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radicals with unlike g tensors. A direct, approximate
solution of the Zeeman-dipolar Hamiltonian is used.
The high-temperature, large-field, and small Aw/6
approximations are introduced, but arbitrary ratios of
the dipolar coupling w; among unlike radicals to Aw
are permitted. The approximations for solving the
many-body problem were tested by several model
calculations and the line shift was shown to be insensi-
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tive to the approximations. The dipolar line shifts and
linewidths agree with results obtained by the moment
method in the limits Awws and Aw>w,.
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In this paper we present a quantum-mechanical treatment of the radiative decay of polyatomic molecules.
The decay of a manifold of closely spaced coupled levels is handled by applying the Green’s function for-
malism for the transition probability, where the matrix elements are displayed in an energy representation
which involves either the Born-Oppenheimer or the molecular eigenstate basis set. General criteria are
obtained for the occurrence of an irreversible intramolecular electronic relaxation process. The features
of radiationless transitions in large, medium-sized, and small molecules are elucidated, deriving general
expressions for the radiative decay times and for the fluorescence quantum yields. Some possibilities for
studying radiative interference effects in intersystem crossing are explored. A general theoretical demonstra-
tion of the occurrence of long radiative lifetimes of small molecules is presented.

I. INTRODUCTION

All the direct physical information now available
concerning electronic relaxation processes in large and
medium-sized molecules comes from the experimental
studies of molecular luminescence.!? The radiative
decay of an excited state of a polyatomic molecule
cannot be handled by the conventional theory for the
radiative decay of a single excited level. It is now well
established that in excited electronic states of poly-
atomic molecules the Born~Oppenheimer (BO) separ-
ability conditions for electronic and nuclear motion
break down in view of intramolecular vibronic (and
spin—orbit, etc.) coupling between any zero-order
vibronic level and a manifold of vibronic levels which
correspond to a lower electronic configuration.?—12

! For a review of radiationless transitions see: (a) P. Seybold
and M. Gouterman, Chem. Rev. 65, 413 (1965). (b) B. R. Henry
and M. Kasha, Ann. Rev. Phys. Chem. 19, 161 (1968).

2 Complementary information on electronic relaxation in large
molecules can be also obtained from line-shape data in the absorp-
tion spectrum,

3 (ag J. Franck and H. Sponer, Gott. Nachr, 1928, 241. (b) R.
Kubo, Phys. Rev. 86, 929 (1952).

¢ G. R. Hunt, E. F. McCoy, and 1. G. Ross, Australian J.
Chem. 18, 1859 (1965).

6 G, W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962
(1962) ; 38, 1187 (1963).

8S.H. Lin, J. Chem. Phys. 46, 279 (1967).

7S. H. Lin and R. Bersohn, J. Chem. Phys. 48, 2732 (1968).

8 W. Siebrand, J. Chem. Phys. 46, 440 (1967).

¢ G. W. Robinson, J. Chem. Phys. 47, 1967 (1967).

1o M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968).

1 D, Chock, J. Jortner, and S. A. Rice, J. Chem. Phys. 49,
610 (1968).

2 A, E. Douglas, J. Chem. Phys. 45, 1007 (1967).

These vibronic (and other) coupling effects between
BO levels are manifested in the shortening of the radi-
ative lifetimes of large molecules! and in the observation
of anomalously long radiative lifetimes of small (tri-
atomic) molecules.? Obviously a satisfactory and
complete theory of the radiative decay of a polyatomic
molecule should involve a proper description of the
decay of a manifold of a large number of closely spaced
levels. The features of so-called radiationless transi-
tions in large molecules should emerge from a unified
theory of the radiative decay.

The basic conceptual framework for the understand-
ing of intramolecular vibronic coupling in polyatomic
molecules and in solids was provided by the early work
of Franck and Sponer’* and by Kubo® who have
pointed out that the nuclear kinetic-energy term in the
molecular Hamiltonian leads to the mixing of zero-
order Born—Oppenheimer states. Since then extensive
work was performed on the problem of ‘“‘radiationless
transitions” in large molecules by considering the
vibronic (spin-orbit, etc.) coupling matrix elements
which couple the zero-order Born-Oppenheimer
states.* These studies rest on the assumption that an
excited metastable state of a large molecule is prepared
in a nonstationary Born-Oppenheimer state, which
subsequently decays into a dense manifold of Born—-
Oppenheimer levels corresponding to another electronic
configuration. These authors™® considered the intra-
molecular decay as a simple rate process, with the rate
constant given by the Fermi “golden rule,” without
providing any justification for the validity of this
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approach. In this context two qualitative contradictory
statements were recently made: Kistiakowsky and
Paramenter® claimed that the experimental observa-
tion of a radiationless transition in the isolated benzene
molecule “contradicts the laws of quantum mechanics,”
while Robinson® argues that in large molecules the
density of vibronic states is sufficiently large so that
they can act as an effective dissipative quasicontinuum.
Recently an alternative approach to this problem was
presented, in which the molecular eigenstates of the
molecular Hamiltonian were constructed as a super-
position of zero-order Born—Oppenheimer states.'0:1/14
Using a simple model (equal level spacing) for the
energy-level structure in the excited states, this ap-
proach established a proper criterion for the irreversi-
bility of the radiationless transition process in an
isolated large molecule.® This model also provided
physical insight into the way in which the oscillator
strength, carried by a simple zeroth-order BO com-
ponent, is spread out over the manifold of molecular
eigenstates, making them active in emission (and in
absorption).1011.14.18 A discussion of the small molecule
limit was also given for this model. However, it is still
desirable to obtain these results in a model independent
manner, to provide better criteria as to when the small
and large molecule limits occur, and to discuss other
phenomena such as internal conversion.

When radiative decay processes are considered, the
molecular eigenstates are no longer proper eigenstates
of the total Hamiltonian:

H=H¢1+Hr+Hint; (1)
where
H.a=Hpo+H.. (2)

The molecular Hamiltonian H.; consists of the Born—
Oppenheimer term Hgo and an intramolecular per-
turbation H,, which consists of vibronic coupling terms,
spin—orbit coupling interactions, etc. H, is the Hamil-
tonian corresponding to the free radiation field, and
H . is the radiation—matter interaction term. The time
evolution of a nonstationary excited state of the system
can be described either in terms of the eigenstates of
Hpyo (the BO basis set) or of H,, {the molecular eigen-
states basis). Obviously the choice of the basis set is
merely a matter of convenience and does not affect
any observable quantities. The purpose of this paper
is to present a general scheme for the decay of a mani-
fold of closely spaced levels. Relying heavily on the
work of Goldberger and Watson® and of Mower,”
we focus our attention on the Green’s function form-

1 G. B. Kistiakowsky and C. S. Parmenter, J. Chem. Phys. 42,
2042 (196S5).

14 7, Jortner and R. S. Berry, J. Chem. Phys, 48, 2757 (1968).

15 M. Bixon and J. Jortner, “Electronic Relaxation in Large
Molecules,” J. Chem. Phys. (to be published).

18 M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964).

17 1.. Mower, Phys. Rev. 142, 799 (1966).
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alism for the transition probability. Rather than
repeating their derivations, only the relevant equations
are presented, but an attempt is made to explain their
salient physical features. The matrix elements of the
Green’s function are displayed in an unperturbed
energy representation for a manifold of coupled levels.
The coupling may consist of radiative interactions, or
vibronic interactions (etc.), or of both. Such a de-
scription is directly applicable to the study of the
radiative decay of polyatomic molecules. In this
context we demonstrate that under different limiting
conditions for the molecular level spacings, different
basis sets are recommended as being simpler in practice.
Finally the unified theory is applied for several cases
of physical interest.

II. THE RADIATIVE DECAY OF CLOSELY
SPACED LEVELS

In discussing radiationless transitions we are usually
interested in the situation where the molecule has a
ground state ¢ which can be safely taken as an eigen-
function of both Hpo and H, since {¢v | H, | ¢o)=0.
The electronically excited states of interest consist of an
excited singlet BO state ¢,, which carries oscillator
strength to ¢y, and a manifold of excited BO states
{¢:}, which correspond to a lower electronic con-
figuration, which are quasidegenerate with ¢, and
which do not carry oscillator strength to the ground
state. The system is prepared by optical excitation at
time /=0 in a nonstationary state of H, so that the
molecule is in some electronically excited state, which
may or may not be an eigenfunction of Ha (the latter
case corresponds to the usual definition of a “station-
ary state” in the absence of the radiation field), and no
photons are present. The initial excited molecular
state ¥,,(0) can be always expressed as a superposition
of either the molecular eigenstates {¥»} or the BO
states {¢,, ¢}, and all physical properties are of course
independent of this choice. Thus the initial excited
state of the system is

¥(0) =¥,,(0) | vac)= 3 an(0) | ¥u; vac)
=b,(0) | ¢s; vac)+ IZ b:(0) | ¢s; vac), (3)
s

where | vac) is the zero photon state. In many cases of
physical interest the initial excited state of the system
can be visualized to be prepared by a coherent excita-
tion by a short light pulse or by a chaotic broad-band
source, whereupon @.(0) = {¢, | ¥»). The completeness
of the molecular basis set for the excited states and the
fact that ¢, is the only state which carries oscillator
strength immediately implies that in this case ¥(0) =
| és; vac). When narrow-band excitation is used, the
{b;(0)} are not necessarily nonzero, and their contri-
butions to the radiative decay should be also con-
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sidered. Thus, the initial state of the system is given in
the general form (3). The details of the {a.(0)} or the
{6:(0)} can be determined in a given situation by
calculating the probability amplitudes for excitation to
a nonstationary state. (These are quite simply related
to those for the decay of such a nonstationary state.)
After a time / has evolved, the state of the system is
completely determined by the Hamiltonian (1), so that

V(1) =exp(—iHt)¥(0), (4)

where the units i=c=1 are used. Now, just as ¥(0)
could be expanded in {¢} or in {¢}, ¥(f) can be ex-
panded in either of these basis sets provided that we
include the possibility of spontaneous emission by

Pyo(2)

3y i, {1}

It should be noted that in (6a) and (6b) there is the
possibility of interference between the different states,
{¢s, ¢} and {i}, respectively, as many of them may be
located close together and may be strongly coupled.
It is a well-known fact in quantum theory that, when
the possibility of interference between states exists,
simple rate theories based on the Pauli master equation
become invalid. For the case of broad-band excitation,
the coefficients may simply be taken as b;(0) =8
while a4 (0) = (¥ | ¢,)-

In discussing the phenomenon of radiative decay, it is
customary to introduce the radiative lifetime of states.
By virtue of (6) it is convenient to introduce the life-
time in a manner which accounts for some types of
interference effects. The damping matrix I is a gen-
eralization of the Fermi “golden-rule’” transition rates.
Let Tew(E) be defined for some set of zero-photon
excited molecular states {o} (either {¢} or {¢}, etc.):

Tpor (E) =2 Z[dszk<a | Hins | g0, K, €)

X<¢07 k’ e l Hint I a’>Pp(E'_EO), (7)

where Y ,d corresponds to the integration over all
propagation directions in k space and summation over
all polarization directions. E; is the energy of ¢, E is
an energy parameter whose value of interest is Eg4-k,
and p,( E— E,) is the density of photon states of energy
E—E, [usually p,(%k)]. The diagonal elements of
Toal Ea) give the Fermi “golden-rule” transition rates
out of the molecular states « whose energies are E,.
I'(E) is in general nondiagonal,’® as can be seen from
our simple example below. The nonzero matrix elements

K. E. Lassila, Phys. Rev. 135, A1218 (1964).
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allowing ¥(¢) to also contain the one-photon ground
state ¢x.o=| ¢, k, €), k and e are the wavevector and
the polarization vector of the emitted photon, re-
spectively. Using the alternative descriptions displayed
in Eq. (3), the decay process can be described as the
radiative decay of {yn}, or alternatively but equiv-
alently, as the radiative decay of {¢,, ¢:}. The proba-
bility Py (#) of finding the system in the state ¢x, at
time ¢ is defined by

Pro(l) =] (bre | X)) 2
=1 (fr. | exp(—iHE) | ¥(0)) 2. (5)

Using (3), Eq- (5) can be displayed in two equivalent
forms:

(6a)
”Z", (910 | exp(—iHL) | ¥nvac)an(0) {dx,e | exp(—iHL) | Yuvac) an*(0). (6b)
of H in the BO basis are given by
(Pre | H | dwrer) = ( Eotk) Sxicrdee, (8a)
(bs | H | $1)={tbs | H, | $1)="2u1, (8b)
(Oxe | H | ¢e)= (Dre | Hint | s) =W e, (8¢)
(9. | H| ¢,)=E, (8d)
(¢:| H | ¢v)=Ebur. (8e)
In this basis set it is easily verified that
T,=T,0, (9a)
Tau=Tuw=0, all 7, (9b)

and hence I' is diagonal in this basis. However, if we
diagonalize H.: [i.e., (8b), (8d), (8¢) ], the I'" of (9)
undergoes a unitary transformation and is no longer
diagonal. It is well known" [Mower, Eq. (34)] that if

I‘aa’ Z/ I Ea'_Ea'“" (1/2) (I‘aa- Pa'«') I’ (10)

the two states @ and o’ do not decay independently,
i.e., are not characterized by simple exponential decay.
For the above case, in the {y,} basis set for Ey~Ep,
when

I‘rm’ 2% l Frm'—rn'n' ] 950, (11)

the states ¢, and ¥, do not have simple exponential
decays. When the density of the BO states {¢:} is
high, there are many ¥, satisfying (11). Bixon et al.*
have discussed the fact that in this case the cross terms
in (6b) contribute in a manner which is well under-
stood as the phenomena of level crossing.”® It might be

% M. Bixon, J. Jortner, and Y. Dothan, “Interference Effects
in the Radiative Decay of Coherently Excited States,” J. Chem.
Phys. (to be published).
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tempting to look for a set of excited molecular states
which have simple exponential decays. Freed® has
shown that such a set of states can be provided by the
set {x;} which diagonalizes the effective Hamiltonian:

Heff=Hel_' 'I:F/Z. (12)

This effective Hamiltonian can be displayed either in
the {¢., ¢} representation or in the {y.} manifold.
However, it is not always necessary to evaluate the
{xj} set. It should be noted however that the trans-
formation S which diagonalized Hes via

SH S 1=A, (13)

where A is diagonal, is a complex orthogonal matrix.
The real and imaginary parts of the eigenvalues A
give the energies E; and —ir;7}, respectively, where 7;
are the “lifetimes” of the states. However, even if the
{xs} are used in (6b) instead of the {¢.}, the decay
may not just be a superposition of exponentials since
we still have the possibility of the cross terms (level-
crossing terms) contributing.

Equations (5) and (6) correspond to a discussion of
the radiative decay of closely coupled states, where the
coupling may be due to vibronic coupling [Eq. (8b)]
or to level-crossing terms in (6b), etc. The general
theory of the decay of closely coupled levels has been
given by Mower” using the techniques described by
Goldberger and Watson.”® Rather than giving a com-
plete rehash of their formulas, the relevant ones are
summarized, and an attempt is made to give the salient
qualitative features of their physical content.

All that is required in (5) in order to evaluate the
total transition probability are matrix elements of

2919

exp(—iHt) between the states ¢y, and ¥(0), where
¥(0) may be expressed in any one of a number of
equivalent basis sets as in (6). However, exp(—:iH?)
is in a rather unwieldly form, and it turns out to be
much simpler to look at the (imaginary) Laplace
transform of its matrix elements, ie., the matrix
elements of the resolvent or Green’s function,

G(E)=(E—H)™. (14)

One reason why it is so convenient to work in terms of
G(E) is that the “energies” and “lifetimes” of the
excited molecular states can be determined by finding
the poles of G(E) for E=E,—il,/2. [Actually,
G(E) is analytic for all E not on the branch cut E> E,
and the poles of G(E), which are situated on the
second Riemann sheet, determine the position and
width of the metastable excited states.]
Explicity,

exp(—iH1) = (2mi)~1 f dE exp(—iE)G(E), (15)
C
or

(Gro | exp(—iH) | )= (2mi)~ [ (e | GE) | @)
Xexp(—iEt)dE, (16)

where the contour C runs from 4« to — « above all
singularities of G(E), l.e., above the real axis. If
(¢xe |G(E) |@) has a set of complex poles E;—
iT';(E)/2, where {T';(E)} are “smooth” functions of
E for ExEy+k, these poles in (16) give to lowest
order (neglecting branch-cut contributions)

> (910 | Hint | 7) exp[—i(Eotk) £]{1—exp[— i( E;— }iTy— Ea— k) 1]} (j | @)
7 Eytk— Ei+HT; '

This is a sum of decaying exponentials with differing
lifetimes if there are more than one different value of
T;=T;(Ey+%). It turns out that (17), in general, can
contain more than one exponential decay when the
closely lying states {a} are coupled, via say H,, or
have off-diagonal components of I'(E) in this basis
set. It is possible to insure that each state in the set
{a} has a single decay with T, if we choose our basis
set as that which diagonalizes (12), provided our
initial basis set is large enough so that T',,(E) is very
slowly varying for EX2(E\+%). (See examples in next
sections.)

There are two major choices of basis sets which
correspond to evaluating (5) with {¢,, ¢:} or {¢}, and
these are discussed in Secs. IIT and IV, respectively,
along with their range of validity (or simplicity).

# K. F. Freed (unpublished).

¢Y);

In Secs. III and IV, physical processes are discussed
which can be described in a form in which “interference
effects” are absent, and hence, the results could also
be obtained by simple rate equations since the con-
ditions for the validity of the Pauli master equation are
met. However, Secs. V and VI discuss physical processes
in which “strong coupling” or “interference effects”
can play an interesting role.

III. THE BO BASIS SET

For simplicity we consider in this section the classic
case of broad-band excitation for which ¥(0) is
| ¢sy vac). It is convenient to separate this state from
all others by defining its projection operator

- P=|¢,, vac){ss, vac | (18)
and the projection operator on to all other states
Q=1—-P. (19)
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In order to evaluate Py(?) in (5), attention is initially
focused on the relevant matrix element of G(E), de-
fined by (15), which determines the transition energies,
their widths (or lifetimes), and their oscillator
strengths. The matrix element of interest is simply

{$xe | G(E) | ¢y, vac)=(¢xe | O0G(E)P | ¢, vac)  (20)

by the definition of P and Q. If we define our zeroth-
order Hamiltonian for this basis

K=Hgpo+H,, (21a)
then the perturbation is
V=H,+Hin. (21b)
As given by Mower,”
QG(E)P
= (E—QKQ)~'QR(E) P[E— PKP~ PR(E) PT",
(22a)
where
R(E)=V+VQ(E—~QHQ)QV (22b)

is the level shift operator. Then, neglecting level shifts
(or incorporating them in E,, etc.), one gets to lowest
order

(b0 | OG(E) P | ¢y, vac)=(E~ Ey—k)~
X{bxe | Hins | ¢y vac)[E—E+4iTy(E)+3i0(E) I,
(23)

where since as discussed in (9), I is diagonal in this
basis, so I',(E) is the radiative width of ¢, as defined
in (7) for a=a’'=|¢, vac). A(E) is the width of
| ¢, vac) due to the vibronic coupling (8b) with the
BO manifold {¢:} and is given by (neglecting level
shifts)

A(E)——-ZZ I<¢1[Hv‘¢t>l2

(E—E)*+[3r(E)

_ (3T%) [ var |?
=2 ‘T‘ (E—Ep*+[3TuE) T’

where the states {¢;} (/>s) have been allowed to
to have very small widths due to highly forbidden
radiative transitions. Addition of contributions to T
may arise from intermolecular perturbations, e.g.,
collisions. In an isolated molecule T; may be often
taken as I'y( E)—0O*+. At first sight it may seem that
(23) has a single complex pole for

E~E,~3[iT(E,) 1—-3[A(E) ). (25)

However, as Mower has shown (25) is the only
complex pole provided that T',(E)+A(E) is a smooth
Sfunction of E for ERvERSEy+k. If these widths are not
smooth, there are more poles in (23), and hence, according

()

(24)

F. FREED AND J.
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to (17) more than one exponential decay time. As is well
known, T',(E) is a very smooth function of E in the
appropriate region; however, A(E) may not be.

If the {¢;} manifold is very dense, i.c., a continuum,
then in (24) we may replace Y ;—[dEpi(E:), where
pi(E;) is the density of the {¢:} states at energy E,
and v,—v,(E;). Taking the limit I'y(E)—0t, (24)
becomes

A(E) =2 | va(E) |*oi(E), (26)

and since pi(E) and v,;(E) can often be taken to be
slowly varying in large molecules (see Sec. VI for
another case) for EXE,, in the dense manifold case
(the statistical limit) there is indeed only a single
complex pole. Thus, using (17), (5) becomes'®

l (¢ke l Hint l ¢.V8.C) iz
(Eo+k—E,)2+}[P.(E,) +A(E:) ]2

X {1—2 exp[ — (T +A)¢] cos(Ey+k—E,)?
+exp[—(T,+A){]}. (27)

Integrating over all frequencies and Qx,, Eq. (27) gives
finally!®

P(t) ={T.(E.)/[T«(E:)+A(E) ]}

describing a single decaying state with inverse lifetime
I',+A4 and quantum yield P(ew)=T0,/(Is+A). This
result is known already,”® however the present deriva-
tion is more general and physically transparent. It is
important to notice that the conventional interpreta-
tion®® of excitation to ¢, followed in time by inter-
system crossing is in principle invalid in a quantum-
mechanical sense since the radiationless transition is not
an independent isolated process, but results in a
natural way from the unified treatment of the radiative
decay. Equation (28) results from the excitation to a
resonance which is due to a state which is coupled to
two different continua. Just as the photon continuum
allows for irreversible radiative decay, the states
{¢:} act as an effective continuum which enable ir-
reversible decay into this manifold. We could have
defined the probability P, of finding the molecule in
the {¢;} manifold at time ¢ (which in the case of a
triplet manifold we could in principle measure by
ESR). In this case we would have obtained

P(8) =[A/(Ty+A4)]){1—exp[— (T.+A)£]}. (292)
Note that
1—P(t) ~ P(t) =exp[— (T\4A){]

is the probability that the molecule is in its initial
state | ¢,, vac).

When the BO manifold {4} is no longer a continuum,
ie., | Ei—Ev| Z{TW(E)+Tv(E)], and A(E) is no
longer a smooth function of E in the range of interest,

Py (t) =

(29b)
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then according to (17), the situation corresponds to the
decay of a number of closely coupled levels, i.e.,
nearby and possibly overlapping resonances. In this
case it is convenient to choose an initial basis set for the
excited vibronic states (i.e., spanned by a projection
operator P) which is large enough to describe a set of
excited levels. This is considered in the next section,
where the {¢,} basis set is used.

IV. THE MOLECULAR EIGENSTATES

The molecular eigenstates {y,} are isolated by de-
fining their projection operator

P=Y | ¥a, vac)(b, vac| (30)
and the projection operator on to all other states
Q=1-P. (31)
The matrix elements of interest are now
(9 | G(E) | ¥m, vac)= (¢ | QG(E) P | ¢u, vac). (32)
Letting
K=H.+H,, (33a)
V=Hipy, (33b)

QG(E)P is again given by (22a) and (22b). However,
now

($xe | QR(E) P | Yn, vac)=(dre | Hinst | ¥, vac)
= {bre | Hine | s, vac)(de |¥a) (34)

PRP=—(i/2) PT'(E)P, (35)

where PI'(E) P is the radiative damping matrix in the
{¥x} basis which is nondiagonal as discussed after Eq.
(9). Using (34) and (35) into (22) gives

(#xe | OG(E) P=2(E— Ey— k)1
X (#ta | HuP[E—~ PKP+(i/2) PT(E)PT.  (36)

Since PKP=_, | ¥n, vac)En(¥s, vac |, where E, are
the energies of the molecular states y,, the last term in
(36) is the inverse of a nondiagonal matrix. However,
we see that it would be diagonalized by the {x;} basis
corresponding to Hen of (12), proving that assertion.

Thus, we see that a proper definition of the ab-
sorption coefficient, which includes any interactions
amond the excited states via H, or off-diagonal parts
of I, is given by

A(w)a—ImTr y(w— Heor) 1yp(0) ], (37)

where y is the dipole operation and p(0) is the thermal-
density matrix for the ground electronic state.

We should note that since I’(E) is a radiative damp-
ing matrix, each of its matrix elements can be con-
sidered to be smooth functions of E in the range of
interest. [In isolated molecules, if T4(E)>> Y 1 T'y(E),

and
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the sum of the (usually) small widths of the {¢:}
manifold, then I'(E) is T',(E) times a matrix quadratic
in the E-independent coefficients for the transformation
between the {¢:} and {y.} basis sets, thus establishing
the smoothness of the elements of I'(E).]

In the case that the molecular eigenstates {y,} are
very sparse in the sense that

En—Ep>>T (38a)

the off-diagonal parts of I'(E) can be safely neglected.
Furthermore, in this case, if

l En_Eu' I >>'}(I"ll+ Fn'n') ’ (38b)

the level-crossing-type interference terms in (6b) for
Il are negligible, and the molecular levels represent
independently decaying states (and for narrow-band
absorption, independently absorbing states) with
energies E,, widths T, and oscillator strengths
a| Wie 2] (¢ | ¥a) |2 Since the trace of a matrix is an
invariant, TrI" in {¢} basis=TrI in {¢} basis, or

Te= 3 T, (39)
so
Tun<I,,  forall n. (40a)
Since the lifetime of the molecular eigenstates
a=1/Tpy>1/T,=1,, (40b)

we have the explanation for the anomalously long life-
times of the small triatomic molecules observed by
Douglas.?

In discussing the decay of these states, the {a,(0)}
in Eq. (6b) must contain information about the details
of the excitation process since it is possible to excite
only one or a few of the levels using narrow-band
excitation. More precisely, if some a,(0) 70, making
use of Eq. (6b) and again taking advantage of the
restrictions (38a) and (38b), we obtain the simple

result
P(t)= 2| an(0) P[1—exp(—Tmt)]. (41)

Hence the decay of the system is represented in terms
of independent contributions from the molecular
eigenstates.

In the limit that some of the states {ya} violate
conditions (38a) and (38b), these levels exhibit level-
anticrossing-type interference.’®? As shown by Bixon
and Jortner® when the {¢,} form a continuum, the
result (28) is of course still obtained for broad-band
excitation even though the {y,] interfere with each
other. However, the approach in Sec. IIT is simpler in
this case, and also enables a discussion on the range of
validity of that formula.

In the interesting intermediate case where the BO

# See, for example, R. L. Kelly, Phys. Rev. 147, 376 (1966).
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states {¢;} do not form a continuum, i.e., A(E) is not
smooth, but (38a) and/or (38b) may be violated for
some states, the {x;} basis suggested by Freed® may be
convenient, and some level-crossing-type interference
could be present. Again, in order to discuss the fluor-
escence characteristics, it is necessary to more carefully
specify the excitation process and the details of the
energy-level structure.

V. RADIATIVE DECAY IN INTERNAL
CONVERSION

It can usually be safely assumed that the BO states
{¢2} do not carry oscillator strength to the ground
state ¢, in view of spin selection rules (when the
{¢:} manifold is a triplet) or because of vanishingly
small Franck~Condon vibrational overlap factor (when
this manifold is a singlet). However when the BO
states {¢ } are singlets, they do carry oscillator strength
to some high vibrational levels of the ground electronic
state ¢o®. We now face a situation where both ¢, and
{¢1} carry oscillator strength. Under these circum-
stances the radiative decay of the {¢;} manifold has to
be taken into account. Since we are interested here in
the case that {¢,} effectively form a continuum, the
initial state is taken as |, vac), resulting from
broad-band excitation.

Using the techniques of Sec. III, since emission may
also occur to ¢y?, matrix elements of

{dre’ | G(E) | ¢4, vac) = (dxe" | QG(E) P | ¢,, vac) (42)

(¢xe’ | OR(E) P | ¢s, vac) =Wy 8u+ ; Wievi(1—8w0) /{ E— Ei—[$TW(E) ]}),
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must also be considered. ¢uw’=| ¢’ k,€e) and P is
again given as in Eq. (18). For the case in which the
{¢1] effectively form a continuum,

dE | va(Er) PG e E)
A E =2 )
=2 f (E~E)*+[3TWE) P
where p; is again the density of BO states {¢;} and

T'i(E) are their radiative widths due to spontaneous
emission, which are now nonnegligible and are given by

(43)

TW(E)=2x 3, fdﬂk | (e’ | Hint | 1) [2po( E— Ey?),

and it has been assumed that the damping matrix
I'y is diagonal in the {¢;} basis. A sum over v is
implied when more than one vibronic component
¢¢® can contribute. A(E), T'i(E), and I',(E) as defined
in Sec. ITT can all be considered to be smooth functions
of E.

As in Sec. III the matrix element (42) can be written
as

(E—Ei"—k)(¢xe' | QR(E) P | ¢s, vac)
X{E—=EA+(i/2)[T.(E)+A(E) ]}~
But now since the {¢;} carry oscillator strength,
(Pre” | Hint | 1, vac) =Wt (1—0x),  (45a)
($re’ | Hint | ¢s, vac)=Widbu, (45b)

the matrix elements of QR( E) P can describe emission to
both ¢y and ¢,:

(44)

(46)

where vy, = (¢; | H | ¢.). When (46) is substituted into (44), the first term is of identical form to (23), but the
second term has two complex poles. The result of the contour integration (neglecting the contribution from the

branch cut) is

Wi exp[ —i(Eo+k) £](1— exp{ —i[ Es— Eo— k— i3 (Dot A) 1t} )

(dxo | exp(—iHl) | ¢4, vac)=

(b1’ | exp(—iHL) | ¢, vac)= 3

[Evtk— Eot(i/2) (Ts44)] , (470)
We'v1s exp[—1(Ey+-k) £]
7 E,— E;+ (‘L/Z) (Fz— T,—A)
><(1——e:xp{ —i[ (E,— Eg*—k— (3/2) (T,+A) I8} _ 1—exp{ -i[Ez—~Eo"—k—-%iI‘;]t}) (47b)
E¢+-k—EA4(4/2) (T4A) Ep+k—EH3T, ’

where T, A, and T'; can all be taken as, e.g., ['(Eo+#) in (47a) and T'(Ey’+k) in (47b). The two fluorescence
probabilities are obtained by taking the absolute value squared, integrating over all frequencies %, all Qy, and e,

giving finally

Po(t) =[Pﬂ/(ra+A)]{ 1—exp|:— (I‘3+A)t]} ’
2; | W1l d.) Tt El: [ &l da) 2

{1—exp[— (To+4) 7]}

Py(1) = TtA

X1—exp(—T)T+2 3 Tl @l 60)  Re

(48a)

1—exp{—[3(T,+A+Ty) +i(E—E.) Jt}
(Tt 24Ty +i(Ei—E,)

) | (48b)
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where (again ignoring level shifts)
| @] @) P=0%/[(E,~ Et)*+1(T'st-A~T1)%] (48¢)

is the component of ¢, in the molecular eigenstate y;. In intermediate-case molecules (discussed in Sec. VI), the
> 1in (48b) would (with slight alterations in that formula) be understood to be a sum over the few “strongly
coupled resonances,” and an integral over the remaining quasicontinuum. For simplicity, since the more general
case can be inferred from Sec. VI, we consider the extreme statistical limit where E;—-)de;p;(E,), etc. If we

make the simple approximation that T'; is a constant,
{1—exp[— (I'\+4)£]} AT,

A[1—exp(—Ti)]

[ 1—exp[— (T4 A)]}T:A

PO = = At a—T)

The decay probability to the lowest vibronic com-
ponent of the ground state is determined by the
branching ratio T,/(T,+A) and by the lifetime
(Ts+A)~L. These results are identical with those ob-
tained in Sec. III, as also in the present case of internal
conversion the manifold {¢:} does not carry oscillator
strength to the lowest vibronic state. The fluorescence

. probability to the higher vibronic levels [Egs. (48b)
and (49) ] consists of three contributions which involve
two “direct-decay” terms and an interference term:
(a) The first term in Eq. (49) describes an initial decay
rate (for /—0) which is proportional to T';. For long
times this term exhibits a fast decay with a lifetime of
(T,+A)1, which arises from the fact that a molecular
eigenstate y,, which is primarily ¢, and has a width
T+ A, contains some {¢;}. For this long-time scale the
contribution from this term is negligible, as under
common circumstances for internal conversion between
excited singlet states ;<A and I')<A, so that the
contribution of this term to the fluorescence is expected
to be of the order of I';/A<1. (b) The second term in
Eqgs. (48b) and (49) corresponds to the “direct”
radiative decay of the manifold {¢;} which is de-
termined by the lifetimes {I';}. It is important to
notice that the initial rate (dP,/dt) s arising from the
terms (a) and (b) is proportional to I';, while for
longer times the (b) term dominates the “direct”
decay. Hence the joint contribution from the “direct”-
decay terms will be always determined by the lifetimes
T'; of the {¢;} states. (c) The third contribution to the
decay probability [Eq. (49)] arises from level-crossing
terms which in the statistical limit gives a small
contribution that is similar in form to (a). The radi-
ative decay of the manifold {¢;} will exhibit inter-
ference effects in the more general and interesting
intermediate case which is discussed in Sec. VI.

Some interesting conclusions emerge from the
present preliminary and admittedly oversimplified
description of the radiative decay of a second-excited
singlet state of a large molecule. The resonance fluor-
escence is expected to be very weak in view of the small
branching ratio TI,/(I"s+A)<<10~4, but when this
fluorescence will be experimentally detected, the
decay will exhibit ordinary exponential behavior. The

(I‘,+A— Pl)

(TF A—Ty? (49)

fluorescence yield to the highly vibrationally excited
ground state is close to unity, end thus the fluorescence
appears to arise from the first singlel. Of course, any
“intersystem crossing” to triplet states has been
neglected and would have to be included when ap-
propriate. We now turn our attention to the radiative
decay to the higher vibronic components of the ground
state, which do roughly but not exactly overlap the
fluorescence spectrum from the first excited singlet
state. This decay is expected to reveal interference
effects between the closely spaced states {¢:;}. The
detailed features of this interesting new effect are of
course determined by the details of the excitation
process (i.e., narrow vs broad-band excitation).

VI. INTERMEDIATE-LEVEL DENSITY AND
VIBRATIONAL RELAXATION IN THE
{¢:} MANIFOLD

It was pointed out in Sec. III that the “smoothness”
of the function A(E) [Eq. (24)] provides a proper
criterion for the existence of an effective continuum
which gives rise to an irreversible intramolecular decay.
In the statistical limit the density of vibronic levels in
the manifold {¢;} is sufficiently large so that A(E)
[Eq. (26)] is independent of the widths {T';} of the
states in the manifold {¢;}. If we invoke the usual
assumption that the states {¢;} do not carry oscillator
strength the widths {T';} are very small (I'r—0%) in the
isolated molecule, while coupling of the molecule with
an external medium would provide an additional non-
zero contribution to these widths. Now, it is well known
that not all the states in the manifold {¢;} couple to
¢, with the same efficiency. This problem is of minor
importance for the statistical case; however, for some-
what smaller molecules (or when the splitting between
two different electronic states is small) the level
density is lower, and the nature of these strongly
coupled levels in the manifold {¢;} should be con-
sidered. We shall refer to such systems as intermediate
cases. In this case the relevant matrix elements of the
Green’s function may be characterized by more than
a single complex pole, and the behavior of the inter-
mediate case molecule will be influenced by external
perturbation,
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It is convenient at this point to consider {¢;} to
consist of two sets: a weakly coupled continuum
{#r}, and a few discrete levels {¢;} which are strongly
coupled to ¢,, so that v,,<, for all I’ and {. For
simplicity we represent the “strongly coupled” sub-
set {¢:} by a single “effective’” level ¢;. Furthermore we
again consider broad-band excitation and assume that
¥(0) =| ¢,; vac). Consider a strongly coupled single
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resonance so that | v, |>| E,— E; |~A,~T,. Attention
is focused on two limiting cases whereupon the width
of the strongly coupled level is appreciably smaller
than the coupling term, e.g., | v, |>T: (a narrow
resonance), or alternatively this width exceeds the
coupling term, e.g., |, |&KT, (a broad resonance).
From Egs. (20)-(22) in the general case of a single
coupled resonance:

<¢k,e ‘ G(E) ‘ ¢a; vac)= (E"‘E0+k)-‘Wke(E— Es+ (7’/2) [Ps(E) +A,(E):|" { l Vat P/[E_ E¢+—12-1’I‘t(E)]} )——1: (50)

where T, is the radiative lifetime of ¢,(I'e=2mpxf | Wi |?) and A,=2x | v, |?01 is the width due to the coupling of
&, with the effective continuum {¢;}. In the isolated molecule I'c=2n | v, [%or is the width of ¢, due to coupling
with the effective continuum {¢;}. If {¢} and ¢, are BO functions corresponding to the same electronic con-
figuration, then v;,=0. However the manifold {¢r} may include also vibronic components corresponding to
other electronic configurations such as the ground electronic state. In this case v, is nonzero, but nevertheless very
small. Thus in the isolated molecule we expect T'; to correspond to a narrow resonance. When external perturba-
tions are exerted we expect I'; to increase substantially due to external vibrational relaxation. We shall return
later to this point. Now, both A, and T', are expected to be smooth functions of E. The matrix element of the
Green’s function (50) now has two complex poles located at the energies:

Ey=%(EAE,— (i/2) (T+T) £{[E,~ E,— (i/2) (T=~T) P+4 | v, [2}112), (51)
where I'=T',+A,. Thus we can write
($xe | G(E) | ¢s; vac)=(E— Eo— k)W [ E~ E+(i/2) T J(E— E,) " (E~E_)". (52)
Equations (51) and (52) result in
We —1i k) E.—E+(i/2)T, .
(b exp(— B0 | 5 vac) = o (PELAEADLBEA BT (1 i, B0
- exPE‘i(EﬁgEEf; Ect (/0] (1—expl~i(E~E=B)1]}), (53
and the fluorescence probability can be displayed in the form
P= 3 [ @ el exp(—ilt) | givac)
_ I, (BS—E+[(0—=T)Y4) (ES— B (T-—T)%/4
- G| T, [i=exp(=Tuf) I I
[Ey—Ect (/)T JE*~E—~ (/2T oy ]
X[1—exp(—T_t) T+2 Re( o (1—exp[i(E* E+)¢];) . (54)

where E, =E, % (¢/2)T, and AE=E%—E_°
Consider now the case of a narrow resonance when the coupling matrix element v,; exceeds both the widths and
the spacings of the levels E, and E,:

| v¢ |>] Eo— E,~ (i/2) (T—T) |. (58)
Under these circumstances
Ey=}(EAE) | v |~ (i/2)[3(T+T0) 23(E~ E) (T~T0) /] vae | I+, (56)
so that the energy levels are
E L (Bt Ey) | vae | (57)
and the corresponding widths are given by
To=3(T+T0) 3 (E—E) (P=T4) /] vt |- (58)
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The fluorescence decay is now given by

T,
4r,

P~

Thus in the general case of a strongly coupled narrow
resonance the decay consists of two “direct” terms
characterized by the lifetimes 'y and I'_ and an inter-
ference term which would be the same order of mag-
nitude as the direct term when |v.|~ | E,~E,—
(4/2) (T—T,) |. The situation is reminescent of level
anticrossing when a small number of resonances are
encountered. Under the extreme conditions when
| 9 > E,—E,| and |v:|>]T—T,|, we may set
Ty and I'_ to be about equal, i.e., [ ~T_~~4(T'++T).
The dominating contribution to the fluorescence yield
now arises from direct-decay terms, while the inter-
ference term is of the order of I.I'/| v. |* and can be
safely neglected. For weaker coupling (smaller | v, |)
these interference terms are nonnegligible, and the more
general formula (54) must be used. We then obtain the
simple approximate result

P()=([T/(T+T) J{1—exp~[3(I+T\) Jt}.

We may thus conclude that an addition of a single
strongly coupled narrow resonance to the smooth
quasicontinuum results in an (approximate) ex-
ponential decay mode characterized by the lifetime
2(T+A+T¢)L It should be noted that the addition
of a narrow strongly coupled resonances affects the
lifetime in quite a complex manner. The lifetime,
relative to (T',+A,)~), is lengthened by a numerical
factor which is of the order of the number of strongly
coupled levels, while the inclusion of I'; (or rather
>+ T'; where the sum is taken over the small number
of strongly coupled states) leads to shortening of the
lifetime relative to the reference value mentioned
above. Finally we should note that the branching
ratio for a single narrow ¢,, ¢, is of the approximate
form TI,/(T'++AA4T), as it includes contributions
from both the decay modes I';. and I'_. In the case of a
finite set of strongly coupled narrow levels, the set
{¢., &:} behaves just as a small molecule which may
exhibit level-anticrossing effects. Note that total width

(60)

LAt 3 T=Tu
[

is partitioned between the N levels resulting in lifetimes
;T where

Z a;=1,
=1

[1—exp(—T:) 1+ ;1%'_ [1—exp(— I‘J)]—ZRe(—

2025

Ty 1—(5/2) (T/| vae )

4 (P41 +2i ] v, |

X (1—exp{—~[3(T+Ty)—2i | v, | ]t} )) . (59)

and the individual branching ratios are a«;'T,/Tit.
The total fluorescence yield will probably be of the
order I'y/Tot.

We now turn our attention to the case of a broad
strongly coupled resonance characterized by the width

'’ so that I'*>|v, [>A~T~|E—E;|. Under
these limiting conditions the energy levels are

RE~—(i/2)[T+ (4] v [/T#)],  (61a)

E~XE—(i/2)[TP— (4] v [//T?)],  (61b)

AE~F,—E,, (61c)

TyRTH (4| v |2/ TP), (61d)

AT} (61e)

The damping of the state located at E, is characterized
by a width I',+ A+ (4 | v, |2/T'?) so that the strongly
coupled broad level adds an additional contribution to
the width of the resonance which looks like an ad-
ditional contribution from the continuum of states
{¢:} for which the effective ‘“density of states” is
(2/7) (] 92 [2/T® | v, |*). The fluorescence yield is now
given in the approximate form

PO~ -:,‘—+ [1—exp(~T,0) 1+ 11,}, [1—exp(~T1]

41‘.

+ T+Tp

{1—exp[— (P+T'#)£] cos(E,— Ep)8}.
(62)

The contributions from the second direct-decay term
and from the third interference term in Eq. (62) are
of the order of T,/T'® and are thus expected to be
small. Thus the following approximate relation is ob-
tained

T,
[T @ o /A

4 | Vst P ]}
X{l exp[ (I‘+ TP )l . {63)
This result implies that a superposition of a broad
strongly coupled resonance to a smooth quasicontinuum
results in the approximate branching ratio I',[T.+
A+ (4|2 [2/T) ] and in the decay time [I'.+
At (4] v [2/T2) T Again, if a small finite number of

Pt)~y
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strongly coupled states has to be considered, the decay
time is expected to be of the approximate form [T,+
A+ DX,i4 v 2/TPTY, and hence, the {¢:} now
behave as if they were part of the continuum of vibronic
BO states. In the present case, unlike the situation
encountered in the case of a narrow strongly coupled
resonance, a shortening of the decay time, relative to
(T's+A,)Y, is encountered.

At this point we are able to provide a qualitative
description of medium effects on the decay of excited
states of molecules which correspond to an inter-
mediate case when the medium is “inert” in the sense
that it produces negligible level shifts. When such a
molecule is isolated in the gas phase, one can safely
agsume that the widths T, of the strongly coupled
state correspond to narrow resonances. However when
this molecule is subjected to external perturbations
(i.e., collisions in the gas phase or in solution) the
major contribution to the widths of the strongly coupled
states which arises from molecular vibrational re-
laxation has to be included.®* A reasonable order-of-
magnitude estimate of I'}* obtained from vibrational-
relaxation data in a dense medium is I'*~0.1 cn—
1 cm', Hence, an externally perturbed intermediate
molecule can be described in terms of strongly coupled
broad resonances.

The occurrence of a set of strongly coupled levels
{¢¢}, is very reminiscent of the discussion of small
molecules in Sec. IV. Again only one BO component
carries oscillator strength, but now all of the states
{¢¢} may have final widths. The result is that sums of
the widths of these states in the isolated molecule will
probably not exceed the width of the single broad
resonance which is encountered when the molecule is
perturbed by an “inert” medium since we expect that
T'; <4 | v, 2/T. However, in the free molecule, since
this width is shared between a few closely spaced
resonances, each of their lifetimes is longer than in the
presence of the medium. The observed result is then a
longer lifetime in the intermediate-case molecule than
in the medium. A cursory examination of the fluores-
ence quantum yields indicates that

T, T,
< et
TotA+4 |1, 2/T ~ TotAt D T’

so we expect the fluorescence quantum yield of an
intermediate case molecule to decrease in a medium.

The experimental implications of this analysis
provide a qualitative interpretation for the radiative

22 W. Siebrand, Fourth Molecular Crystals Symposium, THT
Emschede, Holland, July 1968, p. 80 (unpublished).

% The external medium can also add another width to the state
due to collisional quenching of this state. This effect is trivial
and will just lead to vibrational relaxation. However, this quench-
ing rate should not differ significantly in the intermediate case
and statistical limit.

2 E, M. Anderson and G. B. Kistiakowsky, J. Chem. Phys. 48,
4787 (1968).
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decay of intermediate-case molecules. The B,, state
of the benzene molecule reveals different branching
ratios under different experimental conditions,:2.2
In the gas phase at the low-pressure limit the fluor-
escence quantum yield is P(e ) =0.32 which drops to
P(0)=0.2" at high pressures, while in an organic
solvent the value P« )=0.09 * was reported. Such a
behavior is expected when a small number of strongly
coupled levels are present. (A similar result could, of
course, occur in the statistical limit when solvent
shifts vary greatly for different electronic states.) In a
large molecule, which corresponds to the statistical
limit, a physically meaningful distinction can no longer
be made between weakly coupled and (a large number
of) strongly coupled states in the manifold {¢;}. When
the number of strongly coupled states becomes large,
they have to be directly included in A(E), and the
final result for the narrow radiative width will be inde-
pendent of the widths {I';}. The coupling of a large
statistical limit molecule with an “inert” medium is
expected to exhibit a negligible effect on the decay
process. Indeed, in a large molecule such as anthracene
the lifetime of the first excited singlet state and the
fluorescence quantum yield is identical in the gas phase
and in an organic solvent.?

This discussion, although quite qualitative, does
provide some insight into what is meant by the smooth-
ness of A(E). If matrix elements of G(E) have poles
at E;—(i/2)T;, where |u,|<K|E—~E;|, |Tw—T;},
then this pole behaves as part of an effective con-
tinuum which gives rise to relaxation. In the opposite
limit where |u,;[>| E,—E;|, | Ts—T;|, the set of
states {¢s, ¢;} may behave as a small set of strongly
coupled states, which is analogous to the small-molecule
limit, except that now we have I'/~T,. For | v, |~
| E,~E;|, | Ts—T;|, interference terms can become
important.

VII. CONCLUSIONS

In the present work we have presented a general
quantum-mechanical treatment of the radiative decay
of polyatomic molecules. It is evident that as both
intramolecular vibronic (spin-orbit, etc.) interactions
and coupling with the radiation field have to be simul-
taneously accounted for, the decaying excited states
of a polyatomic molecule should be described in terms
of resonance (or compound) states similar to formu-
lations used in the theory of nuclear reactions,®
scattering,’® predissociation,® and photoionization.®
( % A, E. Douglas and W. Mathews, J. Chem. Phys. 48, 4788

1968) .

2% 1, B. Berlman, Handbook of Fluorescence Spectra (John Wiley
& Sons, Inc. New York, 1965).

27 (a) R. E. Kellogg,] Chem. Phys. 44, 411 (1966); (b) W.R.
Ware and P. T. Cunningham, 7bid. 44, 43 64 (1966

28 See, for example, M. A. Preston Physws of the Nucleus (Addi-
son-Wesley Publ. Co., Inc., London, 1962).

2 R, A. Harris, J. Chem. Phys. 39, 978 (1963).
® U, Fano, Phys. Rev. 124, 1866 (1961)
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This feature of excited molecular states has been re-
cently realized;"'* however, the present treatment
handles the decay problem without relying on any
simplified model systems, as was done in previous work
on this subject.!0:11:14.15 The description of this decaying
resonance state in terms of the BO basis or the molecular
eigenstate basis does not reflect in any way on the
nature of the physical description since either (com-
plete) set can be legitimately employed. In choosing a
particular basis set, the form of the electronic Hamil-
tonian and of the damping matrix in that representa-
tion have to be considered. In the case of broad-band
excitation of a large molecule which corresponds to
the statistical limit, the BO basis set is more suitable,
while in the case of a small (say, triatomic) molecule
which corresponds to the sparse case, the molecular
eigenstate basis is more convenient. We hope that these
general comments will remove some confusion which
existed in the literature concerning the choice of the
“proper” basis set for the description of the decaying
excited states of polyatomic molecules.

In this paper we have attempted to show that the
mathematical techniques that have had such great
success in the fields of scattering theory, nuclear-re-
action theory, predissociation, etc., can also be valu-
able in wunderstanding radiationless processes in
polyatomic molecules. The Green’s function techniques,
aside from being simple to use, are completely general
and very physical in nature. As such, a few simple
examples encountered in radiationless processes are
discussed:

(1) The well-known result for intersystem crossing
in the statistical limit is shown to arise simply from the
presence of a single zeroth-order state which is coupled
to both radiative and vibronic continua.

(2) The anomalously long lifetimes observed by
Douglas in small (triatomic) molecules are seen to
arise from the mixing of discrete zeroth-order vibronic
states, only one of which carries oscillator strength.

(3) Internal conversion can also be discussed in
terms of this formalism, and interesting features such
as interference phenomena can be described. (These
interference effects merit further theoretical and ex-
perimental work.)

(4) A discussion can also be given of cases inter-
mediate between the sparse and statistical limits,
which may shed some light on the effects of the ex-
ternal medium on the observed fluorescence yields of
these molecules.

In keeping with our broad purpose of demonstrating
the wide utility of the Green’s function methods to
radiationless processes as well as explaining some of the
observed physical phenomena, the discussions are not
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meant to be complete. Specifically, the details of the
excitation process are not treated in complete gen-
erality, but are chosen as a matter of convenience and
simplicity in each case. A broad-band excitation mode
was considered in the case of a large molecule. A dis-
cussion of the narrow-band excitation was given; how-
ever, the explicit solution was not provided. This exten-
sion is straightforward, but can be rather cuambersome.
In the case of a sparse level distribution, the narrow-
band excitation is trivial and was considered in Sec. IV.

The main handicap in the quantitative application of
the theory is the lack of any detailed information on the
coupling parameters 2, the widths I';, and the density
of states in the manifold {¢;}. It is important to notice
that contributions to {¢;} arise from all the electronic
states located below ¢,. Some attempts were made in
the past to reverse the order of the analysis and to use
the experimental decay times coupled with rough esti-
mates of the (total) density of states to make estimates
of the (mean) coupling parameters v,;. The results of
the present work suggest some further experimental
methods to monitor the nature of level distribution
and the coupling parameters. Interference effects may
be observed in the radiative decay in internal con-
version in isolated intermediate-case molecules and
will possibly resolve the question of what is the number
of effectively strongly coupled states in the manifold
{¢:}. Experimental work on intermediate-case isolated
molecules will result in nonexponential decay times
which will elucidate the nature of the strongly coupled
levels. Another technique to probe the nature of the
level distribution in the {¢;} manifold in isolated
intermediate case molecules will involve studies of
fluorescence decay from the first singlet in a strong
magnetic field. The triplet manifold {¢;} will be then
considerably modified (due to Zeeman splitting of
each level), so that the number of the strongly coupled
narrow resonances may be altered. Finally, from the
studies of the decay of intermediate molecules under
external perturbations, complementary information
may be obtained on the nature of the intramolecular
coupling parameters and on vibrational relaxation
times in a dense medium.

ACKNOWLEDGMENTS

We are grateful to Professor Ugo Fano for helpful
discussions. This work has been supported in part by
the National Aeronautics and Space Administration,
the Air Force Office of Scientific Research, and has
benefited from the general support of Materials Science
at the University of Chicago provided by the Ad-
vanced Research Projects Agency, Department of
Defense.

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



