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In this paper we consider a structural model for localized excess electron states in polar solvents with
particular reference to dilute metal ammonia solutions and to the hydrated electron. The over-all energetic
stability of these species was assessed by considering simultaneously the electronic energy and the medium
rearrangement energy. The present model consists of a finite number of loosely packed molecules on the
surface of the cavity which are subjected to thermal fluctuations and a polarizable continuum beyond.
The electronic energy was computed utilizing an electrostatic microscopic short-range attraction potential,
a Landau-type potential for long-range interactions, and a Wigner-Seitz potential for short-range repulsive
interactions. The medium rearrangement energy includes the surface tension work, the dipole-dipole
repulsion in the first solvation layer, and most importantly the short-range repulsive interactions between
the hydrogen atoms of the molecules oriented by the enclosed charge. The gross features of localized electron
states in different solvents can be rationalized in terms of different contributions to the medium rearrange-
ment terms. The energetic stability of the localized state of excess electrons in polar solvents was established
and the cavity size in the ground state of the solvated electron could be uniquely determined. Experi-
mental energetic and structural data such as volume expansion, coordination numbers, heats of solution,
and spectroscopic properties are in qualitative agreement with the predictions of the present model. Optical
line shape data calculated from the theoretical model do not agree with experiment; this discrepancy

suggests that more data are required in regard to the excited states of the solvated electron.

I. INTRODUCTION

There is currently a wealth of information available
on the properties of chemically stable excess electron
states in polar solvents (i.e.,, metal-ammonia solu-
tions, solutions of metals in ammonia and ether)*7
and of metastable excess electron states (i.e., elec-
trons in water, alcohols, acetonitrile).5~* The physical
and chemical properties of dilute metal ammonia solu-
tions and of the hydrated electron, which are assem-
bled in Table I, provide a firm basis for the picture
of the solvated electron in polar solvents. These fea-
tures are independent of the nature of the positive
ion, so that in the limit of low concentrations the
electron—cation interaction is negligible. The excess
electron is expected to be localized by a solvation
mechanism which is reminiscent of that of an ordinary
ion in an electrolyte solution. The electric field pro-
duced by the localized charge distribution of the excess
electron polarizes the dipolar solvent molecule, where-
upon the nearest-neighbor shell is presumably strongly
oriented while the medium outside is subjected to a
long-range polarization potential. Adopting this gen-
eral picture, several theoretical models were proposed
to account for the thermochemical and optical prop-
erties of the solvated electron. Following early primi-
tive cavity models, the theoretical studies of Deigen,!
Davydov,® and Jortner” applied Landau’s® polaron
self-trapping model for the excess electron. Some at-
tempts were also made to account in greater detail
for the nature of short-range attractive interaction,

which is averaged out in a rather crude manner in
the continuum. In an early treatment of this problem
the potential was constructed as a superposition of
the molecular field of a fixed number (N=4) of sol-
vent molecules in the first coordination layer and a
continuum contribution beyond it.** More recently,
Land and O’Reilly®* have constructed a potential
due to a finite variable number of polar solvent mole-
cules in the first layer.

Most of these studies were judged in terms of their
success in producing ‘“‘agreement” between theory and
experiment. We feel that such criteria are not quite
justified in view of the limitation of the crude one-
electron scheme employed in all current treatments
of the complex quantum mechanical problem of single-
electron traps in solids and in polar liquids. At the
present stage due to inherent limitations imposed on
such one-electron calculations (which we do not hope
to improve upon) and the complexity of the physical
system, it may be more profitable to focus attention
on some general questions pertinent to the physical
factors which determine electron localization and the
gross features of such a localized state.

The present study of excess electron states in polar
solvents was motivated by the impressive progress
which was recently achieved in the understanding of
excess electron states in nonpolar fluids®2# such as
Hes, He!, Ar, Kr, Xe, H;, and D,. These studies
focused attention on the general problem of the sta-
bility of the excess electron state in a liquid, the
nature of electron solvent interactions, and the con-

1189

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1190

COPELAND, KESTNER, AND JORTNER

TaBLE 1. Properties of solvated electrons in water and in liquid ammonia,

System
Property €am (240°K) €aq {(300°K)

hyvmax 0.80 eV= 1.72 Vb

€max 49 000Mt.cmia 15 800M1.cm™!
Extinction coefficient

J 0.77» 0.65%
Oscillator strength

Wl/z 0.46 Ve 0.92 eV®
Half-linewidth

dhvmar/dT —(1.5240.2) X103 eV/deg —2.9X107% eV/deg®

AH 1.740.7 eVe 1.7 evd

P 1.6 eVe Unknown

Photoelectric threshold
Electron mobility

1.08X 1072 cm2/V - sect

2.5X107% cm /Ve-sec®

2 R. K. Quinn and J. J. Lagowski, J. Phys. Chem. 73, 2326 (1969).

b E, J. Hart and W. C. Gottschall, J. Am. Chem. Soc. 71, 2102 (1967 ).

¢ J. Jortner, J. Chem. Phys. 30, 839 (1959). The uncertainty in this value
is due to the (unknown) absolute heat of solvation of the proton in liquid
ammonia.

figurational charges in the fluid which may be induced
by the presence of an excess electron. Although the
properties of excess electrons in nonpolar liquids are
somewhat easier to handle by (approximate) theo-
retical methods, the basic problems involved are iden-
tical with those encountered in the study of excess
electron states in polar solvents.

The question that should be asked in connection
with excess electron states in liquids can be sum-
marized as follows:

(a) The nature of quasifree and localized excess elec-
tron states. When an excess electron is introduced into
a nonpolar or polar liquid, it is not immediately ap-
parent what is the energetically stable state of the
electron. The total ground-state energy £ of the sys-
tem can be always written in terms of two contribu-
tions: the electronic energy E, and the medium re-
arrangement energy Eu, so that

Et=Es+EM- (1)

The second term in Eq. (1) involves the structural
modifications induced in the medium due to the pres-
ence of the excess electron, so that in general Ey>0.
The electronic energy has to be computed in the
spirit of the Born-Oppenheimer approximation for
each nuclear configuration of the medium. In this
context two limiting extreme cases should be distin-
guished:

(1) The quasifree electron state whereupon the
excess electron can be described by a plane wave
(e.g., a wave packet) which is scattered by the atoms
or molecules constituting the dense fluid. Under these
circumstances it is expected that the liquid structure
is not perturbed by the presence of the excess elec-
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d J. H. Baxendale, Radiation Res. Suppl. 4, 139 (1964). J. Jortner and
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e G, V. Teal, Phys. Rev. 71, 138 (1948).

fC. A. Kraus, J. Am. Chem. Soc. 43, 749 (1921).

€ K. H. Schmidt and W. L. Buck, Science 151, 70 (1966).

tron, so that Ey=0. The electronic energy of the
quasifree electron state, which we shall denote by V,,
is determined by a delicate balance between short-
range repulsions and long-range polarization inter-
actions, so that

E.:(quasifree) =V . (2)

This energy obviously corresponds to the bottom of
the conduction band in the liquid relative to the
vacuum level. Theoretical studies based on the Wigner-
Seitz model for quasifree excess electron states in non-
polar fluids have established that any dense fluid
consisting of molecules which are light and saturated,
and thus characterized by a low polarizability, is ex-
pected on the basis of pseudopotential theory to ex-
hibit a positive ground-state energy for the quasifree
excess electron state.®® This situation prevails for liquid
He, Hy, D;, and Ne. On the other hand, for heavier
rare gases such as Ar, Kr, and Xe the contribution
of the attractive long-range polarization overwhelms
the contribution of the short-range repulsive pseudo-
potential, so the Vo< 0 in these systems. Nothing is
currently known concerning the V, values for polar
liquids.

(2) The localized excess electron state where the
wavefunction for the excess electron tends to zero at
large distances from the localization center. In this
case the liquid structure has to be modified to form
the localization center. Such a liquid rearrangement
process requires the investment of energy. It will be
convenient at this stage to specify the configuration
of the solvent by a “configurational coordinate” R;
the simplest choice is, of course, the mean cavity
radius. The total energy of the system can be written

E,(R)=(localized) = E,(R)+ Ex (R). 3)
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The most stable configuration of the localized state
is obtained by minimizing the total energy [Eq. (3)]
with respect to R,

The resulting energy E;(Ro) can be, of course, either
positive or negative as the liquid rearrangement proc-
ess requires the investment of energy [Eu (Ro)>0]
which is (wholly or partially) compensated by the
electronic energy term E,(Rp).

(b) The stability of the localized excess electron state.
The absolute sign of the minimum electronic energy
of the localized state does not determine whether this
localized state will be energetically found. Cases are
encountered when E,(Ry)>0 for the localized state
[e.g., liquid He where E;(Ry)~0.25 ¢V] and still the
localized state is stable. To assess the energetic sta-
bility of the localized excess electron state in a liquid,
one has to compare the energy of the localized state
with that of the quasifree state. The general stability
criterion for the localized state implies that

Ei(Ro)< V. (5)

F olloﬁing these general considerations, two specific
problems have to be considered:

(c) The nature of eleciron—solvent interactions. This
general quantum mechanical problem involves the
elucidation of the various contributions to the elec-
tronic interaction energy of the excess electron in the
quasifree and in the localized state.

(d) Configurational changes in the medium. In the
case of a localized excess electron the liquid structure
will be modified because of the following effects:

(1) Local conformational changes arising from
short-range electron—solvent repulsion can lead to cav-
ity formation. This effect operates both in nonpolar
liquids (e.g., liquid helium) and in polar liquids (e.g.,
ammonia ).

(2) The long-range polarization field induced by
the excess electron may lead to marked structural
changes in the fluid arising from electrostriction effects,
which are operative in both polar and nonpolar liquids,
and from the effects of rotational polarization, which
are operative in a polar liquid such as water or am-
monia.

In order to understand the properties of excess elec-
tron states the energy changes accompanying these
structural modifications have to be estimated.

In this work we shall consider some of the problems
related to the understanding of low-density localized
excess electron states in polar liquids where no chemi-
cally stable bound states exist for the excess electron.
We shall focus attention on the solvated electron in
liquid ammonia and in liquid water which provide
typical model systems for the localized state in polar
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solvents. The main theoretical points which will be
handled in the present study can be summarized as
follows:

(a) The energy of the quasifree electron stale in polar
solvents determines both the stability of the localized
state and also the general thermodynamic and optical
properties of the solvated electron. Although a reliable
theoretical estimate of this energy cannot be provided,
we shall present some model calculations which will
lead to an “educated guess” of this energy term.

(b) Energetic stability of the localized state. Although
experiment demonstrates that indeed relation (5) is
satisfied in polar solvents, it will be useful to provide
a more firm theoretical basis for the stability of the
excess electron in polar solvents.

(c) Configurational stability of the ground state of
the solvated electron. A complete description of the
localized state has to involve the calculation of both
E, and Ey. Early studies of the electron cavity model
in liquid ammonia introduced the medium rearrange-
ment energy; however, the electronic energy was han-
dled in a rather simplified fashion.#% Later studies
based on the polaron model? and on a molecular field
model® were mainly centered on the calculation of
the electronic energy at a fixed cavity radius, which
was chosen to ‘“fit” the volume expansion data
(a “small” value for water and Rp=3.2 A for am-
monia ). Some contributions of the medium rearrange-
ment energy were introduced at this fixed Ry to ac-
count for thermodynamic properties such as the heat
of solution. However, to date no attempt was made
to calculate the variation of the total energy accom-
panied by the change in structural parameters such
as the cavity radius or the first-shell coordination
number. Nevertheless, some considerations of these
terms are to be found in work by O’Reilly®# and,
Iguchi.® In the present work we shall attempt to
establish theoretically the stable configuration of the
ground state of the solvated electron by the calcula-
tion of the configurational diagrams for the ground
state.

(d) The electronic energy for the cavity model. We
shall consider the following contributions within the
framework of the one particle scheme: (1) electronic
kinetic energy, (2) short-range repulsions, (3) short-
range attractive interactions, (4) long-range attrac-
tive polarization interactions. In previous work contri-
butions (3) and (4) were included within the frame-
work of a continuum model. Later a molecular field
model was proposed for the short-range attractive
interactions. To account for the attractive electronic
interactions we shall apply a microscopic molecular
electrostatic potential for short-range attractive inter-
actions (3) and a Landau-type polaron potential for
the long-range polarization forces (4). The effect of
short-range repulsions (2) which was not treated
before will be handled by the Wigner—Seitz method
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which was successfully applied to localized electron
states in nonpolar solvents.

(e) The medium rearrangement energy. In the case
of nonpolar solvents one has to consider in this con-
text just the contributions of the contractible surface
work and the pressure volume work acting on the
electron cavity. The situation is much more compli-
cated for polar solvents where the following contribu-
tions to Ej have to be considered.

(1) The energy, E,, required to form a void in
the liquid. As in the case of the nonpolar solvents
this term can be roughly estimated from the surface
tension. Unlike that case, the contribution of this
term for polar solvents (where the cavity radius is
small) is rather small.

(2) The volume pressure work. This term which
is again analogous to that encountered for the non-
polar solvents is important only at high pressures.

(3) The long-range polarization energy = of the
medium required for the orientation of the permanent
dipoles to form the potential well.

(4) The dipole-dipole repulsion term between Eg,
the oriented dipoles in the first coordination layer on
the cavity boundary.

(5) Short-range repulsions between the reoriented
solvent molecules on the cavity boundary.

(6) The energy required for the rupture of hy-
drogen bonds.

(f) Configurational diagrams in excited electronic
states. In spite of the success of previous semiempirical
theoretical work to obtain fair agreement with experi-
ment concerning the location of the maximum in the
optical absorption of the electron in metal ammonia
solutions, many questions remain open. The half-line-
width in the optical absorption amounts to about 60%
of the optical excitation energy. The problem of line
broadening in the optical spectrum was never properly
resolved. These problems will be handled theoretically
by calculating the configuration diagrams for the
ground and excited electronic states. These configura-
tion diagrams will be then applied for the under-
standing of the intensity distribution in absorption.

We hope that the present study will provide a better
understanding of the structural, thermodynamic, and
optical properties of the solvated electron.

II. COMMENTS ON THE ENERGY OF THE
QUASIFREE EXCESS ELECTRON STATE
IN POLAR SOLVENTS

The energy, Vo, of an excess electron in the bottom
of the conduction band of a polar solvent such as
ammonia or water is required to establish the ener-
getic stability of the localized ground state and for
calculations of the energy levels both in the ground
and in the excited states of the solvated electron. As
already pointed out, the interaction potential of an
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electron with a closed-shell atom or molecule in a
dense fluid is determined by short-range repulsion and
long-range (screened) polarizations interactions. Theo-
retical studies based on the Wigner—Seitz model®:%4
were quite successful in the case of nonpolar solvents,
leading to reliable estimates of V4 values. A similar
approach for polar liquids was recently suggested by
Cohen and Thompson® and by Jortner and Kestner.®
It will be useful to review briefly this scheme in order
to bring up the difficulties involved when it is applied
to polar solvents.

Following the work of Cohen, Jortner, and Sprin-
gett, 34 the quasifree electron energy is displayed as
a sum of kinetic energy term, T, which accounts for
multipole scattering effects, and an attractive inter-
action, U, due to the long-range high-frequency po-
larization effects. It is important to notice at this
point that static or dynamic distortion effects of the
liquid are, we assumed, not induced by the quasifree
electron, whereupon the long-range polarization field
does not contain a contribution from the permanent
dipoles which are considered to be randomly oriented.
The relevant energetic contributions are

Vo=T+U,, (6)
where the polarization energy is
Up=—(Bae®/20)[(8/7)+ (1+8map/3)~'].  (7)

a is the polarizability, p the liquid density, while
n,= (3/4mp)Y3 corresponds to the Wigner—Seitz radius.
The repulsive short-range contribution is given by

T =h2ke/2m, (8)

where m 1s the electron mass, while the wave vector
ko is determined from the Wigner-Seitz boundary
condition

9)

where the Hartree-Fock short-range potential of the
solvent molecule is assumed to be represented by a
hard-core radius @ In the case of excess electron
states in nonpolar liquids the parameter @ can be
determined from experimental and theoretical elec-
tron—atom scattering data.

At this point we encounter the major difficulty in
the quantitative application of the present scheme for
the quasifree electron states in polar solvents. Gas
phase experimental or theoretical electron scattering
data cannot be applied for a polar molecule because
of the divergence of the dipole term at low energies.
We shall attempt to make some rough guesses of the
Vo term applying Egs. (6)-(9) for a polar solvent
such as ammonia. The polarization energy [Eq. (7)]
was evaluated by taking #,=2.3 A and a=2.0X10"%
cm—3, which leads to U,=—3.1 eV. For the estimate
of the T term we feel that as the N-H distance in
NH; is 1.2 A while the range of the pseudopotential

tanko (m—- d) = kons,
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associated with the N and H atoms is about 0.5 &,
it is reasonable to take G~21 A. This estimate is con-
sistent with theoretical charge contour data for the
NH; molecule (see Sec. V). This estimate leads to
T'=+43.2 eV, which leaves us with Vp=-40.1-£1.0 eV
for liquid ammonia. Although this unreliable estimate
cannot be taken too seriously, the most important
conclusion emerging from the present discussion is
that Vy results from a delicate balance between two
large energetic contributions of different signs.

At this disappointing stage of the theoretical de-
velopment it may be advisable to extract some infor-
mation on the ¥V, terms from experimental data.
A lower limit for ¥V, can be obtained applying the
general stability relation for a localized excess electron
state [Eq. (5)] and utilizing the experimental heats
of solution of the electron in polar solvents (Table I).
Thus Vo>—1.7+0.7 eV for NH; and Vo> —1.7 eV
for H,0,

Unlike the case of nonpolar solvents this value
cannot be obtained from adiabatic electron injection
experiments since in a polar liquid the dipolar double
layer of the solvent molecules absorbed on the elec-
trode will have a large effect on the energetics of the
injection process. The best method to determine ex-
perimentally the value of V, will be provided by
photoconductivity and photoemission experiments as
Vo simply corresponds to the energy difference between
the thresholds for these two processes. Unfortunately,
it is not clear whether a photoemission experiment is
feasible.

In view of the large uncertainty in the value of Vo,
we shall perform theoretical calculations for the local-
ized state utilizing several physically reasonable values
of this energy parameter.

III. MODIFIED CONTINUUM MODELS

As a first step towards a realistic model of a solvated
electron in polar solvents, we shall attempt to incor-
porate short-range interactions into the continuum
model for electron medium interactions. In order to
calculate the electronic energy in the polaron model,
we recall that the Landau potential acting back on
the localized electron is given by

V(r)=—B/R, 1<R,
V(r)y=—ge/r, r>R, (10)

where 8= (D,,'—D,™), D,, and D, correspond to
the high-frequency and static dielectric constants, and
R is the cavity radius. Until recently the cavity size
was introduced as a parameter in the theory. The
electronic energy levels E; in a given electronic state,
say 1, is given by the sum of the electronic energy, W,
in the field of the oriented permanent dipoles which
exert the potential given by Eq. (10) and the con-
tribution .S:¢ of the electronic polarization energy,

Ei=W+Se. (11)
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- Energy (eV)

20
— R(A}—
F16. 1. Ground-state energy contributions for ‘the solvated

electron in polar solvents calculated on the basis of the continuum
model with V4=0. See Eq. (11).

The energy term W; is calculated variationally and
the mean radius of the charge distribution thus ob-
tained is applied to the calculation of the polarization
energy. Many calculations of this type have been
reported. For future reference we present in Figs, 1
and 2 the energy terms for the ground 1s and the
first excited 2p state calculated using single-exponent
variational wavefunctions. In these calculations it was
assumed that V,=0.

In order to account for the effect of short-range
repulsions on the electronic levels, we shall now com-
bine the continuum model with the Wigner-Seitz
method for the treatment of the localized excess elec-
tron state in a polar solvent. The potential acting on
the excess electron inside and outside the cavity is
taken in the form

V)= _682/R7
V(r)=—8¢/r+Vu,

where Vj is the potential exerted on the electron by
the fluid, which is due to short-range repulsive and
long-range polarization interactions. This one-electron
potential corresponds to the energy exerted on a quasi-
free electron which satisfies the eigenvalue equation

[— @/ 2m)V*+V a o= Vosho. (13)

If pseudopotential theory is invoked at this state,
¢o corresponds to a pseudowavefunction which is
“smooth” within the molecular core.

Now the wavefunction ¢ (r) for the localized elec-
tron inside and outside the cavity can be displayed
in the form

r<R,

r>R, (12)

¥ (r)=f(r),
Y (r)=f(r)eo(r), (14)

where outside the cavity the wavefunction for the
localized state is modulated by the quasifree electron
wavefunction ¢, given by Eq. (13).

r<R,
r>R,
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F1c. 2. Energy parameters for the 2p excited state of the solvated
electron. Continuum model with ¥V,=0. See Eq. (11).

Following the treatment of Springett, Jortner, and
Cohen,®® we now have for the electronic energy

[— ®@/2m)V*—Be/R1f(r)=Wf(r), r<R,
[— #/2m)V*—Be*/r+Vulf(r)o(r)=Wf(r)e(r),
r>R. (15)

Now neglecting the cross term [§f (R)D 1 ¢o(R) where
P is the momentum operator, one immediately obtains

[— @/2m)v*—Be/R1f (r) =Wf(r),
[— @/2m)v*—Be/r+Volf(r) =Wf(r), (16)

This result is similar to that obtained for the con-
tinuum model apart from the incorporation of the V,
term in the potential outside the cavity. A variational
solution of these equations is feasible. This was per-
formed using one-parameter trial wavefunctions for
the 1s and for the 2p states.* Calculations performed
on the basis of this simple model are summarized in
Figs. 3 and 4, where we have displayed pertinent
information concerning the ground- and first excited-
state charge distributions and the optical excitation
energies. From these data it is apparent that:

r<R,
r>R.

(a) At a fixed value of R the ground-state elec-
tronic energy increases for V>0 relative to the value
for V4=0. Thus in a solvent characterized by a posi-
tive V, the cavity size will tend to increase in an
attempt to reduce this short-range repulsive inter-
action.

(b) The charge distribution at a given R is pushed
into the cavity with increasing V.

(c) The energy of the first excited state is more
sensitive to short-range repulsive interactions than the
ground state. Hence the Is—2p excitation energy at
a given R increases with increasing Vo.

These conclusions should be considered only as
indicative concerning the role of the short-range re-
pulsive interaction in determining the electronic energy
levels. The most important result of the treatment
presented in this section involves a realistic way for
the introduction of an admittedly crude ‘“coarse
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graining” method to account for short-range repulsive
interactions. However, it should be born in mind that
the continuum model for a short- and long-range at-
tractive interaction is rather crude. We shall now
attempt to modify the attractive potential. The main
advantage of the continuum model is that it intro-
duces a negative constant potential within the cavity.
This large constant negative component of the po-
tential is the major factor responsible for the stability
of the localized state. We shall now proceed to for-
mulate a more realistic potential field which will
include the following ingredients:

(a) An electrostatic microscopic potential will be
used to account for short-range attractive interactions
due to the oriented solvent molecules in the first
coordination layer.

(b) The Landau potential will be retained for long-
range attractive interactions exerted by the solvent
molecules beyond the first solvation layer.

(c) Short-range interactions will be absorbed into
the parameter V, as already applied in this section
for the continuum model.

The advantages of this modified potential are twofold.
In the first place it allows for a more realistic de-
scription of the electronic energy levels. Furthermore,

] ] T
{1} V°=-O.54 eV
2V, = 0
(3) Vo = 1.09eV
(4) Vg = 163 eV
1.0}~ (5) Vo = 2.18 eV —
Cp
5
o}
T T T sy
1.0~ -~
5
Cs [
.5r 2 ~~
1
0 j | | !
| 2 5 6
o)
R{A)

F1e. 3. Charge distributions for the ground and first excited
states of the solvated electron for various values of V. C; and C,
represent the fraction of charge confined within radius R for the
1s and 2p states, respectively, calculated from the modified
continuum model,
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at a latter stage of the treatment it will be possible
to treat in a self-consistent manner the nature of the
energy charges accompanying the short- (and long-)
range structural modification in the liquid induced by
the excess electron. These medium rearrangement
energy terms combined with the electronic energy will
lead to the fofal energy of the ground and excited
states [see Eq. (1)] and will be crucial in determining
the ground-state energetic stability and optical prop-
erties of the solvated electron.

IV. MOLECULAR MODELS

In the previous section we only considered the
pature of the medium in terms of the two parameters
B and V,. No attempt was made to introduce the
discrete nature of the medium nor the various mo-
lecular parameters of the medium which influence the
localization phenomena. Such molecular models are
essential if we are to understand all features of the
experimental results, especially the variations in prop-
erties between different solvents.

Since the theory of liquids is not sufficiently ad-
vanced that we can consider the entire system of an
electron plus a large number (about Avogadro’s
number) of molecules, we must construct models
which begin to mimic real situations in part. In a
manner similar to the theory of electrolyte solvation,
we assume that around each electron are a small
number, N, of symmetrically distributed solvent mole-
cules which constitute a first solvation layer. Beyond
that we have little choice but to assume the solvent
is a continuum. Each of these N solvent molecules
has a dipole moment (assumed to be at its center),
is of finite size (see the next section for details), and
has an isotropic polarizability. Any specific effects of
electron solvent molecule interaction beyond the first
layer are expected to be smaller since the molecules
are further removed and subject to the dielectric
screening of the closer molecules.

The specific electron-medium potential responsible
for electron localization is now subdivided into short-
range attractive interactions, long-range polarization

T 1 I 1

(1) V, =—1.09eV
{2) Vy = ~0.54eV
BV = 0

(4) V, = +0.54eV
(5) Vo =+1.09ev
6) Vo = +1.63eV
{71V, =423 eV

3.0

2.9

Egp= Ey (V)

7
6
5
4

R(A)

F16. 4. The dependence of the 1s—2p excitation energy on V,
for the modified continuum model.
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F1G. 5. Definitions of
the distances involved
in the molecular models.
r» is the void radius of
the cavity, 7, the effec-
tive solvent radius, and
@ is the effective hard
core of the molecules
located a distance 74
from the center of the
cavity. The continuum
begins at 7.

interaction, and short-range repulsive terms. Using
the assumptions outlined above, the interaction takes
the following form:

V(= _Nl-‘e/rdz_ﬁe2/rc’
=—pe/r+V, (17)

using the notation described in Fig. 5. u is the effective
dipole moment of the molecule, a concept to be dis-
cussed later. The radius 7y is the distance from the
center of the cavity to the center of the molecule
(and thus to the dipole), while 7. is the distance
from the center of the cavity to the beginning of the
continuum beyond the first layer. We assume here
that polarization effects are not primarily responsible
for localization and can be added later.

The first term in Eq. (17) is the charge dipole
interaction based on a unit charge localized at the
center of the cavity. The energy contribution of this
term is only proportional to the charge enclosed. Also
included in this term is an effective dipole moment, u.
The interaction depends on the product of the value
of m, the actual dipole moment of the molecule times
the average value of the cosine of the angle between
the dipole moment vector and the radius vector,

(18)

We shall assume that uo is the gas phase dipole mo-
ment. The average value of the cosine depends on
two major factors: temperature and the strength of
the orienting electric field. We shall use the Langevin
function to express this relationship,

r<R,
r>R,

u=po{coss).

{cos8)=cothx—1/x, (19)

where x =poE10o/kT and Ei.=eC;/rs. The local elec-
tric field, Ei., contains a variable C; which is the
amount of charge enclosed in the region 0 to R since
this charge determines the magnitude of the orienting
field and for a spherical distribution can be simply
placed at the center of the cavity. This charge must
be determined by a self-consistent procedure. In using
the Langevin factor, we have assumed that orienta-
tion of the dipoles in the first layer is dominated by
the enclosed charge and only slightly affected by
other factors. In considering molecules farther removed
from the cavity, E. Is decreased and other factors
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Fic. 6. The potential (self-consistently calculated) which
traps the electron in the cavity for two values of V, and four
molecules in the first layer. Line a represents the depth of the
potential obtained from the continuum model for V,=0.0 and
R=3.2 A. Line b represents the continuum model’s potential
depth for V4=0.0 and R=1.7 &, corresponding to the R, of the
molecular case.

are important in orientation, supporting our assump-
tion that the continuum can be introduced via the
simple Landau potential.

In defining the parameters pertaining to the am-
monia molecules, we have used the following (see
Fig. 5):

R=r,+r,—a, (20)

where 7, is the radius of the solvent molecule while
ds corresponds to the “hard-core” repulsive parameter,
and 7, is the actual void radius. It is reasonable to
take @~1 A for ammonia since inspection of the theo-
retical charge contour data calculated using a limited
basis set SCF scheme leads to a value of about 0.98 A.
The average radius of the ammonia molecule in the
unperturbed liquid was estimated to be 2.3 A. The zero
point of the Lennard-Jones potential for NH; is con-
sidered to be about 1.7 A, Because electrostriction
affects the close contact between solvent molecules on
the cavity boundary, we will choose rnuy~1.5 A. The
center of the closest solvent molecule from the center
of the cavity is then taken to be

re=r,tr.=r,+1.5, (21)

These choices primarily affect only the continuum
contributions.

The electronic energy of the ground and excited
state are determined by substituting one-parameter

0.8

0.7

0.6

0.5

0.4

0.3
[o] i 2 3 4 5

F1c. 7. Orbital exponents for the 15(A4) and 2p(D) excited states
for two values of N and V,=0.5 eV,
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Fic. 8. Charge enclosed in a sphere of radius R for the 1s
(represented as C,) and for the 2p (represented as C,) states in
the molecular model.

Slater 1s and 2p functions and minimizing the energy
with respect to those parameters. We denote 4 as the
1s exponent and D as the 2p exponent.

Using the potential in Eq. (17), we obtain an
energy W; which for the ground (1s) state is

Wie=3A4%— (Nepo(cos8)/ri+Be*/r.)Cs

=200 682
+Vo(1—"C3)_/ ¢ls* '7' ¢13d7: (22)

r=R
where dr is the volume element and C,, the charge
enclosed, is

r=R
Ce = / ¢13*¢lsd7 - (23 )

r=0

Equation (22) must be solved self-consistently since
the cosine term depends on C; and thus on ¢, (or 4)
also. One simply requires a good initial guess of (cosé)
and a few iterations to achieve quick solutions.

The energy of the first excited state is found from
an equation similar to Eq. (22) with ¢y, replaced by
¢2p and C, replaced by C,:

r=R
Cr= d’2p*¢2pd7 )

=0

(24)

—R(A)—>

F16, 9. Charge enclosed in a sphere of radius R as determined by
the molecular model for N=4 and V=1 and 2 €V,
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—R(A)>

F1c. 10. Charge enclosed in a sphere of radius R as determined
by the molecular model for =6 and two values of V.

namely,

Wop=3D?— (Newo{costh/r2+Be2/r.)Cy

re=00 2!
o (B—e) gudr, (25

=R r

+Vo(1-Cp)—

where it is most important to realize that the average
value of the cosine is that calculated for the ground
or 1s state. No self-consistent procedure is involved
in solving Eq. (25) since the potential is determined
by the ground electronic configuration. This is the
appropriate state to use in the present calculation
since excitations occur so rapidly that the medium is
not allowed to rearrange.

The total electronic energy must include the elec-
tronic polarization contributions™

Ei=W+S, (26)
where
NaC? of [T 2 dr
i=———— —%(en) (/ ¢de> < @7
Td R r=0 r
with ¢; being either the 1s or 2p function and
vo=1—1/D,,. (28)

The first term on the right is the electronic polariza-
tion of the molecules on the surface of the cavity.
The remaining term arises from the polarization of

5 T T T T
al
>
23
>
(&)
W 2r
Z
w
'_
o | 1 | 1
| 2 o 3 4 5
—R (A)—

Fic. 11. Electronic energy contributions for the ground state
as obtained in the molecular models for V¢=0.0 and N =4. This
should be compared with Figs. 1 and 12.

1197

ENERGY (ev)

—R (A)—~

Fi6. 12. Electronic energy contributions for the ground state
as obtained in the molecular models for ¥¢=0.0 and N=6. This
should be compared with Figs. 1 and 11.

the continuum and is similar to the electronic polariza-
tion contributions of the modified continuum model
(Sec. III).%

The ‘“exact” value of Vy is not known (although
it is not expected to be far from Vyx0); also, the
best value of V to use is not obvious. Thus we decided
to perform calculations for various values of N. We
selected 4, 6, 8, and 12 as representative values based
on the liquid density and other considerations. The
particular numbers selected were dictated by the ease
of calculating the medium reorganization energy, which
will be discussed in the next section.

In Fig. 6 we present two typical self-consistently
calculated potentials [Eq. (17)] for N=4. Note how
insensitive the depth is with regard to V,. In Fig. 7
we show the best 1s and 2p orbital exponents for
N=4 and N=6 at one value of ¥, as a function of
the cavity size. The plots of charge enclosed as a
function of R for both the ground and excited states
are shown in Figs. 8-10. Figures 11-14 represent the
various contributions to the electronic energy for
typical cases. These should be compared with the
original and modified continuum theory (Figs. 1-4),

2.5 T T T T
N=6
2.0 Vo= 0.0eV N
>
2
> 1.5 -E 4
2

2 \/"
w
2

.o
e N

o 1 I I 1

-—R (X)—>

Fic. 13. Electronic energy contributions for the first excited
state as determined by molecular models for V4=0.0 and N=6.
This should be compared with the continuum results in Fig. 2.
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—R (A)— Wz
F16. 14. Ground-state electronic contributions as determined
by the molecular model for N=6 and Vy=1.0 eV. This should
be compared to the corresponding results for ¥y =0.0 in Fig. 12.
-3

as there are many similarities especially for N=6.

It is-found that for N =6 actual calculations of the
self-consistent potential inside the cavity are within -4
109, of those of the continuum model if R is the

same in both cases and of typical values 1-3 &. The

N =4 case has a higher energy while N values larger \ | | |
than 6 are much lower than the predictions of the ’50 | > 3 2 5
continuum result. Also in Fig. 6 we show the con- _R ('&)9

F16. 16. The same quantities as in Fig. 15 for V,=0.0.
2
|
1
o]
0
-1
S
3 Chlln ]
2 >
> o
o2 >
@ c
y s
u
-3
0.5 -3r
t
~4r 1-N=12 5
i
| N= _ab I-N=12 .
\\ 4-N= 4 4 2-N= 8
_ cN L I N 3-N= &
%0 | 2 ., 3 4 5 4-N= 4
—R(A)— _5 | |
" Fic. 15. Total ground-state electronic energy (FEi), total 0 I 2 o 3 4 5
excited state electronic energy (ZEs,), and the excitation energy, —R({A) —
hy, as determined by the molecular model as a function of the
cavity size, R, for V,=0.5. ¥i1c. 17. The same quantities as in Fig. 15 for Vo= —0.5.
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tinuum predictions inside the cavity for Vo=1 eV and
the two values of R, namely, 3.2 (the value used in
early calculations”) and 1.70 &, a value more appro-
priate based on the present calculations.

More complete plots of the total electronic energy
and the excitation energy (Fs,— Fi,) for several values
of Vg are shown in Figs. 15-17. These numbers are
not useful in themselves as they indicate only energies
versus R and say nothing about the correct cavity
size to use. We must consider in addition the factors
which uniquely determine R, and to do so, we need
to study the detailed interactions of the medium
molecules. After having done this, we can present
more complete data on the various parameters at
their stable configurations. The important point is
that for V=4 and 6 the transition energy hv=Ey,— F;,
is of a reasonable magnitude to agree with the ex-
perimental data. The unique value will be found in
the next section.

V. MEDIUM REARRANGEMENT ENERGY

The calculations of the preceding two sections con-
sidered only one aspect of the changes in the solvent
when the electron was introduced. We have not con-
sidered the energy changes of the solvent—solvent
molecule interactions induced by the electron. How-
ever, we assumed that the electron oriented those
molecules in the first solvation layer and polarized
the solvent beyond it, and that these configurational
modifications must lead to some major energetic con-
tributions. In fact, without worrying about such a
contribution, the lowest energy state for the electron
would be in a cavity of zero size in most cases.

Let us now consider what happens to solvent-
molecule interactions in the first layer when an elec
tron is introduced. Imagine the following process:

(a) We create a cavity of size R.

(b) We introduce a charge with a distribution given
by the problem considered in the previous section.

(c) The molecules are now allowed to rotate under
the field of the trapped electron. This leads to changes
in molecule-molecule interactions.

(d) The continuum outside the first solvation layer
is readjusted in the field of the charge distribution.

The energy of the first process can be approximated
by the surface tension

Egr=4xvyR?,

where y=~40 dyn/cm. ,

There is another term which should be included in
the first step, namely, the energy to create a void of
volume V against an external pressure,

Epy=3§7R°P, (30)

but this is exceedingly small for the cases we consider
here, i.e., pressures around normal atmospheric pres-

(29)

IN POLAR SOLVENTS 1199
sure. Only if the pressure were increased greatly would
this factor be of any interest at all. One example of
such a case is the stability of localized electrons in
solid helium considered by Cohen and Jortner,5

When the molecules in the first solvation layer
adjust under the influence of the enclosed charge, two
things happen. First, since the dipoles are all pointed
in a similar direction (to a large extent), there will
be a net electrostatic repulsion between neighboring
dipoles relative to the “almost” random array which
occurs in the liquid in the absence of an extra charge.
In addition, in molecules such as ammonia and to
a lesser extent water and other molecules with two
hydrogens, when the dipole moment is oriented, hy-
drogen~hydrogen distances between neighboring mole-
cules are decreased since all hydrogens are now forced
to point forward. This leads to hydrogen-hydrogen
repulsions, which also increase the medium rearrange-
ment energy.%

The repulsion of dipoles and the hydrogen-hydrogen
interactions can only be handled with ease for certain
coordination numbers of first-neighbor molecules,
namely, 4, 6, 8, and 12. Larger values of N were not
considered, as close packing of such a large number
of solvent molecules in the first layer is physically
unsound. This conclusion is supported by the trends
observed in our calculations. For the dipole-dipole
interactions of these interactions, we have a contri-
bution of the form

Eaa=Dyur*/14, (31)

where Dy is a numerical constant which depends on
the number of molecules in the first layer. Using the
constants from a paper by Buckingham,* we have

D4=2.2964,
Dy=17.1140,
Dy=12.820,

Dyp=41.074. (32)

The dipole moment which is to be used in Eq. (13)
is the total dipole moment along the radius vector
including that induced by the charge enclosed:

pr = po(cos8)+-eaCy/122, (33)

where « is the (assumed) isotropic polarizability of
the ammonia molecule and C, is the charge enclosed
in the ground state [Eq. (23)]. The components of
the dipole moment in other directions do not con-
tribute to the dipole-dipole repulsion energy.®

The hydrogen-hydrogen repulsions must be esti-
mated from a rather specific model. The hydrogen—
hydrogen interaction judged best by Eisenberg and
Kauzman from their studies on water® was

¢H—H =434 €xp ("‘ 4.601’}1) (EV) . (34)

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1200

—E,(p)[ev] >

OFN=4 6 8 12 .
4
2-05F .
©
—
[ S - -
V0 =0.5eV
{ { i ! L 1 " {
1 2 3 4 5

-R (R)—

F1c. 18. The total energy (electronic plus medium reorganiza-
tion) of the ground state £,(s) and the first excited state E,(p)
for the molecular model as a function of cavity size for V,=0.5.

In each case the total repulsion is related to N by
some numerical factor (being careful to avoid double
counting). The distance between hydrogens, rg, must
be studied carefully. Using charge densities of Bader
and Jones,” one finds that the hydrogens lie in a
plane about R+0.58 A with a radius of about 0.93 A.
Since the hydrogen’s are somewhat free to rotate to
reduce their repulsions, we assumed that the effective
radius of the hydrogens was somewhat less than
0.93 A, namely, 0.71 A, based on charge density plots.
This factor is difficult to determine more accurately.

0.5 = T T T
2p,N=6
2p,N=4
0 .
-0.5— 7
N
2
>
g 1 F Is,N=6 .
w Is,N=4
z
w
-1.5 N
V0=O.5 eV
I ] 1
| 2 3
o
~R((A)—

F1c. 19. The total energy of the ground and first excited state,
an expanded version of Fig. 18 for ¥4=0.5 and N=4 and 6.

COPELAND, KESTNER, AND JORTNER

With the above choices the total hydrogen-hydrogen
repulsion can be expressed in the following form:

Fya=Cyg® exp[~— 4.60 (ANR—BN)], (35)

where the constants depend on the geometry and are
listed in Table II.

As mentioned in the Introduction, there is an ad-
ditional contribution due to the solvent molecules,
namely, the energy to rupture hydrogen bonds. In our
discussions of ammonia as the solvent we have ne-
glected this contribution. Introduction of the effects
of such terms as a barrier to rotation did not change
our results significantly, and thus we have neglected
its effect for the present. Because the hydrogen bond-

0.5 T T 7

T
Vo= 0.0 eV
o\
\_/zpj:s
2p,N=4
~-0.5 .
>
©
> .
(O]
S
¥ 1s,N=6
w
ls,N=4
-5 N
1 1 1 |
] 2 3
©
—R(A})—

Fi16. 20. The total energies of the ground and first excited states
for the molecular model with V=0.0.

ing is weak in ammonia, we believe this is a small
contribution, but it may not be small in other solvents
such as water (see Sec. IX). In addition we have
neglected all higher multipole interactions between
molecules.

Finally, we have a fourth contribution, namely, the
effect of the electron on the continuum. Using the
formula originated by Jortner” and corrected by Land
and O’Reilly,® we have

=18 ( / j Go (7)1 2r2dr+Go (7.) P (rc)) ,  (36)
where

Golr) =r f | na(s) Pstds+ [ " | 6w (s) Psds (37)
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and

Plr)=e / " us (s) [osPs. (38)

0
This represents the average interaction of the medium
to the enclosed charge in the same spirit as the original
continuum model.

The numerical values of these various terms will be
summarized later in the paper for the most stable
configurations. From the form of the terms we see
that very small cavities are characterized by a very
large rearrangement energy if the dipoles can be
oriented or equivalently if a large amount of charge
can be enclosed. From various numerical studies with
varying conditions we have confirmed this conclusion.
Even an introduction of a reasonable barrier to rota-
tion did not change seriously the fact that most
molecules are oriented with their hydrogens pointing
inward. For large cavity sizes the hydrogen-hydrogen
repulsion contribution decreases rapidly and the dipole-
dipole repulsion dominates, and for a constant co-
ordination number this contribution decreases as the
inverse cube of the cavity radius.

VI. CONFIGURATIONAL STABILITY

In the original work on the continuum model” and
even in the modified version for the interaction po-
tential presented in Sec. II of this paper no prediction
is made of the existence or stability of the cavity
model. Obviously the electronic energy increases as
the cavity size decreases. Thus, unless the medium
rearrangement energy is introduced, one cannot pre-
dict the size of the energetically stable cavity. In some

0.5 —— — T T

)
o
w

ENERGY (eV)
]

'
o
I

-R(A)—

F1G, 21. The total energies of the ground and first excited states
of the molecular model for Vo= —0.5,
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TasLE IT. Constants representing the hydrogen—hydrogen
repulsions [See Eq. (16)].

Molecules in

first layer Car™ Ay By
N (eV) (A (A)

4 2 602.4 1.633 0.471

6 5204.7 1.155 0.752

8 6 940.0 1.155 0.752

12 10 416.0 1.000 0.843

preliminary work published in Ref. 50, we made a
first attempt in this direction. The present paper
contains a more thorough analysis of the configura-
tional stability.

To predict the stability of the electron cavity, one
needs to show that the fofal energy of the system,
i.e., electron plus medium [Eq. (1)], is a minimum
for a finite radius. One can not, therefore, consider
either the electronic or the medium energy separately.

Unless we consider the entire process of the solu-
tion of, say, sodium metal in liquid ammonia, we can
not predict the absolute stability of finding solvated
electrons and solvated sodium ions in ammonia solu-
tions. We can, however, predict the state of the elec-
tron. The electron is localized if Eq. (5) applies,
namely, if the total energy is less than the energy
of a quasifree electron. The continuum model or the
molecular model based solely on the electronic energy
could always be made to satisfy Eq. (5) by choosing
R small enough. This, however, does not uniquely
define a cavity model since Ry, the cavity radius, can
be arbitrarily selected to agree with one or more ex-
perimental data such as optical excitation energies.

One could try to amend the continuum model by
appending to it a medium reorganization which cor-
responds to the work required to polarize a con-
tinuum dielectric. Such a simple procedure does predict
that the stable configuration corresponds to R=0.
One could proceed one step further and combine the
electronic energy calculated on the basis of the con-
tinuum model (Sec. IIT) with the medium rearrange-
ment energy calculated by a molecular model (Sec. V).
Such an approach was previously adopted by us.%
However, we feel that this is an inconsistent procedure
since the medium energy must be computed for a
finite number of molecules in the first layer, and it is
therefore essential to consider a molecular model both
for the medium rearrangement energy and for the
electron medium interaction potential. For this stable
configuration the energy expressed in terms of the
configurational coordinate R must be a minimum,

(aEt/aR)Ro =0
and
(0°E/dR)p,>0. (39)

We do not know the exact value of V, nor of N 3
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Tasie IIL. Electronic energy results for the most stable molecular cavity models at T=203°K.»

Ground state Excited state Transition Estimated
energy half-width®
Vo Ro(A) 4 (&) Wy S Ey, DA™ Wy o hy A,
N=4
2.0 2.00 0.568 —0.3724 -—0.7863 —1.1587 0. 503 1.0520  0.5293 1.6879 0.17
1.8 1.85 0.544 —0.7124 —0.7766 —1.4890 0.480  0.5804  0.0740 1.5630 0.13
1.0 1.80 0.514 —1.0681 —0.7522 —1.8203 0.466  0.0967 —0.3976 1.4223 0.13
0.5 1.75 0.487 —1.4496 —0.7294 —2.1790 0.456 —0.3913 —0.8762 1.3028 0.12
0.0 1.72 0.460 —1.8421 —0.7053 —2.5474 0.448 —0.8826 —1.3550 1.1924 0.12
-~0.5 1.70  0.435 —2.2466 —0.6816 —2.9282 0.439 —1.3723 —1.8410 1.0872 0.13
N=6
2.0 2.50 0.582 —0.6822 —0.8070 —1.4892 0.591 0. 8996 0.3297 1.8189 0.26
1.5 2.40 0.556 —0.9307 —0.7948 —1.7255 0.539  0.4913 —0.0485 1.6770 0.21
1.0 2.35 0.524 —1.1989 —0.7662 —1.9651 0.499  0.0488 —0.4636 1. 5015 0.21
0.5 2.25  0.495 —1.5175 —0.7436 —2.2611 0.470 —0.4112 —0.9025 1.3586 0.16
0.0 2.25 0.455 —1.8233 —0.6995 —2.5228 0.448 —0.8828 —1.3559 1.1728 0.15
—0.5 2.20  0.422 —2.1785 —0.6654 —2.8439 0.428 —1.3573 —1.8121 1.0319 0.14
N=8
2.0 3.00 0.570 —0.9348 —0.7793 —1.7141 0.657 0.6191 0.0180 1.7321 0.24
1.5 2.95 0.545 —1.1189 —0.7648 —1.8837 0. 605 0.2949 —0.2755 1. 6082 0.21
1.0 2.90 0.516 —1.3261 —0.7439 —2.0700 0.550 —0.0696 —0.6063 1.4637 0.18
0.5 2.85 0.483 —1.5593 —0.7157 —2.2750 0.499 —0.4704¢ —0.9728 1.3021 0.16
0.0 2.85 0.440 -1.7973 —0.679 —2.4674 0.452 —0.8964 —1.3638 1.1035 0.14
—-0.5 2.80  0.400 —2.0880 —0.6288 —2.7168 0.417 —1.3439 —1.7830 0.9338 0.14
N=12
2.0 3.60 0.555 —1.3541 -0.7562 —2.1103 0.691 0.0986 —0.5330 1.5774 0.23
1.5 3.60 0.532 —1.4723 —0.7377 —2.2100 0.651 —0.1307 —0.7339 1.4761 0.23
1.0 3.55 0.510 —1.6268 —0.7272 —2.3540 0.609 —0.3889 —0.9640 1.3900 0.20
0.5 3.55 0.478 —1.7738 —0.6982 —2.4720 0.555 —0.6827 —1.2187 1.2533 0.19
0.0 3.50 0.446 —1.9665 —0.6725 —2.6390 0.500 —1.0189 —1.5165 1.1225 0.17
—0.5 3.50 0.402 —2.1555 —0.6249 —2.7804 0.439 —1.3917 —1.8418 0.9386 0.16

& All energies in electron volts.
b Half-width estimated by range of kv included within a variation of E¢{1s) by kT, where k is Boltzmann’s constant [see Eq. (56)].

thus calculations were performed for various values
of these parameters. Typical plots for Ve=0.5 are
shown in Fig. 18. The results for N=4 appear to be
most stable for this and all other V, values studied.
However, the difference in energy between the four,
six, and even the eight molecule cavities are probably
within the limitations of this method. This leads one
to suspect that there may be present in solution
cavities of various sizes and various coordination
numbers of molecules in the first layer. The most
important result of this plot and all other results
obtained in this study is that there exists a stable
cavity species of a radius R in the region 1.70 A to
about 2.2 A. This number is below that usually quoted
based on volume expansion data but is not directly
comparable for reasons we will discuss later. In Tables
IT and III we summarize the various energetic con-
tributions which lead to the results obtained at 203°K
for various N and V, values. In Figs. 19-21 the effect
of V, is presented in more detail for the N=4 and
N=0 cavities.

We have not listed detailed values for the charge
enclosed in the cavity. In some cases these can be
obtained from earlier figures. The amount of charge
increases for larger Vy and larger N because both
effects favor greater stability. Typical values at the
equilibrium configurations are given in Table IV. These
values are roughly 109%,-15% higher than those ob-
tained from the simple polaron continuum model at
the same value of R.

Finally, for later reference we present values for the
N=4 and 6 cases of the calculations when the tem-
perature is increased to 300°K in Table V. These are
calculated by simply changing the temperature and
the dielectric constants.

VIIL. GROUND-STATE PROPERTIES

The theoretical calculations for the ground state of
the solvated electron in dilute metal ammonia solu-
tions suggest that for reasonable V¥, values in the
range +0.5 to —0.5 eV the energetically stable con-
figuration of thc ground state is characterized by a
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TasLe IV. Medium and total energy results for the most stable molecular cavity models at T=203°K.»

Vo Ro (A) Edd E,g EHH k. <C050> E;(ls) E‘(ZP)
N=4
2.0 2.00 0.1745 0.1256 0.0068 0. 8023 0.909 —0.0495 1.6215
1.5 1.85 0.1912 0.1075 0.0209 0.8168 0.901 —0.3525 1.2105
1.0 1.80 0.1877 0.1017 0.0305 0.8123 0.889 —0.6881 0.7346
0.5 1.75 0. 1628 0.0962 0.0444 0.8058 0.876 —1.0486 0.2542
0.0 1.72 0. 1816 0.0928 0.0556 0.7981 0. 861 —1.4293 —0.2369
—0.5 1.50 0. 1667 0.0907 0.0646 0.7791 0.843 —1.8269 —0.7396
N=6
2.0 2.50 0.3456 0. 1963 0.0071 0.7360 0.912 —0.2042 1.6147
1.5 2.40 0.3644 0. 1809 0.0137 0.7447 0.907 —0.4219 1.2551
1.0 2.35 0. 3606 0.1734 0.0189 0.7436 0.900 —0.6686 0.8329
0.5 2.25 0.3724 0. 1590 0.0362 0.7470 0.880 —0.9465 0.4120
0.0 2.25 0.3411 0. 1590 0.0362 0.7307 0.876 —1.2557 0.0830
—-0.5 2.20 0.3269 0.1520 0.0502 0.7183 0.856 —1.5969 —0.5647
N=8
2.0 3.00 0.4234 0.2826 0.0264  0.6741 0.904 —0.3076 1.4245
1.5 2.95 0.4385 0.2733 0.0344 0. 6768 0.900 —0.4707 1.1375
1.0 2.90 0.4293 0.2641 0.0449 0.6778 0.893 —0.6539 0.8098
0.5 2.85 0.4242 0.2550 0.0586 0.6761 0.886 —0.8611 0.4410
0.0 2.85 0. 3913 0.2550 0.0586 0. 6634 0.871 —1.0991 0.0045
—0.5 2.80  0.3706 0.2462 0.0764 0. 6509 0.851 —1.3727 —0.4389
N=12
2.0 3.60 0.7528 0.4069 0.0324 0.6112 0.889 —0.3070 1.2704
1.5 3.60 0.7359 0. 4069 0.0324 0.6094 0.885 —0.4254 1.0508
1.0 3.55 0.7470 0.3957 0.0407 0.6119 0.882 —0. 5587 0.8313
0.5 3.55 0.7180 0. 3957 0.0407 0.6079 0.874 —0.7097 0. 5436
0.0 3.50 0.7110 0.3847 0.0513 0. 6064 0. 866 —0.8858 0.2367
—-0.5 3.50 0. 6555 0.3847 0.0513 0.5948 0.848 —1.0942 —0.1556

# All energies in electron volts.

coordination number N=4 (or N=6). We shall now
demonstrate that the ground-state structural and
energetic theoretical parameters obtained herein are
consistent with a variety of structural, thermodynamic,
conductive, and magnetic relaxation data for dilute
metal ammonia solutions.

The most important structural evidence for the
cavity model in dilute metal ammonia solutions was
based on the volume expansion data, namely, that
the volume of, say, a sodium ammonia solution is
greater than the volume of its constituents. This has
been interpreted by Jortner' and others as indicating
that the electron resides in a cavity of an effective
radius of about Ru=3.2 A. Recent experimental re-
sults of Schindewolf*® on the pressure dependence of
equilibrium constants support this analysis of the ex-
perimental data. The theoretical significance of this
effective radius R.s=3.2 A within the framework of
our microscopic model is not immediately apparent.
The value of Ret can not be set equal to the value
of Ry, nor can it be compared with the value of our
void radius which was taken as 7,=Ry—0.5 A [see Eq.
(20)]. The difficulty arises since we have the first
layer around the cavity with a density lower than the

mean density of the bulk. The coordination number
N =4, 6 is lower than the mean value in the medium
because of the hydrogen-hydrogen repulsions (Sec. V).
In this context it should be born in mind that for
solid NH;, N =12. Thus an apparent value expansion
around the cavity is expected, resulting in a significant
volume expansion.

Assuming a radius of the molecule in the first layer
of 1.5 & (from density measurements), the effective
radius of our cavity is

Rt =1+ (r,+3)'—r,— N (2.3)?

= (r+3)' =N (2.3)}, (40)

or the volume of the cavity plus the first layer minus
the number of molecules found in this layer, assuming
they occupied the same volume as in the bulk medium.
Using V,=0.0, for N=4 we obtain R.;=3.05 A, and
for N=6, we obtain Re:=4.2 A. Both values are
reasonable and again indicate the wvalidity of our
model. Larger effective cavity sizes for V>0 values
are obtained when calculated using the above formula.
The results are listed in Table VI.

The important qualitative conclusions arising from
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TaBre V. Charge enclosed in the cavity for the
most stable configuration.

N Cs Cp
Ve=0.0eV

4 0.210 0.020

6 0.336 0.053

8 0.458 0.119
Vo=1.0eV

4 0.283 0.028

6 0.446 0.089

8 0.575 0.218

the present discussion can be summarized as follows:

(a) In our microscopic model the electron cavity
in liquid ammonia is characterized by a loosely packed
first coordination layer. There is an appreciable amount
of “empty” space in the first coordination layer rela-
tive to the bulk density. The electron charge density
can ‘leak” through these vacant regions.
ki (b) The dipoles in the first layer are not rigidly
oriented (at finite temperature of 200-500°K), as
evident from the average values of the direction
cosines listed in Tables III and IV.

There is currently a large bulk of experimental data
which are consistent with the present model, although
we must admit in all fairness that although this con-
sistency is strongly indicative of the validity of our
physical picture, it is by no means conclusive. We
shall now list some of these experimental observations
which are based on the interpretation of magnetic
resonance and conductivity experiments:

(a) The analysis of nuclear magnetic relaxation
data by Catterall® set the following limits on the
coordination number:

3<N<13;

thus our predicted data N~24, 6 are consistent with
this conclusion.

(b) In view of the large vacant space available for
the leakage of the electron charge distribution within
the first coordination layer, the electron can rather
easily reform its cavity in another place. This conclu-
sion is consistent with the fast nuclear relaxation times
(7~10"1 sec) of the first solvation layer.5®

(c) The short-lived structure around the electron
cavity is also consistent with the relatively high value
for the electron mobility (u=10"2 cm?/sec-V) in very
dilute metal solutions (see Table I). This result cannot
be quantitatively reconciled with a hydrodynamic mo-
tion of a rigid cavity, but is rather consistent with
an “‘amoeba type” motion of the loosely packed struc-
ture of the first layer around the localized electron
which is destroyed and rebuilt at a fast rate.

COPELAND, KESTNER, ANID JORTNER

(d) The present model characterized by a loose
structure around the localized excess electron is also
in accord with the observation that the viscosity of
metal ammonia solutions is lower than that of the
pure solvent, in contrast to the behavior of ordering
in ionic solutions.%®

We shall now turn our attention to some thermo-
chemical data for dilute metal ammonia solutions.
The heat of solution AH of the electron is given to
a good approximation by"

AH=—FE,(1s) at R=Ry; (41)

the experimental value of the heat of solution for e,
is from 1.7 to 1.0 eV, the uncertainty in the estimate
arising from our ignorance of the absolute heat of
solution of the proton in liquid NH;. In view of the
qualitative discussion of Sec. II, it is reasonable to
set Vy close to zero, i.e., —0.5<V,<0.5 eV, The
resulting heats of solution for the most energetically
stable cavity configurations (=4, 6) are close to the
experimental heat of solution (see Tables III and IV).
It should be born in mind that the present energetic
data were obtained using a simple variational wave-
function for the calculation of the ground-state elec-
tronic energy Fi,. With more elaborate trial functions
the energy Ej, and the resulting E;(1s) values are
expected to be somewhat lower (but not more than
a few percent).

Further information concerning the energy of the
ground state can be obtained from the photoelectric
threshold P for electron emission from metal ammonia
solutions into the gas phase. The experimental value
for the photoelectric threshold was found to be P=
~+1.6 eV. Theory predicts that

P~—E,, (Ro) (4’2)

Again for reasonable values of ¥, and for N =4, 6 the
theoretical P values are located in the range 2.2-
3.9 eV. It is not surprising that the theoretical P
value exceeds the experimental result by a few tenths
of an electron volt. It should be born in mind that
this theoretical value [Eq. (22)] was computed at
the equilibrium configuration of the electron cavity.
Thermal motion of the cavity (with a fixed N value)
will lead to populations of the ground-state vibrational
states of the ground electronic state, and photo-
emission from these levels will occur at lower energies
than from the equilibrium configuration (R=R,).
This effect is, of course, completely analogous to the
broadening of the 1s—2p transition (see Sec. VIII)
and will lead to a smearing of the photoelectric thresh-
old towards lower energies. Thus the experimental P
value provides a lower limit to the absolute value of
the electronic energy at R=R,. It is interesting to
note that the combination of the values of AH and P
provides us with a lower limit for the medium rear-
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TapLE VI. Results for most stable molecular model cavities with various contributing factors for 7= 300°K.

Estimated
linewidth=
Vo Ry (A) E; (Ro) Eqq4 T En-m E, hy A {cos8)
N=4
2.0 2.00 0.0103 0. 1602 0.7792 0. 0068 —1.0614 1.6507 0.20 0.864
1.5 1.85 -0.2929 0.1728 0.7920 0.0209 —1.3860 1.5191 0.16 0.849
1.0 1.80 —0.6301 0.1663 0.7861 0.0305 —1.7148 1.3755 0.15 0.830
0.5 1.75 —0.9933 0.1592 0.7781 0.0444 —2.0711 1.2529 0.14 0.808
0.0 1.72 —1.3770 0.1521 0.7687 0.0556 —2.4374 1.1404 0.15 0.784
—0.5 1.70 —1.7783 0.1358 0.7484 0.0646 —2.8178 1.0342 0.15 0.754
N=6
2.0 2.50 —0.1459 0.3197 0.7155 0.0071 —1.3844 1.7845 0.30 0.868
1.5 2.40 —0.3645 0.3340 0.7233 0.0137 —1.6163 1.6351 0.24 0. 861
1.0 2.30 —0.6132 0.3438 0.7212 0.0262 —1.8778 1.4789 0.20 0. 850
0.5 2.25 —0.8945 0.3297 0.7228 0.0362 —2.1422 1.3024 0.18 0.832
0.0 2.25 —1.2078 0.3106 0.7044 0.0362 —2.4001 1.1115 0.17 0.808
—0.5 2.20 —1.5557 0.2693 0. 6889 0.0502 —2.7161 0. 9650 0.16 0.772

8 Half-width estimated by the range of zv included allowing for a variation of E;(1s) by kT, where % is Boltzmann's constant [see Eq. (56)].

rangement energy at the ground state as
Eu(1s)>P—AH (43)

as Eyx(1s)>0 we expect that P>AH. Taking P=
1.6 eV and AH=1.0 eV (which corresponds to the
lower limit of the experimental estimate), we get
Ey(15s)>0.6 eV, which is not inconsistent with our
calculations (see Table IIT). This argument strongly

TasLE VII. Effective and void radius at cavities
obtained from present model.

203°K 300°K
s Ress 7o Ress
N Vo (&) (&) (&) (&)
4 2.00 1.50 3.46 1.50 3.25
1.5 1.35 3.23 1.35 2.97
1.0 1.30 3.14 1.30 2.86
0.5 1.25 3.05 1.25 2.74
0.0 1.22 2.98 1.22 2.68
—0.5 1.20 2.95 1.20 2.62
6 2.0 2.00 3.74 2.00 3.45
1.5 1.90 3.55 1.90 3.22
1.0 1.85 3.46 1.80 2.99
0.5 1.75 3.25 1.75 2.85
0.0 1.75 3.25 1.75 2.85
-0.5 1.70 3.14 1.70 2.71
8 2.0 2.50 4,10
1.5 2.45 4.02
1.0 2.40 3.92
0.5 2.35 3.83
0.0 2.35 3.83
—0.5 2.30 3.72

supports the lower estimate AH~A1.0 eV for the heat
of solution of an electron in liquid ammonia.

Theoretical information intimately related to the
photoelectric threshold involves the photoconductivity
onset I, which simply is

IS —Fy (R)+ Vo, (44)

where again the broadening due to thermal motion
was neglected. For N=4 we expect I to range from
2.8 eV for Vy=1.0 eV to 2.4 eV for Vo=—0.5 eV.
The values for N=6 are not very different.

Some further information concerning the ground
state of the solvated electron in ammonia can be
obtained from the frequency of the totally symmetric
vibration in the ground state, which is given by

vo=(1/2x) (K/u)""?, (45)

where the force constant K is % (9%E;/0R?)g_g,, while
the effective mass is u=Nmnn,, myn, being the mass
of the ammonia molecule. The values of v, calculated
from the ground-state configuration diagram are as-
sembled in Table VII. This vibrational mode may be
monitored by Raman scattering from metal ammonia
solutions.

To conclude this discussion, we have presented in
Table VIII a comparison between the predictions of
our model and the available experimental data. We
have included also some pertinent information con-
cerning optical properties which we shall now proceed
to discuss.

VIII. OPTICAL PROPERTIES

The configuration diagrams obtained for the ground
(1s) and for the first excited (2p) state enable us to
gain some theoretical insight into the nature of the
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TasrLe VIII. Properties of the totally symmetric

vibration at 203°K.
Second 7 for
derivative = symmetric
at minimum  vibration

N Vo (eV/A2) (cm™)
Ground 4 2.0 0.316 25.0
state 1.5 0.716 37.7
1.0 0.978 4.1
0.5 1.376 52.3
0.0 1.96 62.4
—0.5 1.94 62.0
6 1.0 0. 623 28.7
0.5 1.007 36.5
0.0 0.974 35.9
—0.5 1.268 41.0
8 0.5 1.018 31.8
0.0 0.995 31.4
—0.5 1.245 35.1
Excited 4 0.5 0.140 16.6
state 0.0 0.199 19.9
~0.5 0.237 21.7

optical excitation processes which are responsible for
the broad structureless absorption band of dilute metal
ammonia solutions and of the solvated electron in
other, polar solvents. Such configuration diagram curves
are also of obvious interest in ascertaining the energetic
stability of excited states and the nature of radiative
and nonradiative decay of excited electronic states.
Such configuration diagrams have been extensively
used in solid state theory to account for the properties
of impurity states in solids. Obviously a generalized
configuration diagram should specify the energy of
the system as a function of (a large number of) nuclear
displacements. The choice of a single configurational
coordinate for this purpose is by no means obvious,
and a general theory of multiphonon processes in
solids was provided to justify the use of such a single
(temperature-dependent) configurational coordinate.
Even this general treatment still suffers from the ap-
plication of the harmonic approximation for nuclear
displacements. In what follows we shall adopt a sim-
pler but hopefully a realistic approach and consider
the single totally symmetric breathing mode of the
electron cavity (specified by the coordinate R) to
specify the dependence of the total energy of a given
electronic state on the nuclear configuration. This ap-
proximation immediately implies that:

(a) The dependence of the electronic energy on
other nontotally symmetric vibrational modes is weak.

(b) The triply degenerate 2p state is not split by
the totally symmetric vibration.

If nontotally symmetric modes strongly couple elec-
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tronic and nuclear motions, a Jahn-Teller splitting
of the excited state would be manifested in the optical
spectrum.

Using the rather drastic assumption (common to
many semiquantitative treatments in solid state
theory) concerning the dominant role of the totally
symmetric vibration, we can then utilize the con-
figuration diagrams displayed in Figs. 18-21 for the
study of the optical properties of the solvated electron
in liquid ammonia. A cursory examination of these
configuration diagrams leads to the following general
conclusion:

(a) A fair approximation for the energy correspond-
ing to the maximum of the absorption band is given
by the vertical energy gap between the 1s and 2p
curves calculated at R=Ry,

hy= Bz (Ro) — E1s (Ry). (46)

In Table IX we list the results obtained from our
model. For Vy close to zero and N=4, 6 (which are
the proper values to account for the configurational
stability of the ground state), the agreement between
theory and the experimental value for the maximum
of the absorption band is reasonable, although by no
means quantitative.

(b) The integrated oscillator strength calculated
from the transition moment (Table IX) is lower than
the experimental values. This is by no means a sen-
sitive criterion as Jortner’s polaron model yields
f=0.582,

(c¢) The potential surfaces are temperature depend-
ent. This effect arises mainly from the enhanced
thermal motion of the dipoles in the first solvation
layer with increasing temperature, with the tempera-
ture dependence of 8 providing another source of
temperature variation. The first effect provides, in
fact, a crude description of the temperature depend-
ence of the Jocal (microscopic) dielectric constant.
This feature of temperature-dependent configuration
diagrams is unique for the solvated electron, which
is localized due to a self-trapping mechanism. To
obtain a rough idea of the magnitude of this effect,
we notice that from Tables VIII and IX, diw/dT~
—4 cm~!/deg. This value cannot be directly related
to the temperature shift of the band maximum in the
absorption spectrum because the ground-state con-
figuration curve is far from being harmonic and
thermal expansion effects must be introduced. With
the availability of proper configuration diagrams these
effects can be properly handled.

(d) The ground-state configuration diagram E,(R)
shows a marked deviation from a parabolic curve.
Thus at finite temperatures the mean radius of the
cavity will be larger than Ry (the minimum value).
Thus the marked anharmonicity of the ground-state
configuration diagram leads to thermal expansion of
the cavity. This effect of thermal expansion previ-
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TasLe IX. Summary of properties of model for N=4.

Experimental Vo=40.5 Ve=0.0 Vo=—0.5
values
(See TableI) 203°K  300°K 203°K  300°K 203°K  300°K
Transition energy /s» (eV) 1.303 1.253 1.192 1.140 1.087 1.034
Maximum of line shape, /vy qx 0.80 1.302 1.246 1.189 1.137 1.080 1.028
Bandwidth (eV) 0. 107 0.122 0.105 0.124 0.106  0.123
Oscillator strength 0.77 0.48 0.48 0.49 0.50 0.50 0.51
Temperature coefficient of —12s —4.7 —4.3 —4.3
hvmax (cm™1/°K)
Equilibrium radius of cavity, 1.75 1.75 1.72 1.72 1.75 1.70
R (R)
Effective radius of cavity, 3.2 3.1 2.7 3.0 2.7 3.1 2.6
Ret (R)
Heat of solution AH (eV) 1.740.5 1.05 0.99 1.43 1.38 1.83 1.78
Photoelectric threshold, 1.6 2.18 2.07 2.56 2.45 2.93 2.82
P (eV)
Photoconductivity threshold, 2.68 2.57 2.56 2.45 2.43 2.32
I (eV)
Average radius of 1s electron 3.08 3.16 3.24 3.33 3.45 3.56
(4)

2 R. K. Quinn and J. J. Lagowski, J. Phys. Chem. 73, 2326 (1969). A value of —19 cm~1/°K has been reported recently by Tuttle and Golden

(private communications).

ously invoked to account qualitatively for the tem-
perature dependence of the energy of the maximum
of the absorption band, Avmax, is of crucial importance
in determining both dhvmax/d7 and the shape of the
intensity distribution in the absorption band.

Obviously equating #v to hvmax is strictly legitimate
only for low temperatures kT<Kh» [where » was de-
fined by Eq. (45)]. At high temperatures the devia-

The (unnormalized). intensity distribution function
F(E) for optical excitation at the energy E can be
displayed in the form

F(E)=exp[—A (X)/kT]|dX/dE|,  (49)

where the factor |dX/dE| is the Jacobian which
transforms from the configuration space to the energy
space. To evaluate this term we set

tion of Ay from Jwmax is of considerable importance E.(2p)=B(X), (50)
for the understanding of the line shape problem.

Our treatment of intensity distribution in absorp- E(X)=B(X)—A4(X), D
tion rests on the two following assumptions: so that

(a) At high temperatures (¥7>>hv) we can apply dX/dE=[B'(X)—A'(x)'=C(X), (52)

classical statistics for the population of the ground
state. This approximation is wholly justified in the
temperature region 200-300°K.

(b) The semiclassical Condon approximation is in-
voked, whereupon the electronic transition moment is
independent of the nuclear configuration. This is satis-
fied quite well over the ranges of R considered.

Adopting these assumptions the line shape is de-
termined by the thermal population of the ground
state and by the dependence of the vertical transition
energy on R. Let the displacement of the collective
coordinate R from equilibrium be denoted by

X=R—Ro=r,— (r,)o, 47)

and let the total ground-state energy at R=R; be
denoted by EL(1s). Then the ground-state configura-
tion diagram can be written in the form

A(X)=E,(15)—EQ(1s). (48)

where the primes denote derivatives with respect to X.
Thus the intensity distribution in absorption is given by

FLE(X)]=exp[—A(X)/RT]| C(X)|.  (53)

Before proceeding to detailed calculations for the
solvated electron, the following general features of
these results have to be noticed:

(a) The holf-linewidih of the absorption band. Let X,
and X, correspond to the points where F(X;)=
F(X,)=FkTIn2; then the half-bandwidth A is given
in the form

A= | E(X:)—E(X:) | (54)

To obtain an estimate of the half-linewidth we
sometimes used a procedure, namely, we simply con-
sidered the points where A4 (X;)=A(X,)=kT and
evaluated

A= | E(Xs)—E(Xy) |. (55)

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1208

w
I r' T T T T T
g N:a
[ V°=OAO eV
5 1.5 g
Q
13 o
- «+300 K
D0k B
(&
> B
= - 203 K
00,5+ B
P4
w
._
Z
- 1 L L t I
1.0 1.1 1.2 1.3

ENERGY (eV)

F1e. 22. Calculated line shape for the 15—2p transition based on
the molecular calculations with ¥=4 and V,=0.0 eV.

This is the number listed in Tables II, IV, and IX.
All other tables list the exact form, Eq. (54).

(b) The maximum of the absorplion band. The energy
hvmax corresponding to the maximum of the absorp-
tion band can be obtained from Eq. (53) by setting
dF(E)/dE=0, and as dX/dE#0 we have

(dF/dX )x =0. (56)

The value of X=Xy obtained from Eq. (56) cor-
responds to the band maximum

Tvmas=E(X31). (s7)

Now Eqs. (53) and (56) lead to the following relation
for Xp:

(44 (X)/dX] |x=xy =kT[d In | C(X) |/dX}|xexy.
(58)

It is important to notice at this point that in general
X and hvmax are temperature dependent. Obviously
Xu=0 only for the limit of low temperatures 7—0
[in this case our equations have to be modified by
introducing a quantum temperature T'= (hv/2k)X
coth (av/2kT)]. The relation hyShrmax is adequate
only for energy level calculations; however, when the
temperature dependence of the absorption band is
considered, a complete calculation based on the rela-
tions presented herein is required.

(c) Asymmelry of the absorption band. In general
the distribution represented by Eq. (8) is not sym-
metric around E=}lyn.x. The asymmetry may arise
from two factors: A(X) in the exponential may in-
clude odd powers of the energy or the excitation
energy includes a second-order term O (X?) and terms
higher than linear in the reduced displacement so that
| C(X) | contains an odd function of the energy. Such
contributions will arise in a general case, in particular
when anharmonicity effects are included.

In Appendix A we present simple detailed models
of how such features could appear in an absorption
spectrum. From those results one can see the effects
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of various factors on the shape of the potential curves
most markedly,

As regards our calculations, we can obtain the func-
tions 4 (X) and B(X) from Figs. 18-21 and the value
of dX/dE from the data in Figs. 15-17. This is all
one needs to obtain the intensity distribution. In view
of the unique temperature dependence of the con-
figuration diagrams such calculations have to be per-
formed separately for each temperature. In Figs. 22
and 23 we present the intensity distributions for the
cases N =4 and V,=0.0 and 0.5 eV, while a summary
of the optical properties is given in Table X.

From these results we conclude that

(a) The major contribution to d(kv)/dT, namely,
the change in the force constants with temperature,
is due mainly to the effect of temperature on the
orientation of the dipoles in the first layer.

(b) The values of kv and hvmax are quite close,
indicating that the harmonic approximation is reason-
ably accurate at these temperatures.

(c) The line shapes are definitely asymmetric but
to the low-energy side, contrary to the experimental
observations.

(d) The linewidths calculated from the - present
model are quite large (0.1-0.13 eV) but still a factor
of 3 or 4 below the experimental values.

It should be born in mind that the present model
is based on a one-dimensional configuration diagram
and other vibrational modes of the cavity may con-
ceivably contribute to the line broadening. It should
be also recalled that we have assigned the line broad-
ening to the thermal motion of a single structure of
solvent molecules whereupon the cavity is charac-
terized by a constant coordination number N=4. We
have already stated that various types of cavities
(characterized by different N values, presumably in
the region of N =4, 6) may coexist in the solution as
their ground-state energies are calculated to be within
0.1 eV. Thermal equilibrium between different struc-
tures each characterized by a coordination number N
with minimum ground-state energy EN(R), a transi-
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F1c. 23. Calculated line shape for the 1s—2p transition based on
theZmolecular calculations with N=4 and V,=0.5 eV.
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Tasre X. Optical properties of electrons in ammonia.

203°K 300°K

Transition Estimated Transition Estimated

energy bandwidtha Oscillator energy  bandwidth® Oscillator (k) /dT
Vo R kv (eV) Aqg strength kv (eV) Ag strength  (cm™/°K)
N=4
1.0 1.80 1.4223 0.13 0.466 1.3755 0.15 0.468 —3.89
0.5 1.75 1.3028 0.12 0.479 1.2529 0.14 0.483 —4.15
0.0 1.72 1.1924 0.12 0.491 1.1404 ~  0.15 0.497 —4.32
—0.5 1.70 1.0872 0.13 0.503 1.0342 0.15 0.509 —4.36
N=6 .
1.0 2.35 1.5015 0.2t 0.477 1.4789 0.20 0.477 —1.88
0.5 2.25 1.3586 0.16 0.484 1.3024 0.18 0.486 —4.67
0.0 2,25 1.1728 0.15 0. 495 1.1115 0.17 0.499 —5.10
—-0.5 2.20 1.0319 0.14 0. 507 0.9650 0.16 0.514 -5.56
N=8
1.0 2.90 1.4637 0.18 0.477
0.5 2.85 1.3021 0.16 0.488
0.0 2.85 1.1035 0.14 0.498
—0.5 2.80 0.9338 0.14 0.410

8 Estimated according to Eq. (57) in paper. For accurate values see Table VIII.

tion energy EY(R), and an individual line shape
Fx[EY(R)] given by Eq. (53), and a (mean) oscil-
lator strength fy will lead to an absorption band of
the form

F(E) = %‘,fNFN exp[—E,N (R)/kT]
X {% exp[— E& (R)/RT I} (59)

Our theoretical results seem to discard this interpreta-
tion on the basis of the following arguments: (1) The
spread in excitation energies between N =4 and N=6
cavities calculated on the basis of our model is ~0.1
eV, which is too small to account for the discrepancy
between theory and experiment. (2) The most stable
configuration (IV=4) is characterized by the highest
excitation energy. Hence even if somewhat less stable
configurations contribute a few percent to the general-
ized line shape (59), these will have lower excitation
energies (see Table II) and thus will lead to broad-
ening on the low-energy side of the band in contrast
to experiment.

An alternative interpretation of the additional source
of line broadening invokes the old idea concerning
the role of higher (#>3) excited states, which on the
basis of the intensity calculation (Tables VII and IX)
should carry an oscillator strength of the order of
~0.4-0.5% (the oscillator strength to the conduction
band is- expected to be low!). These states will be
again broadened and will contribute to the observed
asymmetry and linewidth.

(e) The present model based on the thermal popu-

lation of the ground-state levels of a single structure
(constant ) predicts that the half-linewidth should
reveal a temperature dependence roughly proportional
to TY2 This behavior is common to all temperature-
dependent phonon broadening processes at high tem-
peratures. Thus the half-linewidth should increase by
about 209, in the temperature region 200-300°K.. This
is in accord with our observations in Table VIII. The
old results of Blades and Hodgins® seem to be con-
sistent with this elementary prediction. However, new
data of Quinn and Lagowski® (and Tuttle and
Golden*) seem to indicate that the linewith in ex-
tremely dilute metal ammonia solutions is practically
temperature independent. The Quinn and Lagowski
value is based on a wavelength plot and thus if con-
verted to an energy scale could show a slight tem-
perature dependence. If these new data are confirmed,
the answer must either lie in a compound line shape
such as Eq. (60) or more likely in the existence of
higher excited states since then the major factor de-
termining line shape would be the separation of the
various transition energies and not the broadening of
any one transition.

(f) Finally there is another class of measurements,
namely, the effect of pressure on the optical spectra
as measured by Schindewolf and co-workers for 200
to 1100 atm.’® It was observed experimentally that
the spectra move to higher energies and broaden with
increased pressure. The trend in the band maximum
is obviously explained by our model. As the pressure
increases, the cavity size decreases and the first figures
of this paper (or even the very crude polaron or
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TaABLE XI. The hydrated electron at 298°K.

COPELAND, KESTNER, AND JORTNER

Vo R 4 Ey, Egp E, (S) ((2050 ) hy
N=4
2.0 1.35 0.6617 ~1.7208 0.5186 0. 4081 —0.05877 0.9049 2.1289
1.5 1.15 0.6589 —2.1879 0.5122 —0.0808 ~0.44098 0.8934 2.1071
1.0 0.50 0.7698 —3.2340 0.5185 —1.5844 —0.92156 0.7620 2.6446
0.5 0.50 0.7634 —3.7078 0.5184 —1.0891 —1.41388 0.7571 2.6187
0.0 0.50 0.7569 —4.1820 0.5182 —1.5888 —1.90677 0.7520 2.5932
—0.5 0.50 0.7507 —4.6567 0.5181 —2.0886 —2.39979 0.7470 2.5682
N=6
2.0 2.00 0.6745 —2.1279 0.6202 0.2139 —0.05314 0.9186 2.3418
1.5 1.90 0.6568 —2.4130 0. 5766 —0.1997 —0.30613 0.9154 2.2133
1.0 1.80 0.6385 —2.7293 0.5459 —0.6406 —0.58528 0.9111 2.0887
0.5 1.75 0.6127 —3.0344 0.5752 —1.1004 —0.89308 0.9045 1.9339
0.0 1.65 0.5961 —3.4125 0.5110 —1.5731 —1.22812 0.8978 1.8395
—0.5 1.60 0.5728 —3.7700 0. 5002 ~2.0517 —1.59047 0.8888 1.7183

particle in a box model) predict a trend to higher
transition energies. Quantitative predictions are com-
plicated by the possibility of having several sized
cavities since the effect of pressure is different on
each. In addition the actual volume involved in the
pressure-volume work is somewhat complicated by
the fact that the density in the first layer around
the cavity differs from that of the bulk media. A cur-
sory study of the configuration diagrams shows that
the value of R, cannot decrease too much under
pressure since the molecule-molecule repulsion rapidly
becomes very large. This is in agreement with the
experimental results which show significant but small
changes in the position of the band maximum. This
problem deserves a further study.

We conclude this discussion with some speculations
concerning the energetic stability of excited electronic
states: (1) The 2p localized excited state is stable
relative to the quasifree electron state (see Figs. 19-21,
for example). This state is located about 0.3-0.7 eV
below V,, so thermal excitation to the conduction
band will be negligible.®? (2) The photoconductivity
threshold corresponding to direct excitation to the
conduction band is ~2.4-2.7 eV (see Sec. VII). There
may be autoionizing states overlapping the ionization
continuum. However, such states will be appreciably
broadened. As the onset for bound-free transition of
the electron in ammonia is expected to be located in
the region 4000-5000 A&, it is surprising that photo-
conductivity was not yet reported in this region.
Experimental difficulties due to the use of weak light
sources may be responsible for this failure as the
relaxation process which involves electron solvation is
very fast (of the order of the dielectric relaxation of
the pure solvent). The utilization of laser sources
(i.e., first and second harmonic of ruby and nyodinium
solid state lasers, at 10000 &, 6970 &, 5300 &, and
3475 A) will be of considerable interest. Laser pho-

tolysis experiments of extremely dilute metal ammonia
solutions (where the reactivity of the cation with the
excited state of the solvated electron is negligible)
will be of considerable interest to establish the in-
trinsic photoionization threshold. (3) As the 2p ex-
cited state is bound,.it may decay either radiatively
or nonradiatively to the ground state.” The radiative
decay process is expected to exhibit a large (~0.3 eV)
Stokes shift due to the displacement of the minimum
of the excited state (see Fig. 20, for example). Non-
radiative decay between the excited state and the
ground state will now be briefly considered. Provided
that the configuration diagrams cross in the vicinity
of the vertical excitation energy from the ground
state, the excited configuration will decay nonra-
diatively.

If the crossing point is higher, thermally activated
nonradiative decay will take place from the minimum
of the excited state. Our results indicate that such
crossing between the 2p and 1s states is not feasible.
On the other hand, one should bear in mind that
the optically forbidden 2s state may be located close
to the 2p state. This situation may result in an effi-
cient nonradiative decay which is due to the crossing
between the potential curves of the 2p and the 2s
configurations, followed by a nonradiative decay of
the 2s state to the ground state. Further calculations
are needed on these points and on the “relaxed” 2p
states, i.e., states calculated in which the dipoles are
allowed to reorient in response to the actual 2p elec-
tronic distribution [compare this to Eq. (25) in which
the potential is determined by the 1s electronic dis-
tribution].

IX. OTHER SOLVENTS

The discussion in the previous sections has centered
around electrons in ammonia. However, electrons can
exist for various lengths of time in other polar sol-
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TasLe XII. Charge densities of the hydrated electron.

Vo Ry Ce Cp
N=4
2.0 1.35 0. 266 0.014
1.5 1.15 0.195 0.007
1.0 0.50 0.043 0.000
0.5 0.50 0.042 0.000
0.0 0.50 0.041 0.000
—-0.5 0.50 0.041 0.000
N=35
2.0 2.00 0. 506 0.106
1.5 1.90 0.455 0.071
1.0 1.80 0.404 0.030
0.5 1.75 0.362 0.039
0.0 1.65 0.314 0.029
—-0.5 1.60 0.278 0.024

vents. The ideas presented above apply to the other
systems as well although in some cases certain terms
dominate others. This is particularly true in regard
to medium rearrangement contributions. As presented,
our examples have assumed that the solvent was small
and easily oriented. Similar approaches may hold in
regard to parts of large molecules and as such could
explain the observation of localized electrons in frozen
sucrose solutions.® In the main, however, we must
consider small molecules.

As an example we are well aware that one can
have a localized electron species in water.%% The
observed spectra are similar but the transition is at
slightly higher energy in water than ammonia. In
studies of the pressure dependence of the reaction of
solvated electrons with water, Schindewolf and co-
workers® found that the hydrated electron has essen-
tially no volume in contrast to the ammonia case
where it has an effective radius of about 3.2 A or a
volume from Schindewolf’s arguments of probably
75412 ml/mole at —33°C.

In the case of water we expect our parameter, Vy,
the energy of a quasifree electron, to be less than
that of ammonia due to the larger dipole moment
and the more open structure of water at low tem-
peratures. For convenience we can select it as equal
to zero.

The other major difference between ammonia and
water which we must introduce explicitly is the geom-
etry of the molecule. In particular, the orientation of
the hydrogens is not the same in the two cases. In
the case of ammonia with its three hydrogens the
molecule can only reduce its contacts with its neigh-
bors around the cavity a small amount by rotating
along the dipolar axis. If it rotates too far, other
hydrogens will begin to get close together. With water
the molecule can reduce hydrogen-hydrogen repulsions
significantly by rotating. For this reason, it is a better

1211

approximation to neglect the term Emuw, Eq. (31),
entirely. As to the size of the water molecule we
choose @, the hard core, as 1 A and r,, the radius of
the solvent molecule, as 1.5 A. These are reasonable
parameters and are identical to those used for am-
monia. The calculations are quite insensitive to these
numbers for their major role is to define the radius
at which the continuum begins. In our calculations
all solvent-molecule-hydrogen repulsions are neglected
and thus the smallest cavity one can obtain cor-
responds to R=0.5 A or a zero void radius. In Tables
XTI and XII we present some of the results of our cal-
culations on the hydrated electron using the model
of this paper with the appropriate dipole moment,
polarizability, and surface tension, but neglecting all
water-water repulsions. For V;=0.0 (and several other
values) with N =4, the most stable configuration, we
observe that the optimum cavity size has a zero void
volume. Because of this we can produce no configura-
tion diagrams or line shapes. Including the repulsion
of hydrogens from water molecules on opposite sides
of the cavity would yield a curve with a potential
minimum very close to the one observed but whose
configuration diagram could be determined. These
calculations were not done because the basic factors
are already demonstrated by the present calculations.
The results indicate the hydrated electron should be
quite localized (note, however, the low values for
charge enclosed) and have a much higher transition
energy than the electron in ammonia. These factors
are in qualitative (in some cases even quantitative)
accord with all known data on the hydrated electron.

Our results are also consistent with data in other
solvent systems. Consider the alcohols, from our argu-
ments the properties should be strongly dependent on
the shape of the molecule, especially that part of the
molecule which makes up the cavity walls. Thus it is
not surprising that tertiary butanol has a transition
energy similar to 2-propanol,®® but very different
from 1-butanol. Any attempt to relate these by their
dielectric constants fails.®® Because of the increased
repulsion between solvent molecules, electrons in
2-propanol have a much smaller transition energy than
electrons in 1-propanol.® Considering the differences
in the liquid ranges and other variations, ethanol,
methanol, and 1-butanol lead to remarkably similar
transition energies for the solvated electrons.®® 1-Pro-
panol is also similar but slightly out of line with this
very qualitative analysis.

Data on amines would be most interesting, but
most of this data is for concentrations of alkali metal
in which there appears to be significant electron spin
pairing and probably other species present. The ab-
sorption in ethylene diamine as studied by pulse
radiolysis suggests that the solvated electron has an
absorption maximum above 10000 A% and possibly
as high as 12800 & (0.6 €V), a value obtained for
one peak in dilute alkali metal amine solutions,”® The
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geometry of this molecule suggests strong repulsion
between solvent molecules in the first layer and thus
a low transition energy, in rough accord with the
observations. The complication with the amines is
that the dipole moment has both its direction and
magnitude altered by substitutions on the nitrogen,
and so their orientation on the boundary of the cavity
is not simple to interpret. What we clearly need are
more studies on the smaller amines where it may be
easier to make simple qualitative interpretations.

X. DISCUSSION

. In this paper we have attempted to present a mi-
;'gfbgéppic model for excess electron states in polar
solvents with a special emphasis on the physical prop-
“erties of dilute metal ammonia solutions. The purpose
of the exercise is not to reproduce experimental results,
which are currently determined in a much more re-
liable manner in the laboratory, but rather to try to
elucidate the pertinent physical factors which deter-
mine the stability of a localized ground state, the
physical properties of this state and the nature of
excited electronic states of excess electrons in polar
solvents,

A detailed calculation of the electronic energy and
of the medium rearrangement energy has been provided.
Although these calculations are admittedly approxi-
mated and some of their features will be soon im-
proved upon, we believe that the present results are
useful to demonstrate the major theoretical ingredients
which have to be introduced in such a study. In the
calculation of the electronic energy we have considered
the electronic kinetic energy and the short-range at-
tractive interactions on the basis of a molecular model
while short-range repulsions and long-range polariza-
tion effects were introduced by a ‘“coarse grain”
averaging method. The medium rearrangement energy
was handled by the introduction of a molecular model
for the first solvation layer, using a continuum ap-
proximation beyond it. The present treatment was
rather successful in predicting and interpreting semi-
quantitatively a variety of structural, thermodynamic,
and optical properties of metal ammonia solutions,
and of the hydrated electron such as the size of the
electron cavity, the heat of solution, optical excita-
tion energies, line shapes in the optical spectrum,
photoelectric thresholds, and photoionization onsets.
The number of adjustable parameters entering into
the theory is minimal. Apart from the unknown value
of the short-range repulsion term V, (which is not
expected to be far from V,=0), the present treatment
can provide a reasonable estimate of the ground-state
configuration of the solvated electron in simple polar
solvents,

The major general conclusions arising from the
present study can be summarized as follows:

(a) In order to understand the properties of the
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solvated electron in polar solvents, one cannot get
away with the calculation of only the electronic en-
ergy. The medium rearrangement energy plays a crucial
role in determining the ground-state configuration
and the physical properties of the solvated electron.
Inclusion of the medium rearrangement energy is also
crucial for the understanding of the different prop-
erties of the solvated electron in different solvents.
It is hoped that people interested in the properties
of the solvated electron now will stop performing cal-
culations for an arbitrary cavity size which is chosen
to fit some experimental data.

(b) The major physical reasons for the stability
of a localized ground state of an excess electron in
polar solvent can be now traced to the following
physical factors:

(1) Vo is not far from Vy=0 and the general
stability conditions are thus satisfied, Eqs. (4) and
(39). For a hypothetical solvent characterized by
large negative Vo (say Vex¥—2-3 €V), the quasifree
electron state would have been energetically favored.

(2) The potential acting on the electron is char-
acterized by a large negative potential within the
cavity, which leads to large negative values of the
electronic energy. This feature is not unique to the
present microscopic model and can be considered as
almost model independent since it also appears in
the polaron model and can even be incorporated in
the primitive electron in a box model.

(3) The present treatment of the electronic energy
and of the total energy of the solvated electron in-
volves a major extension of the old Landau self-
trapping model, whereupon the role of short attract-
ive interactions is now properly introduced.

(4) The present approach based on the configu-
rational diagrams for the ground and excited states
of the solvated electron has many features in common
with the conventional picture of F center and impurity
centers in solids. The major difference between elec-
tron trapping in a crystal anion vacancy and the
solvated electron is that in the latter case the electron
reorganizes the solvent (“digging its hole” in the old
terminology) and thus the configuration diagrams
have to be determined in a self-consistent manner.
This is obviously also the reason that the configura-
tion diagrams are temperature dependent.

(5) The interpretation optical spectrum of the
solvated electron should not be limited to the energy
of the band maximum, but rather the whole line
shape should be considered. The broadening arising
from thermal motion is responsible for a major portion
of the linewidth of the bound-bond 1s—2p transition.
Similar considerations should be applied for an inter-
pretation of the energy dependence of an external
photoemission cross sections and the intrinsic photo-
ionization data, if these will become available.

(6) A unique feature of the extended self-trap-
ping model which is strongly dependent on the physical
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picture of Landau involves the Coulombic form of
the long-range attractive potential due to the per-
manent dipoles. This potential can sustain an infinite
number of excited levels converging to the photo-
ionization threshold which should be observed at
about 2.5 €V in NH;. Other models such as an elec-
tron in a finite box are unrealistic in this respect as
they can sustain only a finite number of excited states,
That is the reason why photoconductivity (or alter-
natively, laser flash photolysis) data are of such
intrinsic importance for the understanding of the
excited states of these systems and of their time-
dependent behavior.

There are currently several interesting problems
which deserve further theoretical study to gain a
deeper insight into the nature of electrons in polar
solvents:

(a) Theoretical calculation of ¥, in polar solvents.

(b) More elaborate calculations of the electronic
energy of the ground and higher excited states using
better trial functions. This task was recently carried
out by Copeland and Kestner.”

(c) The location, intensity and width of higher
excited states is of considerable interest for the under-
standing of the asymmetric broadening of the absorp-
tion band of the solvated electron. The nature of
these states depends critically on the exact definition
of V.5

(d) The nature of electronic nuclear coupling in
the triply excited 2p state is of considerable interest
both in the context of the general Jahn-Teller effect
and in relation to the problem of the solvated elec-
tron. A general formulation of the line shape problem
including nontotally symmetric distortions will be
reported by one of us (J. J.).

(e) Relaxation phenomena of these excited elec-
tronic states are of considerable interest; these were
recently handled by one of us (J. J.) using a general
theory of nonradiative processes.” An additional com-
plication in this case is that the dipole moments can
also relax under the excited-state electronic distribu-
tion.

(f) A closely related problem involves the prop-
erties of the positron and of the positronium atom in
polar solvents which can be studied by positronium
annihilation methods.™ 7 It is amusing to notice that
as the positron does not suffer from the exclusion
principle, the energy of a quasifree positron in a polar
solvent such as an ammonia is expected to consist
just of the contribution of long-range polarization
interactions. Thus adopting the notation of Sec. II
for positron, T=0 and Vo=U,x~—3 eV, and this
particle is not expected to be localized. On the other
hand, for the neutral positronium atom the long-range
polarization interaction are switched off, whereupon
Up,=0 and Vy=T=+43 eV. Hence the positronium is
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expected to be localized in a polar solvent due to short-
range repulsion. The effective potential will be V (r) =0
for <R and V(r)=V, for r>R. This picture is com-
pletely analogous to that applied for positronium
bubbles in nonpolar liquids. This problem deserves
a more serious further study, both theoretically and
experimentally.”

APPENDIX A: EFFECT OF THE FORM OF THE
POTENTIAL ENERGY SURFACE ON THE
ABSORPTION SPECTRA LINE SHAPE

In Sec. VIII we mentioned qualitatively how various
features of the potential curves could affect the line
shape of the absorption spectra. In this Appendix we
present model systems which represent the tempera-
ture dependence of Avy.x and an asymmetric line shape.

The model we shall choose concerns the optical line
shape due to the transition between the two harmonic
one-dimensional surfaces which are characterized by
different temperature-independent force constants. The
ground state is

A (x) =3Ka? (A1)
while the excited state is represented by
B(2) =3K' (x+x0)*+a, (A2)
so the transition energy is
E(x)=Bx)—A(x)
=+ K'xpx+5(K'— K)2?, (A3)
with a vertical excitation energy at =0 of
hy=a-+3K'x?, (A4)

Making use of Eq. (58), we obtain the following rela-
tion for the coordinate value corresponding to the
maximum in the absorption line, xy:

KxM _ I K—K' l

ET | Ko+ (K'—K)x |
It is safe to assume that | K'zy|>> | (K'—K)xn |,
whereupon

sy=— | K—K'|kET/K | K'z, |. (A6)

Making use of Egs. (57) and (A3), the maximum
energy of the absorption band can be displayed as a
power series in k7, the leading terms being

Pvmax=hv-+ (l K—K' !/K)kT-’--... (A'])
The temperature coefficient of the absorption band is
@hvmax/dT =+ (| K—K' |/K)k. (A8)

This is always positive, an important point regarding
the interpretation of spectral data. Although the cal-
culations in this paper suggest that K’<K, the sign
is independent of such assumptions provided that the
conditions leading to Eq. (A6) are met. The results

(AS5)
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are also contrary to the actual calculations. In ad-
dition, if K’<<K the maximum value for the derivative
is only about +40.7 cm™/°K.

We next consider the line shape for this model
system. Making use of Eq. (A3), we can write the
displacement x as

(K')[14+-2(K'— K)AE/ (K'20)* 12— K'x
K'—-K
X AE/K'%+3 (K—K')AE/ (K'%)*++++, (A9)

where AE=E— v and we have assumed (K'—K)<K’
as well as 2AE/K’x?<1. The line shape following
Eq. (53) is

F(AE)
exp[— (K/2kT) (A 26bAE+BPAE -+ + )]
- | (K'—K) (eAE+BAE?)+K'xy | ’
(A10)

in which e=1/K'x and b= (K—K’)/[2(K'%)*].

Provided that %<0 (i.e., the equilibrium point of
the excited state is located at a positive value of z,
and K’<K (the typical situation), we find that both
a and b are negative. Thus the term 2a¢bAE? in the
exponent will lead to an asymmetry for AE<O, e.g.,
at lower energies. However, the denominator | dx/dE |
of Egs. (58) or (A10) leads to an asymmetric line,
asymmetric toward higher energies. This dominates
for small AE as demonstrated by the shift in the
maximum, Eq. (A7). Finally, we should notice that
when K=K’, =0 and Eq. (A10) reduces to a Gaus-
sian line shape function and Mymax=AE for all tem-
peratures as expected from Eq. (58).

From these results for the simple model system we
conclude that:

(a) In the high-temperature limit the line shape
is Gaussian and Avmex is temperature independent only
for transitions between two displaced harmonic sur-
faces which are characterized by the same force con-
stants. This result is well known from the work of
Lax™ and Kubo and Toyozawa™ and multiphonon
processes in solids. However, it seemed to us desirable
to demonstrate this point for a simple model system
which has many features in common with our model
for the solvated electron in polar solvents.

(b) Changes of the force constants between the
two excited states result in the distortion of the line
shape from a symmetric form and lead to a tem-
perature-dependent bond maximum.

(c) Anharmonicity effects are formally analogous
to the change of force constants between the con-
figuration diagrams which correspond to the two elec-
tronic states. To demonstrate this point, consider two
anharmonic displaced energy surfaces

A (x) =3Kx?4wad,
B(x)=1K'2+w' (x+x)*+a.

(Al1)
(A12)
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For the sake of simplicity, let us further assume that
K=K’ and w=w’, whereupon

E(x) =3wxg®+ (Kxot+ 3wae?) x+ b,

where now

(A13)

hy =a+ 1 Kx?+wxgd. (A14)

For the case of physical interest x,<0. We imme-
diately notice from Eq. (A13) that the transition
energy is equivalent for the case of two displaced
surfaces characterized by different force constants
[Eq. (A3)]

Thus the former formalism [Egs. (A1)-(A10)] is
directly applicable for the simple anharmonic model
if we just replace K'—K by 6wx, and K'x by (kxo+
3wx?) in all equations following Eq. (A4). If K>
| wxm |, we have for the temperature coefficient of
the band maximum the value +6& | wxo |/K. In this
case 6wx, may be larger than K so that an appreciable
thermal shift of the band maximum may be observed.
The asymmetry of the line shape can be inferred from
similar arguments to those made in regard to Eq.
(A10). We can therefore see that these results provide
a direct link between thermal expansion of the cavity
and the temperature dependence of Avmax ,as both are
determined by anharmonicity effects.

While these model systems have pointed to three
factors which can lead to asymmetric line shapes and
temperature dependences of the absorption band, they
do not agree with the experimental results or the
theoretical calculations of Sec. VIII of this paper due
to the neglect of the temperature dependence of &
and more general anharmonic distortions.

APPENDIX B: AN IMPROVED MODEL FOR
THE ELECTRONIC ENERGY OF
SOLVATED ELECTRONS

In the model described in Sec. IV of this paper
we included the dipole potential only in the region
up to the hard-core radius; see Eq. (17). A more
accurate potential would consider that term up to
the center of the dipole 74:

V (r) =— Nue(cosb)/r2—Be/r., 0<r<R
= — Nue{cost)/rd—Bet/r+ Vo, R<r<ry
= —662/1’—'- VO’ ra<7,

where we assume ¥y acts in the entire region beyond
the hard core. All notation is identical with that of
Sec. IV. The results from this model (called Model 3)
are listed in Table B. I and should be compared with
Tables IT and III. The numbers are very similar to
those presented in the other model. The major change
is that the N=6 cavities are slightly more stable,
thus making the concept of a distribution of cavity
sizes and other characteristics more likely. The N =6
cavities also have a slightly higher transition energy
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TasLE B.I. Results of Model 3 for electrons in ammonia at 203°K.

Vo (eV) Ry (A) Ess Eg(Ro) h (COSG) G,
N=4
2.0 1.85 —1.3108 —0. 15061 1.7972 0.910 0.360
1.5 1.80 —1.6239 —0.46270 1.6351 0.901 0.317
1.0 1.75 —1.9630 —0.79851 1.4947 0.891 0.278
0.5 1.70 —2.32067 —1.15391 1.3751 0.880 0.242
0.0 1.70 —2.6679 —1.52494 1.2390: 0.865 0.217
—0.5 1.65 —3.0695 —1.91077 1.1525 0.851 0.188
N=6
2.0 2.30 —1.7950 —0.41657 1.9854 0.915 0.511
1.5 2.20 —2.0805 —0.65553 1.8327 0.911 0.459
1.0 2.20 —2.3105 —0.91708 1.6283 0.903 0.423
0.5 2.15 —2,6032 —1.20081 1.4716 0.895 0.379
0.0 2.15 —2.8674 —1.50540 1.2929 0.884 0.341
—0.5 2.10 —3.2027 —1.83220 1.1667 0.872 0.300
N=8 .
2.0 2.85 —1.9968 —0.51074 1.8642 0.906 0.628
1.5 2.80 —2.1931 —0.68928 1.6927 0.902 0.588
1.0 2.80 —2.3639 —0.88679 1.4930 0.895 0. 549
0.5 2.75 —2.5940 —1.10491 1.3289 0.888 0.501
0.0 2.75 —2.7965 —1.34726 1.1427 0.876 0.453
—0.5 2.75 -3.0158 —1.61482 0.9660 0.860 0.400
N=12
2.0 3.45 —2.4108 —0.50325 1.6943 0.891 0.727
1.5 3.45 —2.5230 —-0. 64067 1.5302 0.887 0.699
1.0 3.40 —2.6921 ~0.79039 1.3946 0.883 0.663
0.5 3.40 —2.8245 —0.95940 1.2293 0.876 0.624
0.0 3.45 —2.9181 —-1.14500 1.0392 0. 863 0.579
—0.5 3.35 —3.1781 —1.36643 0.9297 0.853 0.521

than N=4 cavities for the same ¥V, and thus could
contribute to a slightly asymmetric line shape, asym-
metric on the high-energy side by a very small amount.
The energy differences between the two models are
in general small, and thus no new physically important
information is obtained. It is presented here simply
to indicate the insensitivity of our results to most
details of the potential.
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