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In this paper we consider the energy levels and the polarization ratios of an impurity pair in
mixed molecular crystals using the one-particle Green’s function method. The off-diagonal matrix elements
of the weighted density of states function for the first singlet exciton band in crystalline benzene have been
obtained and applied for the splitting of the energy levels of an isotopic impurity pair. An extension of
Rashba’s formula for the polarization ratio of the impurity pair has been derived.

I. INTRODUCTION

The electronically excited states of pure molecular
crystals can be described in terms of exciton (one-
particle) states which are characterized by a dispersion
relation E(k) which relates the energy to the crystal
quasimomentum #Ak.! Complementary useful informa-
tion can be obtained from the density of states function
g0(E), which is related to the dispersion relation and to
the Green’s function G° of the pure crystal by the well-
known expressions®*

g(E) = (1/N) % 2| Baj(k) [3LE~E;(k) ]

=(1/aNo) ImTrG*(E—i3), (1)

where the summation over 7 is performed over all the
branches of the exciton band j=1-:-.¢, where ¢ is the
number of molecules per unit cell; & is the number of
unit cells, Baj(k) are the elements of the unitary
matrix which transforms the exciton site representation
to the crystal wavefunctions. Ej(k) is the energy
dispersion relation for the jth exciton branch.

Frenkel exciton states in molecular crystals of
aromatic molecules were extensively studied.® However,
most of the optical studies concentrated on k=0
exciton states which provide information only con-
cerning interactions sums over translationally in-
equivalent molecules. Information on the total density
of states function can be derived from the following
sources: (a) hot-band spectroscopy;®7 (b) electronic—
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vibrational cooperative excitations®?; (c) studies of
single impurity states®™; (d) properties of impurity
pairS‘Z,lLMb,lﬁ

Earlier theoretical work on single impurity states®®-!
utilized the Koster-Slater relations®® which require
complete information on the exciton dispersion curve.
Recently the dispersion relations between the Green’s
function and the exciton density of states function
were utilized leading to simple manageable expressions
for the (bound or virtual) impurity energy levels,
excitation amplitudes, and optical properties of im-
purity states.®# This treatment provides an important
consistency check concerning the adequacy of the
exciton density of states function. Complementary
information pertinent to this problem can be obtained
from the study of impurity pairs in molecular
crystals.?¥ No detailed information is available on the
energy levels and the optical properties of an impurity
pair. In the present work such theoretical information
is presented for a realistic physical system, that is, the
first excited singlet state of the isotopic impurities in
crystalline benzene. Further theoretical information
required for the interpretation of experimental spec-
troscopic data concerns the polarization ratio. The
effect of the host exciton band is expected to alter the
polarization ratio of an impurity pair, which will result
in serious deviations from what might be expected on
the basis of the oriented gas model. Indeed, the theore-
tical study of mixed molecular crystals originated in
Rashba’s work on the polarization ratio for a single
impurity.!”112 The extension of the general theory for
an impurity pair is of some interest.
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II. IMPURITY ENERGY LEVELS

The energy levels of an impurity pair are determined
by the off-diagonal elements of the density of states
matrix which are determined by the crystal symmetry
and by the intermolecular interactions. Such inter-
actions are of considerable interest in the study of
virtual coupling and electronic energy transfer between
traps./'4b  Tsotopically substituted impurity pairs
which introduce local perturbation are expected to
provide useful information concerning these inter-
molecular interactions. From earlier work®4 it ig
known that the energy levels for a pair of isotopic
impurity molecules (characterized by a sufficiently
strong local perturbation strength to yield localized
levels) are obtained from the equation

1_U0F4M(E) "U0qu’(E)
(2)
—UbFyo(E) 1=UFyy(E)
where the impurity molecules are located at the sites
g=na and ¢'=mp, the double index refers to the unit
cell and to the appropriate site in the unit cell. Uy is the
perturbation strength which is given by Up= Aeguest’ —
Aenost’ F Dgnest’ — Dhost’, where Aef corresponds to the
gas phase excitation energy and I¥ the pure crystal
environmental shift. The matrix elements Fyy(E) are
related to the elements of the density of states function
by the dispersion relation. The Green’s function in the
localized excitation representation is given in the form®+4

Gy *(E—18) = Fyp () +imga"(E), (3)
where g4, is the matrix element of the weighted density
of states function®* (for the pure crystal) whilez*

g’ (E')dE

E—E ’ )

Fo(E)=P

where P represents the Cauchy principle part of the
integral.

In the deep trap limit the moment expansion
method®¥ leads to the pair energy levels Ey=
Ustmee® and to the level splitting AE=2mgy®
where the first moment mq® is just the intermolecular
coupling term eg between the molecules at ¢ and at
¢’ b1 Thus in the case of a deep trap the impurity
pair splitting of the energy levels is just AE=2¢,,
while in the case of virtual coupling between shallow or
intermediate traps a full-fledged treatment based on
Eq. (2) is necessary. This requires the calculation of the
off-diagonal matrix elements of the weighted density of
states function.®® These off-diagonal terms were
calculated by us (see Appendix) for a typical system
where the exciton band structure is determined by
short-range interactions.
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III. NUMERICAL CALCULATIONS FOR
CRYSTALLINE BENZENE

The band structure for the first singlet exciton state
of crystalline benzene is dominated by short-range
electrostatic interactions.5»>73 A similar situation
prevails for the first singlet exciton band of crystalline
naphthalene.5* 7.1 The individual intermolecular cou-
pling terms in crystalline benzene which provide a
reasonable fit to the density of states function and to its
second moment were given by Colson.® Thus it appears
that the singlet exciton band structure is dominated by
three-dimensional short-range interactions between
translationally inequivalent molecules.® The energy
dispersion relations for the four exciton branches are
then given in the form

+ +
+ —_—
Ej(ks, by, k) = deaynyj COSTRs cOSERY  deioye

- +

I+

(3

X costky costk, Aewyopm costk, costk,,
+
where

j=1...4; —~r<ky, ky, k<.

The density of states was calculated from the diagonal
matrix element?:

gO(E) = Ena ,naa(E)

_d
 dE (27)3

> I Bustiy b,
)

(6)

while the off-diagonal matrix elements of the weighted
density of states functions are obtained from

grent(8) = (1) 7 ff explit(Rue—Ro)]
(5

X Bai(k) Bp; (k) dkdkydk,.  (7)
In Eqgs. (6) and (7) we have labeled the impurity sites
as ¢g=na and ¢’=mB. The details of these calculations
are given in the Appendix. The results for the density of
states are presented in Fig. 1. The theoretical curve
represents quite faithfully the hot-band spectrum of
benzene reported by Colson e al.7 apart from a Van
Hove singularity around S cm™ which is probably
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smeared out in the experimental spectrum. It should be
noted that the computational method employed herein
is considerably more accurate than the calculations
previously performed on this system.?

In Fig. 2 we display some typical results for the off-
diagonal matrix elements of the g’ matrix. A con-
sistency check on the accuracy of these calculations
was obtained from the moments of the off-diagonal
matrix elements of the weighted density of states
function. The zeroth moment should vanish while the
first moment just equals the pair interaction term.42-14
Using the appropriate off-diagonal matrix elements
we have calculated the dimer levels and the dimer
splitting as a function of the perturbation strength Us
for the two cases: (a) impurity molecules located at
g=(0, 0) and at ¢’ =0, 3(a+3); (b) impurity molecules
located at ¢=(0, 0) and at ¢’=0, 3(b-+c). These results
are summarized in Fig. 3. As expected when Ug SM®
(where M® corresponds to second moment of the
density of states function which for crystalline ben-
zene™" is M@ =110 cm™®) we encounter the shallow
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Fic. 1. The theoretical density of states curve for the first
singlet exciton band in crystalline benzene as calculated from
Colson’s intermolecular interactions data (Ref. 13).

impurity case and deviations from the simple perturba-
tion treatment are obtained. It would be interesting to
test this theoretical prediction by the study of CeDsH
(Up=—31 cm™) impurity pairs in C¢Ds.

1v. POLARIZATION RATIOS

We shall now proceed to derive the selection rules for
optical excitations of an impurity pair. The crystal
wavefunctions ¥ for a mixed crystal is expanded in
terms of the localized excitation basis ¢ where I=ry
and we consider only a single (f) exciton band in the
pure crystal

(8)

Y= u(l)a.
1

We can express the wavefunction in the Fredholm
homogenous representation

T =GV, (9)

where G°=(E—H)™, H, corresponding to the pure
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Fic. 2. The off-diagonal matrix elements of the weighted
density of states matrix for the first singlet exciton band in
crystalline benzene.
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Fic. 3. The dimer splitting as a function of the perturbation
strength Uy. Curve (1) corresponds to the case in which the two
impurity molecules are located at the sites 00, and 0} (a-tb).
Curve (2)—impurity molecules located at 00, and 0} (b--c).
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crystal Hamiltonian. V is the perturbation operator due
to the presence of the impurities which in the localized
representation and for local perturbation takes the
form

(ar| V| ag)= X Usbrbpq, (10)

()

where the sum is taken over the sites of the impurity
molecules which are located at {p}. This treatment
results in the following general equation for the ex-
pansion coefficients:

u(l") =U, (Z’Z u(p)Gry. (11)

p

Consider now an impurity pair with the impurity
molecules located at the sites {p}=g¢ and ¢’. In what
follows we shall again set ¢g=na and ¢’=mB while a
general site will be denoted by ry. The relevant ex-
pansion coeflicients on the impurity sites are given in
the form

u(q) =Unt(q)Gog(E) +Uot(q') Goo*(E),

u(q) =Um(q) Gy (E) +Uwm(q") Gy (E).  (12)
We shall now make use of the identity G,(E)=
Gy o®(E). Furthermore provided that the crystal is
characterized by inversion symmetry we have
Gu®(E) =G (E). Then the following simple relation
results:
u(q) =Uqu(q)Goo*(E) /[[1=UdGe X (E)].  (13)
We should note in passing that Eq. (12) results in the
energy relation (2). Turning our attention now to a
general site in the crystal, which is occupied either by
the host or by the guest molecule, we can make use of
Eqgs. (8) and (10) and write
u(l) =Uwu(¢)[F(E)Gvd(E)+Gro(E)],  (14)
where
F(E) =UGe*(E) /[1- UG (E) ). (15)
The transition moment M from the ground state to the
excited state ¥ is given in the form of

M= 3 u(ry) (e | u| do)= 2 u(ry)py;  (16)

I, is the matrix element for the transition moment for a
molecule located at site v in the unit cell,

(17)

Py= (‘Pr‘io l P l ‘Prwf):

where ¢ and ¢’ correspond to the ground- and excited-
state wavefunctions of a single molecule, respectively.

SOMMER AND ]J.
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Making use of Eq. (17) one obtains

M= Z My Z EEF(E)GW.MO(E) +Gr1,mB0(E)]- (18)

As we are interested in impurity pair states outside
the band it is sufficient to consider the real part of the
Green’s function [Egs. (3) and (4)], which obeys the
following sum rule:

> Framg(E) = 2 {Ba;(0)Bs;(0)/LE—E;(0) ]} (19)
The following result is then obtained:
M= Ugu(mB) 3 py

5 FB B0 B0+ B O B0

7 E—E;(0)

Using the conventional expression for the transition
moment to the jth exciton branch,

pi= 2 By;(0) ps, (21)

our result takes the form
_ ‘ G(E)B,,j(O)—I—Bﬂj(O)> ,
M= Uau(ng) s (T D) o)

Let the dimer states be characterized by the energy
levels E,; (i=1, 2), and these energies have to be sub-
stituted in Eq. (20"). Considering optical excitation
by light characterized by the polarization vector e,
then the components of the transition moment M*=
M -e, for the excitation of the dimer can be displayed
in the final form

e aj 0 B 4 0
M}=Uu(mB) 2 (I*j'e%)(g(E ZB—(E)'?(—)) = )>

(22)

The F(E,;) factor is nothing but a constant. Making
use of Eq. (2) we write for states outside the band

1— Uquqﬁ(E) =:tU0qu/U(E). (23)

Hence

F(E,)==1, i=1,2. (24)
This result immediately implies that u(na) = £u(mg),
the amplitudes of the expansion coefficients on the two
impurity sites are equal for any U,.

The absolute intensity of the impurity pair com-
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ponents can be evaluated from Eq. (22). For this
purpose the expansion coefficients #(na)=4u(mp)
have to be evaluated. Making use of Egs. (17) and (24)
one gets

u(l) =Up(q") (£Grd+Grg). (25)

Now we can apply the normalization condition
1=23|ul) P=Ud|u(g) |*
I

X 2 [ Grgd PH| Gug® P£2Grq,0e"]  (26)
I

and utilize the relations®

% | Gud(E) [P=— (d/dE) Gy (E),

2 Grd(E)Grg*(E) = —(d/dE)Gy(E). (27)

Then the following relations are obtained:

[ u(g) P=]ulg) |?
_ 1
 —2UPL(d/dE)G,(E)F (d/dE)G,"(E)]’

(28)

As we are interested in states located outside the band,
we can rewrite Eq. (21) in terms of the real part of the
Green’s function [see Egs. (3) and (4)] in the form

1
I Mi)\ I - 2{_ (d/dE) [FQII(E):FFQQ'(E)]}EzEN
g(Eri> Baj(O)+Bﬂj(0) 2
D ) B

Making use of Eq. (2) this result can be recast in the

M> |2 _ dEn

F(Eys) Baj(0) +Bgi(0) |2 / dE.

5563

form
([E”'
Mooty O
42| ”"(duo)
F(Er;) Bo;(0) 4 Bg;(0) )2
X (; (e = (30)

The coefficient in Eq. (30) can then be evaluated either
from theory or from experimental data.

The absolute intensity of the dimer component
F(Ens)=-+1 (located at E,;) is determined by
U(dE,;/dUs){1/[E.i— E;(0) ?}, where Ei(0) is the
energy of the £=0 component of the pure crystal which
is closest lying to the band edge E¢® and which cor-
responds to the irreducible representation where
B,;(0) =Bs;(0). When the intermolecular coupling
terms in the pure crystal are determined by three-
dimensional interactions, F(E) and Fg (E) are
expected to reveal a Van Hove type singularity at the
band edge so that both Fy,(E) and Fu, (E) are pro-
portional to | E—E |¥2 and thus (d/dE)(Fg+
Fo) «| E;—Ec® [7Y% and the absolute intensity is
proportional to (E.—E)V2[E,,—FE(0) T2 If the
E;(0) is located at the bottom of the band (as is the
case for the first singlet exciton state in naphthalene
and benzene) the intensity for impurity states localized
below the band (U,<0) will diverge as [F,—
E((0) %2, when E,; approaches the band edge. On the
other hand, if E1(0)>Ec° the intensity of the dimer
component will decrease when E,; approaches FEc°.
The same argument holds, of course, for the dimer
level F(E,;)=—1, and whereupon the k=0 exciton
component corresponds to the irreducible representa-
tion for which B,;(0) = — Bs;(0). This result is known
for the single impurity case. The analogous result
obtained for the impurity pair is of some interest as in
view of the splitting between the dimer energy com-
ponents, one of these components (for an appropriate
value of Uy) can be located rather close to E¢?, where-
upon the effect of the exciton band on this dimer level
will be appreciable.

Thus the final expression for the polarization ratios
reduces to the form

s F(Er") Baj(0) +Bg;(0) |*

Z K€
J

MN| U, Eni—E;(0)

where the two impurity energy levels E,; and E,;
will be labeled as follows: F(E.;) =41 and F(FE,;) =
—1. This result can be applied either to a single com-
ponent or to both components of the dimer pair
measured with different polarizations.

To treat a specific example let us consider the
naphthalene crystal, space group (P21/a), with two
translationally inequivalent molecules per unit cell.
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2 e
M

U, E,o—E;(0) ’

There are two exciton branches with j=1, 2. The
expansion coefficients are Bi,(0) = Big(0) = Byo(0) =
—By(0) =1/v2. The two states of the pure crystal
to which transitions are allowed are E,.(0) and E,(0)
polarized along the e,.b and e,, || b. (We shall denote
the ac plane by a.) Thus the corresponding transition
moments are pi-a=p, and Pe+ b= Consider now the
following situations:
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(a) If the two impurity molecules are located on
translationally equivalent sites (say of type «) only
one dimer state [for which §(E,;) = 1] will be amenable
to observation. The polarization ratio P1(e/b) for this
state will be

Pl(“) _ #? [Eni—Fy(0) (32)

b w[Es—E.0)F

(b) When the two impurity molecules are located
at translationally inequivalent sites both dimer states
will be experimentally observed. The polarization
ratio P1(a/b) for a single component is again given by
Eq. (32). The polarization ratio for the two com-
ponents determined by two different polarizations
a or b, which we denote by P:(a/b) is given in the
form

Pﬂ(c_;) b (Eri'—Eb(O))2 dE,;/dU, (33)

b/  w?\E.—FE,(0)/ dE.//dU,"

These equations are generally valid for localized states
of the impurity pair which corresponds to the shallow,
intermediate and deep trap cases. In the case of inter-
mediate and deep traps we expect that the ratio
(dE.;/dUy) (AE,i/dU,) ! will be close to unity. On the
other hand, for shallow traps this ratio has to be
explicitly included and it will affect the polarization
ratio (28).

To conclude this discussion we would like to point
out that the selection rules for the optical excitation of
an impurity pair in the mixed crystal can be related to
the energies and to the polarization ratios for the 2=0
Davydov components in the pure crystal as is the case
for the Rashba formula for the single impurity.

The simple treatment presented herein can be easily
extended. One can apply the algebraic elimination
method to treat any number of impurity aggregates,
however, this problem is of little interest as con-
figurational averaging will have to be performed. One
can also easily handle the case when the perturbation
strengths of the two impurity molecules are different.

APPENDIX: CALCULATION OF THE OFF-
DIAGONAL MATRIX ELEMENTS OF THE
WEIGHTED DENSITY OF STATES
FUNCTION

These matrix elements were evaluated by numerical
integration for the first singlet exciton band of benzene
where the band structure is determined by three-
dimensional interactions.

Let the impurity molecules be located at the sites
R,s=0 and R.,=ma-+nb-+nc, where the indices
néare n;=n;+3 or n;=n; (i=1, 2, 3) and n; (i=1, 2, 3)
are integers. The components of the k vector are
(kzy Ry, k2) so that

k- (Rna*R'mﬁ) =7)1kx+7l2ky+7]3kz- (Al)
The dispersion relation E;(k., %y, k.) [Eq. (5)] was

SOMMER AND J. JORTNER

applied to express k,(E, k., k.) in the form

k,=2arccosT, (A2)

where
T'= (E— e cossk,; cosik,) /(e cosik,+e€; costk,)

and

(A3)

| € | =4€@iny/a | & |=4€eram | & |=4€@ron

The signs of the energy parameters e, €, and e, for each
exciton branch are determined by the corresponding
representation of the Dy, point group.

The volume integral enclosed by a constant energy
surface

Anamg= / / / exp[ik (Rua— Rog) dkadbydk,  (Ad)
(E)

can be expressed in the form

1 T .
Anams(E) = 2y j_ ) exp(insk.) dk,
T 2arccosT
X / exp (imk,) dk, exp(insk,)
-7 ~—2arccosT
X dk,B,;(F)Bs;(k). (AS)
The off-diagonal terms [Eq. (7)] are given by
(A6)

Bna,mB (E) = (d/dE) Z Ana,mﬂ (E) .

In a similar manner the density of states function
CEq. (6)] is obtained from the diagonal terms Auq,na-
As the volume integrals Anq, are proportional to the
number of states up to energy E, one has to bear in
mind that the total number of exciton states has to
increase with increasing the volume of the zone en-
closed by the constant energy surface E. Integration
had to be performed over the appropriate zone volume
enclosed by the constant energy surface, taking into
account the effect of Van Hove analytical singular
points. The integrals A,qms(E) have to be calculated
on the same zone volumes enclosed by the same energy
surfaces in the Brillouin zone as have been done for the
diagonal terms. As the interactions are of short range
we can set B,;(k) = B,.;(0) for all values of «, 7, and &.
Furthermore, as the orthorhombic crystal structure is
characterized by an inversion symmetry one can show
that the integrals (AS5) in this particular case are real.
The off-diagonal elements take the form

d * T
gm0 0teroyt (E) = —=3° 16 / / sinbk, coshbudkadk,,
dL o Yo
(E)

i T T
fworerom®(E) = ~= 3 16 _/ _/ singky costk.dk.dks,
dE"; o Yo

(AT)
where k, is given by Eq. (A2).
We have calculated constant energy surfaces for
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Fic. 4. Constant energy surfaces for the first singlet exciton band in benzene. Each line corresponds to a constant value (E) at
fixed k,. The dashed lines sign the region of a § of the reduced Brillouin zone. Energies are given in cm™. Note that at a particular
energy value E, the k, lines behave differently. (a) £=0.33 cm™; (b) E=1.66 cm™!; (c) E=3.50 cm™; (d) E=8.35 cm™.

each exciton branch and for fixed &, (taking 400 points
in the Brillouin one). The k, values were determined
from 800 points in the Brillouin zone for each fixed k,.
Typical examples for such surfaces are displayed in
Fig. 4. When these energy surfaces reveal different
behavior at the same energy as can be seen from Fig. 4,
integration must be performed for each fixed &, so that

the number of the enclosed exciton states increases
with increasing the energy of that particular exciton
branch. Finally, all the contributions in the %, direction
were summed up for each exciton branch. Given the
integrals of the form (A7) as a function of energy the
(real) matrix elements F, (E) [Eq. (3)] were evalu-
ated by numerical integration.
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