THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 50, NUMBER 9 1 MAY 1969

Electronic Relaxation in Large Molecules

MOoRDECHAT BIXON AND JOSHUA JORINER
Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel
(Received 22 July 1968)

In this paper we consider the problem of the radiative decay of electronically excited states of a large
molecule. We have considered both intramolecular vibronic coupling and the interaction with the radiation
field. Compound states for a system of decaying indistinguishable levels are constructed using the Fano
method. General expressions for the radiative decay rate are derived and applied for the statistical limit
of intramolecular vibronic coupling. On a time scale shorter than a typical intramolecular recurrence time
the radiative decay is exponential, and the reciprocal lifetime consists of independent contributions of
radiative and nonradiative components. The experimental implications of these results for large and medium-

size molecules are discussed.

I. INTRODUCTORY REMARKS

A quantum relaxation process in an atom, a mole-
cule, or a solid is conventionally treated by considering
the interaction between two (zero-order) parts of the
physical system: a dynamic part which consists of a
manifold of discrete energy levels, and a dissipative
part which is characterized by a continuous spectrum.
A relaxation process takes place when a compound
state of the total system decays into the continuum.
Familiar examples are the decay of nuclei, the radia-
tive decay of an atom or a molecule, atomic and molecu-
lar autoionization processes, molecular predissociation
processes, and unimolecular chemical dissociation reac-
tions, At the risk of triviality, let us point out that the
zero-order levels of the dynamic and of the dissipative
subsystems cannot be considered as proper eigenstates
of the physical system. As the zero-order levels of the
two subsystems are degenerate, extensive configuration
interaction is induced by the (small) interaction terms
which couple the dynamic and the dissipative parts,
The zero-order states of the physical system have no
real physical significance, and the physical properties
of the system such as the absorption coefficient, the
linewidth, and the relaxation time have to be derived
by a formalism which involves the compound states
of the system. These compound states are customarily
represented in terms of a superposition of zero-order
states. The choice of the basis set is merely a matter
of convenience. An important problem in this context
is how an atomic or molecular excited state is prepared
and under what circumstances it is meaningful to con-
sider the time development of such states. Obviously,
all time-dependent transitions between stationary mo-
lecular states are radiative in nature; however, pro-
vided that the excitation process produces the molecular
system in a mixed state consisting of superposition of
proper eigenstates of the system, a relaxation process
is expected to occur.

The existence of radiationless intramolecular elec-
tronic relaxation processes in isolated polyatomic mole-
cules is now well established for large molecules.! The

(11928')& Henry and M. Kasha, Ann. Rev. Phys. Chem. 19, 161

nuclear kinetic-energy operator has been shown®*7 to
provide the major interaction term which is responsi-
ble for the occurrence of radiationless transitions in
large molecules. Naturally, other intramolecular inter-
action terms may modify the mixing. Thus, for exam-
ple, spin—orbit interactions have to be included in the
case of mixing of quasidegenerate vibronic components
which correspond to two electronic states of different
multiplicity. In excited electronic states of polyatomic
molecules, the Born-Oppenheimer separability condi-
tions for electronic and nuclear motion break down in
view of intramolecular (vibronic, spin-orbit, etc.) cou-
pling between any zero-order vibronic level ¢, and a
dense manifold of (zero order) vibronic levels {e;)}
corresponding to a lower electronic state. The break-
down of the Born-Oppenheimer approximation pre-
vails for all excited states of polyatomic molecules, We
have recently considered a proper representation of
molecular eigenstates {,} in the absence of the radia-
tion field which are displayed as a superposition of
Born—Oppenheimer states. In the statistical limit of
intramolecular vibronic coupling when the density p
of vibronic states is sufficiently high to exceed the
reciprocal of the vibronic coupling term, v, between
the zero-order Born-Oppenheimer states, considerable
configuration mixing takes place, In this limit, when?

vp>>1 1)

inhomogenous line broadening is expected. The line-
width is given by”
(2)

The crucial role of the high density of states in the
manifold {¢;} was qualitatively discussed by Robinson.

The problem of intramolecular radiationless decay
in an isolated molecule was recently treated” by con-
sidering the time evolution of a coherently excited

A= 2xv?p.

1R. Kubo, Phys. Rev. 86, 929 (1952).

i G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962
(1962) ; 38, 1187 (1963).

¢S. H, Lin, J. Chem. Phys. 44, 3759 (1966).

§ W. Siebrand, J. Chem, Phys, 46, 440 (1967).

¢ G. W. Robinson, J. Chem, Phys. 47, 1967 (1967).

7M. Bixon and J. Jortner, J. Chem. Phys. 48, 715 (1968).

4061

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



4062

molecular state, which can be displayed as a time-
dependent superposition of the eigenstates of the mo-
lecular Hamiltonian, each of which is a time-independ-
ent superposition of Born-Oppenheimer states. In that
treatment, the radiative decay of the excited state was
not taken into account. In the statistical limit the
nonradiative decay of the amplitude of the zero-order
state is exponential, being characterized by the lifetime

r=h/2rsp. @3)

This situation is encountered provided that the ener-
getic criterion (1) is satisfied, and that the nonradiative
decay occurs on a time scale ¢, so that

tKHhp. 4

This relation establishes a recurrence time # for the
occurrence of the nonradiative intramolecular relaxa-
tion process, as for times longer than #ip the amplitude
of ¢, in the time-dependent wavefunction will increase
again. This definition of the recurrence time introduces
the notion of irreversibility for the intramolecular radi-
ationless process. In the case of large molecules, such
as naphthalene and anthracene, both the density of
states is sufficiently large and the recurrence time is
sufficiently long, so that intramolecular relaxation is ex-
pected to take place in the isolated molecule.

This treatment of radiationless transitions which con-
sidered a closed channel decaying into a single open
channel (of the dense vibronic manifold) is not com-
plete, as the radiative decay process has to be also
considered. The radiationless transition is not an iso-
lated decay process but should emerge from a unified
description of the radiative decay of the large molecule.
The radiative decay of a polyatomic molecule should
properly account for the decay of a large number of
closely spaced levels.® This radiative decay in the sta-
tistical limit was recently considered by Jortner and
Berry® by extending Kelly’s? treatment to account for
interference effects in the radiative decay of a large
number of closely spaced coherently excited molecular
eigenstates. Some approximations introduced because
of mathematical convenience in that treatment such
as a step-function approximation for the line shape of
the inhomogenously broadened line were later refined
by Chock.*® The crucial assumption introduced in that
work is that the decay of the amplitude of each molecu-
lar eigenstate, say, ¥a, can be described by an inde-
pendent radiative lifetime AT, [see Eq. (27), Ref. 5.
From studies of interference effects in the decay of

8J. Jortner and R. S. Berry, J. Chem. Phys. 48, 2757 (1968).

*R. L. Kelly, Phys. Rev. 147, 376 (1966).

¥ D, Chock, Ph.D. thesis, University of Chicago, 1968.

i1 (a) A solution of the two-level problem encountered in level
anticrossing was presented by K. E. Lassila, Phys. Rev. 135,
Al1218 (1964). (bs) The general form of the damping matrix for
a large number of closely spaced decaying levels was given by
M. Bixon, Y. Dotham, and J. Jortner, “Interference Effects in
the Radiative Decay of Coherently Excited States,” Mol. Phys.
(to be published).
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coherently excited states, it is apparent that the damp-
ing matrix is diagonal only for a system of distinguish-
able levels (i.e., states characterized by a different
symmetry, e.g., Zeeman components), while for the
case of indistinguishable levels (i.e., levels characterized
by the same symmetry and by the same polarization)
the application of a diagonal form for the damping
matrix leads to the violation of basic conservation
laws, and a more general treatment has to be applied.
Obviously, the radiative decay of the molecular eigen-
states, all characterized by the same polarization,
corresponds to the case of indistinguishable levels. It
is not surprising that the previous treatment by Jortner
and Berry® led to the following difficulties:

(a) The experimental radiative decay time Texpt: de-
termined by photon counting methods was obtained in

the form
Texpti = (T/R)n~ 4771, &)

where #=Ap is the number of levels in the half-width
of the inhomogenously broadened line and T is the
radiative width (or reciprocal lifetime) of the zero-
order state ¢, which can be determined from the inte-
grated absorption coefficient. The resulting “dilution”
of the radiative lifetime AT is inconsistent with the
conventional intuitive notion that

rexpti 1= (T/R)+771, 5"

(b) The quantum yield ¥ was obtained as the ratio
of the radiative and nonradiative widths:

Y= (T/R)r=T/A=Tp/n. (6)

This result is plausible for the limit AT (e.g., ¥<1).
However, when I'>A, which is a plausible case on
physical ground, one gets ¥> 1. This difficulty is simi-
lar to the violation of conservation laws encountered
in our previous work,'* when difficulties were encoun-
tered in the study of the decay of a set of indistinguish-
able levels using a diagonal form for the damping
matrix.

In the present work, we shall apply the general
methods previously obtained by us for the radiative
decay of indistinguishable levels."® The Fano method'*
can be applied for the treatment of the radiative decay
of a manifold of closely spaced levels."'* This radiative
decay problem can be handled by constructing com-
pound states of the system which are displayed as a
superposition of the zero-order molecular eigenstates
{¥a} and the radiative continuum. It should be pointed
out that in the presence of the radiation field the
molecular eigenstates {¥»} are no longer proper eigen-
states of the total Hamiltonian of the system, which
now includes a radiative interaction term. The time
evolution of the nonstationary excited states of the
system can be described either in terms of a super-

127J, Fano, Phys. Rev. 124, 1866 (1961).
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position of the Born~Oppenheimer states or alterna-
tively by the molecular eigenstates basis. The choice
of the basis set is just a matter of convenience. When
the Born-Oppenheimer basis is employed, the radiative
decay of the polyatomic molecule is represented in
terms of a closed channel (the zero-order state ¢,)
interacting with the vibronic manifold {¢;} and with
an open channel which consists of the radiation field
continuum, Only in the statistical limit can the mani-
fold {¢:} be considered as a second open channel. On
the other hand, when the molecular eigenstates basis
set is employed interference effects are introduced in
the formalism of the radiative decay process. In the
present treatment we shall adopt the molecular eigen-
states basis. By this choice we are able to derive a gen-
eral model for the radiative decay of a polyatomic
molecule characterized by an arbitrary level density p.
Our general results are applicable both for the statisti-
cal limit and in the case of a sparse distribution of
levels as encountered in triatomic molecules.’® Com-
pound states of the system will be constructed, and the
relevant decay processes will be considered. The present
treatment is based on the implicit assumption that
radiative level shifts can be neglected. Within this
approximate framework we are able to provide a self-
consistent solution to the problem of radiationless tran-
sitions in large molecules.

II. THE RADIATIVE DECAY OF ELECTRONIC
EXCITED STATES OF POLYATOMIC
MOLECULES

In the treatment of the general problem of the radi-
ative decay of an excited molecular level, one has to
consider both intramolecular vibronic coupling effects
and the interaction with the radiation field. The com-
plete Hamiltonian of the system, H, can be conveniently
decomposed into the following contributions:

H=Hg+HratHine (N

H,=Hgpo+H.,. (8)

The molecular Hamiltonian H,; consists of the Born-
Oppenheimer Hamiltonian Hgo and the intramolecular
coupling term H, arising from the nuclear kinetic-
energy operator, spin-orbit interactions, etc. Hyaq is
the Hamiltonian corresponding to the free radiation
field, and Hin, involves the radiation-matter inter-
action term.

The zero-order states of the system are taken to
correspond to the eigenstates of the Hamiltonian

Hy=Hpo+ H;aq, (9)

which correspond to molecular zero-order vibronic states
plus photons. Consider first the eigenstates {¢;} of Hpo
derived from conventional calculations carried out in

and

18 A. E. Douglas and K. P. Huber, Can. J. Phys. 43, 74 (1965).
Y A, E. Douglas, J. Chem. Phys. 45, 1007 (1966).
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the Born-Oppenheimer approximation. We can con-
sider the set {¢;} to include the vibronic state ¢,, the
vibronic manifold {¢:}, and the ground state ¢p. It is
assumed that the set of the Born—-Oppenheimer sets
is complete, so that

2 leer| =1.

alll

(10)

Now let E; be the energy corresponding to the Born—
Oppenheimer state ¢;; then we can write

Hyo= 2 let)Eileil, (11)
all
and
Hv= Hel_HBO- (12)

The zero-photon and one-photon eigenstates of Hyeq
will be denoted by | vac) and by | k, e), respectively,
which satisfy the eigenvalue equations Hyaq | vac)=0
and (H.a—#k) | k,e)=0. k is the photon wave-
number and e its polarization vector. The excited
zero-order states of the system will correspond to
zero-photon states, Without causing too much con-
fusion we can suppress the zero-photon states and
write o= | ¢,; vac) or ;== | ¢i; vac). The electronic
ground state of the system corresponds to the one-
photon states | ¢o; Kk, €). Provided that all the radiative
decay channels are characterized by the same polariza-
tion they can be unambiguously specified by their
energy E=fk, so that the zero-order states | ¢o; k, €)
can be then denoted by ¢r, where it is understood that
these continuum states are normalized per unit energy.

The matrix elements of the Hamiltonian between
the zero-order states are taken to be in the form

<¢a [ H [ ‘Pi>='”i; (‘Pa | H | ‘Po>=Ea:
(pi| H| ¢iy=Eibi, {ee|H|pp)=ES(E—E),
(¢e | H| op)=Wg, {ei| H | r)=0. (13)

The following simplifying assumptions are introduced
at this stage:

(a) Only the zero-order state ¢, carries oscillator
strength; furthermore, it is assumed that the coupling
¢s and ¢g is constant per unit energy range of the
radiation field continuum, so that Wg=W.

(b) The manifold {e;} is characterized by uniformly
spaced levels, with the separation e=p~!, where p is
the (constant) density of vibronic states. The zero-
order energies are

E;=E,+a+1e,

where o= E,— E.
(¢) The vibronic coupling matrix elements are con-
stant, so that v;=v for all 4.

i=0, +£1, £2, -+ (14)

We shall diagonalize the Hamiltonian in two stages.
First, we consider the construction of the proper mo-
lecular eigenstates. Following our previous procedure
the eigenstates of H.1 can be displayed as a superposi-
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tion of the quasidegenerate Born~Oppenheimer states.
Thus the excited molecular states {y»} are given in

the form
¥=alot 2 Bl (15)
with energies E.,.
The mixing coefficients are given in the form
| 2= [ (Ba— E,)* 07+ (m*/e) T (16)

The ground state of the molecular Hamiltonian can
be adequately represented by the Born-Oppenheimer
function ¢ Hence the two sets of functions {y,} and
{ex} are eigenfunctions of He+ Hrag. The Hamiltonian
matrix elements in the new representation are

n | H | Ym)=Enbrm, (17)
(Y| H| g)=Wn. (18)

The applications of Egs. (10) and (13) result in
Wa={u| o)l | H | p)=arW.  (18)

The eigenstates of the system can be displayed as a
superposition of the first-order states

Vp= T au(Elat f dE'Cs (E)op.  (19)

The mixing coefficients are obtained from the set of
equations

Eata(E)+ [ dE'WCx(E) = Ean(E),  (20)

> Wo*a,(E)+E'Cg (E)=ECp (E). (21)

n

Fano’s method® is now directly applicable; Eq. (21)
is formally solved,

Cg(E)=[(E—E) 4+ Z(E)o(E—E)] 3, Wo*a,(E).

(22)

The function Z(E) will be determined later. The sub-
stitution of Eq. (22) into Eq. (20) leads to the result

Entn(E)+ Y Fumtn(E)+Z(EYWs 2 Wn*an(E)

=Ea.(E), (23)

where
WaW,*
E-FE’

Fop=P / IE (24)

which corresponds to the radiative level shift terms.

The matrix elements W, and W,, are assumed to be
independent of the energy so that Fy,=0. Then we get

Z(E) W, Z Wm*am(E) = (E—En) d,.(E) . (25)

The multiplication of Eq. (25) by W,*/(E—E.,) fol-
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lowed by summation over # leads to
Z(B) X (Wa*Wo/ (E—En)] 2 Wo*am(E)

= X Wa*an(E), (26)

and hence the following expression for Z(E) is ob-

tained:

Z(E)= (LW [/ (E~E) N (2D
Now, using Eq. (25), we can express ,(E) with the
aid of the sum ), W,.*a,.(E) so that

a’n(E) =Z(E) [Wn/ (E'—En)] Z Wm*a’n(E) . (28)

This sum can be evaluated by applying the ortho-
normalization conditions for the set {yg}:

i lys)= T ar(B)an(E)+ [ dBCx*(B)Cr(B)

=5(E—E). (29)

Substituting Egs. (22) and (28) into Eq. (29), one
gets, after some manipulations,

| 3 Wa*en(E) P[r+2:(E)]
+ X ¥ a*(E) (\+[W W/ (E—E)]

X[Z(E)—~Z(E)]}an(E)=4(E—E). (30)
From this result one gets [using Eq. (25)]

| 3° Wa*a,(E) |2=[n*+Z*(E) T (31)
Using a representation in which the coefficients a,(E)
are real, Eqgs. (28) and (31) lead to the result

a,(E)=[W,/(E—E) J{Z(E)/[»+ZE)]}'*.  (32)

At this stage we have finally obtained all the necessary
information concerning the compound states of the
system, which can be displayed in the form

tr= T an(B)[arort T 00+ [ dECr (B)ew.
(33)

Only the coefficients of ¢, are of real interest, as only
this zero-order state does carry oscillator strength.
These coefficients are given by Egs. (16) and (32).
The representation (33) displays a resonance corre-
sponding to a superposition of the zero-order state ¢,
interacting with the discrete or quasicontinuous mani-
fold {¢;} and with the radiative continuum {eg}. The
manifold {¢;} does not interact with the {¢g} con-
tinuum. The case of a discrete state interacting with
two noninteracting continua was treated by Fano.?
One should notice that Eqs. (15) and (33) correspond
to two complementary descriptions of the proper eigen-
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states of the system, which can be displayed either in
terms of the Born-Oppenheimer basis set or by the
molecular eigenstates basis.

Consider now the “preparation” of the excited state.
We start with the system in the ground state, ¢p. At
a time /=0 an excitation process is applied. Without
loss of generality we can assume that the duration of
the perturbation is short on the time scale of the decay
of the excited state, so that the time-dependent per-
turbation T=(#) can be represented as a delta function
T=(¢)=T=5(t), where T= is a time-independent coupling
operator.

The resulting excited state can be then represented
as a superposition of the eigenstates Yx:

¥(=0)= [dB(e| T | Valz ()

The properties of this excited state can be further
elucidated by considering the completeness properties
of the basis set {{z} and of the Born-Oppenheimer
basis set, so that

[ B 4a) e ] = L oo + 2o es] =1.

Application of these relations leads to the simple result
Y (¢=0)={go | T* | ¢:)¢s. Thus the delta-function exci-
tation process ‘“‘prepares” the system in a metastable
state which just corresponds to the zero-order Born-
Oppenheimer state ¢, which carries oscillator strength
from the ground state. This resuit is not surprising
since the delta-function excitation process is equivalent
to the use of a white excitation spectrum. We have
thus established the connection between the present
treatment’ and the Robinson-Frosch-Siebrand-Lin ap-
proach.®*® In order to obtain a general expression for
the radiative decay of a polyatomic molecule we shall
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proceed using the representation (34) for the initial
excited state.

The transition element appearing in Eq. (34) is pro-
portional to the amplitude of the state ¢, in the eigen-
state ¥g. This amplitude, which we will call a,(E), is
obtained from Eq. (33) in the form

6, (E)={p: | &)= 2 au(E){p: | ¥n)= 2 on(E)as.
(35)

The resulting excited state which we normalize to unity
is therefore displayed in the form

2(1=0)= [ET arn(Bs.  (30)
The time development of this excited state is simply
obtained by incorporating the phase development of
the eigenstates into Eq. (36), and one gets

()= zﬂ:a,"fa,.(E)xl/E exp (- %Et) dE. (37)

We are now able to consider some properties of the
system which are amenable to experimental determina-
tion. The fluorescence rate is given by

P(ty=2n/R) | (oo | T | X(2)) [Pox,

where p; is the density of final states in the radiation
field and T corresponds to the transition operator. Let
T/# be the theoretical radiative decay probability of
the zero-order state ¢,, where the corresponding radia-
tive width is

(38)

T=2r|{po| T | ¢s) |2o0=27W" (39)

We shall also define the amplitude 4,(t) of the zero-
order ¢, in the excited state ¥(¢) at time ¢, so that

AW =G ¥0)= T [ an(E) e s exp (- 1 B1)

=33 a."a,'"/a,.(E)a,,.(E) exp (-— %Et) dE. (40)
With the aid of Eqs. (39) and (40) we set
P(t)=(T/R) | 4.(8) 1. (41)
Now, making use of Egs. (18a) and (32), we write
~ 2(E) (@) = (@) i
A.()=W* f 1 2(E) Z —E. ; 5. P (— z Et) dE. (42)

Z(E) is given by Eq. (27). The sum > » (a")?/ (E—E,) appearing in Eq. (42) can be evaluated using Eq. (16).
As we are interested in the limiting case defined by Eq. (1), we can write the relevant sum in the form

; L@/ (E—En)]= X {[(Ea—E.) /vP+ (m0?/e)?}(E—E,) ™

n

= 3 [n(e/o)™+ (x1¥/e) 1A (E— Esne) ™, (43)
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This summation may be performed using residue techniques, leading to the result

‘n 2 v2 2\2']-1 242
> ()2 _ v [(E-—E,)2+ (’1) ] [i cotgh — +cotg (’—' (E—E,))] . (44)
— E—E, € € L é €
Making use of the definition I'=27W? [Egs. (39) and (13)] and A=2r%"! [Eq. (2)], we can display the ampli-
tude 4,(¢) in the final form:

2 /‘ exp[— (¢/h) EtJdE
a1 J 14 (16/AT*) [ (E— E,)*+ 1A P{[2(E—E,) /A] cotgh (wA/2¢) +cotg[ (/€) (E— E,) ]}

With the aid of Eqs. (41) and (45) we have obtained a general equation for the radiative decay of an excited
state, where vibronic coupling leads to inhomogenous line broadening. It should be borne in mind that the ener-
getic criterion (1) is only a necessary condition for the statistical limit. The second condition is provided by the
definition of the time scale for the decay process [Eq. (4)]. We now proceed to demonstrate how our equations
can be simplified in the statistical limit, and what is the nature of the physical information pertaining to this
case of the radiative decay of large molecules.

A(t)=

. (45)

III. THE STATISTICAL LIMIT

We shall first make use again of Eq. (1) and set in Eq. (45) cotgh(#%?/e®) =1. Then we get the amplitude
equation in a somewhat simplified form:
2 (= exp[— (¢/h) Eot] exp[— (3/R) Et JdE

A= 13 | T (16/8%) (B38) % (2E/8) + cotel (r/O B (46)

The analytical evaluation of this Fourier transform in the general case is not possible. However, this integral
is manageable in the statistical limit when #<%/e [Eq. (4)]. It is interesting to note in passing that this restric-
tion implies that #/T<<%/e (e.g., [™>¢) and that r<<#/e [e.g., n>>1, see Eq. (3)]. Now the integral (46) contains
the function cotg(w/¢) E, which has a periodicity of € on the energy scale. We are interested in the Fourier trans-
form for a time scale, which is appreciably shorter than the recurrence time #i/e, whereupon the large changes in
the integral which occur over an energy range of the order of e are of minor importance. We may therefore average
the integrand over a period of the cotangent function, and perform the Fourier transformation over the resulting
averaged integrand. The proper average of the integrand is given in the form

dE'

42
(FE)u=e wrf., 14 (16/4°T?) (E*+18%)*[(2E/A) + cotg(n/) BT

(47)

Note that when the energy is changed by a value of order of ¢ only the function cotg[ (r/¢) E] changes appreci-
ably. By introducing the simple transformation y=tg[ (w/¢) E'], the integral (47) is transformed into
2 € [ [(2E/A)+yPdy
FE W= === [ . 48)
FED, . TTQ@E/&) 453+ U6/ AT B4 38°T) (1499 (

enl' 7

Making use of the result

/m (a+y)%dy _ 1+CHa? (49)

o L@+ (1) " 1+2C+a+C?’
one gets
2 1+ (4/AT) (B2 +5A%) +-4(E/ AY)
aT 14 (8/AT) (E*+14?) +4(E2/ A7) + (16/ AT?) (B*4-34%)

3(A+D)
B+3(a+D)*

(F(E) =
= (50)

The averaged integrand is a Lorentzian, and its Fourier transform can be readily evaluated,

A,(t) =exp (— i—:E’t) /:: (F(E) )w exp (— f_tEt) dE=exp (— éE,t) exp (— I‘—Z_%é t) . (51)
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The probability of locating the system in the state ¢,

is just
| 4:(2) [P=exp{—[(T+4)/R]4}, (52)

while the rate of fluorescence emission [Eq. (41)] is
given by

P())=(T/h) exp{—~[(T+A)/AJ}.  (53)

The fluorescence rate decays exponentially with an
apparent lifetime 7expt1, which is just

1/rexpu= (T/R)+(8/R), (54)

corresponding to the sum of the inverse radiative life-
time of the state ¢, (which can be evaluated from the
oscillator strength) and the inverse nonradiative life-
time r=7%/A [Eq. (3)].

The evaluation of the quantum yield is straight-
forward. The integrated fluorescence up to time ¢ is
just

P(l) = /O‘P(t')dt’= %A[l—exp (— E‘%ét)].

(55)

Under our normalization conditions the quantum yield
for emission is ¥=P( =), so that

Y=T/(T+A4). (56)

We have now recovered the well-known intuitive
kinetic expressions for the decay time and for the
quantum yield, which were extensively used in the past
by experimentalists,

IV. LINE SHAPES FOR SEVERAL RESONANCES

The results obtained in our previous work pertain-
ing to the observation of a Lorentzian line shape are
expected to hold for the case of an isolated resonance.
However, in some cases of physical interest, several
zero-order Born-Oppenheimer levels, all of which carry
oscillator strength, have to be considered. As an exam-
ple, consider several vibronic components of a second
excited singlet state, which are quasidegenerate with
the vibronic manifold corresponding to the first excited
singlet. If the widths of these states exceed their sepa-
ration, the line shapes are expected to reveal deviation
from a Lorentzian shape. In this situation of excessive
inhomogenous broadening, one expects that A=s100-
1000 cm™!, which overwhelms the radiative width T.
Hence, the radiative decay channel is of no importance.
In the case of somewhat lower nonradiative widths,
say A”71 cm™! (e.g., the first excited singlet state of
azulene), picosecond light pulses can bc applied to
study the nonradiative and the radiative decay (in
this case it is expected that ¥~10~4). For the limit of
overlapping resonances, the best method for obtaining
physical information on the system involves the study
of the line shapes in optical absorption. In our treat-
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ment of this problem we can disregard the radiative
decay and consider only the nature of intramolecular
vibronic coupling effects.

Our model system consists now of a number of zero-
order states ¢, with energies E, (s=1¢+-m) and which
carry oscillator strength, so that the matrix elements
Tor (s=1-++n) of the electric dipole moment are non-
vanishing for optical transitions from the ground state
to these states. These states are superimposed on a
dense manifold of vibronic states {¢;} which do not
carry oscillator strength. For simplicity, it will be as-
sumed again that the latter states are equally spaced,
and let e be the spacing between these levels.

We are interested in the static molecular problem,
so we consider the diagonalization of the molecular
Hamiltonian. The matrix elements between the zero-
order states are

(o | Hat| 06)=Eddur, (57)
(¢i | Ha1 | 05)=Eidij, (58)
(0o | Hot | i) =1tsi=1,, (59)

where we have again assumed that all the vibronic
coupling matrix elements v,; are equal. The molecular
eigenstates are expressed as a superposition of zero-
order states

¥n= :a."<p.+ i Bires. (60)

The secular equations which determine the values of
the expansion coefficients are

o " E,+ E Bi*,= E,,a.",
Y avt+BirEi=E.8:"

(61)
(62)

The last equation can be solved for 8;%, and one gets
Bi=(En—Ei)™ 2 o, (63)

Substituting this result in Eq. (61) yields
[0/ (EamE)] 2 ave 20 (Ba—E)=arn (64)
t v

Multiplication by v, and summation over s leads to the
result

Z [v2/(Es—E,) ] Z‘: a'y, E (E.—E) 1= Z o,
(65)
or, alternatively,
2 02/ (Bam—B)1=[ 22 (Ba—E)7T. (66)

The sum on the right-hand side of the equation is
already known, so that one gets

(Z:25) = < @-mpm

s Eu'"Ea s
=— (w/¢) cotg[ (x/€) (En—Eo)].

(67)
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We should notice in passing that the result also provides us with the new energy levels for the system. Now

we shall use the normalization condition for ¥, to get

Wl tnd=1= T b+ T [0 = (S aro? (T 5

The last summation on the rhs of Eq. (68) can be expressed in the form

1 2
Ei (En— Ei

Using the result in Eq. (67), we get

% (&

Eu"‘

)

E

) = :—:—2cosec2 (:—r (E,,—Eo)) =

The substitution of Eq. (67) and (70) in Eq. (68) leads to

(2 aroi)= [Z( “ ) F1+ T

E,—

Using Egs. (67) and (71), one gets from Eq. (64) the following expression for the coefficient a,":

(=

The transition amplitude from the ground state to the molecular eigenstate ¥, is given in the form

{eo l T { ¥n)= }': TO#(S’: l ¥n)=

The line shape is proportional to the square of the transition amplitude per unit energy interval:

L(En) =¢! | <‘P0 l T l ‘hy) l2=€_1 l za: Toscts™ l2=é—l [2 (

r) Tt t S ] @

7 |1 (7 (). (65)

(T v
FZe) [ et 8

25 2 2] 2
% Tuarr (73)

) 5 (T [ | S a]- o

Equation (74) provides a solution which is valid within the framework of our model for the line shapes of
several resonances. This equation can be applied for the analysis of the higher excited singlet states of large mole-
cules. To demonstrate a simple application of our results, consider the nonradiative decay of two identical reso-
nances, so we set m=2, y=w=9 and Toy=Tp="T. From Eq. (72) we now get

L(E)=

T2(2*/€) [2E— (Ey+ E,)

75
P[(E—E1)*+ (E— Ey)*]+ (E— E1){(E— E;)*+ (x%*/&) [2E~ (B + E2) I (75)
In the statistical limit 2rt*/e= A and 9<<A, and we now obtain the expression for the line shape,
—_ 2

This result reveals a “dip” at the energy E,=3(E1+ Es).
Equation (76) is formally analgous to the line-shape
equation obtained for the line shape in absorption in
a system consisting of two closely spaced indistinguish-
able levels, derived in our previous work, except that
in the latter case the radiative width (of each line)
replaces the nonradiative width appearing in Eq. (76).
This result clearly demonstrates the notion of non-
exponential nonradiative decay when the width of two
levels exceeds their spacing.

V. DISCUSSION

In the present paper we have considered the prob-
lem of the radiative decay of large molecules by the ap-

(E—Ey)(E—~E)* 4310 2E— (Bi+E) P

plication of the Fano configuration-interaction method,
by constructing compound states of the system con-
sisting of a superposition of molecular eigenstates and
radiation field states. An alternative way of approach-
ing the problem of the radiative decay of a large
number of indistinguishable levels involves the unitarity
relations method previously considered by us.'® This
method involves the solution of a differential equation
for the time-dependent amplitudes of the excited states.
As only the amplitudes of discrete zero photon states
are considered, the operator involved is not Herrmtlan,
but is still assumed to be linear. That treatment is
based on the general consequences of probability con-
servation. The procedure requires the diagonalization
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of the general (nondiagonal) damping matrix, and the
resulting complex eigenvalues and nonorthogonal eigen-
vectors can be then used to derive the radiative decay
rate and the quantum yield. Obviously, this general
method is much more complicated in real life than
the Fano method, which is applicable for the case
under consideration. In the appendix we present a
study of the decay, demonstrating the equivalence be-
tween the unitarity relations method and the Fano
scheme.

The main conclusions of the generalized theory of
radiationless transitions presented herein are:

(a) The experimental radiative decay in the statis-
tical limit is a pure exponential.

(b) The experimental radiative decay time deter-
mined on the time scale which is appreciably shorter
than the recurrence time #<<#/¢ consists of independent
contributions of nonradiative and radiative components,
50 that rexpei'= (A/f) + (T/4) . Inlarge molecules when
the recurrence time is exceedingly long, this result
establishes the decay law.

(c) The nonradiative decay component A/% in the
decay time, obtained for a manifold of molecular eigen-
states in an inhomogenously broadened line, corre-
sponds to a set of indistinguishable levels. We have
previously demonstrated that when the damping matrix
is nondiagonal, quantum beats are expected for the spa-
tially integrated rate of photon emission. The inter-
ference effects between a large number of closely spaced
indistinguishable levels leads to intramolecular inter-
ference effects and to the shortening of the radiative
lifetime in the statistical limit.

(d) The quantum yield in the statistical limit, ex-
perimentally determined on a time scale appreciably
shorter than the recurrence time, is ¥=T/(T+A).
The molecule does not, of course, act as a photon trap.
Rather, only a fraction ¥ of the absorbed photons can
be remitted on the time scale {</#i/e. In our model, the
fraction 1— Y will be emitted on the time scale £>#/e.
In real life, the fraction 1—¥ may be emitted on a
long time scale (but still shorter than #i/e) determined
by the finite small oscillator strength of the zero-order
states {e}. Such a situation is encountered in principle
for intersystem crossing. However, in this case external
collisional perturbations are expected to be dominant.
In the case of internal conversion the zero-order states
{e:} are not radiatively connected to ¢o; however, they
are radiatively connected to the higher vibronic levels
of the ground state, This situation is indeed encoun-
tered in naphthalene and anthracene when excitation
to the second excited singlet results in emission from
vibrationally excited levels of the first singlet to the
vibrationally excited ground state,

(e) Thelowest excited states of the same multiplicity
as the ground state of small molecules like SO,, NO,,
or CS, are quasidegenerate, with a relatively low
density of vibronic states belonging to the lower triplet
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and the ground state. However, because of favorable
Franck~Condon vibrational overlap factors (due to
changes in the molecular geometry in the excited
states), the vibronic coupling terms will be quite large.
In this case, vp>1, so that inhomogenous broadening
may occur. However, the recurrence time relative to
Al or to AA! will be extremely short. The formal
solution for the problem is obtained by Egs. (41) and
(45). Although for a time scale #<fi/e the decay is
given by Eq. (53), this feature cannot be experimen-
tally observed as in this case i~10712 sec. On the other
hand, for £>%/e, which is amenable to experimental
observation, it is expected that the radiative decay
consists of a sum of exponentials corresponding to the
separate molecular eigenstates and will be roughly of
the form exp[— (T'/An)t], so that the apparent life-
time is lengthened.

(f) The occurence of inhomogenous broadening in
moderately small molecules implies the redistribution
of the intensity of the zero-order components ¢,, which
induces the appearance of many new lines (correspond-
ing to all the molecular eigenstates ) into the spec-
trum. This feature was indeed observed in the high-
resolution spectrum of NQO,,"* where a large number of
irregularly spaced lines is observed. These general con-
clusions concur with the arguments presented by
Douglas.* This problem will be the subject of another
paper.!8
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APPENDIX: THE EQUIVALENCE OF THE FANO
METHOD AND THE UNITARITY
RELATIONS METHOD

In this appendix we derive the formal solution for
the radiative decay of a large number of coherently
excited states by using an alternative method. This
treatment is based on the solution of a linear differen-
tial equation or, alternatively, on the implications of
general conservation relations. This problem was dis-
cussed by us in a previous work.!'®

The time dependence of the amplitudes of the states
¥» in the excited states are governed by the differential
equation

(d/d)ya(t) =—1ihAa(l), (A1)
which has the solution
a(t) =S exp(—ihAtl)Sa(0), (A2)

where A is a diagonal matrix whose elements are the
eigenvalues of A. S is the matrix of the eigenvectors

% M. Bixon and J. Jortner, J. Chem. Phys, 50, 3284 (1969).
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of A. The elements of the matrix A are given in the

form
(A3)

(A4)

A n= "HPI+E1’
Yi=—%Tw.

In the present model I'iy=a,’a,’T, where I' is the
total transition probability computed for the zeroth-
order state ¢,. We have therefore the following struc-
ture for the matrix A:

Ay=—¥T (o)™ By,

Aw=—4iTala,V.

(AS5)
(A6)

The elements of § and the eigenvalues of A can be
found by solving the system of linear equations

> Awbe=XNb, (A7)
7

e ) o)l

After some rearrangements, one gets

L28 [N\ (1?2 Ae 2? A
_1‘”21‘ [(;) +(—e7)] =3 cotgh( 2 )+cotg(1r e)

or, bearing in mind the definition of A [Eq. (2)],

4 AN A b\
— e (A2EAZ) = 22 filne b
) AT (A24-14%) A cotgh( 26)+cotg(r€) .
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which in the present case has the form

—}iTa,! D a,Vby+Ebi= b1, (A8)
I
The formal solution for &, is
bi=—¥T[a,/ O\+E)] 2 aVbe.  (A9)
I

Substitution of this result in Eq. (A8) yields the fol-
lowing equation for A:

}T 7; [(a)Y/ (\+E)]=—1.

Substituting the expression for (a,')?, Eq. (16), into
(A10) gives
E,—E, 2\ [t 2
SR+ (T)] ovzm-- % 4w
1 € r

The summation is carried out by residue techniques
and results in the following equation:

(A10)

7r‘v2) ( TR )\)]—1 ( _1r2v2)
— W —i—+~-)| cotgl —i—
é € ¢ e

+[(2i 1%2) (i ’:if + 3)]_1 cotg(i "—;f)} . (A12)

(A13)

(A14)

This equation is equivalent to the equation for the poles of the integrand in Eq. (45). This result demonstrates the

equivalence of the two methods.

If the solutions to Eq. (Al14) are known, one has the complete matrix A. The elements of S are the vectors b
which can be evaluated from the knowledge of A and with the aid of the normalization condition } b2=1 and

Eq. (A9).
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