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In this paper we present a unified treatment of non-radiative decay 
processes in large molecules which involve either electronic relaxation 
between two electronic states or unimolecular rearrangement reactions in 
excited electronic states. The present treatment is analogous to the formalism 
previously applied for the line shape problem in nuclear recoil and in the 
optical spectra of solids. We were able to derive theoretical expressions for 
the non-radiative decay probability so that an arbitrary number of different 
molecular vibrations can be incorporated in the vibrational overlap factors. 
The  general expressions obtained herein can be reduced to analytical form 
for two limiting cases, which we call the strong coupling case (which 
corresponds to a substantial horizontal displacement of the potential energy 
surfaces of the two electronic states) and the weak coupling limit (whereupon 
the relative horizontal displacement of the two potential energy surfaces is 
small). Quantitative criteria for the applicability of these two coupling 
limits are provided. In the strong coupling limit the transition probability 
is determined by a gaussian function of the energy parameter (AE-EM), 
where AE is the energy gap between the origins of the two electronic states 
and 2EM is the Stokes shift. This limit exhibits a generalized Arrhenius type 
temperature behaviour whereupon the transition probability depends 
exponentially on the energy barrier for the intersection of the two potential 
surfaces. At low temperatures the transition probability is determined by the 
mean vibrational frequency and is thus expected to reveal only a moderately 
weak deuterium isotope effect. The  weak coupling limit reveals an exponen- 
tial (or rather superexponential) dependence of the transition probability on 
the energy gap AE. In this limit the transition probability is dominated by 
the highest vibrational frequency (e.g. the C - H  or C - D  vibrations) and thus 
will reveal a marked isotope effect. When semi-empirical estimates of the 
pre-exponential factors are provided, the approximate theoretical expression 
for the weak coupling limit is found to be consistent with the available 
experimental data on electronic relaxation in large organic molecules. 

1. FEATURES OF RADIATIONLESS TRANSITION IN THE STATISTICAL LIMIT 

Radiationless transitions in large molecules constitute a class o f  molecular 
relaxation processes which are electronic in nature. Two general classes of such 
processes may be considered : 

(a) Electronic relaxation processes [1-21] which involve transitions between 
different electronic states in a large molecule (e.g. internal conversion and intersystem 
crossing). 
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146 R. Englman and J. Jortner 

(b) Unimolecular photochemical rearrangement reactions [22-44] in excited 
electronic states of large molecules. 

Electronic relaxation processes in large molecules, such as naphthalene, 
anthracene and tetracene correspond to the statistical limit [15-17], which is 
completely analogous to the corresponding case in nuclear physics [45]. In this 
limit the density of vibronic states is extremely high, resulting in intramolecular line 
broadening [6, 16-21]. Electronic relaxation takes place on a time scale shorter 
than a typical recurrence time [16-21]. To consider in some detail the physical 
situation encountered in the statistical limit let us focus our attention on the 
two-level system presented in figure 1. The higher excited electronic state, s, is 
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Figure 1. A schematic energy levels diagram for a two-electronic levels system. 

characterized by the zero-order B.O.~ levels ~bs,(r, Q(s))=$8(r , Q(S))Xs,(Q(8) ) 
which are coarsely spaced, each of which is coupled to the dense quasicontinuum of 
vibronic levels ~blj(r, Q (z)) = Sz(r, Q (z)) XlS(Q (z)). Here r represents the electronic 
coordinates, while Q(s) and Q(1) correspond to the normal coordinates in the 
electronic states s and l, respectively. $ and X represent electronic and vibrational 
wavefunctions. 

We shall now focus our attention on the simultaneous decay of a number of 
resonances. An excited state is ' prepared ' at the time r =  0 in the form of the 
superposition [16-21]. 

~F(r = 0) = ~w(~)  ~si, (1.1) 

coO/) is the amplitude of the zero-order state ~bs~ in the total wavefunction at �9 = 0. 
The probability of the system being initially in the zero-order state ~8~ is given by 
p(si)= I co(si)l 2 and obviously ~p(si)= 1. 

V(t)= ~A,(t) ~,,+ ~Bz~(t) ~,j. (1.2) 

t Born-Oppenheimer (B.O.). 
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The energy gap law for radiationless transitions in large molecules 147 

The equation of motion for the vector A of the coefficients A~(t) can be displayed in 
the form [46] : 

ih ~ , a ,=  (1.3) 

where I-Iel is the matrix of the electronic hamiltonian He1= HBo + V while the 
damping matrix r is recast in the form [20, 46]. 

' 2~x~V 3(E-Etj) ,  (1.4) Psi, si = ~  s~, zjVlj, 8c 

where the coupling matrix elements are Vsi, 11 = (~bsi[ V[ ~bo). When the spacing 
of the zero-order energy levels Es~ exceeds the widths of the resonances or, more 
quantitatively stated, when [20, 46] 

r , ,r hFsi, s~'~ E u ' -  (Psi, s i -  u ,  

the damping matrix is diagonal and each resonance decays with its own lifetime 
[20, 46]. The initial transition probability (at r = 0) for the non-radiative decay to 
the dissipative quasicontinuum {el j} can be recast in the conventional form 
[10, 11, 47]:  

W=2; ZZp(, i )I  V,,, z, I2 (1.5) 
Equation (1.5) is well known, however, it is useful to bear in mind that it is valid 
only when interference effects between resonances are negligible. Up to this point 
the effect of the radiative decay was not considered ; however, in the statistical limit 
the radiative decay can be included by considering an additional decay channel 
[19-21]. 

The final stage of most quantum chemical calculations usually involves the 
evaluation of the pertinent matrix elements. The coupling matrix element between 
the zero-order components which correspond to two electronic states can be 
displayed in the form [10, 16]t 

Vu, ~j = C Z (Xu(Qt  (s), vs~)[ Xu(Qt u), vu)), (1.6) 
t * k  

where 

The superscripts (co) and (cr) correspond to internal conversion and to intersystem 
crossing, respectively. These expressions involve the electronic matrix elementsJ~ 
Jsz e for the kinetic energy operator O/OQk of the kth normal mode and the spin-orbit 
terms~t Ks~, and K:,l which combine the electronic states r and ~ with intermediate 

t There is a typographical error in equation (85) of [16]. The correct version is given 
by equation (1.7 b). 

:~ We are using the same notation as in [16]. 
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148 R. Englman and J. Jortner 

states q~7. The molecular vibrational wavefunctions Xsi and Xl)" have been 
displayed as products of harmonic oscillator wavefunctions 

1-~Xsa(Q~ (s), v8a) and l-~Xlv(Qv (~), vzv), 

where vs~ and Vs, correspond to the vibrational quantum numbers. The index 
t = 1 , . . . ,  N corresponds to all the normal modes, while the index k = 1 , . . . ,  p 
refers to the promoting modes for which the Jk terms are appreciable. From the 
theory of vibronic coupling [48] it is apparent that the promoting modes [11] 
involve skeletal bending [10, 11]. The normal coordinates for these promoting 
modes are thus not displaced between different electronic states of aromatic 
hydrocarbons. In the case of a large molecule whereupon p < N and for the case 
when the electronic energy gap AE between the two electronic states considerably 
exceeds the frequency of the promoting modes, it appears that the removal of the 
t Ck restriction in equation (1.6), i.e. the omission of a single vibrational overlap 
factor from equation (1.6) is of minor importance. One can therefore rewrite 
equation (1.6) in the approximate form [8, 9, 12]. 

Vsi, lj~ CSsl, lj, (1.8) 

where Ss~, lj is the Franck-Condon vibrational overlap factor : 

Ss,, zj = 1-~ (xst(Qt (s), Vst)]Xu(Qt (Z), vu)> (1.9) 
a l l  t 

and the energy parameters C for internal conversion and for intersystem crossing is 
given by equations (1.7 a) and (1.7 b). The energy parameters [8] C (c~ and C (or) 
will not be evaluated. The main new feature of our treatment involves the handling 
of the sums which involve the S integrals. 

Using the approximation concerning the constancy of the C terms the general 
form of the non-radiative decay probability is given by : 

2; C2 E E  p(si)ls*~, ~Jl 2a( Esi-  E,j). (1.10) W= 
z j 

Two physically interesting cases can be now considered : 
(a) When the molecule is inserted in an inert medium which acts as a heat bath, 

thermal equilibration among the si levels can be assumed. Provided that the 
vibrational relaxation (and excitation) rates considerably exceed the non-radiative 
decay time we can set : 

p(si) = exp ( -  fiEsl)/~ exp ( - fiE~) (1.11) 

where/3 = 1/(kBT). 
(b) For the case of an isolated molecule (in the vacuum or even better in outer 

space) we can consider a coherent excitation of a single vibronic state ~bs~' whereupon 
p(si)=~r When this zero-order vibronic level si, corresponds to the lowest 
vibronic level, so, the transition probability is given by equations (1.10) and 
(1.11) in the zero temperature limit (or rather for 3-+oo). 

It is important to notice at this point that the general theory of radiationless 
transitions in the statistical limit outlined above should be applicable not only for 
electronic relaxation process but also for other intramolecular radiationless processes 
which involve photo-chemical rearrangements in excited electronic states of large 
molecules. 
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The energy gap law for radiationless transitions in large molecules 149 

2. AIMS AND CLAIMS 

Although the theory outlined above provides a unified formal interpretation of 
radiationless processes in the statistical limit, reliable predictions of the non- 
radiative transition probability are not available at present. Several attempts were 
made to handle the vibronic coupling matrix elements which determine the 
transition probability for electronic relaxation. Ross et al. [7, 9], Robinson and 
Frosch [8], and Bersohn and Lin [10, 11] and Siebrand [12-14] have substantially 
contributed to an understanding of the intramolecular coupling terms. Some 
rough estimates of the density of states were also performed [15-17]. However, 
these attempts based on conventional computational methods cannot be expected to 
yield reliable information for a large molecule which is characterized by a large 
number, N, of vibrational degrees of freedom. In view of the complexity of the 
problem encountered in the calculation of W (equation (1.10)) in the statistical 
limit conventional 'quantum chemistry' type methods seem to be inadequate. 
General problems related to the calculation of expressions of the form of equations 
(1.5) and (1.10) were encountered in solid state physics. Such a task was 
considered by Lamb [49] and by others [50, 51] for the M6ssbauer effect. The 
nuclear recoil problem for the displacements in the momentum space requires the 
same treatment as a harmonic lattice. Indeed, analogous problems were encountered 
in the theory of line shapes and zero phonon lines in the absorption spectra of 
impurity centres in solids [52-58]. Finally, similar methods were introduced by 
Kubo [47, 55] for the study of radiationless transition (e.g. thermal ionization) in 
solids. We shall attempt to consider the problem of radiationless transitions in a 
large molecule from the point of view of multi-phonon processes. Indeed, for a 
large molecule when N>~ 1 it seems a logical step to transfer the problem from the 
field of molecular physics t to the realm of solid state physics and to consider the 
problem o f '  phonons in large molecules ' 

We were able to derive theoretical expressions for the non-radiative decay 
probability from the lower vibronic level of an excited electronic state in an isolated 
molecule and for a molecule in a dense inert medium. When an inert medium 
(which does not modify the energy levels or the spin-orbit coupling terms [59, 60]) 
is considered, there is currently convincing evidence for the absence of drastic 
medium effects [61-64] on electronic relaxation in large molecules (e.g. larger than 
the benzene molecule [65]) which correspond to the statistical limit, so that the 
inert medium just acts as a heat bath. The advantage of this new formalism is that 
we do not have to factor out the general expressions (1.5) or (1.10) into a product 
of a coupling term and a density of states and then an arbitrary number of different 
molecular vibrational frequencies can be incorporated in the vibrational overlap 
factor. The general structure of the theoretical formulas obtained herein makes it 
possible to ascertain the gross features of the electronic level structure and to 
determine what are the relevant molecular parameters which dominate the 
probability for non-radiative decay. The general expressions can be reduced to an 
analytical form for two limiting cases which we shall call the strong and the weak 
coupling limits. In the strong coupling limit the relative horizontal displacement 
of the multidimensional potential energy surfaces which correspond to two electronic 
states is large and the energy surfaces are expected to cross not far from the 

t The formalism presented herein is valid for any N. Although in the first treatment 
of this problem [49] it was assumed that N>~ 1, this assumption is not necessary. 
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150 R. Englman and J. Jortner 

minimum of the higher electronic state. This situation corresponds to the model 
proposed many years ago by Teller [66] to account for electronic relaxation. This 
limit is not appropriate in most cases for the latter class of relaxation processes. 
However, large configurational changes between two electronic states are encountered 
in the field of rearrangements reaction in organic photochemistry [22] such as 
cis-trans isomerization [23-33] or electrocyclic reactions [3444]. In the weak 
coupling the relative displacement of the potential energy surfaces is small and 
this situation corresponds to the Robinson-Frosch-McCoy-Ross picture for 
electronic relaxation. Indeed, the weak coupling limit prevails for electronic 
relaxation in large aromatic molecules, while the study of the strong coupling case 
is of interest for the understanding of unimolecular photochemical reactions which 
take place in excited electronic states of large molecules. It was felt for a long time 
that electronic relaxation and photochemical rearrangement processes should be 
amenable to a theoretical treatment from a unified point of view. The present work 
provides the first step in that direction. 

3. GENERATING FUNCTIONS 

The approximate expression for the non-radiative transition probability 
(equation (1.10)) is completely analogous to the formal expressions for the line 
shape in optical absorption in solids [52-58]. Indeed, in this approximation the 
non-radiative process can be formally regarded as optical excitation in the limit of 
zero excitation energy. Equations (1.5) and (1.10) seem at first sight as useless 
theoretical expressions which contain intractable summations. These expressions 
can be handled by the application of the generating function method [47]. The 
main advantage of this technique is that it handles the generalized density of states 
function of the form (1.5) (e.g. the density of states weighted by an arbitrary 
operator) without the necessity to factor out these expressions into products of 
matrix elements and the vibronic density of states. 

In what follows this technique is briefly considered. Our purpose is to evaluate 
a line shape function of the general form : 

.(.)): [Gi.., ,,i. ex. ox. (-,..,), (3.1) 

so that obviously : 

C2F(0). (3.2) W= 

The Fourier transform of equation (3.1) is given by : 

f ( t ) -  f ~ y(E) exp (iEt/h) dE. (3.3) 

Application of equation (3.1) leads to the form : 

f(t)= ~ Ss,. ,, exp (i',,t'h) S,Ls, exp [- (fl+itk) Ea ] 

.[zexp( (34  
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The energy gap law for radiationless transitions in large molecules 151 

It is easier to calculate the generating function f(t). The line shape function is 
then given by the inverse Fourier transform : 

F ( E ) = ~  _ f(t) exp ( - iEt /h)  dt. (3.5) 

We now have to specify the model system in detail. We shall consider two 
adiabatic energy surfaces for the electronic states s and l. It will be assumed that 
the major effect on the line shape function arises from terms linear in relative 
nuclear displacements. We shall thus ignore the effects arising from changes in 
normal modes and in their frequencies in the two electronic states. Finally, the 
harmonic approximation will be applied. 

Let the normal coordinates be denoted by Qj ( j=  1 . . . .  , N)  with the effective 
masses Mj and frequencies oJj. The equilibrium configuration of the electronic 
state s is characterized by the configuration QjO~s) ( j = l  . . . . . .  N). Let 
AQj0__ QjO~t)_ QjO~s) correspond to the displacement of the Qt normal coordinate 
in the equilibrium configuration of the electronic state I relative to the electronic 
state s. It will be also useful to define a set of dimensionless coordinates and 
displacements : 

qj = (Qj_ QjO<s)) (3.6) 

Aj= ( ~ ) 1 / 2  AQj0. (3.7) 

The adiabatic potentials Es and E~ for the two electronic states are given in the 
form : 

Es = 1~.//eojqj2, (3.8 a) 
3 

E~ = ~ Y ho~j(qj- aA 2-  • 
J 

= E , -  .~yjqj -  AE+ EM, (3.8 b) 
3 

where Yl = hoJjAj corresponds to the linear coupling term for the j th  mode. The 
energy term : 

E ~  = X~hoJjAj2 (3.9) 
J 

represents the molecular nuclear relaxation energy, or rather half the Stokes shift, 
due to the reduced displacements Aj (see figure 2). 

From equations (3.4), (3.8), and (3.9) the following relation for the generating 
function is obtained [29-36] : 

iAEt 
logf(t) = h G + G+(t) + G_(t), (3.10) 

where the functions G• are given by : 

c+(t)= �89 I &jl2(aj+ 1) exp (iwjt), ] 
J ) (3.11) 

c_( t )  = AjI  exp ( - i~ojt) 
J 

and 
~j = [exp (/3h~oj)- 1] -1, (3.12) 

~j is the number of excited vibrations with frequency ~oj at thermal equilibrium. 
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Figure 2. Schematic representation of the two adiabatic potential surfaces Es and Et in 
two-dimensional vibrational space. (a) The weak coupling limit. (b) The strong 
coupling case. 

The dimensionless quantity G is defined in the form : 

G = G+(0) + G_(0) -- �89 A~ 12(2~J + 1), (3.13) 
3 

which corresponds to the change in the number of vibrational quantum in the 
radiationless transition. This quantity is referred to as the coupling strength. 
Thus when thermal equilibration within the manifold Csi is faster than all other 
molecular decay processes, and provided that the approximate form for the 
adiabatic energy surfaces (equations (3.8) and (3.9)) are acceptable, the non- 
radiative transition probability is given by : 

C2 [ iAEt+G+(t)+G_(t)] dt. (3.14) W= exp(-G) f_ exp - 

This expression for W seems at first sight abstract and rather impractical ; however, 
even in its present form it is quite an advance over current methods for the 
evaluation of the Franck-Condon factors for more than a single mode with different 
frequencies. Note that this result exhibits the dependence of W on the energy gap 
AE. The general result derived herein can be recast in a more transparent form 
for certain limiting cases, which are determined by the magnitude of the coupling 
strength G (equation (3.13)). In order to obtain an approximate estimate for the 
coupling strength we make use of equation (3.9) and write the approximate 
relation: 

G ~ h ~ )  coth ( ~ ) ,  (3.15) 
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The energy gap law for radiationless transitions in large molecules 153 

where <co>=N-l~coj is the mean vibrational frequency. The low and high 
J 

temperature limits are : 

G z E~/h(co) ; /3h(eo) >> 1, (3.16 a) 

G z 2EM(h<oj>)-2 ~-1 ; ~h(og> ~ 1. (3.16 b) 

Considering a large molecule at room temperature we expect to encounter the low 
temperature limit (3.16 a). The various coupling limits can be defined as follows : 

(a) In the strong coupling limit G >> 1 or alternatively EM >> h(w) tanh (�89 
At low temperatures the strong coupling limit will be encountered whereupon 
EM exceeds the mean vibrational frequency so that the relative displacement of the 
potential energy surfaces are large, and the Stokes shift will considerably exceed the 
vibrational frequency. Under these circumstances it is possible for the energy 
surfaces of the two electronic states to cross or to intersect in the vicinity of the 
minimum of the upper surface. Such a situation was examined 30 years ago by 
Teller [66]. 

(b) The weak coupling limit is encountered when G < 1 or (at low temperatures) 
EM,,~h(~o>. Thus the relative displacement for each normal mode is relatively 
small. 

We shall now demonstrate that our general expression (3.14) can be reduced to 
a tractable form for these two limiting cases. 

4. T H E  STRONG COUPLING LIMIT 

When G>> 1 it is reasonable to try to expand the functions G+(t) and G_(t) 
(equation (3.11)) in a power series in t retaining only terms up to the t 2 term : 

G+(t)+G (t)=G+~ ~ oJjAj2-1D2t2+O(#), (4.1) 

where 

0 2 = ~-~. coj2Aj2(2/ij  + 1). ( 4 . 2 )  
J 

Thus the coefficient of the quadratic is roughly D 2 ~ Gfco> ~. Provided that G is 
large we then expect that the generating function f(t) (equation (3.10)) will decay 
exponentially (as exp ( -  (to)ztz/2)) to a small value before the power expansion of 
G• becomes invalid (e.g. when (w> t >1). Thus in the strong coupling limit we 
obtain, from equations (3.9), (3.10), and (4.1): 

f(t)=exp [-i~ (AE-EM)-D2#/2] ; (4.3) 

and the transition probability is given in the gaussian form : 

W -  C2~/(2~) Dh z exp [ -  ( A E -  EM)2/2DZh2]. (4.4) 

Finally making use of the approximate relations for G and for D one can recast this 
result in the form : 

W -  C2 ~/(2~r) exp [- (AE- Em)Z/2Emh(w) coth ([3h(w>/2)] (4.5) 
[EMh<w> coth (/~h(oJ)/2)] 
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154 R. Englman and J. Jortner 

The gaussian dependence on the energy parameter ( A E -  EM) in the strong coupling 
limit is of course analogous to the gaussian line shape (near the band maximum) 
devoid of phonon structure for impurity centres [53-58]. However, equation 
(4.5) contains some further interesting information. Inspection of equations 
(3.8 a) and (3.8 b) reveals that the potential surfaces Es and El intersect on the 
hypercurve (actually on the ( N -  1)-dimensional surface) which satisfies the relation : 

~.Tsq~ = - AE+ EM. (4.6) 
J 

The point of minimum energy on this hypercurve is given by the conditions 
(OEs/~qO=O subjected to the restriction (4.6). Thus the intersection point of 
minimum energy, EA, measured from the energy origin Eso = 0 (see figure 2), is 
obtained from the relation EA = o~ZEM, where a = ( A E -  EM)/2EM so that 

EA = ( A E - -  EM)2/4EM. (4.7) 

We obtain the following result : 

W= C2~/(2~r) 
h(EMkBT.)I/2 exp ( - EA/kBT*), (4.8) 

where the effective temperature is defined in the form : 

kBT* = �89 coth (fib<to)/2). (4.9) 

The following conclusions are now in order : 
(a) In the strong coupling limit at ' l ow '  temperatures (e.g. flh<o~) >> l) the 

following rate equation results : 

W= C%r exp ( -  2EA/h(to)). (4.10) 
V(EMh<o,>) 

This equation is valid both for a molecule in an inert medium and for an isolated 
molecule when only one level was excited. Thus the transition probability is 
determined by the mean vibrational frequency (,o) and by the energy EA. From 
equation (4.7) we may conclude that as in the strong coupling limit AE ~ EM and 
hence EA < AE. 

(b) Considering a molecule which corresponds to the strong coupling limit 
immersed in a heat bath at high temperatures (flh(~o> < 1) one obtains: 

w _ k B T  Czv/(27r) 
h x/[EM(kBT) 3] exp (-EA/kBT). (4.11) 

This equation has a general appearance of a conventional rate equation, where the 
energy EA plays the role of the activation energy as might have been guessed by the 
intelligent chemist on intuitive grounds. Unfortunately, high temperatures (only 
to be achieved in a shock tube) are required for approaching this limit. 

(c) In the intermediate temperature region (flh/oJ)>1) the activated rate 
equation is characterized by the effective temperature �89 (�89 
This relation is only approximate in view of the averaging involved in the derivation 
of equation (3.16). 

(d) As W in the strong coupling limit is determined by the mean vibrational 
frequency <w) only a moderate isotope effect on the transition probability will be 
observed in this case. This should be compared with the large isotope effect 
obtained in the weak coupling limit (see w 
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The energy gap law for radiationless transitions in large molecules 155 

The theoretical treatment of the strong coupling limit is gratifying as a closed 
expression for the transition probability can be provided. This limit is expected 
to be encountered even at low temperatures when the relative displacements of the 
two potential energy surfaces are large so that crossing on intersection of these 
energy surfaces will occur close to the minimum point of Es. From the experimental 
point of view the criteria mentioned above should be utilized to characterize this 
limit. We are not aware of a molecular system where a radiationless (e.g. electronic 
relaxation) process between two electronic states (which takes place without a 
chemical modification of the molecule) corresponds to the strong coupling case. 
This limit may be of considerable interest for the understanding of photochemical 
rearrangement processes in large molecules. 

5. T H E  WEAK COUPLING LIMIT 

When G <1, whereupon EM<h(oJ), so that the relative displacement of the 
potential energy surfaces is small, and the weak coupling limit is encountered. 
This is essentially the physical situation described by Robinson, Frosch, McCoy 
and Ross and others. To treat this problem, we must go back to equation (3.14) 
and we shall initially focus our attention on the low temperature limit setting 
~j = 0 for all j. The integral in (3.14) will be evaluated by the method of steepest 
descent. The saddle point in the complex t plane is easily seen to be given by the 
root (or roots) of 

�89 exp (icojt)- AE= 0. (5.1) 
J 

Let the index M refer to the mode (or modes) of maximum frequency (and for 
which AM2 # 0), and let d be the number of degenerate (or nearly degenerate) 
modes of this maximum frequency. For large AE (e.g. AE>>k(co)) the physically 
meaningful root of (5.1) appears to be : 

t = -  i l~  a 2AE t" (5.2) 

~ ~M~=lhCOMAM2 J 

The relative error involved in this approximation can be estimated as follows: 
let (Om be the next high frequency smaller than OJM, and suppose that A m ~ AM. 

Then the relative error in the approximation (5.2) is of the order : 

a e  ! (5.3) 

which is small for large AE and for values of (~OM--OJm)/OJM which are not too 
small. Carrying through the computation the following result is obtained : 

W -  C2@(2rr) exp ( - ~  h~c/(hcoMAE) I--~MliOgI~h~M-MAM2)--I. (5.4) 

Let 

deM = 12 E hc~ 
M~I ..... d 

be the contribution of the modes of maximum frequency to EM, and we assume 
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156 R. Englman and J. Jortner 

that there is the same contribution from each of the d normal modes so that 
eM= �89 2. Then equation (5.4) can be rewritten in the form: 

C2~/(27r) AE [log 
This low temperature result is adequate either for the isolated molecule or for a 
molecule in an inert medium. The following conclusions are in order: 

(a) Equation (5.4) exhibits the energy gap law for the weak coupling limit. 
As G < 1 we set exp ( -  G) ~ 1. Furthermore, as in equation (5.5) log (AE/deM) > 1, 
we expect that the parameter : 

7 -  7(AE, eM, d) =log (~E~_ 1 (5.6) 
\deMJ 

is positive so that W assumes the form : 

W= C2V(2rr) exp(-yAE/hwM). (5.7) 
hV(h oMAE) 

This result exhibits a rough exponential (or rather somewhat stronger than 
exponential) dependence of the transition probability on the energy gap. 

(b) The parameter 7 contains the pertinent structural information concerning 
the relative displacement of the potential energy surfaces in the two electronic 
states. It should be noted that the (weak) dependence of 7 on AE has to be taken 
into account when ' second-order ' effects such as the isotope effect on radiationless 
transitions are considered. We shall return later to this point in w 

(c) The transition probability is now dominated by the frequency OJM which 
corresponds to the normal vibration of maximum frequency. For aromatic 
hydrocarbons the relevant frequencies are the C-H (or C-D) stretching frequencies 
so that hco c -~  ~ 3000 cm -1 and h~o c-9  ~ 2200 cm -1. Note that this result was not 
derived on the basis of a single frequency model or by any ad hoc assumptions, but 
rather constitutes a reasonable approximation for the general many mode formula 
(3.14) in the weak coupling limit. This result is entirely reasonable as the 
calculations of individual Franck-Condon factors of Ross et al. [9] and the 
arguments of Lin and Bersohn [10, 11] indicate that the high frequency vibrations 
(e.g. C - H  or C_D stretching modes) are favoured as acceptor modes. 

(d) A physically transparent interpretation of the isotope effect in the weak 
coupling limit is obtained. As pointed out above the maximum frequency of the 
molecular vibrations involves the C-H(~oc-H) or C-D(~oc-D) modes. As the 
parameter G~EM/h(co) in equation (5.5) is weakly dependent on the isotopic 
composition, the isotopic effect is determined by the energy gap AE and by the 
parameter 7(AE, d) (equation (5.6)). The ratio of the non-radiative transition 
probabilities for the perhydrated (WH) and for the corresponding perdeuterated 
(WD) molecule is given by : 

tl WD toe D r 

where 7~I and 7D are obtained from equation (5.6) where the appropriate dependence 
of 7 on the frequency OJM has been incorporated. In view of the uncertainty in the 
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The energy gap law for radiationless transitions in large molecules 157 

parameters involved in the calculation of y the approximate relation : 
1 

wDWI-I=exp [-Y~E (~olD we-H)] (5.9) 

will be sometimes recommended. 
Up to this point we have considered the low temperature case in the weak 

coupling limit. To derive the temperature dependence in the weak coupling limit, 
we have to replace equation (5.1) for the point in the complex t plane by the more 
general relation (obtained from equation (3.14)) : 

1 Aj2hoJ, {exp [ioj~ (t + flyth.) 
~ exp (fihwj/2)-exp (-fihwfl2) 

~h 
-exp [-iooj (t+ 2i)J}-AE=O, (5.10) 

which leads to the solution : 

~ ' (  2AE ) 
t ~ - - - -  log 

~oM Y~ ho, a~Aa~2(~M+ 1) 
M=1 ..... d 

where 
tiM+ 1 = [1 --exp (--fih~oM)] -1. 

(5.11) 

The transition probability is now given in the form : 
C~ 2~" W -  ~ 2 ( h ~ )  exp ( -  1 ~A,a(2n'+ 1)) 

xexp --hWM log \~I~COM/kM2(~M +1) 

Thus the temperature dependent result in the weak coupling limit just incorporates 
the temperature dependence of the coupling parameter G and will multiply the 
energy term eM in equations (5.5) and (5.6) by the coefficient QTM+ 1). In view of 
the high frequency of the eoM vibrations the low temperature limit in the weak 
coupling case seems to be adequate for most practical purposes. 

Finally, we would like to point out that the general ' low temperature ' result 
(equations (5.4)-(5.7)) in the weak coupling limit is adequate both for a molecule 
in an inert medium (provided that [3h(co)>> 1) and for the radiationless decay of the 
lowest vibronic component in an ' isolated ' molecule. As the coupling strength 
G is temperature dependent (see equation (3.15)), one expects that large molecules 
which correspond to the weak coupling limit at room (or lower) temperatures will 
be transferred to the strong coupling limit at high temperatures (when fih(oJ)~ 1). 
However, such high temperatures may not be realized in practice. 

6. INSPECTION OF SOME EXPERIMENTAL DATA FOR THE WEAK COUPLING LIMIT 

Adopting the terminology of the strong and weak coupling limits for non- 
radiative decay we can easily convince ourselves that electronic relaxation processes 
in large aromatic molecules correspond indeed to the weak coupling limit as 
proposed by Hunt et al. [7] and by Robinson and Frosch [8]. Byrne et al. [9] 
have estimated the reduced displacement parameters A, (equation (3.7)) for different 
types of vibration from the analysis of spectroscopic data and from semi-empirical 
molecular calculations. Grouping the normal molecular vibrations into the 
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158 R. Englman and J. Jortner 

following groups (1) C-H (or C-D) stretches, (2) skeletal stretches, (3) skeletal 
bends, (4) C-H (or C-D) bends and (5) out of plane modes, the reduced 
displacements estimated by Byrne et al. [9] for these five types of groups of normal 
vibrations are as follows : 0.13 < 0.71 A1 < 0.3 (where COl ~ 3000 cm -1 for C-H and 
o~1~2200 cm -1 for C-D and (A1--AM), 0-71 A2~0.2 (~o2~ 1400 cm-1), and 
Aa = A4 = Aa = 0. (We have used this rather strange notation as the parameter X 
calculated by Ross et al. [9] is Xi = At/~/2.) At the risk of triviality let us point 
out that indeed G ,,~ EM/h(oJ)~ 1 and the weak coupling limit is applicable. We 
shall consider the weak coupling low temperature limit, whereupon the non- 
radiative decay takes place from the lowest vibronic component of the higher 
electronic state. Within our approximate theoretical framework the non-radiative 
transition probability is determined by the following parameters : 

(a) The pre-exponentialfactor in equation (5.7) exhibits only a weak dependence 
on the energy gap, and contains the coupling parameter C 2. We have not 
attempted to evaluate the electronic matrix elements which mediate the non- 
radiative decay channel. Following the classical arguments Kasha [67] and of 
Robinson and Frosch [8] rough order of magnitude estimates for the matrix 
elements (1.7 a) and (1.7 b) are C(e~ (Hv) and C(er)= (Hv)(Hso)/(Eso-E~,o), 
where (Hv) and (Hso) correspond to typical vibronic coupling [48] and spin-orbit 
coupling matrix elements, respectively, while (Eso-Ero) is a typical energy gap 
between two spin-orbit coupled states. Vibronic coupling matrix elements were 
recently established by Hochstrasser and Marzzacco [68] for several aromatic 
hydrocarbons from the intensity of symmetry forbidden components in the optical 
spectrum. For benzene [8, 48, 68] (Hv) (1Bzu, 1Elu)= 780 cm -1, for naphthalene 
[68] (Hv) (1Bau, 1B2u)= 200 cm -1 and 195 cm -1, for phenanthrene [68] 
(Hv) (1A1, 1A1)= 145 cm -1 and (Hv) (1A1, 1B2)= 85 cm -1, while for anthracene 
[68] (Hv) (1B2u, 1Bau)= 1030 cm -1, 726 cm -1 and 726 cm -1. From this analysis 
[68] we may conclude that the (Hv) term varies over one order of magnitude for 
different molecules. This variation of the vibronic coupling term may introduce 
an uncertainty of about two orders of magnitude in the 'semiquantitative' 
theoretical predictions for non-radiative decay probabilities. We believe that a 
better agreement with experiment obtained for the W values, which are based on 
' empirical fittings ' of the pre-exponential factor [13, 14] should be regarded with 
some suspicion. To obtain a rough estimate for the pre-exponential factor for 
intersystem crossing we use again the estimate of Robinson and Frosch [8] for the 
ratio of the oscillator strength for spin forbidden orbitally allowed S-+T transition 
and the spin and symmetry allowed S-+S transition [8, 69] which leads to 
((Hso)/(Eso-E~o)) 2~ 10 -1~ As reliable theoretical or experimental information 
concerning the (Hso) matrix elements is still lacking one is unable to ascertain the 
variation of these terms between different states of different aromatic molecules. 
From these qualitative considerations one may conclude that within confidence 
range of two orders of magnitude (C(e~ 2 ~ 106 cm -2 and (C(er)) 2 ~ 10 -4 cm -2. 
Using now a mean value for the energy gap AE,~ 104 cm -1 and h~oM ~ 3000 cm -1 
one obtains the following rough estimates for the transition probability : 

W (co) ~ 1013• exp ( - ),AE/heOM), (6.1) 

W (or) ~ 103• exp ( - ~AE/ho~M). (6.2) 

(b) The exponential factor, equations (5.6) and (5.7), reveals of course an 
exponential dependence of W on the energy gap. Our approximate weak coupling 
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The energy gap law for radiationless transitions in large molecules 159 

theory contains the parameters which specify the changes in molecular geometry 
(AM) and the number (d) of the degenerate vibrations of maximum frequency in a 
rather disguised manner as they are included in the logarithmic factor 9'. For 
radiationless transitions to the ground state the estimates of AM in the range of 
0.42 > AM>0.19 derived by Byrne et al. [9] from the analysis of the optical 
spectrum of benzene and other hydrocarbons are adopted. For radiationless 
transitions between two excited electronic states we expect that AM (excited-+ 
ground) > AM (excited-+excited) as the changes in molecular geometry are expected 
to be smaller between two ~r-+Tr* excited states, especially when one electron jump 
is involved. Finally, we adopt the idea of Ross et al. [9] and set d to be equal to 
the number of C-H bonds in the molecule. 

Several problems of physical interest will be now briefly considered : 
(a) Triplet to ground state radiationless transitions. We have analysed the data 

compiled by Siebrand [9, 14] for CzH v and CxDy type hydrocarbons. These data 
provide the best example for the energy gap law [8, 14]. In order to estimate the 
parameter 7 we have used the value of AM = 0.42 for C-H and C-D modes which 
corresponds to the McCoy-Ross parameter [5] XM = )(1 = 0"3. As pointed out by 
Byrne et aI. [9] this value provides an upper limit for the X parameter for the 
C-H and C-D stretching vibrations. The 7 parameters for various hydrocarbons 
thus estimated vary in the range 1.31-0.50. Using Siebrand's estimates [9, 14] of 
the non-transition decay probabilities in CxHy hydrocarbons the resuking pre- 
exponential factors in equation (5.6) were then found to vary in the range 
10-1000 s -1. This is not surprising in view of the previous discussion of the 
pre-exponential factors. Another related set of data which are practically 
independent of the pre-exponential factor involve the isotope effect WH/WD on 
intersystem crossing to the ground state. Using the 7 values calculated again with 
AM= 0"42, equation (5.8) yields reasonable agreement with experiment [9, 14] in 
most cases. Finally, we would like to point out that the benzene data [65] for 
intersystem crossing from the 3Blu state to the ground state do not fit the theoretical 
correlation (5.7). It was pointed out by van der Waals et al. [70] that the benzene 
3Blu state is subjected to strong pseudo Jahn-Teller coupling effects with the 3Elu 
state which is located just 4000 cm -1 above it. Hence the harmonic approximation 
is not applicable in this case. 

(b) Singlet to ground state internal conversion. The meagre experimental 
information currently available was carefully analysed by Siebrand and Williams 
[13]. Using 0.19 ~< AM ~< 0.42, equation (5.7) leads to a very low value for the 
non-radiative 1Bzu-+lAlg transition probability for benzene in variance with the 
experimental data [13]. For other hydrocarbons the V factors were calculated 
again using AM----0.42: The resulting upper limits for the pre-exponential factors 
for naphthalene, anthracene, phenanthrene, pyrene and triphenylene and the 
pre-exponential factor for tetracene fall in the region 1013-10 l~ s -1 and are consistent 
with our estimate of the pre-exponential factor. On the other hand, the upper 
limits obtained for the pre-exponential factors for chrysene, 1,2 benzanthracene, 
perylene and coronene are lower than 10 t~ s -1. These upper limits for W were 
obtained [13] assuming that the branching ratio for the non-radiative decay of the 
excited singlet to the ground state does not exceed 1 per cent. The analysis 
indicates that for these latter molecules the non-radiative decay probability from 
the excited singlet to the ground state should be of the order of 10 per cent of the 
radiative decay probability, and may thus be amenable to experimental observation. 
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It should be noted that in view of the relatively large energy gaps and as 7 > 1 in 
these cases, an appreciable isotope effect is expected for this class of radiationless 
transitions. 

(c) The azulene problem. A qualitative interpretation for the anomalous 
fluorescence of the azulene molecule and its derivatives [71-74] was provided by 
Robinson and Frosch [8] and by Ross et aL [7, 9] who pointed out that the radiative 
lifetimes for the Si-+S o and S2`+S0 transitions differ by two orders of magnitude. 
The non-radiative decay probability of the first singlet state of the azulene mole- 
cule can be estimated from two sources: optical relaxation experiments of 
Rentzepis [74] provide an upper limit for the non-radiative decay probability 
W(Si`+So) < 10 li s -i. Line broadening in the first excited singlet state led to 

the estimate [4] W(SI`+So)> 10 i~ s - i  while a careful analysis of line widths in 
mixed crystals by Hochstrasser [75] sets a value of W(Si`+So)~ 3 x 10 i~ s - i  for 
azulene. On the other hand, quantum yield measurements lead to W(Sz`+Si)= 
6 x 10 s s -i. The difference between the two non-radiative decay probabilities for 
the same energy gap can be immediately rationalized by equation (5.7) considering 
the different AM values for these two processes. Denoting the appropriate 7 values 
for the Si`+S o and for the S2-+Si by 7i and by 72, respectively, we now have 

W ( Si `+So) I W ( S2 ̀ +Si) = exp [( AEIho~i) (7~ - 7'i)] 

where the common energy gap between $1 and S o and between $2 and Si is taken 
as AE= 14 000 cm -1. For the Si`+S o non-radiative decay we utilize again the 
value of AM = 0"42, which for d=  8 and AE = 14 000 cm -i  leads to 7'1= 0.89 and to a 
pre-exponential factor of 2x 10 iu s -1. The value of A i for the S~`+S1 non- 
radiative decay is expected to be smaller than the corresponding value for the 
excited ground state transition so we expect that 7'2 > 7'i. A value of 7'~= 1-6 is 
consistent with the experimental results W(S~-~-So)IW(S2`+Si),,,50. This 
implies that the value of AM ~' for the Sz`+Si coupling is lower by a factor of about 
2 relative to the corresponding AM2 value for the SI`+S o decay, a conclusion which 
is entirely reasonable. Using this rough estimate for 7'2 we can estimate the isotope 
effect for the S2---~Si decay from equation (5.8) which leads to 

WH(S2 `+S1)/WD(S2 `+S1) ~ 30. 

This result implies that the quantum yield for the fluorescence S2`+S0 in azulene- 
ds will be close to unity, not in disagreement with the experimental observation of 
Johnson et al. [76]. On the other hand, the isotope effect for the Si-~S0 decay is 
expected to be lower. Equation (5.8) leads to WH(SI-+So)I WI)(Si`+So) ~ 4. 

To conclude this discussion we would like to stress that the theoretical analysis 
presented herein rests on several rather severe approximations. Furthermore it 
was assumed that the A M terms are constant for a given class of radiationless 
transitions. Thus the numerical estimates are not intended to reproduce 
experimental data which are at present much more reliable than theoretical 
computations but rather to predict a general pattern of behaviour for a given class 
of electronic relaxation processes. 

7. DISCUSSION 

In this paper we have attempted to provide a semiquantitative treatment of the 
transition probability for non-radiative decay in large molecules which provides an 
advance over previous theoretical studies of this problem. Any arbitrary number 
of different molecular vibrations can be incorporated and the resonance widths can 
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The energy gap law for radiationless transitions in large molecules 161 

be directly calculated without referring to crude factorization procedures [16] which 
attempt to separate the resonance width into a product of a mean coupling term 
and the mean density of states [16, 17]. 

The present treatment rests on the following assumptions : 
(a) Interference effects are disregarded as discussed in w 
(b) A two-electronic level system is considered. 
(c) The vibrational factors in the Vs~, zj matrix elements are approximated in 

terms of a product of an electronic coupling matrix element and Franck-Condon 
vibrational overlap terms. 

(d) We assume that the normal modes and their frequencies are the same in the 
two electronic states except for displacements in the origins of the normal 
coordinates. 

(e) We assume that the molecular vibrations are harmonic, disregarding 
anharmonicity effects. 

Some of the drastic approximations involved in the present treatment can be 
removed. Thus, for example, it is not necessary to factor out the individual 
coupling terms Vsi, tj into a product of an electronic term and a Franck-Condon 
overlap factor, as the generating function method can be applied for the general 
expression (equation (1.10)) for the non-radiative transition probability. In a 
similar fashion the effect of the changes of vibrational frequencies between the two 
electronic states can be incorporated. Unfortunately, such modifications result in 
rather cumbersome expressions which can be handled only by numerical methods. 
The anharmonicity problem [13, 14] which was omitted from the present treatment 
is more complex as in this case the normal mode analysis breaks down. A way of 
overcoming this difficulty will involve replacing the harmonic potential surfaces in 
equation (3.8) by superposition of more general type potentials (which include 
anharmonicity effects) at least for the C-H (or C-D) stretching modes. Again, 
numerical techniques will be required in this case. 

We must admit that in the present treatment we have sacrificed the detailed 
consideration of some of the physical factors for the sake of a simple and elegant 
representation of the problem. We believe, however, that the present treatment 
elucidates the gross features of the non-radiative decay processes. 

The main accomplishments of the present study can be summarized as follows : 
(a) From the general structure of the theoretical formulas we can ascertain that 

the relative displacement of the two potential energy surfaces expressed in terms of 
the coupling parameter G determines whether the molecular system corresponds 
to the strong or to the weak coupling limit. This classification provides a link 
between the Teller picture [66] and the conventional Robinson-Frosch-McCoy- 
Ross [7-9] model for radiationless transitions. As it is well established, the weak 
(and possibly sometimes the intermediate) coupling scheme is appropriate for the 
description of a large number of electronic relaxation processes in aromatic molecules. 

(b) In the strong coupling limit the transition probability is determined by the 
mean molecular frequency, provided of course that the Al values for a substantial 
number of different frequencies are non-vanishing. On the other hand, in the 
weak coupling case the non-radiative transition probability is dominated by the 
highest molecular frequency oJM. 

(c) In the strong coupling limit the transition probability is determined by the 
energy EA corresponding to the point of minimum intersection energy located above 
the origin of the higher electronic state, equation (4.7). In the weak coupling 

M . P ,  L 
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162 R. Englman and J. Jortner 

limit the transition probability is essentially determined by the energy gap AE. 
(d) A proper theoretical interpretation of the ' energy gap law'  for radiationless 

transitions in the weak coupling limit is provided. This general energy difference 
dependent behaviour is characteristic for many molecular relaxation processes, 
such as vibrational relaxation. Robinson and Frosch [8] and Siebrand [14] 
attempted to provide empirical or semi-empirical correlations for the energy gap 
law. However, no theoretical treatment of the problem was provided until now. 

(e) Following the considerations presented in (b) some features of the 
intramolecular isotope effect on radiationless transitions can be elucidated. A 
pronounced isotope effect can be encountered only in the weak coupling limit. 

(f)  The present scheme provides the first step in ascertaining the nature of  
' t r ivial '  medium effects on the non-radiative decay probability, whereupon the 
insert medium acts as a '  heat bath ' [77]. This problem was previously considered 
by Bersohn and Lin [11]. In general, the temperature dependence of the effective 
radiationless rate constant should not follow a simple Arrhenius type law. We 
have demonstrated that in the case of the strong coupling limit, the extended 
Arrhenius type law (where an effective temperature factor comes in equation (4.8)) 
is obeyed. In the weak coupling limit we were also able to extract an approximate 
expression for the transition probability. This temperature dependence (equation 
(5.12)) is expected to be rather weak. It should, however, be borne in mind that, 
as the present treatment rests on the approximate relation (1.10), the temperature 
dependence of the C terms has been omitted from the present treatment. This 
feature may be of considerable importance, in particular for the weak coupling 
limit. 

(g) From the chemist's point of view the different features of the isotope effects, 
the energy gap law and the temperature dependence encountered in the weak and 
strong coupling limits can be summarized as follows: the weak coupling limit 
corresponds to a tunnelling mechanism between zero-order vibronic levels which 
correspond to different electronic configurations, while in the strong coupling limit 
we encounter the situation whereupon adiabatic potential surfaces cross or intersect 
and the non-radiative decay occurs via a conventional adiabatic type unimolecular 
process. It should be, however, noted that the concept of an ' activated complex ' 
does not enter in any way in this theory. It is gratifying that both limits result as 
particular cases of the same general formalism. 

Although conventional electronic relaxation processes in large aromatic 
molecules correspond to the weak coupling situation, we believe that the strong 
coupling limit is of considerable physical interest for the interpretation of many 
reactions encountered in the field of organic photochemistry. The reactivity of 
excited electronic states of organic molecules resulting in unimolecular 
rearrangement processes involves large configurational changes between two or 
more electronic states, and thus corresponds to the strong coupling limit. The 
present treatment has established the link between electronic relaxation and 
intramolecular rearrangement processes in excited electronic states of large organic 
molecules. 

One of us (J. J.) would like to acknowledge support by the U.S. National 
Aeronautics and Space Administration and by the Air Force Office of Scientific 
Research, and having also benefitted from the support of Materials Research by 
the Advanced Research Projects Agency at the University of Chicago. 
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