can demonstrate that

ImRes( E'40F)

dE'. (6)

=Fr |o(E) Po(E)=FI(E), (7)

where p(E’) denotes the density of zero-order states at
E', and v(E)=(s| V| E') is the interaction energy
coupling the discrete state | s) and the continuum state
| E’). We note that (7) is exact only in the case where
H has been prediagonalized in the space spanned by
{ | E)}, i.e., where the only nonvanishing matrix ele-
ments of ¥ are those involving the coupling of | s) to
the continuum. In the case of the breakdown of the
Born-Oppenheimer approximation this situation ob-
tains since the exact Hamiltonian H can be shown to be
diagonal in any basis composed of vibronic levels
belonging to the same electronic state.

Substituting (7) for ImR«(E'4+i0t) in (6) and
returning to (5) we have that the discrete eigenvalues
of H are given by the roots of

Now, the “new states in which we are interested cor-
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respond to those solutions of (8) whose real part is
negative (since they will then lie below the threshold
of the continuum). Let the energy of the “new” state
be —E, Writing E= —Ey+1ilo, F,>0, and equating
the real and imaginary parts of the two sides of (8)
we find that I, must vanish identically and that %,
satisfies the relation

= T(E")dE' _ /w | 0(E") [Pp(E)dE
o E+E E'+Ey

Es+ E() =

=F(E). 9

Note that F(E,) is a positive, monotonically decreas-
ing function of E, and that therefore, in general, (9)
can be satisfied for at most one value of E; (>0). Only
two cases can arise: (a) limg,.oF(Ey) exists, ie., is
finite—then (9) has a solution if and only if E.<
F(Ey=0); (b) F(E,) diverges at E,=0-—then there
exists a solution for @il E,. These conclusions have been
formulated before!?; we now follow up these results
by quantitatively investigating the observable proper-
ties of the new states.

In addition to the energy of the “new” state, it is
also important to determine its optical absorption
cross section. In treating general radiationless decom-
position processes (viz., predissociation and auto-
ionization) we need to allow for the fact that in many
cases the zero-order discrete state and the zero-order
continuum can both carry oscillator strength from the
ground state | g). Then the transition dipole matrix
element with the state |s), pe={(s|u|g), and those
with the manifold { | E")}, {u(E)={g|n| E")}, must
all be properly taken into account in the calculation of
the line shape. The dipole strength per unit energy,
d(E), can be written as

d(E)=Im(g | uG(E)u | g) (10)

and can be simply evaluated in terms of the matrix
elements of G(E) in, say, the zero-order representation.
We recall that the exact and approximate resolvent
operators are related by the Dyson equation,

G(E) =Go(E)+G(E)VG(E), (11)

and that the interaction ¥V satisfies the convenient
condition,

{s|v|sy=(E'|v|E'")=0, allE E'. (12)
It follows directly from (11) and (12) that
($|GE) | s)=[E—E—~A(E)—iT(E)]?, (13)
where
© I'(E')dE’
AE)Y=P R a—— d T(E)= E) (E
(By=p [TZEE and DE)= W) ()

are the real and imaginary parts of (s | R(E—i0%) | s);
(s |GE) | E'Y=Gu(E)o(EN[1/(E—E) ]; (14)
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Fic. 1. Curve crossing geometries and line shapes for predissocia-
tion (a) and photodissociation (b) in diatomic molecules.

and
(E'|G(E) | E")=[1/(E~E')]
+[1/(E—E") Jo(E) G (E)v(E")[1/(E~E")], (15)

the first term contributing only for %’= E”. Then, pro-
vided that a new state exists at E= —E, it is straight-
forward to derive the following expression for the dipole
strength in the negative energy region:

d(E) = l 1+ (aF/aE)E=—-E0 l_l l MostJ |25(E+E0>,

E<0. (16)

Here

J=p /“’ M(E')‘U(E')pEE’)dE’ ’
0 E—E

having the appearance of a “transition level shift”
operator. Thus the absorption line shape for E<O is
seen to have zero width® (we have not yet included
radiative damping) and to be characterized by a
strength determined by the weight factor 1/
| 14+F'(—E,) | and the effective transition moment
wes+J. The physical significance of this result becomes
even more transparent since it can be shown that the
amplitude squared, | (s | —Fo) |? of the discrete state
| s) in the “new” state | —Fy) is exactly equal to
1/ 1+F(—E) |

In the case where the zero-order continuum does
not carry oscillator strength from the ground state, (16)
reduces to the simple form ({u(E’) =0})

d(E)= | (s | —Eo) [*| pys P6(E+E,).  (18)

In general, however, the dipole strength of the “new”
state is determined by the effective transition moment,

(17)
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testJ, which may either enhance or decrease the
absorption coefficient relative to the situation en-
countered for an optically inactive continuum. This
interference effect (for the negative energy line of
“zero width’”) is complementary to Fano’s® configura-
tion interaction (“‘antiresonance”) effects which occur
in the positive energy region.

Equations (9) and (16)-(18) provide us with the
basic relations for the energy and oscillator strength of
the “new’” state of interest: | —F,) will be observable
if and only if its negative energy exceeds its radiative
width and its dipole strength is not too small compared
with that of the zero-order discrete state (the magni-
tude of | {s | —Es) |* being used as an index of photo-
excitation cross section).

We have shown that the optical properties of the
discrete level split from the bottom of the zero-order
continuum are determined completely by the level shift
operator and by the transition dipole moments of the
zero-order states. This is a commeon feature of the
generalized (infinite order) perturbation schemes which
have been used extensively in the theory of impurity
effects on the energy spectrum of elementary excitations
in solids (e.g., phonons and excitons),'® where the zero-
order density of states is bounded from below (and
from above).

III. SEMIEMPIRICAL TREATMENT:
PREDISSOCIATION

Rather than consider properties of p(E’) and
[ 2(E") [> which follow from a formal treatment of
translational wavefunctions and the breakdown of the
adiabatic approximation, we proceed from Eqs. (9) and
(16) in a decidedly different manner. Our discussion
derives from recognizing that the function I'(E’) cor-
responds to an optical line shape and that | ¢(E’) [* can
be written in the usual way as a product of an electronic
factor and the square of a vibrational overlap integral.
For example, consider the case depicted in Fig. 1(a)
where | s) corresponds to the vibrationless level of a
bound electronic state I, and { | E’)} to the continuum
levels of a repulsive state IT which crosses I at F. Then
since the Franck Condon factors do not depend upon
vertical displacement of the oscillators (adiabatic
curves), I'(E’") will have the form of the photodissocia-
tion line shape observed in Fig. 1(b). The latter
(modified Gaussian in this case) has been studied both
experimentally® and theoretically'’? (numerical com-
putation) in great detail. The electronic matrix ele-
ments (which we assume to be independent of nuclear
coordinates'¥) enter as proportionality constants, or
scale factors, which determine the absorption peak
normalization.

For the case of a predissociating curve which crosses
the bound electronic state higher than a few thousand
wavenumbers above the vibrationless level, one can still
appeal to the optical line shape. The semiempirical
treatment is considerably complicated, however, in two
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important ways. First, one must contend with absorp-
tion coefficients [and hence T'(E’)’s], which show
oscillatory behavior' and which, as a result, are more
difficult to parameterize. Secondly, and more impor-
tantly, one must properly take into account the fact
that there are in effect several curve crossings and,
accordingly, the possibility of more than one “new’”
state splitting off.® For example, in high resolution
studies of the ultraviolet bands of P,, breaking off of
rotational structure in the emission spectrum has been
observed, at different J, in several vibrational states.'
In the semiempirical treatment which follows, then,
we shall for simplicity’s sake consider the case where
the predissosiation occurs only in the 0-0 band, i.e,,
where the repulsive curve crosses the bound electronic
state within a few thousand wavenumbers of its
vibrationless level. We shall investigate particular
systems (diatomic molecules) of this kind which give
rise to “new” states of the sort discussed in Sec. II
and shall provide numerical estimates of their energies
and oscillator strengths. It will be recognized that these
arguments can easily be generalized to other predis-
sociation, as well as autoionization, etc., situations.

We begin by considering an approximate sum rule
for T(E’) which derives from its normalization. Let
Y1(7, R) and x10(R), and Y11 (7, R) and x11g'(R), denote
the electronic and nuclear wavefunctions corresponding
to the zero-order states | s) and | E), respectively. Then
in a Condon-like approximation we write

le(E) |

/ L‘PI(": R)yx1o(R)V (r, R)ui(r, Ryxuie (R)drdR 2

Ao Pla(E) P (19)
where |v|? is the usual, R-independent,® “electronic
factor” (e.g., in diatomics, the matrix element squared
of the spin-orbit and orbit-rotational coupling terms),
and

a(E) = [ xuo(R)xam (R)dR (20)

R

is the energy-dependent vibrational overlap. But with
(19) we have immediately that

/w T(E)dE~ | o |* [w a(E)) Po(ENdE'= | o P (21)
. .

0
since the integral over | a(E’) [? is just the sum of the

F1c. 2. “Squashed-
circle” line shape as
defined by Eq. (22) of
text.
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squares of the projections of x10(R) onto the complete
set {xme(R)}, E'€[0, »]. This sum rule for I'(E")
obtains even in the case where the configuration mixing
is due to vibronic coupling effects.® More explicitly,
the generalized Franck—Condon factors, viz., the scalar
products of the derivative of the bound state nuclear
wavefunction and the continuum states, can simply be
interpreted as the squares of the projections of dx1(R)/
dR on the complete set {xug (R)}, E'€[0, »]. The
electronic factor | v |? has been deduced for certain pre-
dissociation situations and in the case of the 3Zy=31Iy
crossing in Oq, for example, is of the order of 104(cm™1)2."
We shall demonstrate below that, for purposes of
predicting the observable properties of ‘“new” states
in diatomics, the actual shape of I'(E’) is in no way
critical. Rather the line shape can be essentially
specified by its (i) area, (ii) width, and (iii) peak
position relative to E; and the threshold.

The first I'(Z') we consider is shown in Fig. 2 and
is defined by

D(E)= (2|0 /zWH[W>— (E'—W)*]",
0<E'<2W,

=0, E'>2W. (22)
Even though this line shape describes only symmetrical
intensity distributions, it is of particular interest for the
following simple reason. If any feature at all of the line
shape were critical in determining the observable
properties of the new states, it would be the asymptotic
behavior of I'(E’) near the threshold (E'—0)—for this
directly determines whether or not F(F;) diverges at
Ey=0. Now, from simple arguments applied to the one
dimensional case (viz., diatomics) of curve crossing
between bound and repulsive potential curves, it can
be demonstrated that the square of the vibrational
overlap integral, | ¢(E’) |, weighted by the density of
states, p(E’), behaves as (E')Y2 for small E’: this is
precisely the asymptotic property shown by the T'(E)
defined by (22).

Evaluating the integral in (9) for this “squashed
circle” line shape we find that E,, the energy of the
“new” state below the threshold (£'=0), is given by
the positive solution of B(Ey)=F(Ey) — (E+FE,) =0,
or

B(Ey)=2 | v [2/WHW+ Ey—[ (W Eo)>— W2}
~(EA4F)=0. (23)

Note that limg,.oF'(Ey) exists and is finite. More
explicitly, B(E,) will admit of a positive zero (“new”
state energy = —Fy) if and only if E,<F(FE=0)=
2[v [2/W. For | v [PA104(cm™)2 and Wa210° em™ for
example, we have that the zero-order state | s) must
lie within 20 cm™ of the continuum threshold. However,
as emphasized earlier, even for values of F, satisfying
this condition it remains to prove that the new states
formed will be observable. We have solved (23) [and
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I'16. 3. Semilogarithmic plots of the new state energy, — Fq, as
a function of the zero-order energy, 7%, for the “squashed-circle”
line shape defined in Eq. (22) of text. Results are displayed for
six “physical” choices of the parameters | 7|? (area) and W
(width).

(16) ] for the new state energy and oscillator strength
and have displayed typical results in Fig. 3 as functions
of | |2, W, and the zero-order energy of | s). The values
of | {s| —E,) |* were found to be sensibly constant for
all choices of the line shape parameters—they ranged
from 0.1 to ~0.9 and, accordingly, it was not deemed
instructive to include them in the semilog plots. We
defer a full discussion of these results until after we have
presented those for a rather different line shape.

To demonstrate that the actual shape of T'(E’) is not
important to our discussion we consider the following

[

RV

w : T(E) F1G. 4. Asymmetrical
| ( line shape as defined by
I Eq. (24) of text.
|

. _—
Olg P P+wW E’
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case (Fig. 4):

L(E)=(|v[YWP)E, 0<E'<P,
=—(|v YWH[E —(P+W)], PLE<P+W,
=0, E'>pP+W.

(24)

This line shape can be made as asymmetrical as one

T o T w ! w©

101~
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001 1 | | { L. | I L
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Es(cm"’)

F1c. 5. —Fy plotted as a function of F, for representative
values of | 2|2, W, and P (peak position) defining the triangular
line shape [see Eq. (24) of text].

chooses (P#=W). Evaluating the integral in (9) for the
approximate I'(E’) given by (24) we find that £y must
now satisty B(Ey) =F(E,) —(E-+Ey) =0, or

B(E)= | v |Y/ W (EW/P)[In(Es) — In(EvtP)]
+ (Eo+P+ W) [In(Ey+P+W) — In(EetP) ]}
—(EA-Ey)=0. (25)

Furthermore, since F(FE,) diverges at F, for this line
shape we are assured that B(ZE,) will in fact have a
positive zero for all values of E, and the parameters
|v > and W (unlike the “squashed circle’” case where
solutions existed only for Es<<2 | v 2/W). Equivalently,
if we wvisualize the graphical solution of (25),
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limpgoF (Eo) = guarantees [cf. (9)] that the
straight line F,+ Eo will always cross the monotonically
decreasing curve F(F,;) at some value of F>0. In
order to determine which of these solutions correspond
to observable new states, we have solved Eqs. (25) and
(16) numerically for Eo and | {s | —E,) |* as functions
of the line shape parameters | v [> (area), W (width),
and P (peak position), and the zero-order energy E,.
Representative results are displayed in Fig. 5:
| {s| —Fo) |* was again found to vary between ~0.1
and *0.9. E;=0.001 cm™' is taken as the effective zero
since those states lying closer to the threshold are
masked by their radiative width and hence are not
observable. Comparison with Fig. 3 shows clearly that
the actual shape of I'(E’) has no sensible effect on the
observable properties of the new states.

Iv. DISCUSSION

We have considered the general problem of configura-
tion interaction of a discrete state with a continuum
which is bounded below. This situation arises in all
radiationless decomposition processes in molecular
systems, i.e., in the cases of autoionization and pre-
dissociation. Essentially the same phenomena occur in
electronic relaxation® and photochemical rearrange-
ments'® in larger molecules—one considers the quasi-
continua of bound vibronic levels (characterized by
wavefunctions which decay to zero at large distances)
which are mixed (through nonadiabatic terms) with
the discrete vibrational levels of higher electronic
states. However, since we were primarily concerned
there with the case of large energy gaps (cf. the statis-
tical limit), the bottom of the manifold of closely
spaced states played no critical role in the theory of
radiationless transitions.

In this paper we have treated in detail the case of
predissociation corresponding to the crossing of a
bound electronic state by a lower repulsive curve. This
situation serves as a convenient prototype of the
general phenomenon of the formation of “new” states
in small molecules. We have departed from the formal
treatments developed by previous workers!? insofar as
we have set about to provide numerical estimates of
the observable properties of these new states. We have
demonstrated that one need not be concerned with
the details of the predissociation line shape other than
specifying its area | v > (which derives from the “elec-
tronic factor”), width W (determined by the shape of
the repulsive curve in the crossing region) and peak
position P. The energy and oscillator strength of the
new state can then be expressed simply in terms of
these parameters and the energy E, of the zero-order
discrete state.

The numerical results obtained in Sec. TIT suggest
that the new states arising from type I(c) predissocia-
tion effects will be amenable to observation only in
diatomic molecules which satisfy a number of severely
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restrictive conditions. It is improbable that these “new”
states can be detected experimentally since we have
demonstrated that: the bound and repulsive states
must cross in a manner which is highly unlikely;
destructive interference effects may reduce the magni-
tude of the effective transition moment; and vib-
rotational substructure may mask the new state. More
explicitly, one must contend simultaneously with the
following facts (necessary conditions):

(A) The crossing point must lie within ~50 cm™ of
the threshold of the repulsive state (for E.>50 cm™!
the “new” state collapses into the continuum, as
demonstrated in Figs. 3 and 5).

(B) Rotational fine structure may mask the ap-
pearance of the new state. We should consider the “‘real
life” situation where there is more than a single vib-
rotational level which can be optically excited from the
ground state and which interacts strongly with con-
tinuum states. For molecules characterized by a small
rotational constant a large number of rotational states
will be excited and the dipole strength in the negative
energy region will consist of a superposition of the
6 functions, (26), each characterized by a slightly
different energy and effective transition moment. This
effect serves to smear out the lines of ‘‘zero width” and
further undermines the chance of observing the new
states.

(C) Vibrational-rotational fine structure, e.g., band
heads present in the ‘“‘negative energy region” due to
sequence structure, may obscure the “new’’ state.

(D) We have shown that the optical cross section in
the negative energy region (i.e., below the threshold)
assumes the simple form

d(E)= | {s| —Eo) |*| ueg+J [%(E+Ey), E<O,
(26)
where
Jmm [THERERENE
0 E'4E,

describes the contribution of the zero-order continuum
to the effective transition moment of the new state.
Note that J may be either positive or negative, real or
complex. | (s | —Fy) |?, the square of the amplitude of
the discrete state | s) in | —E,), has been calculated to
be of the order 0.1-0.9. Then, in the simple case for
which the states {| E’)} do not carry oscillator strength,
g(E")=0 for all £’ and we can conclude that the ab-
sorption coefficient of the new state is comparable with
that of | s). In general, however, J does not vanish and
one must contend with the possibility of a destructive
interference effect between the two contributions to the
transition moment | u,,+J | whose magnitude and sign
will depend on the details of the energy dependence of
w(E) and v(E').

From the foregoing discussion we conclude that new
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states arising from predissociation effects in diatomic
molecules may be observable if the curve crossing lies
sufficiently close to the threshold of the repulsive state
and within the first vibrational band of the bound state.
Furthermore, because of the complicating presence of
spectral fine structure, a likely system to give rise to
experimentally detectable new states would be some
diatomic hydride (characterized by a large rotational
constant).!?

Throughout the above we have implicitly taken the
absorption band shape in the negative energy region to
be characterized by radiative damping only. We have
shown that, except under rather restrictive (and
unlikely) conditions, the “new” state will lie too close
to the zero energy threshold and will hence be masked
by its natural linewidth. We have neglected, of course,
both Doppler and pressure broadening; also, since the
“new” state is embedded in the continua of lower
electronic states, it can be metastable against decay
into these new channels. These additive contributions
to the linewidth serve simply to further frustrate any
chance of observing the ‘“new’’ state which has split off
from the repulsive state threshold. Recall that the basic
idea behind the present semiempirical treatment has
been to demonstrate that it is most difficult to detect
these effects experimentally, even under ideal condi-
tions. Accordingly, it appeared inappropriate to us to
include, say, the higher-order effects arising from more
than one bound vib-rotational level interacting strongly
with the continuum states. For, as argued in the last
two sections, the severe problems of observation (al-
ready manifest in the idealized case) are only pro-
pounded in the “real life” situation.

The approach described in Secs. II and III for
elucidating the properties of new states in small
molecules is quite general insofar as we have: (1)
developed the underlying theory in terms of the
“physical” properties of the level shift operator; and
(2) exploited the known features of the appropriate
line shapes. Thus, for example, one can treat the case of
autoionization in the same semiempirical way as we
have done here for predissociation. I'(E’) will, of
course, have different asymptotic behavior near the
threshold (e.g., a step function dependence on energy)
and will be normalized to a new “electronic factor”
(viz., the matrix element squared of the Coulomb
interaction terms). Insofar as the present discussion
treats only a rather specific (albeit important) case of
configuration interaction, it will be of interest to learn
the results of similar quantitative calculations of
“new” state effects in several different physical
situations.
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(Hy=H—1). 1t is then straightforward to show that
P(ENAE = | b(—Eo; EN% (ENIE
=[T(E)/(E'+E)*]|{s| —Eo)|"dE

is the probability of finding the continuum state | £') in | — Eo ).
For the ‘“squashed-circle” line shape with |22| =10%(cm™)2,
W=500 cm™!, and E,~20 cm™ [Pimplying Eo=~10cm1—see
Fig. 3(f) ], this weighting function rises from zero at £'=0 to a
maximum at I'=~4 cm™ and then decreases monotioncally,
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becoming negligible long before Z’~1000 cm™. Thus the spread
in zero-order energy is of the order of, say, 50 cm™. For the
diatomic hydrides (reduced mass ~1 amu) this wave packet
implies that the momentum (k) range of the continuum states
which contribute significantly to | — Eg) is roughly 108 cm™.
The spatial extent (vibrational amplitude) of the same molecules
(wnydridea=3000 cm™) in the v=0 level of a pure bound state is
about 0.1 A. Thus the uncertainty in coordinate space of the new
state arising from predissociation effects is roughly an order of
magnitude greater than that for familiar vibrational bound states.
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Optical and Magnetic Studies of Tripositive Thulium in Hydrated Chloride Crystals*
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The optical absorption spectra of single crystal TmCl;-6H,O and Tm?* in YCls-6H,O have been in-
vestigated between 2500 and 8000 A at 4.2 and 77°K. The spectra were studied as a function of magnetic
field strength and as a function of crystal orientation relative to the magnetic field. Both optical and EPR
data indicate a nearly accidental degeneracy in the ground state of tripositive thulium in the hydrated
chloride salts. The magnetic moment is found to be perpendicular to the twofold axis of symmetry and the
zero field splitting is found to be 1.12 cm™. The observed splitting factor is 14.0040.05 LU.

INTRODUCTION

This investigation is concerned with the study of the
energy level scheme and magnetic properties of trivalent
thulium in the low symmetry crystals YCls«6H,O and
TmCl;-6H,0. The detailed interpretation of the
electronic and vibronic states is of interest not only to
the spectroscopist, but also to those performing
Méssbauer experiments, magnetic susceptibility, micro-
wave resonance, and heat capacity measurements on
this particular salt.

Although optical studies have been made on this
crystal previously, a reinterpretation of the spectrum
is of interest since the existing experimental information
for thulium trichloride hexahydrate is incomplete.
Gruber and Conway! investigated the optical spectrum
of TmCl;+6H,O. However, their work was mainly to
show the agreement between “free-ion” J-level energy
calculations and the center of gravity of each crystal-
field-split J level. Harrop? used the experimental results
of several investigators to calculate the crystal field
splitting of several rare earth chlorides including
TmCl;-6H,0. The fit he obtained for Tm?** and, in
fact, for all rare earths with an even number of electrons
does not appear to be in very good agreement with the
observed levels. To quote Harrop, ‘“The experimental
situation for this crystal is very confused and the
comparison given in Figs. 11-13 [of Harrop’s paper ]
may be a guide to the correct assignment.”

The most interesting feature of Harrop’s crystal field
calculation is the prediction that the two lowest Stark
levels of the *H; ground level are nearly degenerate.
Harrop claims these levels should split in a magnetic
field with splitting factors S;=13.7 LU (Lorentz Unit)

and Se=S3=0. According to Harrop, this splitting has
never been observed because all the absorption lines
are broad and diffuse.

Recoilless nuclear resonance spectra experiments
performed by Clauser and Méssbauer® on TmCls- 6H,0O
have also suggested that several levels may be nearly
accidentally degenerate with the ground level. These
investigators were forced to this conclusion by the
observation of large temperature-dependent line shifts
and asymmetric line broadening in the RNR spectrum
of TmCl;- 6H,0. They concluded that these temperature-
dependent shifts result from unequal thermal population
of a nearly degenerate ground electronic level in the
0.5-4.2°K temperature range.

We have carried the work of Gruber and Conway!
and Harrop? further with this investigation. In particu-
lar, we have identified the experimental details of the
optical spectrum and have verified optically and by
EPR experiments that a nearly accidental degeneracy
does exist in the electronic ground level of TmCl;- 6H,0.

CRYSTAL PREPARATION AND STRUCTURE

Single crystals of TmCl;-6H,0 and various concen-
trations of Tm®* in YCl;-6H:O were supplied by
Mossbauer.t The remainder of the crystals were grown
from solution in our laboratory by dissolving Tm,O;
in HCI and allowing the resulting solution to evaporate
until single crystals of the desired size were obtained.
Single crystals of TmCl;-6D;0 were also grown by
dissolving anhydrous TmCl; in D;0.

The crystal structure of the rare earth hydrated
chlorides has been investigated by several crystal-
lographers.*~ Pabst® has made optical reflection meas-
urements on PrCl;-6H.0, ErCl;-6H,0, GdCl;-6H50,
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