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Triplet exciton density of states functions were calculated for crystalline naphthalene and benzene,
and the off-diagonal matrix elements of the Green’s function were obtained for crystalline naphthalene,
using theoretical intermolecular electron-exchange terms. These results were then applied for the study
of triplet states in doped molecular crystals, using the one-particle Green’s function method. The localized
impurity, the impurity pair, and the general impurity problem were considered. The experimental implica-
tions of these results concerning the absorption and emission spectra and energy-trapping effects in dilute

mixed crystals were considered.

I. INTRODUCTION

The study of triplet states of molecular crystals has
been intensively pursued in recent years. The subject
naturally divides into two parts: (a) exciton spectros-
copy, (b) exciton dynamics. Experimental spectros-
copic studies have established the magnitude of the
Davydov splitting in the lowest triplet state of crystal-
line anthracene and naphthalene, which monitor the
intermolecular interactions between translationally
inequivalent molecules.! Zeeman splitting of exciton
states determine the sign of these interactions.? Studies
of triplet exciton dynamics in crystalline anthracene
established the isotropy of the diffusion tensor in the
ab plane of the monoclinic crystal, leading to an
estimate of the absolute value of the interaction term
between translationally equivalent molecules.*—¢ Theo-
retical studies’ of the intermolecular interactions in the
lowest triplet state of molecular crystals of aromatic
molecules considered the following effects:

(a) Intermolecular electron exchange interactions
considered within the framework of the tight-binding
approximation lead to a dominating contribution to the
exciton band structure, the short-range intermolecular
electron terms are of the order of 1-10 cm™.

(b) The effects of orthogonality corrections between
# orbitals centered on different molecules do not
exceed 509, of the electron-exchange terms.

(c) The effect of configuration interaction between
Davydov neutral exciton states is negligible.

(d) The contribution of configuration mixing with
charge-transfer exciton states may enhance the inter-
molecular interactions by about 50%,.
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The experimental results! for crystalline naphthalene
are in excellent agreement with the theoretical results®?
in the tight-binding limit calculated using the weak-
coupling vibronic scheme, The estimate of the inter-
action term for translationally equivalent molecules in
this system is also consistent with the experimental
results of Hanson and Robinson.! However, several
serious discrepancies between theory and experiment
are encountered:

(a) The experiment triplet-exciton diffusion tensor
in anthracene is isotropic so that the diffusion co-
efficients in the ab plane and in the ¢ direction seems to
be about equal.“® Theoretical calculations? indicate that
the diffusion coefficient in the ab plane should be about
2 orders of magnitude higher than in the ¢ direction. It
is still an open question whether in crystalline anthra-
cene and naphthalene the triplet exciton band structure
is dominated by two- (the ab plane) or by three-
dimensional interactions.

(b) Emission spectra of isotopically substituted ben-
zene crystals® led to an estimate of the intermolecular
electron-exchange interactions in this system which are
appreciably higher than those calculated for this sys-
tem® using the same theoretical methods as for naph-
thalene and anthracene.

(c) Studies of Zeeman splitting in the first-excited
triplet state of naphthalene and of anthracene? revealed
the surprising feature? that, while the intermolecular
interactions in the 0-0 band are roughly equal in their
absolute values they do differ in their sign, so that the
Davydov splittings in the lowest vibronic component of
the first triplet state are —12 cm™ for naphthalene and
=20 cm™! for anthracene (the splittings are defined as
E(Lb)-E(][d). Theoretical calculations*” predict that
the intermolecular interactions should be almost equal
and the order of energy levels should be identical in
these two systems.

Additional complementary information on the inter-
molecular interactions can be obtained from alternative
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sources which deal with the entire exciton band struc-
ture and divert from the classical spectroscopic method
based on the determination of the k=0 Davydov com-
ponents. In this context the optical properties of dilute
mixed crystals of isotopically substituted molecules can
be related to the exciton density of states in the pure
crystal. ! This treatment, based on the one-particle
Green’s function rests on the implicit assumption that
the perturbation induced by isotopic substitution is
local. With the availability of theoretical data based on
the intermolecular electron-exchange interactions the
triplet energy levels of infinitely dilute mixed crystals
are now amenable to a theoretical study. Further
information concerning the intermolecular interactions
can be obtained from the triplet spectra of impurity
pairs. Finally, the general impurity problem is of interest
in relation to triplet-energy trapping in molecular
crystals. In the present work, we present the results of
a theoretical study of triplet-energy states in dilute
mixed molecular crystals of benzene and of naph-
thalene.

A unique feature of triplet exciton states is that the
bandwidth is extremely narrow. In this context it
should be pointed out that the experimental technique
based on hot-band spectroscopy'*® which proved to be
extremely useful in the case of the lowest singlet exciton
states of benzene and naphthalene may be of limited
utility in monitoring the triplet-exciton band structure.
This method utilizes the transition from a vibrational
exciton state of the ground state to the exciton band.
When the intermolecular interactions are dominated by
short-range interactions, the diagonal matrix elements
of the crystal energy matrix are approximately equal.
This situation of accidental degeneracy leads to the
conclusion that the transition moments are approxi-
mately equal so that the hot absorption band is pro-
portional to the joint density of state function™

; 2 M E—-[Ef(k)—E" &)1},

where 7 and V correspond to the triplet and vibrational
energies and j represents the branch of the electronic
or the vibrational exciton band so that E (k) and
E¥ (k) correspond to the energy dispersion curves in
the triplet-exciton band and in the vibrational exciton
band, respectively. In the case of singlet exciton states
the electronic exciton band width appreciably exceeds
the vibrational exciton bandwidth, so that the joint
density of states faithfully represents the electronic
exciton density of states. In the case of triplet exciton
states, the electronic exciton and the ground states
vibrational exciton bandwidths are of the same order
of magnitude, so that the joint density of states cannot
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be related in a simple manner to the triplet-exciton
band structure. However, the joint density of states will
still reflect the critical points in the triplet-exciton
density of states.

We hope that the theoretical treatment of the triplet-
exciton band structure and of the triplet electronic
states in mixed crystals presented herein will stimulate
further experimental work concerning the nature of the
intermolecular interaction, band structure, and low-
temperature triplet-exciton dynamics in molecular
crystals.

II. THE GENERAL IMPURITY PROBLEM

A serious difficulty involved in the theoretical treat-
ment of dilute mixed crystals involves the complicated
form of the resulting equations for the impurity levels.
The simplest case is that of a local perturbation where-
upon a single impurity level results which is related to
the exciton density of states in the pure crystal via the
real part of the diagonal matrix element of the pure-
crystal Green’s function. Many systems of physical
interest provide additional complications as the pertur-
bation is no longer local. The general solution to the
problem was in fact provided by the work of Koster
and Slater.’® However, since then, this solution was
rederived several times using various techniques such
as integral equations theory,® second quantization
formalism,Y and the original Koster-Slater approach.!$:
It will be useful at this stage to present the general
equations for the single-impurity case in the tight-
binding Frenkel limit using the Green’s function
method! in the form previously applied by us for this
problem.® The merits of this formulation are twofold:
In the first place, the resulting equations are physically
transparent and clearly bring up the physical features
of the general perturbation problem; furthermore, the
resulting equations can be easily handled using matrix
methods.

The crystal Hamiltonian containing a single impurity
at the site p (the site index refers to both the unit cell
and the number of the molecule in this unit cell) is

se=Hyt 2 HMH 2 v+ 2 vip, (1)
B ©>7,(5,57p) i#p
or alternatively
J=H¢+V. (1a)

Where H, and HJ? refer to the guest and host single
molecule Hamiltonian, v.;? are the Coulomb interaction
terms between the host molecules ¢ and j, while v,
corresponds to the guest host pair interaction term. Ho
is the Hamiltonian of the pure crystal while V represents
the perturbation introduced by the impurity. The
mixed-crystal wavefunctions will be displayed in the
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localized excitation representation

=2 U()as, (2)
1

where a/ corresponds to a localized excitation on the
site ! (including the impurity site) which can be repre-
sented as antisymmetrized products of the eigenfunc-
tions @0 and ¢ of H® and the eigenfunctions ¥, and

 of H,. The superscripts 0 and f refer to the ground
and the excited electronic states, respectively.

Hence we write

af =AY 1] 08 (3)
#p
and
] —<A¢p %f H 901 . (3’)
AP

The impurity levels are obtained from the general
equation
(4)

G*(E) =1/(E—Ho) ©)

is the pure-crystal Green’s function and V corresponds
to the perturbation matrix, both operators are displayed
in the localized representation.

The matrix elements of the Green’s function are

Gi(E)=(ad | 1/(E—Ho)| o)
and can be represented in the form

B,/ (k) B/ (k) exp[ik(Ri—R;)]
Gi/(E)=N" - )
#(E) Zk: ; E—E,(k)

(7)
where E,(k) is the dispersion relation for the uth
exciton branch (u=1:++¢), k is the exciton wavevector
and B,/ (k)= B./(k) (where the double 7 index cor-
responds to {=wna) are the elements of the unitary
transformation matrix relating the one-site exciton

states to the crystal states in the pure crystal. The
Green’s function can be expressed in the integral form

det | 1—G°(E)V | =0,
where

(6)

G (E—iet) =F(E) +ing:(E), (8)

where
P(E)AE ,
FyE)=p [EENE ®)

while g:?(E’) is the weighted density of exciton states
matrix. In a crystal characterized by a center of
symmetry the diagonal matrix elements correspond to
the exciton density of states go(E) =g:.°(E), for all 4.

Turning our attention to the perturbation Hamil-
tonian, we have now to relate the matrix elements of
the pure-crystal and the mixed-crystal Hamiltonian.
These matrix elements were worked out by Philpott and
Cra.ig19 and are given in the form:

GC |3C I a; > (HO) u+3uatpU0+5w(1 azp)dzn

4 (1—8:5) dipmpit (1—64) 85mpi,  (9)

(9"

where
Uy=Ae/ — Ad+Df— D!

841

corresponds to the change in the molecular excitation
energy between the host and the guest. Ae,’ and A¢f are
the gas-phase excitation energies, while

DP!= ; (l?’io |2 l Vip I I‘pr lz_ l ‘l’po |2)

D= {lof Flol| o P~ | o |

5

(10)
(10)

correspond to the environmental D terms of the guest
molecule in the mixed crystal and of a host molecule in
the pure crystal, respectively. We may comment in
passing that the expressions displayed in Egs. (10) and
(10') should be extended to include second-order
interactions which give rise to dispersion forces. The
matrix elements dp; represent corrections to environ-
mental shifts of the host molecules due to the presence of
the guest:

dpi= (| || v | | 0 [2— | 00 [2)
(e Plud o P— o2 [?). (11)

Finally, the matrix elements m,; correspond to the
change in the intermolecular coupling terms due to the
presence of the impurity

= (AP o | Upj | V2% ) <V4¢pf¥’10 | Ty ! (2] Jj>}
(12)

which correspond to the difference between an off-
resonance and a resonance energy-transfer term.

The matrix elements of the perturbation operator V
can be displayed in the localized representation in the
form

Vop= Uy,
Vi = mys; Vip=mypi,
Vii=dyi, 1Z£p. (13)

The matrix V can be conveniently displayed as a sum
of three contributions

V=Ust+m-d, (14)
where
(Usg 0 O +-»
0
Uo= O (14a)
0
\ /
( 0 Mo Moz °*° mw\
mo
\Mio J
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and

(14¢)

dOi

The matrix (14a) corresponds to the local perturbation
on the impurity site, (14b) represents the change in the
intermolecular coupling terms, while the diagonal
matrix (14c) involves the changes in the effective
excitation energies of the host molecules induced by the

1- Z mpiGip’ (E)

J#p
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impurity. Now the simplest case is encountered when
m=d=0 and the impurity level is obtained from the
relation

1-UsF(E)=0, (15)

where F(E)=Fy(E), Eq. (8) being expressed in
terms of the density of exciton states. A further com-
plication is introduced when it is assumed that only
d=0 whereupon the energy levels of the mixed crystal
are obtained from

det | 1=GY(E) (Uptm) | =0. (16)

The order of this determinant is equal to the rank of
the matrix Ug-+m. However, in this case Eq. (16) may
be reduced by simple manipulations to a 2X2 deter-
minant

Ut 2 2 mpiGip™(E)mjry 1= 3 myiGir? (E)

J=p j'#p

This last result was previously derived by Rashba,
by Dubovskii and Konobeev,” and by Philpott and
Craig.t%j

Equation (16) always leads to at least a single
(virtual or bound) impurity level. A second bound or
virtual level may also appear in this case depending on
the magnitude and sign of the m,; terms and on the
strength of the local perturbation Us. This equation was
studied by Merrifield® and by Body and Ross® for the
simple case when the m,; terms are proportional to the
energy-transfer matrix elements in the pure crystal.

The effect of the diagonal d matrix on the crystal
energy levels is of interest as it brings up some new
features of the problem. Consider first the hypothetical
case when m=0. The relevant equation is

det | 1—G%(d+Uo) | =0. (17)

This determinant is of the order which equals to the
rank of the matrix d plus one. This equation is formally
identical with the results for a mixed crystal which
contains a number of impurities each characterized by
a local perturbation. Let the sites p, ¢, p”, p'”, etc,,
be occupied by impurity molecules, characterized by
the local perturbations Uy, Upr, Upre« +. The perturba-
tion matrix is then

- K (18)

gm .
!"fhﬁi

° /
#» R. G, Body and I. G. Ross, Aust. J. Chem. 19, 1 (1966).

G’ (E)
=0. (16")
J#p
The resulting general energy equation
Up
Uy
det [1-G*(E) =0 (19)
Upn
\ .

is just equivalent to Eq. (17).

The analysis of impurity pairs previously con-
sidered® can be easily extended to include higher
impurity aggregates. The interaction between » local
impurity sites leads at most to v localized states. A
zero-order approximation for any of these levels is given
by Eq. (15), e.g., 1—U,F(E) =0. However, the proper
solutions may involve major corrections to the result of
Eq. (15) in view of the contribution of the off-diagonal
matrix elements of the Green’s function.

Turning back our attention now to Eq. (17) we
realize that the single impurity problem which involves
both a local perturbation and the change in the d terms
will lead, in addition to the single localized state, to an
additional manifold of bound or virtual levels (depend-
ing on the strength and the signs of the U and of the
dp;j terms).

The general structure of the equations derived herein
clearly reveals that in order to obtain any quantitative
information on the energy levels of mixed molecular
crystals the diagonal and off-diagonal matrix elements
of the Green’s function have to be evaluated. These, in
turn, are expressed in terms of the matrix elements of
the weighted density-of-states function. We shall now
demonstrate how these matrix elements can be eval-
uated for a real system provided that the intermolecular
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interactions are dominated by short-range terms. In
this context triplet exciton states are of considerable
interest and we shall now proceed to the calculation of
the band structure and the off-diagonal elements of the
Green’s function for the first triplet-exciton state in
some organic crystals of aromatic molecules. These data
will then be used for calculation of the energy levels of
a single impurity and an impurity pair characterized by
a local perturbation. Finally, model calculations will be
presented for the general impurity problem setting the
matrix elements of d and m as variable parameters.

III. CALCULATION OF THE DENSITY OF TRIPLET
EXCITON STATES IN CRYSTALLINE
NAPHTHALENE

The energy levels of the pure crystal are obtained by
constructing the one site functions

o (K) = (1/v/N) X tmo exp(ikRpa)

and diagonalizing the Hamiltonian H, in this repre-
sentation so that the exciton states are

/(K= 3 B.f(K)¢S(k), j=1---0. (20)

The matrix elements of the Hamiltonian take the form
Las(k) = (¢ (k) | 3¢ | 65’ (k) )
= (A4 D7) dagt Lap(k),

where
Los(k) = 3 I'nams’ exp[ik(Raa—Rmg) ] (21)

In the case of triplet states, the energy transfer matrix
elements I,,, g’ are given in terms of the intermolecular
electron-exchange interactions:

IM""ﬁ!: Kmmﬂf= ((A—l)anafamﬂo I Vnamﬂ l aﬂa‘,amﬁ’)‘
(22)

In Table I we display the electron-exchange terms
previously calculated for crystalline naphthalene and
anthracene.” We have also included in this table the
orthogonality corrections arising from =—r inter-
molecular overlap calculated using the Lowdin sym-
metric orthogonalization method. The computational
procedures were previously described” Our more
detailed calculations of these terms presented herein lead
to slightly higher overlap corrections than previously
reported.” We should note the relatively large overlap
correction term for the Ko}(a+bd) interaction in
anthracene, while for the case of naphthalene the cor-
rection term is small. This may indicate that also the
contribution of three and four-center electron-exchange
terms, and orthogonality corrections arising from o-r
intermolecular interactions should be more important
for the case of anthracene. This may be a reason for
the discrepancy between experiment? and theory”
concerning the sign of the K¢}(a+5d) term in anthra-
cene.

843

TasLe I. Intermolecular electron-exchange interactions (K)
for naphthalene, anthracene, and benzene, and orthogonality
corrections (O) for naphthalene and anthracene.

Location of K 0
System molecule 10¢ (eV) 10¢ (eV)
Naphthalene b +4.60 —1.55
$(a+b) -7.35 +0.25
¢ +0.034 —0.0027
Anthracene b +4.11 —1.89
4(a+d) —6.88 -3.9
c —0,018 —0.0005
Benzene 3 (b+e) +1.07 ore
$(a+c) —0.075 ves
%(a+b) +0.055 oo
c —0.055 ves
a +0,0068 ves

The following comments should be made:

(a) The dominating intermolecular coupling terms
are due to the translationally equivalent molecules
located at 0, b, 0; 0, —&, 0 and the translationally in-
equivalent molecules located at

3(a+),0; 3(a—b),0; —3(a+d),0;
%(—d—l—b), 0.

The monoclinic crystal structure (Py,) is characterized
by the following symmetry elements (e.g., factor-group
elements) : E, {oq. | £a/2}, {co(d) | 8/2} and {i| 0}
whereupon the interactions for the four translationally
inequivalent molecules are equal, and so are the inter-
actions for the molecules located along the monoclinic
axis 5. We shall therefore have to consider just the
interaction e,= K, and =K 45 Where we have
set r=3(a+D).

(b) The translationally equivalent molecules are
related by the symmetry element {7 | 0}. The presence
of an inversion center implies that Ef(k) =E/(—k).
Hence, in general, the interactions have to be evaluated
over half of the direct lattice and then the band struc-
ture has to be evaluated in half of the reduced zone of
the reciprocal lattice. In the present case, only the &
term has to be considered for translationally equivalent
interactions so that it is sufficient to consider the region
0<k:a<r and 0<k-b<.

(¢) In this system, the dominating interactions are
those in the ¢b plane, so that the problem can be treated
as a two-dimensional case. The energies are

El(k) =Ei(kﬂx kb) ’ j= 1, 2. (23)

We shall set
k=ka+kb (24)
k,-a=2xy,; ky-b=2mys. (24)
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Tasie II. Critical points in two-dimensional band structure for naphthalene,

Energy of
Nature of critical point
Branch ks ky E critical point 10¢ (eV)
1 (4 branch) 0 0 ate Saddle point —19.4
T T —ea Saddle point —8.17
0 2 arccos (es/4er) —e1— (e/8er) Minimum —19.8
2 (— branch) T T —e Saddle point —8.17
0 0 at el Mazximum +36.0

Now we shall define
ky= (ka+kb) ca=2my,

k”= (ka+kb) ‘b= 271'771,. (25)

(d) For a crystal characterized by an inversion
center, the matrix elements Ls(k) [Eq. (21)] are real
so that for the nondiagonal terms L.g(k) = Lg, (k). As
far as the diagonal terms are concerned, one has the
general relation Lu.(k)=Lg(wk), where w is an
element of the group of the wave vector.” In a general
case when thegroup of the wave vector contains only the
identity operator, the matrix £ has to be diagonalized,
while only for special directions of the k vector (e.g.,
perpendicular to or lying in the symmetry plane of the
crystal) the diagonal matrix elements are equal. How-
ever, in the present case when the intermolecular
coupling is dominated by the short-range interactions
& and ¢, a case of accidental degeneracy is encountered,
and the diagonal terms are equal. This is obvious as
from Eq. (21) we can write Ly (k) = Ly (k) = 2¢ cosk-b.
Hence the energy-dispersion curves for the exciton
branches are just

Elf (k) = Laa (k) + Laﬂ (k)

Ey () = Loa (k) — Lop (), (26)

where we have defined an energy scale where the center
of gravity of the exciton band is zero, Ad-+D’=0. The
coefficients in the exciton wavefunction are just

B (k) = By (k) = Baz(k) = — Bo(k) =1/VZ, (27)
where the indices 1 and 2 refer to the two exciton
branches while @ and g8 refer to the two inequivalent
molecules per unit cell.

We now proceed to the calculation of the triplet
exciton density of states using the parameters e=4.6X
104 eV and e=-—7.35X10*¢eV. In view of the
relatively larger overlap corrections for anthracene, and
because of the discrepancy between theory” and experi-
ment? concerning the sign of the ¢, term in this system,
our calculations were performed for crystalline naph-
thalene. The exciton energy dispersion curves are

2 A, S. Davydov, Usp. Fiz, Nauk. 82, 393 (1964) [Sov. Phys.—
Usp. 82, 145 (1964) .

explicitly given by
E, 5(k) =2¢, cos(k+b) 2, cosk-3(e+b)
+2¢, cosk-3(—a+b). (28)

Using the definitions (25) these can be displayed in the
form

Ei(k) =& cosk, e cosj (k) cosz(k,)
E,y(k) = ¢ cosk,—e; cosy (k) cosk(k,), (28

where e=2¢ and e;=4¢,. The range of %, and %, is
—7<k,, k,<m. However, for our system we can
consider only the range 0<%, &, <.

General information on the band structure can be
obtained by considering the Van Hove-type analytical
singularities in the density of state function. Such an
analysis does provide quite a complete information
without extensive numerical computations. It is also
worthwhile to remember that the F(E) functions which
determines the energy levels of the localized perturba-
tion problem is also characterized by the same singular-
ities as the density of exciton-states function.’® In the
present two dimensional case, the maximum and
minimum points in go(E) will be characterized by a
step-function discontinuity while the saddle points are
characterized by a logarithmic singularity. The singular
points are encountered when

ViEi(k) =0 (29)

so that in our case
9E; (k) /ok.=OE;(k) /ok,=0.
To determine the nature of the critical point we define
E,.=E.,=08E;(k) /0k.0k,,
E..=dE;(k)/ok.?,

Eyy=>E; (k) /akzl2; (30)
and let
E.. Eu
det= (309
Ey, E,

An extremum is observed when det>0 while a saddle
point is encountered provided that det<O0.
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It is now a simple matter to determine the location
and the nature of the critical points, and these are
displayed in Table II for the two exciton branches. It
should be noted that the assignment of the critical
points is determined by the signs of the interaction
terms.

We now proceed to the direct computations of the
exciton density of state. The method we apply is based
on considering the number of states characterized by
energy less than E which is for the two branches®

1 .
Ni(E) = 4—W2fE/dk,dky, j=1,2.  (31)
The integration extends over all the sets of (k., %)
correspond to a constant energy surface which is less
than E. The density of exciton states in the two

2-3 T T T T T T T T T T T
24l .

20 E

1 1 1
0O 04 08 U2 .6 20 .29 .28
Kx

32 36 40 49 a8
Fic. 1. Constant energy surfaces for the E;(k) branch of the
triplet-exciton band in naphthalene near the bottom of the branch.

Energies in 10~ eV. The curve at —19.80X10™% eV has been
multiplied by a factor of 10.

branches is

s(B)= LE-EW®], =12 (32
and can be expressed in the form
g(E)=0N;/0E;  j=1,2. (33)
The total density of states in this band is
go(B)= 2 2| Boill) LE-E;()]. (39)
In view of Eq. (27) we get for this simple case
8(E) = &1 (E)+g:(E). (35)

We can therefore calculate the total density of states
by combining the energy integrals Ny(E) and N.(E)
for the two branches.

Finally, we have to consider the constant energy
surfaces. From the dispersion curve E(k., k,) [Eq.
(28)] we can obtain the relations k,=k.(E, k,) by
simple elimination. Now %, is varied in the range O-r

22 A, A, Maradudin, E. W. Montroll, and G. H. Weiss, Solid
State Phys. Suppl. 3, (1963).
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Fi1c. 2. Constant energy surfaces for the E;(k) branch of the
triplet-exciton band in naphthalene near the top of the branch.
Energies in 1074 V.

for constant E and the corresponding %, values (in the
range O-r) are computed. A difficulty arises when
k,=m which does not give a solution when E#—¢.
However, our computations were performed for a small
mesh of %, values (200 points) so that the effect of this
mathematical artifact is not noticeable. In Figs. 1 and
2, we present typical constant energy surfaces for the
two branches over a small energy range at the bottom
of each branch. A general map of constant energy
surfaces is displayed in Fig. 3. A schematic representa-
tion of typical curves of constant energy is given in
Fig. 4. We have to calculate the total number of states
in the two branches by evaluating the integrals of the
shaded areas in this figure. gi(E) and go(E) are just
proportional to the derivations of these areas with
respect to the energy. In Fig. 5, we give the total

6.03

S

5.521
5.02
452
402

Ky 3.5)

]

3.0l

2.51

201

1.50

1.00

0.50

0.50 100 50 201 25! 301 351 402 452 502 552 5‘03‘
Kx

F1c. 3. A general map of constant energy surfaces for the triplet-
exciton band in napthalene. The limits of the } extended zone are
0Lk <27 and 0Lk, <.
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F16. 4. A schematic representation of constant energy surfaces
in the k.k, plane for triplet excitons in naphthalene. The four
diagrams in the upper line refer to the E( kg) branch calculated
from a two-dimensional model, the diagrams in the middle line
correspond to the same branch calculated from a three-dimensional
model, while the lower line represents the E.(k) branch for a
two-dimensional model. To calculate the integral number of
states, integration has to be performed over the shaded areas.

5T

number of states IN=N1(E)+ No(E) as a function of
the energy calculated from 200X200 points in the
quarter of the extended Brillouin zone. The resulting
density of states obtained from this curve is presented
in Fig. 6. The location of the critical points in g(E) is
consistent with the analysis presented in Table II.

In order to test the adequacy of the two-dimensional
model for the density of states, we have performed
calculations for a three-dimensional model using the
energy-dispersion curve

E(k.kyk,) =e cosk,+ e cost (k) cosi(k,)+es cosk,,
(36)
where 2e,=e;= —0.036X10~% eV.

> =
T
B QR W VR T
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L t Il ! " !

.
-20 -5 <16 -05 © 05 10 15 20 .25 .30 .35
Ex 1072 eV

F16. S. Total number of states as a function of energy
for the triplet-exciton band in naphthalene.
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F1c. 6. Density-of-states function for triplet-exciton band in naph-
thalene calculated from a two-dimensional model.

To count the states up to energy E, a volume inte-
gration has been performed over the quarter of the
extended zone in the region 0<k,<2r, 0<k,<2r,
0<k,<w. Typical schematic curves of constant fre-
quency in the k., plane (k,=const) are presented in
Fig. 4, these were calculated by setting from Eq. (36)
k,=Fk,(E, ky, k;). The resulting density of states curve
is given in Fig. 7, revealing now the critical points
characteristic of a three-dimensional case. However, as
the term ¢; is by 2 orders of magnitude smaller than e
and e, the properties of the pure system and the
resulting properties of mixed crystals can be adequately
described by the two-dimensional model.

55
500
asol
400}
350l

3001

90 (E) eV-!

250}

200¢-

L L L i L L L d
.22 .18 -14 -10 -06 -02 .02 08 .10 .14 .18
Ex10°2 eV

Fr1G. 7. Density-of-state function for triplet-exciton band in naph-
thalene calculated from a three-dimensional model.
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IV. TRIPLET-EXCITON BAND STRUCTURE IN
CRYSTALLINE BENZENE

The benzene crystal is orthorhombic with four
molecules per unit cell. The intermolecular electron
exchange interactions for the lowest By, exciton state
are presented in Table I. The dominant interactions are
again short range so that the four exciton branches are

Ey (k) = Laa(K) + Lag(K) 3 Ly (K) 4 Las (k)
Ep(k) = Lao (K) + Lag (k) — Loy (K) — Las (k)
Ey(K) = Laa(K) — Lop(K) — Lay (k) 4 Las (k)
Ey(k) = Laa(k) — Lag(K) + Lay (k) — Laa (k), (37)

where 8=3%(a+5), y=3%(b+¢), and §=%(a+t¢).

From the interaction terms presented in Table I, it
is apparent that the dominant interaction is that of the
reference molecule with the molecule located at (b+c¢),
and the system could have been treated as before on
the basis of a two-dimensional model. For the sake of
completeness, we have chosen to treat the system as
three dimensional including the five interaction terms
displayed in Table I. We have to calculate the density
of states in the band which consists of four branches.
It can be easily realized that if we consider the range of
the reciprocal lattice of dimensions of $ of the extended
zone in the region 0<4,< 21, 0<k,<27 and 0<k.<7
and make use of just a single branch [say Ei(k)] we
shall generate all the energy surfaces corresponding to
the four branches. The energy-dispersion curve for this

MIXED MOLECULAR CRYSTALS

847

1.10

1.00t-

.90

80}-

L ! !

1 - i . L AL L J
-06 -05 -04 -03 -02 -0I 0 .0l 02 03 04 05 06

Ex 10724V
Fic. 9. Total number of states as a function of
energy for triplet benzene.

branch is obtained from Eq. (37) in the form
E; (k) = ¢ cosk,+¢ cos(k./2) cos(k,/2)
¢35 cos(ky,/2) cos(k./2)+e cos(k./2) cos(k./2)

e cosk,, (38)
where
e&=4€p10/2

a=26, e=4equs,

&= 2¢,.

(39)

Applying Eq. (39) we can express k,=k,(Ey, k., k,) in
the form

&s=4€(10)2,

k,=2 arc cos (

In Fig. 8, we display schematically several typical
curves of constant energy for several constant values
of k.. Volume integration including all the shaded areas
leads to the energy dependence of the number of states
up to energy E. These results, given in Fig. 9, were used

0,27 . 20
E T 1

00 . 2n0

-

i
m | i

tlall

I

F1c. 8. Schematic representation of constant energy surfaces
in the k%, plane for the triplet-exciton band in benzene. Each
line corresponds to a constant value of %,. The calculation of the
total number of states was performed by volume integration
including the shaded areas for constant E.

Ei(k) —e cosk,—e; cosk,—es cos(k,/2) cos(k,/Z))
€2 cos(kz/2) +e cos(k,/2) ’

(40)

to calculate the density of states function displayed in
Fig. 10.

We have now to consider the Van Hove analytical
singular points in the density of states function. As
before, we seek the points for which ViE(k,, &, k.) =0.
Defining again the 3X3 determinant of the second de-
rivatives [Eq. (30a)]. An extremum is encountered
when det>0, while when det<0 a saddle point is ob-
tained. In Table III we present the analytical critical
points in the triplet-exciton density of states for
crystalline benzene.

V. THE LOCALIZED TRIPLET IMPURITY
PROBLEM IN CRYSTALLINE NAPHTHALENE
AND BENZENE

The energy levels of an impurity characterized by a
local perturbation are given from Eq. (15) in the form

1—-UoF(E) =0 where
F(E)=p'/M,

yomy (41
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F16. 10. Triplet-exciton density of
. states in benzene.

0 L ! ! 1 1 L 1 I L !
-50 -45 -40 -35 -30 -25 -20 -15 -10 -05 O .05 .10
Ex10°3 eV

In Figs. 11 and 12 we display the F functions for
naphthalene and for benzene calculated from the
exciton density of states presented in Secs. III and IV.
The F function for naphthalene reveals the features of
a two-dimensional system. The extremum points are
characterized by logarithmic singularities while the
saddle points reveal step discontinuities in the F
function. The F function for benzene reveals a square-
root critical point at the minimum as expected from a
three-dimensional case. The other critical points for this
F function are closer to those expected from a three-
dimensional model. This is not surprising, in view of the
fact that only a single-pair interaction dominates the
triplet band structure in benzene.

Turning our attention to the calculation of the energy
levels, we should note that the density of state functions
and the resulting F functions were calculated using the
total electronic interaction. In the weak coupling limit,
which is obviously applicable to the cases under con-
sideration, the Green’s function has to be expressed in
terms of the density of states in the first vibronic band.
Our results should be thus modified by the inclusion of
a scaling factor for the energy which involves the proper
Franck-Condon vibrational overlap factor which for the
zero vibrational component in both cases is of the order
of 0.3.

Let S be the appropriate Franck—Condon vibrational
overlap, and let g7 (&) be the density of states in the
first vibronic band, the new energy scale is now denoted
by E. Obviously, the following relation holds between
the electronic density of states and the vibronic density
of states go” (E) = S—1go(E), where E=SE. Hence the
following relation is obtained F¥ (£) = S-1F(E), where
FV(E) is now the function (41) calculated for the
vibronic band. The solution of Eq. (15) is

1—UFV(E)=0
or alternatively
1—Uy/SF(E/S) =0.

! 1 1 1 !
A5 20 .25 30 35 40 45

In Figs. 13 and 14 we present the energy levels for a
single impurity. In the case of naphthalene an arbitrary
weak perturbation will lead to a bound state, in the
case of benzene bound states are observed only for
Uy<—5X10* eV while virtual states are expected for
Up~—3X10~%eV.

In view of the small triplet-exciton bandwidth,
moment expansion methods will be suitable for most
perturbation strengths which are of physical interest.
As previously demonstrated®?® the moment expansion
of the F function

0 Mm(l)
F(E)= IZ; e (42)
where
Mo®= / () go(E") dE' (43)

leads to the Nieman Robinson equation® in the limit of
deep traps

E=Urt(Mu®/Uf)+ (Mu®/Us)+-++, (44)

TastE ITI. Analytical critical points in the triplet exciton density
of states function for crystalline benzene.

E Nature of
ke ky ke (eV) critical point
0 27 0 —4.9X10~¢ Minimum
2% 2 0 —3.85X10~¢ Saddle point
2w 1.04r  0.97x  —0.81X10"5 Maximum
T T T +0.97X10"5  Saddle point
0 0.95x  0.97r 1.24X10-5 Minimum
0 0 4.1X10*  Saddle point
27 0 0 4.25X10* Maximum

2 B. Sommer and J. Jortner, J. Chem. Phys. 50, 822 (1969).
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F16. 11. The F(E) function for the
triplet-exciton band in naphthalene.
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where the center of gravity of the exciton band has been
chosen to be zero, so that M® =0, Equation (42) is
legitimate for deep traps, however, it also works quite
well for intermediate trap depths in view of some
mathematical artifacts which result from error cancel-
lation. These aspects of the problem have been recently
discussed by us.? In Table IV, we present the moments
of the density-of-states function for naphthalene and
benzene, calculated from the data of Figs.6 and 10. In
Table V we present the effect of the exciton band on
the impurity levels calculating E— U, from the exact
solution (41) and from the perturbation expansion.

(]

L
-58 -50 -42 -34

-26 -I18 -I0 -02 06 .4 .22 30 .38 46
Ex10°2 eV

.54 62 T0

VI. OFF-DIAGONAL MATRIX ELEMENTS OF THE
GREEN’S FUNCTION AND THE
IMPURITY PAIR PROBLEM

Up to this point our calculations have been relatively
simple as they involved only the diagonal matrix
elements of the Green’s function. We now turn our
attention to the interactions between two impurity
sites. In this case, the energy levels of the system are
determined by both the diagonal and the ofi-diagonal
matrix elements of the Green’s function. The simplest
example in this case involves two impurities each

430

-210

-2901-

-3 1 L Lol 1 ! ! !

L 1 L 1

5 L
-85 -.50 -45 -40 -35;-30 -25 -20 -5 -I0 -05

! ! ! 1 . ;
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Fic. 12. The F(E) function for the triplet-exciton band in benzene.
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Fic. 13. The localized energy levels of a
local impurity in naphthalene, Impurity
energy level is given relative to the center
of gravity of the exciton band. The solid

lines were calculated from Eq. (15).
The dots represent the results of the
perturbation treatment, which reveals
deviation from the exact solution close
to the band edge.
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characterized by a local perturbation. This problem is
of physical interest as it will provide information on
the nature of virtual coupling and triplet energy transfer
between isotopic impurity molecules. Following our
previous discussion it is expected that in the case of the
triplet states of an impurity pair, whereupon the inter-
molecular interactions are of short range, the level
splitting will be of the order of the bandwidth.

The diagonal perturbation matrix for the case of the
impurity pair (with the impurities located at the sites
0 and /) given by Eq. (18) with Us=U;. The energy
levels are obtained from the equation®

1=UFw(E) —UdFoi(E)

=0
1— UcFo(E)

(45)
—UsFo(E)

TaBiLe IV. Moments of the density-of-states function for
naphthalene and benzene.* (The normalization conditions for
goFE) implies, of course, that M@ =1.)

My® My,®

System (eV)? (eV)3
Naphthalene 2.24X10°¢ 2.34X107°
Benzene 4.64 X108 —9.8X10™1

& Zero energy was chosen at the center of gravity of the band, so that
M) =0,

# T, M. Lifschitz, Advan. Phys. 13, 485 (1964).
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and the two roots are obtained from the relations

Uo_l—Foo(E) :i:Fo,z(E) = 0, (45’)
where the real part of the matrix element Gy 2(E) is
related to matrix elements of the weighted density of
states function by the relation (8’). The off diagonal
elements gno.mg (where 0=#na and I=mg) are

Gnams(E)=N"1 ; E exp[ik+ (Raa— Rng) ]

X Ba; (k) Bg* (k)6 (E— E;(k)). (46)

F16. 14. Localized energy levels of a local impurity in benzene.
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This equation can now be rewritten in the form

mmmﬂHé;L[ﬁmﬁmr&m

X Ba;(K) Ba;* (K) dkadbydk..  (47)

In view of the relation (27) we can further simplify
our result, as the coefficients B.;(k) are independent of
the exciton wavevector. As in the calculation of the
density of exciton states, we have to calculate the
volume integrals in Eq. (47) over constant energies in
the Brillouin zone, however, now the integration
involves the modulation factor exp[#k+(Rna— Rams)].

The numerical calculations of the off-diagonal matrix
elements of the Green’s function have been performed
for the triplet excitons in naphthalene using the energy
relation (28). In Figs. 15 and 16 we present typical
results for the energy dependence of gnams( E) and for
the real part of the off-diagonal matrix elements of
the Green’s function.

To obtain further information on the energy splittings
when the perturbation strength exceeds the exciton
bandwidth, we shall utilize the moments expansion
method.

The off-diagonal matrix elements of the Green’s
function can be expanded in the form

o me ,mﬂ(l)

Fna.m E = Ty 48
d( ) Ig EH+L ( )

where the moments of the off-diagonal matrix elements
are:

Mons®= [ (E) gama(E)E
=N ; Z [E;(k) }B,;(k) Bg;(k)
X explik: (Rua— Rug). (49)

TaBLE V. The effect of the exciton band on the energy shifts
of the isotoiic impurity in naphthalene.» Energies E measured

460,

MIXED MOLECULAR CRYSTALS
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relative to the center of gravity of the exciton density of states.
5=E‘- Uo.
[
& 10t eV
Us 10t eV Moment expansion
10t eV Exact solution three moments
—250 —0.86 -0.86
—202.5 —1.05 -1.05
—155 —1.35 —1.35
—91.7 —2.20 —2.17
—44.2 —4.10 —3.87
—36.3 —4.79 —4.39
—28.3 -35.79 -—4.99
—20.4 ~7.32 —5.35
—12.5 —10.0 -2.9

* Band edge —19.8 X10~¢eV.

()

Fic. 15. Off-diagonal matrix elements of the weighted density-

of-states function for triplet-exciton band in naphthalene. (a)
Second molecule located at r. (b) Second molecule located at .

(c) Second molecule at a.
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TaBLE VI. Moments of the off-diagonal matrix elements of
the weighted density-of-state function for the triplet excitons in
naphthalene. Moment M ‘D is given in units of [ (electron volts)7]
I=1,2,3¢.,

Location of
impurity
molecule
relative to
reference
molecule MO M® M®
$(a+b) —6.89X10 —5.66X1077 —3.65X10*
b 4.11X10¢ 9.50X10~7 2.55X109
a 1.60x 1078 9.51 X107 1.17X10°®
(3a+3b) —1.57X108 —5.66X10~7 -—1.33X10~?

The nature of these moments deserves some further
comments. In view of Eq. (27) we can write for the
case of triplet states in naphthalene

Mo maP= (1/N) fk:, {LE:(k) '+ [Ea(k) T}

X exp[ik- (Rmx— Rma)] (493')
Mo mg®=(1/0N) Xk: {LE(k) ¥~ (k) 11}

X exp[ik: (Rna— Rumg) .

Thus in the case when the band structure is dominated
by short-range interactions the moments of the off-
diagonal weighted density-of-states function can be
obtained directly from the energy relation [Eq. (28)
for our case]. For triplet states in naphthalene we
obtain for M@, MO, M®.

Mo me®=Muamp®=0,

Mo ma®=ad(Rp+-b) +ad(R,—b),

Mo ms® = e[ R,—3(a+b) J+-ed[3(a+b) —R,]
+ed[R,—3(a—Db) ]

(49b)

(50)
(50a)

+ed[3(a—b)—R,]  asB, (50b)
Mrama®=2(Ry—2b) +2(2b—R,)
+26%6(R,—Ro)+¢2[R,— (a+b) ]
+e%(atb—R;,)+460(R,— Ro)
+2¢.28(R,—8) +2¢,8(R,— b)
+262(b—R,)+2¢,%5(a~R,), (50c)

Mna,mﬂ(z) = 26b6,—{5[Rp_ (%a—,—%b)]_l—a(%a_l_%b_ RP)
+o[Rpy—3(—a+d) Ho[—3(a—b) —R,]
+o[R,—3(a+b)]+o[3(a+Db)—R,]

+o[R,— (—3a+3b) J+6(—3a+3b—R;)}. (50d)

SOMMER AND J. JORTNER
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Frc. 16. Real part of the off-diagonal matrix element of the
Green’s function for the triplet exciton band in naphthalene. (a)
Second molecule located at 7. (b) Second molecule located at b.
(¢) Second molecule located at a.
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Fic. 17. Schematic representation of the energy levels of an impurity pair in crystalline naphthalene. The strength of ‘the local
potential of the impurities, Us, given in units of 10~ eV. The straight line x—corresponds to the single impurity level. O impurity
molecules at 0 and at }(¢+b). @ impurity molecules at 0 and at b. A impurity molecules at 0 and at ¢. A impurity molecules at 0
and at $a+3b. [] impurity molecules at 0 and at a-5. Note the effect of long-range triplet energy transfer for small values of U,.

These results involve the generalization of the
theoretical data of Philpott and Craig? for more than
a single molecule per unit cell. The zero moments
vanish as expected on the basis of the general arguments
previously presented.’®® The first moments are equal
to the pair interactions, while the higher moments are
determined by the sums of the products of the inter-
molecular coupling terms on the lattice sites which
connect the impurity molecules.

In Table VI, we present the relevant moments of
these off-diagonal matrix elements calculated from the
data presented in Fig. 15. The agreement with the results
previously obtained for the intermolecular interactions
(Table I) is excellent, serving as an adequate accuracy
check for our calculations of the off-diagonal matrix
elements of the Green’s function.

In view of the relation (50) one immediately realizes
that in the deep-trap limit the impurity-pair energy
levels are just E= Up=M o mg® thus the level splitting
is determined by the intermolecular pair interactions,
as expected. For shallow traps the general relation (45)
has to be applied. In Fig. 17 we present the energy
levels of the impurity pair calculated by using the off-
diagonal matrix elements of the Green’s functions.

These results provide a complete picture for virtual
coupling effects between guest molecules. In particular,
it is important to notice that in the limit of shallow
traps when Uj is comparable to or smaller than the
exciton bandwidth, long-range virtual coupling effects
are observed. In this case the splitting between the
impurity levels exceeds the intermolecular exciton pair
coupling terms.

VII. TRIPLET ENERGY TRAPPING IN
DOPED CRYSTALS

Energy trapping phenomena are often encountered
by the experimentalist as a real life difficulty. It is quite
easy to rationalize energy trapping by an impurity
molecule characterized by a negative perturbation
(Us<0) when the perturbation strength is sufficient to
lead to a bound state outside the band, although even
in the simple case of a localized perturbation, the
calculation of the trapping cross section is rather
tedious.” A more interesting case is provided by the
general impurity problem and the following questions
have to be answered:

(a) What is the effect of the change in the inter-
molecular coupling terms on the bound impurity state,
and under what conditions does an additional state
appear outside the band?

(b) What is the effect of the d terms on the appear-
ance of additional energy levels outside the band?

(c) Is it plausible that a general impurity char-
acterized by a positive perturbation strength (Uy>0)
will result in the appearance of a state located below the
band, which may act as an energy trap? A partial
answer for problem (a) was provided by Merrifield!
for a simple model system. In relation to problem (b)
Philpott and Craig! have pointed out that the inclusion
of the diagonal d matrix may result in the appearance
of states outside the band, (which they assumed to be
localized) and have conjectured that the number of
these states is equal to the rank of the d matrix.
Concerning problem (c) it has been experimentally
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TasLe VII. Changes in the intermolecular electron-exchange interactions (in electron volts) for substitutional impurities.

mop moy(a+b)  myi(—oa-b)
Host Guest U, (eV) 104 eV 100 eV 10t eV
Anthracene Naphthalene 0.81 —~8.16 +14.55 +13.46
Naphthalene Benzene 1.5 —8.43 +10.12 +5.98

demonstrated by Wolf e ¢l.?* that energy trapping
occurs in a doped molecular crystal even when the
impurity molecule cannot act as an energy trap. Our
motivation for the study of trapping of triplet excitons
is twofold. From the experimental point of view, the
availability of experimental results makes such a study
desirable while from the theoretical point of view the
availability of the matrix elements of the weighted
density of states function makes it possible to perform
model calculations on the energy levels of a general
impurity.

To obtain some qualitative information on the order
of magnitude of the matrix elements of the matrix m
[Eq. (14b)] we have performed calculations of the
intermolecular electron exchange interactions for two
model systems: benzene impurity in naphthalene and
naphthalene impurity in anthracene. In both cases it
was assumed that the guest molecule replaces a host
molecule substitutionally so that a center of inversion
in the doped crystal is still preserved. From the results
displayed in Table VII we conclude that the mq; terms
are of the order of the intermolecular electron-exchange
interactions in the pure crystal. The order of magnitude
of the dy; terms for triplet states can be roughly esti-
mated from the phosphorescence spectra of naphthalene
in durene (21355 cm™) and naphthalene in deutero
naphthalene (21209 c¢m™).%®* Thus the difference
between the environment shift D/ terms for the triplet

state of naphthalene in these two systems is about
146 cm~L. This result indicates that the individual do;
terms are of the order of 10-50 cm™L, however, their
relative signs are unknown.

We have performed model calculations on a general
impurity problem in crystalline naphthalene applying
the formalism presented in Sec. II and using the off-
diagonal elements of the Green’s function calculated in
Sec. VI. These results are presented in Tables VITI-X.
From these data we may conclude that

(a) When the diagonal perturbation strength, Us, is
of the order of the exciton bandwidth, the mo; above
may induce the appearance of an additional state
outside the band. The two levels thus produced differ
in one important respect. While for the impurity level
around U, (the localized state) the maximum excitation
amplitude is located on the impurity molecule (falling
off exponentially with the distance from the impurity
site), the second state reveals an appreciable spread of
the excitation energy around the impurity center. The
latter case can be considered as a large radius impurity
induced crystal state. It should be noted that when
m#~0 while d=0 the inversion symmetry for the
expansion coefficients around the impurity site is
preserved for both levels which appear outside the
exciton band.

(b) When U, is large the mo; terms alone (i.e., when
d=0) cannot induce the appearance of a second level

TasLe VIII. Model calculations for triplet states of an impurity in naphthalene induced by changes in
the intermolecular coupling terms. (m#0, d=0).

U, Moy Mo%(a"‘b) mo%(—a-{—b) Es E»
10 eV 10t eV 10t eV 10t eV 10teV Ur 10t eV [OM
250 —13.75 -25 —-25 —~24.8 1 266 1
1.63 —3X102
1.63 —3X10"2
1.88 —1.2X10*
1.88 —1.2X107!
1.88 —1,2X10
(2.02) (—1.2X1071)
250 —13.75 16.25 12.5 251.8 see see
—150 —25 23.75 31.2 37.2 —~165
50 —25 —25 —-25 98.9 —54.4
50 —21.25 12.5 12.5 62.1 vee

* Energy relative to the center of gravity of the exciton band. Band
edges: —19.8 X104 eV, 36 X107¢ eV,

b The expansion coefficients are given in the order U (0), U (b), U(—¥).
Uka+d)]. Ul-}a+0)]), UB(—c+b)], UB(+a—b).] These ex-

pansion coefficients are evaluated as the eigenvectors of the matrix
| 1=G°V | by the elimination method. The last value (given in parentheses)
is uncertain due to numerical errors.

% H. Port and H. C. Wolf, in The Triplet State. Proceedings of an Internationdl Symposium American University of Beirut, A. B.

Zahlan, Ed. (Cambridge University Press, London, 1967), p. 393.
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Tasre IX. Model calculations for triplet states of an impurity in naphthalene, induced by the changes in
level shifts for the host molecules, caused by the guest. (m=0, d=0).

Uy doy doayiasd) doass) ) po E» p o Es E» Es
(eV) 108 eV 1006V Y 10rev U@® 1006V 100V 10°eV  10¢eV 108V
—60X104  —25.5 25.5 25.5 40.1 —62.7  eee e e
25310~ —25.5 25.5 255 254 e e e
~60X10~ 125 —125 —125  —21.9 Z63.8  ene eee e e
253104 12.5 —12.5 —125  —21.4 2530 eer e e eae
s 125 —125 —125  —21.5
1 —~100 ~100 ~100 —111'8 1 —~108.8 —104.9 —97.3 —93.9 —91.2
2.5X10°
—~1.1X108
1.7%X108
—1.5%10°
22108
(1.3%107)
1 —75 25 -—-75 —704 eoa see ceos ses aee
1 -—75 50 —50 “ee ase “ee cew ses “ee ave
1 —-75 100 75 coe .o P s see aes ves
1 —75 50 50 58.3 sesn see s P P
1 —25 ~25 —25 _37.8 1 —36.1 —31.4 —27.2 —20.9 .
2.4X10°
—9.6X10?
1.6X10°
—~1.3%10°
2.0X10°
(4.1X10%)
1 50 75 -25 cae cee P “ee PR ces s
1 50 75 25 526 ess ven nee e ves
1 75 —75 -—50 775 PR P eoe ves 2o
1 75 - 50 —25 —201 e von ses P cen

8 Energy relative to the center of gravity of the exciton band. Band
edges: —19.8 X107teV, 36 X10~4eV,

outside the band and only a single localized level
appears at about Uy. Thus for the cases considered in
Table VII changes of intermolecular terms will not
result in the appearance of an X trap.®

(c) When the d terms are included, additional
states may appear outside the band, even for large
values of Us. The appearance of these states is deter-
mined by the absolute size and the relative signs of the
doj. These additional levels correspond to a large-radius
impurity-induced excited state. The expansion co-
efficients for the latter levels do not any more preserve
the inversion symmetry around the impurity site.

(d) To ascertain the effect of the m and 4 terms on
the local impurity level around U, we notice that the
first diagonal term in the determinant (4) is

1— GooUo— Z m()jGoj.
770

Hence in the case of a deep trap the energy level around

b The expansion coefficients are given in the order (see Table VIII) U (0),
U®), U(=b), Ulke+b)), Ul—}+b)], UB(—a+b)], Uia~d)].

U, will be affected by the my; terms and not by the dy;
terms. From this result it should not be inferred that
environmental shifts do not affect the localized im-
purity level in the deep-trap limit, as the term U,
includes also a diagonal contribution of the form
DJ/— D/ [Eq. (9)]. In the case of a shallow trap, the
problem has to be solved exactly and both terms con-
tribute to the energy of the level around Us.

VIII. CORRELATION WITH EXPERIMENT

The available experimental results on triplet states
in mixed molecular crystal were obtained from phos-
phorescence measurements. We now turn to the analysis
of the relevant data:

(a) The low-temperature phosphorescence spectrum
of naphthalene /% in naphthalene ds originates at
21 208.7 cm—1.%:% The center of gravity of the triplet

TasLE X. Model calculations for the general impurity problem in naphthalene (m0, d5<0).

Uy Mop Mo (atd) MO/ (=atb) dos doamerry  Bowi-atd) E» E» Ea
(eV) 104 eV 108 eV 104 eV 10t eV 10t eV 106 eV 10t eV 10t eV 10t eV
250104 —13.75 —25 -25 12.5 —12.5 —12.5 —31.25 -=22.6 265.4
250X 10—+ —13.75 12.5 12.5 12.5 —12.5 —12.5 -—21.5 .en 251.3
1 -12.5 12.5 6.25 125 —125 —125 ~122.4 eee vor

* Energy relative to the center of gravity of the exciton band. Band edges: —19.8 X104 eV, 36 X104 eV.
% M, A. El-Sayed, M. T. Wauk, and G. W, Robinson, Mol. Phys. 5, 205 (1962).
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Davydov components in crystalline naphthalene 4z is
located at ! 21 2084+2 cm™. Now assuming that the
isotopic substitution is characterized by the local
perturbation Up= Aepyest’ — Aenost’, We can set Ug= —97
cm™! estimated from the phosphorescence spectra of
naphthalene /43 and naphthalene dz in durene.?® The
impurity level can be estimated from the deep-trap
limit [Eq. (44)]

E=A5guest,_‘A€hostf+ (M00(2)S2/U0)1 (51)
where Mu® is the second moment of the exciton band
(calculated without Franck—Condon partition) while
S§=0.3. Using the data of Table IV, one gets that the
correction term is negligible, My®5*/ U=~ —0.2 cm™,
so that the center of gravity of the naphthalene exciton
band is expected at 21 208.7—0.2=21 208.5 cm™.
From the energy difference between the center of
gravity of the Davydov components and the center of
gravity of the exciton band the resonance interaction
over translationally equivalent molecules, I.,, can be
estimated. Hence for triplet naphthalene Joq=—0.5+£2
cm™. This result is consistent with the theoretical
calculations of electron exchange terms, 4, 7 (see Table
I) as one expects from theory that Teq= 26,S=-1cm™.
It should be noted that the U, term can also contain a
contribution of the order of a few cm™ from the
contribution of the term D,/ — D/ [Eq. (9") ],* however,
the experimental results are not sufficiently accurate to
establish this point.

(b) In view of the small triplet-exciton bandwidth
in crystalline benzene and naphthalene, the strength of
any local perturbation due to hydrogen—deuterium
isotopic substitution will exceed the triplet-exciton
bandwidth. Thus, for the case of naphthalene triplet
band Myp®5~15 cm™, so that a local perturbation
strength | Up | > 10 e will lead to Mp®.5%/| Uy | <0.1
and will thus correspond to a deep-trap limit.1?-2.2 Even
for the mildest isotopic substitution which corresponds
to the system CyH7D/CyHs and CioD7H/CyDs (where
| Us| ~15 cm™) one gets Mu®S%/| Uy | ~1 em™, so
that the optical studies will lead to information only
concerning the first moment of the exciton density of
states, while the information concerning the second
moment is on the verge of the experimental error.
Extremely interesting information can be obtained
from ¥C2C isotopic substitution. As reported by
Bernstein Colson and Tint¥ a ®C substitution in ben-
zene leads to a 3-cm™! shift in the excitation energy.
Spectroscopic studies of the triplet states of ®*C substi-
tuted guests in crystalline naphthalene will be of
considerable interest, as they will correspond to the
shallow and intermediate trap limits and will provide
supplementary information on the gross features of the

# S, D. Colson, J. Chem. Phys. 48, 3324 (1968).
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triplet-exciton band structure. It should be noted that
in this case the theoretical band structure implies that
no virtual scattering states will be observed, as the
band structure is dominated by two-dimensional inter-
actions, so that any perturbation will result in a
localized state 101124

(c) The interpretation of the Nieman and Robinson?
emission data for deuterated impurities in crystalline
benzene imposes a real puzzle. From these data it can
be inferred that benzene crystal is the only case where
it appears as if the calculation of the intermolecular
electron exchange interactions underestimate thetriplet-
exciton bandwidth by about one to two orders of
magnitude. As indicated from the results of Table IV,
one expects that Myp®@S~3X10~% cm~2 so that the
correction term in Eq. (51) arising from the effect of
the exciton band on the impurity level is negligible in
the deep trap limit.® The contribution of the changes in
the intermolecular coupling terms induced by isotopic
substitution are expected to be small (not exceeding
1-2 cm™) and their contribution to the impurity level
will be of the order of D _mq;Mo;®/ Uy so that for Uy~50
cm~?! the effect of the m; thus does not exceed 1 cm™.
The do; terms in the diagonal matrix d are also expected
to have a negligible effect on the energy of the localized
state in this case. This conclusion is confirmed by our
model calculations. The way out of this difficulty is to
consider now Eq. (9') and note that a diagonal contri-
bution to the perturbation strength U,, which deter-
mines the localized impurity level involves the term
Df—D!. The D¥ term is expected to be quite large
(—200 cm™) so that changes of the order of 5 cm™ in
this term induced by isotopic substitution are quite
reasonable. Thus it appears that the Nieman—Robinson
experiment did not determine the second moment of
the triplet-exciton density of states in the triplet state
of benzene, but rather monitored isotopic effects on the
environmental D, term. In the case of a deep trap
Eq. (51) should be rewritten (for the case of isotopic
substitution) in the form

F= Aeguent!+ D+ (M@ 52/ Us), (51"

when the energy E is now measured relative to the
ground state. The last correction term in Eq. (51') is
negligible. This result was previously obtained by
Colson.” Recently Colson has obtained extensive
experimental data on the singlet states of isotopic
impurities in crystalline benzene.” These results cor-
respond to the deep trap limit, and can be analyzed on
the basis of the assumptions that the impurity potential
is local.® These data provide then an estimate of the
first moment of the density of state functions for the
singlet-exciton band. However, slight deviations from
the simple model were attributed by Colson® to the
isotopic effect on the DV term.
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(d) The observation of the so-called “X traps” in
doped crystalline naphthalene”® can be qualitatively
rationalized in terms of the effect of the d matrix. A
necessary condition for the appearance of a state below
the band (when Uy>0) is that some of the diagonal
dy; terms are negative. As these terms are quite large
(in their absolute value), probably exceeding the
exciton bandwidth, this situation is plausible. These
qualitative arguments indicate that the pair inter-
action terms leading to solvent shift are responsible
for perturbing the exciton states of the host crystal,
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resulting in the splitting of additional levels outside the
band.

To sum up, it should be pointed out that the environ-
mental shift terms of the impurity and those induced
by the impurity, which were usually neglected by the
spectroscopists as these terms just determine the center
of gravity of the exciton band in the pure crystal, are
of considerable importance for the understanding of the
spectroscopy” and energy trapping effects in mixed
molecular crystals.
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We analyze experimental transport data for several gases as a function of density and temperature.
Necessary conditions are proposed to check if the data are consistent with a given density function at
fixed temperature. It is found that the theoretically suggested density function, which involves terms
logarithmic in the density, satisfies the conditions for the data examined in the temperature and pressure
ranges considered. Based on the analyses, first density coefficients of thermal conductivity and viscosity
are reported, together with an assessment of their precision, at reduced temperatures up to 7*=30.

I. INTRODUCTION

The theoretical description of the density-inde-
pendent transport coefficients of dilute gases is based on
the Chapman-Enskog solution of the Boltzmann equa-
tion. The success of this approach has prompted several
efforts in recent years to generalize the Boltzmann
equation so that the density dependence of the trans-
port coefficients can be taken into account. There are
rather special problems, however, which, despite many
developments, limit our ability to describe this density
dependence quantitatively.

Until recently! it was generally assumed that the
transport properties of a fluid, such as the thermal-
conductivity coefficient A, and the viscosity coefficient
1, could be expanded in a power series in the density p.

*This work was supported at the National Bureau of Stand-
ards by (for H. J. M. H. and R. D. McC.) the National Aero-
nautics and Space Administration, Office of Advanced Research
and Technology, Contract R-06-006-046, and the NBS Office of
Standard Reference Data program, and by (for J. V. S.) the
U.S. Air Force Systems Command, Arnold Engineering Develop-
ment Center, Tullahoma, Tenn., delivery order (40-600) 66-494.

1 For a recent survey of the status of the theory we refer to the
Boulder Lectures én Theoretical Physics, Kinetic Theory, W. E.
Brittin, Ed. (Gordon and Breach Science Publishers, Inc., New
York, 1967), Vol. 9C.

This is an obvious analogy with the power series repre-
sentation for the density dependence of the thermo-
dynamic properties of a fluid. For example, we have
for the equation of state

PV=RT+Bp+Co*++--. (1)

Thus one may expect to write
A=NoFMptRep?-- - -, (2a)
n="n0tmp+7ap*+ <. (2b)

Here Ao and 7o are the Chapman-Enskog zero-density
coefficients which depict the effect of binary collisions
only, and A1, m, &, etc., are the density coefficients
which account, among others, for the effect of ternary,
quadruple, and higher-order collisions. In this article
we are especially interested in the coefficients of the
linear term, Ay and g1, which are referred to as first den-
sity coefficients. For molecules interacting with a re-
pulsive potential, these first density coefficients can be
obtained theoretically by solving an integral equation
first derived by Choh and Uhlenbeck. Up to this time,
the appropriate triple-collision integrals have been
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