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we indicate schematically the changes in orbital energy
with molecular expansion, resulting in thermal lumines-
cence at somewhat longer wavelengths than the optical
absorption. On the extreme right are shown the various
dissociation limits estimated by comparison with similar
molecules.
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In this paper, we apply a theory of electronic relaxation in polyatomic molecules for the study of the
anomalously long radiative lifetimes of NO;, CS;, and SO,. We have classified medium-size molecules
which exhibit intramolecular vibronic coupling into two intermediate cases, which we call the sparse inter-
mediate case and the dense intermediate case, characterized by low and high spacing of the vibronic levels
relative to the radiative width. The radiative decay in the sparse intermediate case was considered in detail,
taking advantage of the coarse level spacing and the extremely short intramolecular recurrence time en-
countered in this case. From our model calculations, we conclude that:

(a) in the sparse case, the radiative decay rate is characterized by a superposition of slowly varying

exponentials;

(b) the mean radiative lifetime is expressed as a radiative lifetime calculated from the integrated oscil-
lator strength and “diluted” by the number of states within the half-width of the manifold of coupled

levels;

(¢) no intramolecular electronic relaxation processes are encountered in this case;
(d) a qualitative interpretation of the complex molecular spectra is provided.

I. INTRODUCTION

It has been experimentally demonstrated that the
first spin allowed excited states of NO,, SOq, and CS;
exhibit anomalously long radiative lifetimes,’™ which
are considerably longer lifetimes than those expected
on the basis of the integrated oscillator strength.
Furthermore, it was observed that the absorption spec-
tra of these molecules are very complex,® consisting of
a large number of lines which could not be classified as
corresponding to the usual system of vibrational-
rotational manifold of a single electronic state. It was
suggested by Douglas' that these peculiarities are
reminiscent of intramolecular vibronic coupling in
these molecules which result in the redistribution of the
intensity of a zero-order Born—Oppenheimer state
(corresponding to the excited singlet) among a large
number of zero-order levels which are quasidegenerate
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with this former level, and which do not carry oscillator
strength. In the present paper, we provide a theoretical
formulation of Douglas’ suggestion.! The treatment
presented herein is based on a theory of electronic
relaxation in polyatomic molecules® recently developed
by us.

The basic conceptual framework for the understand-
ing of electronic relaxation processes in polyatomic
molecules and in solids was provided by the early work
of Franck and Sponer” and of Xubo,® who have pointed
out that the nuclear kinetic-energy terms in the
molecular Hamiltonian lead to the mixing of zero-order
Born-Oppenheimer  states. Since then, several
authors®® have investigated the problem of radiation-
less transition in large molecules by considering the
vibronic matrix elements which couple the zero-order
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vibronic states in a polyatomic molecule. We have
recently demonstrated how to construct the molecular
eigenstates of the electronic Hamiltonian® in an
isolated polyatomic molecule. Intramolecular vibronic
interactions result in significant level mixing and
in redistribution of intensity in large- and medium-
sized molecules. Previous calculations,**® based on a
simple model system, established criteria for inhomo-
geneous line broadening and led to a definition of a
recurrence time for the occurrence of intramolecular
radiationless transition in a large molecule. The situ-
ation is, of course, radically different in the case of
medium-sized molecules on which we focus our at-
tention in the present work. In this case, intramolecular
vibronic coupling may still be effective; however,
intramolecular radiationless transitions will not occur
in the isolated molecule.

It will be useful at this point to consider the classi-
fication scheme recently proposed for molecules'® which
exhibit intramolecular vibronic coupling according to
their efficiency with respect to intramolecular elec-
tronic relaxation, the effect of the medium on the
relaxation process, and the behavior of the molecule
in a quantum-beat experiment.”

A. The Statistical Limit

The density of vibronic states is extremely high, so
that the average vibronic-coupling matrix element v
appreciably exceeds the mean spacing, e=p™ (where p
is the density of states), between these levels, so that

>, 1)

In this limit, inhomogeneous broadening occurs en-
tirely as an intramolecular phenomenon. Intramolecular
relaxation occurs on the time scale

1<<Hp, (2)

which defines a recurrence time #ip for the occurrence
of the relaxation process. Equation (2) also implies®
that the radiative width T of the zero-order state which
carries oscillator strength exceeds the mean level
spacing so that

(3)

Large organic molecules (e.g., naphthalene, anthracene,
tetracene) fall in this catetory,13.14.16

I'>e.

14 M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968).

15 See suggestion by W. Klemperer quoted in G. B. Kistiakowsky
and C. S. Parmenter, J. Chem. Phys. 42, 2942 (1965).

18 T, Jortner and R. S. Berry, J. Chem. Phys. 48, 2757 (1968).

17 We prefer the classification presented by Jortner and Berry
(Ref. 16) to that given by Robinson (Ref. 13). Robinson con-
siders the large molecule and the small molecule limits. This
terminology does not resolve the question ‘‘how small a triatomic
molecule is,” which is of crucial importance for our present study.
Robinson’s intermediate case corresponds to the dense inter-
mediate case considered by us.
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B. The Resonance Limit

When the energy levels are coarsely spaced, a small
number of degenerate or quasidegenerate zero-order
levels may be split by the intrinsic or by external
perturbations. Provided that e~T, the only decay
channel of the coherently excited system (in the absence
of external perturbation) will involve a radiative decay
process which will exhibit a beat spectrum. Typical
examples for this case involve level crossing and level
anticrossing in atoms and in diatomic molecules.’®®

The intramolecular vibronic-coupling matrix ele-
ments in a diatomic molecule may considerably exceed
the radiative widths of the molecular levels, A small
(e.g., diatomic) molecule may reveal the effects of
strong vibronic perturbations between pairs of levels,
while the interference effects in the radiative decay are
not encountered. In this case, we expect that I'>e
while ve~1. We shall refer to this situation as a coarse
level spacing. A typical molecule in this group is CN,
in which 2211 mixing occurs.’® The matrix elements
connecting the 2Z and ?II states of CN are of the order
of 1 cm™, so that those Born—Oppenheimer states which
are separated by 1 cm™! will exhibit large perturba-
tions.!

As it usually happens in nature, intermediate cases
are encountered and these are of considerable interest.
It would be useful to consider two categories.

C. The Dense Intermediate Case

The molecular eigenstates are not sufficiently dense
so that Relations (1)-(3) are replaced by

vp~1, (1)

t~hp, (2)
and

e~T, (3{ )

It was suspected® that By —*Bi, coupling in the
benzene molecule may correspond to this case. These
considerations are based on an order-of-magnitude
estimate of the parameter vp, (without taking into
account the vibronic manifold corresponding to the
ground electronic state). Recent experimental data'®
indicate that the decay of the 'B,, state of benzene
corresponds to the statistical limit.

D. The Sparse Intermediate Case

The density of vibronic states is rather small, while
the vibronic-coupling matrix elements are rather large,

18 (a) M. I. Podgoretskii and O. A. Khrustalev, Usp. Fiz. Nauk
81, 217 (1963) [Sov. Phys.—Usp. 6, 682 (1964) ]p (b) H. E.
Radfond and H. P. Broida, J. Chem. Phys. 38, 644 (1963); Phys.
Rev. 128, 231 (1963).

¥ (3) E. M. Anderson and G. B. Kistiakowsky, J. Chem. Phys.
48, 4787 (1968). (b) A. E. Douglas and V. Mathews, ibid. 48,
4788 (1968).
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due to favorable Franck-Condon vibrational overlap
factors. Under these circumstances, we may expect
that

(1"

The experimental time scale ¢ (for the fluorescence
detection) considerably exceeds the recurrence time

so that
>tp, (2'")

while the coarse spacing of levels exceeds the radiative
bandwidth
I'<e. 3"

The first excited singlet states of SO,, NO,, and CS,
are expected to fall in this category. The density of
vibronic states (corresponding to the ground state and
to the first triplet state), which are quasidegenerate
with the excited singlet, is, of course, rather low, being
of the order of one state per energy interval of one
wavenumber. These nonlinear molecules are char-
acterized by different bond angles in the ground and
excited states,® resulting in a large vibrational-overlap
Franck-Condon factor. Thus, Eq. (1”) is expected to
hold in this case so that extensive level mixing still
takes place.

o> 1.

II. THE RADIATIVE-DECAY PROBLEM

We shall now turn our attention to the theoretical
study of the radiative decay of molecules which cor-
respond to the sparse intermediate case. To this end,
we consider the radiative decay of a molecule for which
9p>1, which corresponds both to the statistical limit®
and to the sparse intermediate case.

The complete Hamiltonian for the system, composed

of the molecule and the radiation field, is given by
H= Hel+Hrad+Hint (4)

H,=Hgpo+H,. ©)

and

The molecular Hamiltonian H,; consists of the Born—
Oppenheimer Hamiltonian Hgo and an intramolecular
perturbation term H, which consists of vibronic cou-
pling, spin—orbit interactions, etc. The nuclear kinetic-
energy operator dominates the coupling,* although
in the case of states of different multiplicity the spin—
orbit interaction has to be also included. H,.q is the
Hamiltonian corresponding to the free radiation field
and Hiy, is the radiation—-matter interaction term.

The zero—order states are taken as the eigenstates of
the Hamiltonian

H0=HBO+Hrad- (6)

They include the vibronic state ¢,=| ¢,;vac), which is
the zero-order approximation to the excited state, and

20 A, J. Meyer, Discussions Faraday Soc. 35, 127 (1963).
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the vibronic manifold ¢;=| ¢;;vac), which represent the
vibrationally excited states of lower electronic states,
while |vac) corresponds to a zero-photon radiation
field. The final zero-order states of the system are
¢£=| ¢o; K, €), where ¢, corresponds to the molecular
ground state and | k, e) represents a one-photon state.
These final states are normalized per unit energy
interval.

The matrix elements of the Hamiltonian between the
zero-order states are taken to be

(ps | Hl@i)=v, (| H|@)=E,
(ei | H| ¢;)=Ebsj, (ep|H|¢p)=ES(E—E)
(o | H| op)=W, {pi| H|pr)=0, (N

where it is assumed that only the state ¢, carried
oscillator strength and that W is independent of E,
and v is independent of 7. To simplify the treatment
further, it is also assumed that the states {¢;} are
uniformly spaced with the separation e=p™.

The diagonalization of the Hamiltonian is carried out
in two stages. The first stage involves the diagonaliza-
tion of the molecular problem which results in the
following excited molecular eigenstates':

Vn=0a,"ps+ Z Bi*es (8)

with energies E,. The mixing coefficients are given in
the form!

l a" |2= ”2[:(En""Ea)2+vz+ (ﬂ'vz/é)z]_l. (9)

The mixing with the radiation field results in the
following (time-independent) eigenfunctions®:

Ve= Y on(E)¥ut / dECs (E)es,  (10)

where
ar(B) =[asW/ (B—E) UZNE) [Ir+2(E) J}, (1)
and

(12)

Z(E)={ 2 [l esW 1/ (E—E.) ]}

The excited state resulting from the optical excitation
by a short light pulse®!6 is given (bearing in mind that
only the state ¢, carries oscillator strength) by the
following expression:

W (1=0)= / dE S aran(E)s. (13)

The time development of this excited state is simply
obtained by incorporating the phase development of
these eigenstates

V()= ; a / dEan(E)Yz exp (— ﬁ’ Et) . (14)
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The fluorescence rate is given by zero-order state ¢,; T corresponds to the transition
B () — TIw()) 2 operator; p is the density of states in the radiation
P())=Qr/h) | @0 2‘ ) Por field; and A.(¢)= (¢, | ¥(#)) is the amplitude of the

=(I/8) | 4.0 I (15)  gtate ¢ in the excited state ¥(¢) at time £ This ampli-

where T'/fi is the radiative decay probability of the tude can be displayed in the form®

2 exp(—iE./h) exp(—iEt/h)dE
wl'J 14-(16/A°T?) [ E*+ (A%/4) [ (2E/A) cotgh(wA/2¢) +cotg(rE/e) T2’

Aa(t) = (16)

where A is given by
A=271?p, {an

which corresponds to the nonradiative half-width of the distribution of lines.

In the statistical limit (where a single inhomogeneously broadened Lorentzian-shaped line results), Egs. (2)
and (3) are also satisfied. Then the Fourier transform in Eq. (16) can be evaluated® resulting in a simple exponen-
tial decay, e.g., | 4.(¢) |*=exp[— (A+T/&) (]

III. THE SPARSE INTERMEDIATE CASE

In the sparse intermediate case, Eq. (1")~(3") imply that A>e&>T, and therefore two simplifications can be
introduced at this point. In the first place, we can set coth(wA/2¢)1 in Eq. (16). Furthermore, we notice that the
argument of the Fourier integral [Eq. (16)] is characterized by very small numerical values, except around the
points where E=ne with n=0, =1, 2, etc., where the function cotg(wE/e) diverges. Near these “critical”’
points the cotangent function may be approximated by

cot{mE/e)e/w(E—ne) ; n=0, 1, £2, ., (18)

One can then express the amplitude 4,(¢) as a sum of integrals whose arguments are functions centered around
the points E=ne:

_iEd _ient) exp[— (i/A) E{JdE
( % )Ee"p ( 7 ) o 1+ (16/ A1) [ (ne) "+ RAT P (nE/e)* (19)

This equation can be rearranged as follows:
2 exp[— (i/1) Es£] eAT? ( i ) /’m exp[ — (i/#) Et)dE
— —ent 21 1A27T1 .
T 65 2 P~ et )[(n 14T | (EAT?/167%) [ (ne) -+ LAP 2+ B2

The integrals appearing in Eq. (20) correspond to Fourier transforms of Lorentzians, so that the following ex-
pression results:

0= (LD

2
A,() = —
® T €xP

n

A, (t)=

(20)

)%(eAI‘) 3 exp (— %net)[(ne)”—{—i&]“ exp{ — (eAT/4xR) [ (ne)™+3a2T 4}, (21)

The fluorescence rate is now evaluated from Eqgs. (15) and (21):

i Z Zow(- ; om0 T L mr- 1T

Xexp(— (eAT/4xh) {[ (ne)*+1A%T + [ (me)2+542T 1), (22)
or alternatively, using Eqs. (9) and (17) we get

P(t)=(1/#) ; 2 exp[— (i/R) (n—m)e] | a” | o [* exp[— (T/25) (| ™ [*+| am [2)4]. (22)

P =

We should note in passing that Eq. (22') is equivalent to Eq. (45) in the work of Jortner and Berry." To proceed,
Eq. (22) can be rearranged to yield

P(t) = (AT /4n%h) ZSZ (2—0am) cos[.(n—m) (et/h) ][ (ne) 2+ 1A% (me)?+1A2T!
Xexp(— (eAl/4xhi) { [ (ne)*+1A4%T+[ (me)*+1a%T}2).  (23)
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The resulting fluorescence rate is characterized by two contributions: exponential decay terms (which cor-
respond to the case n=m) and interference terms. Thus, the fluorescence rate will exhibit a quasioscillatory
behavior with periods of the order of the recurrence time 7/¢, which in the sparse intermediate case corresponds to
#i/e~10712 sec, This recurrence time is appreciably shorter than the experimental time resolution for fluorescence
detection. We, thus, expect that the photon counter (employed in this experiment) will measure an average
fluorescence rate where the oscillatory behavior will be smared out. Let the experimental time resolution be
A>fi/e, so that we may average P(f) over time intervals of the length A¢:

t4 (At

®)w= (a0 [ peyar, (29)

t—(At/2)

A cursory examination of Eq. (23) reveals that the only part of P(f) which appreciably changes during the time
interval Af involves the function cos[(n—m)e!/fi], while the exponential function varies slowly on this time
scale, We may thus average only over the trigonometric function, and to a good approximation we get
)
(an-

t—(At/2)

cos [(n—m) %]dt’wam, (25)

so that the interference terms in Eqgs. (22) and (23) can be disregarded in this case. The following expression now is
obtained for the average rate of fluorescence decay:

P() = (eaT/4x%h) 2 [(ne)*+1A%T* exp{— (eAT/2nR) [ (ne)*+34%T ). (26)

To recast this result into a more physically transparent form, let us define the (approximate) number N of states
within the half-width of the inhomogeneously broadened manifold of levels
N=A/2e=m1%" (27

Equation (26) can be now displayed in the form

e [+ (] o (- o)

An important consistency check involves the determination of the quantum yield. The integrated fluorescence
yield measured up to the time 7 after the excitation is easily obtained by integrating Eq. (26):

(28)

Y(r)= /o "Bt = ( (29)

where 7 is large relative to the average decay times (e.g., 7— ), the result in the following express for the quantum
yield ¥:

Y=V (»)=(ed/2r) 3 [(ne)*+}M]'= 3 | a” =1 (30)

IV. DISCUSSION surprising that our result for the intermediate sparse

From the results obtained herein, we conclude that:

(a) The sparse intermediate case involves a mani-
fold of molecular eigenstates which are well separated
relative to their radiative widths. Hence interference
effects in the radiative decay of the coarsely spaced
levels are not expected to be revealed in this case. Thus
the sparse intermediate case corresponds to the physical
situation whereupon each radiatively decaying state
(e.g., each decay channel) can be characterized by its
own lifetime. It can be thus inferred that in this case
the damping matrix® is diagonal. It is therefore not

2 M. Bixon, J. Jortner, and Y. Dothan (unpublished data).

case [Eq. (22)] is identical with Eq. (45) in the work
of Jortner and Berry. In that early work® it was
implicitly assumed that the decay of the amplitude of
each molecular eigenstate, say ¥a, can be described by
an independent radiative lifetime which is given by
ATt | o, |72 From subsequent work %% it is evident
that in the resonance limit, in the statistical limit, and
in the intermediate dense case, the radiative decay of
the manifold of indistinguishable levels®* had to be
described in terms of a nondiagonal damping matrix.
Hence, the Jortner-Berry!® treatment is applicable only
for the sparse intermediate case. The agreement en-
countered in the latter case between the present results
(which are based on the Fano method) and those of the
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previous treatment!® (which rest on the time evolution
operator technique) provides a consistency check for
the general treatment presented herein. It is gratifying
that our general formalism for the radiative deday of
molecules [Eqgs. (15) and (16)] is applicable for all
cases of physical interest.

(b) In the sparse intermediate case, the fluorescence
rate is expressed as a sum of exponentials with decay
times 7, of the order of 7,~#N/T. Taking N~100 as a
rough order-of-magnitude estimate, then the major
contribution to the sum (28) will arise from terms
where (n/N) $1. A nonexponential decay is expected,
characterized by a continuous distribution of lifetimes
which are approximately in the range #iN/I-2AN/T.
A zero-order approximation for the decay law is
P(t)~(T/iN) exp(—Tt/fN). The radiative decay
time in this limit is characterized by a longer radiative
lifetime than that expected on the basis of the inte-
grated oscillator strength (which is just #/T). The
“dilution factor” for the radiative lifetime is ap-
proximately given by the factor V.

(c) As the final expression [Eq. (28)] for the
radiative decay rate does not involve interference terms,
the same result is expected to hold also when the
excitation process is not coherent.

(d) From the spectroscopic point of view, the oc-
currence of efficient intramolecular vibronic coupling
in the sparse intermediate case implies the redistribu-
tion of the intensity of the zero-order component ¢,
which induces the appearance of many new, well-
resolved lines (which correspond to all the molecular
eigenstates ¥, in the optical spectrum).

(e) Quantum yield measurements performed on the
gas at low pressures, where the average time between
collisions is long compared to the decay time 7., will
result in a fluorescence quantum yield of unity. In the
sparse intermediate case, the recurrence time is ex-
ceedingly short, so that nonradiative intramolecular
electronic relaxation processes will not be observed.
At higher pressures, intermolecular electronic relaxation
processes may take place.

In order to elucidate the implications of our theo-
retical treatment, one should now inquire whether the
first excited singlet states of SOz, NO,, and CS;! can
be indeed classified as corresponding to the sparse
intermediate case. Rough order-of-magnitude estimates
will be useful in this respect. From the known ground-
state vibrational frequencies, one can estimate the
density of vibronic levels using Haarhoff’s method®
(or similar techniques). These results can be then com-
bined with the experimental ‘“dilution factor” N to
estimate the mean value of the vibronic-coupling term

22 P. C. Haarhoff, Mol. Phys. 7, 101 (1963).
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. In the case of NO,, the estimated density of vibronic
levels which correspond to the ground electronic state
at the energy of 23000 cm™! is about p~0.3 cm. The
experimental radiative lifetime leads to the estimate
N=2100 for the dilution factor. Hence one gets A~Np™,
or A~300 cm™, so that 9~10 cm™. This vibronic-
coupling matrix element is of the expected order of
magnitude.® According to this qualitative analysis, the
absorption spectrum should consist of ~100 absorp-
tion lines distributed over an energy interval of ~300
cm™, It is difficult to verify this conclusion experi-
mentally as in view of angular-momentum conservation
rules our arguments apply only for a single rotational
state. The actual spectrum reveals, of course, a large
number of different rotational transitions, so it is im-
possible at present to identify the homogeneously
broadened manifolds which correspond to a single
rotational state. Besides, according to our simple
model, % the intensity of these lines is expected to
behave regularly, as they correspond to a Lorentzian
distribution. In real life, the parameter v is not con-
stant, being dependent on the nature of the vibronic
states, which in turn are not uniformly distributed.
Real calculations of vibronic matrix elements are, at
present, a difficult task because of our ignorance of
important features of molecular geometry and of the
anharmonicity constants of the highly excited vibronic
levels in the ground state of these polyatomic molecules.
These comments conclude our discussion of inter-
mediate sparse case of vibronic coupling. The reso-
nance'®? and the statistical limit® were previously
treated. Finally, the intermediate dense limit should be
briefly considered. Although a theoretical treatment of
this case was not yet carried out, it is expected that in
this case the radiative decay will exhibit an oscillatory
behavior as the manifold of the radiatively decaying
eigenstates will now reveal interference effects and the
recurrence time is now of the order of #/T'. Unlike the
statistical limit and the sparse intermediate case,
spectroscopic evidence derived from the intensity dis-
tribution in absorption spectrum cannot be used in the
dense intermediate case. In summary, we display in
Table I the characteristic features of the radiative
decay of small, medium-size, and large molecules. We
hope that these theoretical results will stimulate further
experimental activity in this interesting field.
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