QUANTUM DYNAMICS OF TRIATOMIC MOLECULES

has a decided advantage since it requires less computer
storage and is faster. The results should be essentially
the same as found with the linear variation method.

It would be of some interest to compare the time
behavior of quantum wave packets and corresponding
classical probability density functions for this system,
as was done previously for anharmonic oscillators having
one degree of freedom.® We investigated this possibility,
and concluded that the classical calculation would be
prohibitively expensive since the classical trajectories of
each of the systems in the ensemble would each have to
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be computed by numerical integration of the equations
of motion.

Finally, we make an often neglected point aptly
illustrated by our calculations and brought out by the
referee. In treating multidimensional problems as direct
products of one- (or lower) dimensional problems, it is
very important to remove all possible off-diagonal terms
of the Hamiltonian in one (or lower) dimension before
forming the direct product representation. This is very
important for exact calculations and is often not done in
vibrational calculations.
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In this paper we consider the energy levels of dilute mixed crystals in the weak vibronic coupling limit
using the one-particle Green’s-function method. The perturbation Hamiltonian is treated explicitly with
reference to impurity molecules differing from the host molecules by isotopic substitution. The general
equations derived for the energy levels, for excitation amplitudes, and for the optical properties of the
mixed crystal are expressed in terms of the weighted density-of-states function of the pure crystal. This
treatment emphasizes the relation between the density of exciton states in the pure crystal and the optical
properties of mixed crystals. The nature of bound and virtual impurity states are considered, and new
experiments using the impurity-induced electronic-absorption method are suggested.

I. INTRODUCTION

The energy spectra of elementary excitations in pure
crystals are characterized by some simplifying features
arising from the translational symmetry of the crystal
lattice, which implies the existence and conservation
of the crystal quasimomentum 7k, so that the energy
spectrum is determined by a dispersion relation E(k).
The quantum states corresponding to the elementary
excitation can then be described by modulated plane
waves characterized by a wave vector k. The studies
of the theory of vibrational and electronic states of
ideal ordered solids rest on the one-particle approxima-
tion. Well-known examples are Bloch states in metals,
phonons in solids, spin waves in ferromagnetic crystals,
and exciton states in molecular crystals. The problem
of the electronic structure of disordered systems is
much more complicated, as in the absence of transla-
tional symmetry the crystal quasimomentum does not
appear as a good quantum number. The first example
for the application of perturbation techniques for the
study of the energy spectrum of a perturbed solid is
found in Rayleigh’s work! on the shifts in normal-mode
frequencies of such a system. Since then a vast amount
of work has been performed on the effect of impurities

! Lord Rayleigh, Theory of Sound (Dover Publications, Inc.,
New York, 1945), Vol. 1.

and disorder on lattice vibrations.>~® In view of the
correspondence between the theory of lattice vibrations
and the tight-binding approximation in the quantum
theory of solids, it is obvious that the same technique
can be applied for the study of the electronic states of
solids. Koster and Slater® studied the effect of im-
purities on the electronic states in a crystal, making
use of a Green’s-function method, this approach being
further extended for the case of electron traps*? and
dirty superconductors.’® Studies on spin waves in per-
turbed systems were carried out using similar meth-
ods,14.18

2 A. A. Maradudin, E. W, Montroll, and G. H. Weiss, Solid
State Physics, ¥. Seitz and D. Turnbull, Eds. (Academic Press
Inc., New York, 1963), Supplement 3.

3P. G. Dawber and R. J. Elliot, Proc. Roy. Soc. (London)
A273, 222 (1963).

¢ P. G. Dawler and R. J. Elliot, Proc. Phys. Soc. (London) 81,
453 (1963).

5 A. J. Sievers, A. A. Maradudin, and S. S. Jaswal, Phys. Rev.
1384, 272 (1965).

8 G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954).

7G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).

8 G. F. Koster, Phys. Rev. 95, 1436 (1954).

9 1. M. Lifschitz, Advan. Phys. 13, 485 (1964).

0Y. A. Izyumov, Advan. Phys, 14, 569 (1965).

1D, A. Gooding and B. Moser, Phys. Rev. A136, 1093 (1964).

12 A, M. Clogston, Phys. Rev, 125, 439 (1962).

% M. H. Cohen, Rev. Mod. Phys. 36, 243 (1964).

4T, Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).

Y. A. Izyumov and M. V. Medvedev, Zh. Eksp. Teor. Fiz.
48, 574, 1723 (1965) [Sov. Phys.—JETP 21, 381, 1155 (1965)].
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In the present work we consider the effect of impuri-
ties on the electronic spectra of molecular crystals of
organic molecules. It is well known that these systems
can be adequately described in terms of the extreme
tight-binding Frenkel exciton model.® Such studies
are of interest because of the following reasons:

(a) They provide information about the relation-
ship between the energy levels of a single molecule and
the crystal states which is complementary to that ob-
tained from the study of the spectra of pure crystals.
These studies will lead to further information concern-
ing intermolecular interactions in excited states.

(b) These studies are of interest as they provide in-
formation on the band structure of exciton bands. This
information is not obtained from optical studies of
pure crystals at low temperatures,'® where the optical
absorption from the ground state is restricted by the
quasimomentum selection rules.

(c) Energy-trapping effects, which are of interest
in the interpretation of energy-transfer phenomena in
biological systems, require the understanding of im-
purity levels.

(d) Some cooperative excitation effects in molecular
crystals, where two excitations on adjacent molecules
are initiated by a single photon absorption, can be
understood on the basis of the theory of impurity
states 1819

(e) Perhaps the most interesting problem in this
field involves the joint theoretical and experimental
study of heavily doped molecular crystals, to deter-
mine whether the Davydov splitting of the molecular
energy levels arises primarily from symmetry relations
or can arise from resonance coupling between randomly
distributed molecules.2? This problem is of general
interest in the understanding of the electronic structure
of disordered systems.

What is the experimental evidence for guest-host
interactions in molecular crystals? Exciton-trapping
effects have been known for a long time. In these
studies, the fluorescence emission induced by light ab-
sorbed by the host occurs preferentially from the guest
molecule, whenever its lowest electronic state lies lower
than the lowest host level. Recently, direct spectro-
scopic evidence has been obtained for guest-host inter-
actions in mixed crystals. From electron spin resonance
studies of triplet states of guest molecules in molecular

18 A, 8. Davydov, Usp. Fiz. Nauk. 82, 393 (1964) [Sov. Phys.—
Usp. 7, 145 (1964) 1.

1D, P. Craig and S. H. Walmsly, Physics and Chemistry of
the Organic Solid State, D. Fox and M. Labes, Eds. (Interscience
Publishers, Inc., New York, 1963), Vol. 1.

B E. I. Rashba, Zh. Eksp. Teor. Fiz. 50, 1064 (1966) [Sov.
Phys—JETP 23, 708 (1966)].

BV, L. Broude, E. I. Rashba, and E. F. Sheka, Phys. Status
Solidi 19, 395 (1967).

20 E. F. Sheka, Opt. Spectrosk. 10, 684 (1961) [Opt. Spectrosc.
10, 360 (1961)7.

V. L. Broude and E. I. Rashba, Fiz. Tverd. Tela. 3, 1941
(1961) [Sov. Phys.—Solid State 3, 1415 (1962)].
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crystals,”? it can be inferred that the guest-molecule
orientation is the same as that of the host molecule,
so that the guest molecule just displaces the host mole-
cule. The polarization ratios and the intensity enhance-
ment factors for the tetracene-anthracene system®—
provide evidence for off-resonance intermolecular inter-
actions. Extremely interesting studies were performed
on isotopically mixed crystals. The experimental stud-
ies of the phosphorescence of dilute mixed crystals
of benzene-deuterobenzene® and naphthalene-deutero-
naphthalene?® provide evidence for the role of intra-
molecular electron-exchange interactions in the triplet
exciton state. Extensive studies have been performed,
yielding a clear picture of intermolecular interactions
in singlet exciton states in mixed crystals of naph-
thalene and deuteronaphthalene and benzene-deutero-
benzene,®#- studied over a wide concentration range.
Fluorescence spectra of dilute isotopically mixed crys-
tals® provide further evidence for the delocalization
of the excitation energy in the vicinity of the impurity
center.

Some theoretical studies of impurity states in molecu-
lar crystals have included the examination of idealized
situations such as one-dimensional crystals®—2 and crys-
tals with only nearest-neighbor interactions.® Pertur-
bation techniques at various degrees of sophistication
have also been applied.3% Koster and Slater’s work®?
on the theory of the energy levels of an excess electron
in impure crystals is of immediate relevance for the
study of the energy levels of mixed crystals, and was
used by Merrifield,® by Philpott and Craig,®** and
by Ross and Body.*

Two limiting cases for guest-host interactions can
be immediately distinguished.’ In a pure crystal, the
( 2 Cj A. Hutchison and L. Magum, J. Chem. Phys. 32, 908

1961).
2 C, D. Akon and D. P, Craig, J. Chem. Phys. 41, 4000 (1965).
( L %} D. Akon and D. P. Craig, Trans. Faraday Soc. 63, 56
1967).
( 2 G). C. Nieman and G. W. Robinson, J. Chem. Phys. 38, 1928
1963).

26 M. A. El Sayed, G. C. Nieman, and G. W. Robinson, Mol.
Phys. 5, 205 (1962).

27V, L. Broude and M. N. Oupmenko, Opt. Spectrosk. 10,
634, (1961) [Opt. Spectrosc. 10, 333 (1961)7].

8 E. F, Sheka, Fiz. Tverd. Tela. 5, 2361 (1963) [Sov. Phys.—
Solid State 5, 1718 (1964)7].

2V, L. Broude, E. I. Rashba, and E. F. Sheka, (Dokl. Akad.
Nauk. SSSR 5, 1085 (1961) [Sov. Phys.—Dokl. 6, 718 (1962) 1.

V. L. Broude, A. I. Vlacenko, E. I. Rashba, and E. F. Sheka,
Fiz. Tverd. Tela. 7, 2094 (1965) [Sov. Phys.—Solid State 7,
1686 (1966) 7.

# R. E. Merrifield, J. Chem. Phys, 38, 920 (1963).

2D, P, Craig, Advan. Chem. Phys. 8, 27 (1965).

8 A, Henzenberg and A. Modinos, Biopolymers 2, 561 (1964).

4 E. I. Rashba, Opt. Spectrosk, 2, 568 (1957).

% E. I. Rashba, Fiz. Tverd. Tela. 4, 3301 (1962)[Sov. Phys.—
Solid State 4, 2417 (1963) 1.

3% R. G. Body and I. Ross, Australian J. Chem. 19, 1 (1966).

%S, Takeno, J. Chem. Phys. 44, 853 (1966).

#D. P, Craig and M. R. Philpott, Proc. Roy. Soc. (London)
A290, 583 (1966).

# D, P. Craig and M. R. Philpott, Proc. Roy. Soc. (London)
A290, 602 (1966).

®© D, P. Craig and M. R. Philpott, Proc. Roy. Soc. (London)
A293, 213 (1966).
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ELECTRONIC STATES OF MIXED MOLECULAR CRYSTALS

energy levels corresponding to a given molecular tran-
sition are spread into a band, the total bandwidth
being determined by the intermolecular coupling. In
dilute mixed crystals, the perturbation of the host en-
ergy levels by the impurity is expected to be negligibly
small. If the host exciton bandwidth is small or com-
parable to the energy difference between the transitions
of the guest and the host molecules, we are considering
the case of shallow traps, where the localized excitations
involving the guest and host molecules are nearly de-
generate and the host band structure has to be taken
into account. On the other hand, if the exciton band-
width is small compared to the host-guest energy sepa-
ration, we have to consider the limiting case of deep
traps, where only pairwise guest-host interactions need
be considered.

In the present paper, the theory of the excited states
of isotopically mixed crystals is presented, based on
the single-particle Green’s function for the excited state
of the mixed crystal, which is related to the Green’s
function for the pure crystal*** The latter is expressed
in terms of the density of states in the exciton band
of the pure crystal. A similar approach has been previ-
ously applied for the study of electron traps in solids*#
and the effect of impurities on phonon states®*® and
spin waves.14:18

Frenkel exciton states in molecular crystals were
extensively studied during the last 20 years.®" How-
ever, most of the studies of the optical properties con-
centrated on k=0 exciton states in an attempt to
understand the Davydov splittings and the polariza-
tion components in the optical spectrum. The under-
standing of exciton dynamics in molecular crystals re-
quires rather detailed information concerning the whole
exciton band structure. Some experimental information
concerning the exciton band structure can be obtained
from hot-band spectroscopy, that is, transitions from
a vibrational exciton band to an electronic exciton
band,*# and from electronic~vibrational cooperative
excitations.!®® The present study makes it possible to
derive theoretical and empirical data for the density of
states in the exciton band from the optical properties
of mixed crystals.

II. THE ELECTRONIC STATES OF
PURE CRYSTALS

In what follows, we shall briefly consider the con-
ventional theory of Frenkel exciton states within the
framework of the tight-binding Heitler-London ap-
proximation. The excited states of the crystal are repre-
sented by the eigenvalues of the Hamiltonian operator:

SC(]=H0‘—E0, (2.1)

4 E,. I. Rashba, Fiz. Tverd. Tela. 5, 1040 (1963) [Sov. Phys.—
Solid State 5, 757 (1963) 1.

28, D. Colson, R. Kopelman, and G. W. Robinson, J. Chem.
Phys. 47, 27 (1967).
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where

N o
Hy= > > H.4 D, Viems

nmel Q=] na<mf

(2.2)

is the Hamiltonian of a rigid crystal consisting of Ne
molecules with ¢ molecules per unit cell and Eq is the
crystal ground-state energy in first order. The zero-
order crystal states representing a localized excitation
on the molecule #a are represented in terms of an anti-
symmetrized product of the eigenfunctions ¢n..’ of the
free-molecule Hamiltonian H,,0:

ana":a‘iprm, H ¢mﬂ°-
mfna

(2.3)

It is assumed that the localized excitation functions
are orthogonal:

<aﬂaf ‘ an’a"”) = 61"1’61(1’6[]". (2.4)

Considering a single exciton band, the crystal wave-
functions are represented in terms of the coefficients
B,/ (k) which are the elements of the unitary trans-
formation matrix from the one-site exciton states ¢/ (k)
to the crystal states ¢/ (k) :

¥/ (k) = D B (k) (k)

oree].

=) 33 37 Baf () explle R ud, (29

ne=l o=

where j=1-++c corresponds to the o branches of the
exciton band. The crystal states E7/(k) for a single
electronic configuration are obtained by the diagonali-
zation of the energy matrix:

(¢ (k) | 3¢ | ¢/ (K) )= (AE/+ D)0t Lag? (k) (2.6)

for each k. Here AE/ is the free-molecule excitation
energy, D/ the first-order environmental shift. The ma-
trix || £ || is determined by the exciton transfer inte-
grals and can be represented in the general form

Lo’ (k)= D [/ Cpna®emg’ V nampond’ '¢ms°dr]

X expliks (Rua—Rag) ] (2.7)

The first-order theory has to be extended to take
into account crystal-field-induced mixing®# between
exciton states derived from different electronic con-
figurations. This effect is of importance for exciton
states characterized by a moderately large bandwidth
(i.e., the first singlet exciton states of naphthalene®
and of anthracene®%). When the exciton band struc-
ture is dominated by small intermolecular electron-

4 D, P. Craig, J. Chem. Soc. 1955, 2302.

#D, P. Craig and S. H, Walmsly, Mol. Phys. 4, 113 (1961).

% R, Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 43,
3336 (1965).
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exchange interactions® (as is the case for triplet states
of aromatic hydrocarbons), the effects of crystal-field
mixing are negligible. To proceed, the tight-binding
Hamiltonian [Eq. (1)] has to be diagonalized in the
basis set (k) or, alternatively, in ¢,/ (k), where now
{ f} refers to all the excited molecular states. The pure-
crystal wavefunctions, which are characterized by the
band quantum number g and the wavevector k, can
be displayed in the form

Yu(k) = Z Z,: cir ()Y (k)= X ; bast (k) o’ ().
(2.8)

The relation between the expansion coefficients in
Eq. (2.8) is

Cis*(k) = 2 bas*(k) [Baff (k) T*. (2.9)

The crystal energy levels E,(k) can be obtained by
diagonalization of the energy matrix

W/ (k) | 3¢ [ ¥, (k) )= ; 2_ Buj/ (k) Bgy"' (k)

X (¢! (k) | 3o | ¢ (k) ), (2.10)
where
(o (k) | 30 | ¢ (k) )= (AE/+D!) 8,808
+ Zm: (na’Ona’’ | Vaams | ome’oms”) (1—08157)
+Lag” (k). (2.11)

Several comments should be made at this point:

(a) For a crystal characterized by a center of sym-
metry the energy matrix is real, so that the expansion
coefficients can be chosen as real.!s

(b) For the case of a single electronic configuration,
the diagonal matrix elements £..// (k) are equal for all
values of a, only for the special directions of the k
vector perpendicular to or lying in a symmetry plane
of the crystal. Only then | B,y |2=const, independent
of k. In other cases, a complete solution of Eq. (2.6)
is necessary.¢

(¢) When crystal-field mixing is taken into account,
the energy matrix (2.10) can be simplified only for the
special directions of the k vector mentioned above.
Only in this case the energy matrix will be diagonal
in the branch index j. This simple case was previously
considered in the calculation of crystal-field mixing for
k=0 exciton states.

III. THE DENSITY OF STATES AND THE
GREEN’S FUNCTION

We shall now approach the problem of the density
of states of a molecular crystal by considering a general

4 J. Jortner, S. A. Rice, J. L. Katz, and S. Choi, J. Chem.
Phys. 42, 309 (1965).
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formalism which is applicable for both the pure and
the mixed crystal. Let 3C be the crystal Hamiltonian
characterized by eigenvalues E, and eigenfunctions .
The crystal wavefunctions are expanded in terms of
the localized excitations functions e..’ of the pure

crystal:
Ve=(N)72 30 32 3 Ue(naf) and.
n o I
The expansion coefficients form a unitary matrix,

CVODIDY ; Uc*(naf) Us (nof) =bw,  (3.2)

(1/N) 22 U (naf) Ue(n'o/f’) =8unBaadssr.  (3.3)

(3.1)

We introduce now a Green’s function G(E) for the
pure crystal defined by the symbolic equation

G(E) = (E—30)L.

This expression is conveniently expressed using the
localized excitation representation:

Z [Earm”aaa”aj‘f”"" (GC) naf,n"a"j”]

ntlallf1!

(3.4)

XG"IIallfll’nlalfl (E) =6nn'6aa’6ff'- (3-5)

Applying the orthogonality relations (3.2) and (3.3),
the Green’s function in the localized representation can
be displayed in the form

Gmxf,u'a’j’ (E) = E [Ux*(Mf) U.‘(n'a’f')/(E——E,‘) :l
(3.6)

Following Gooding and Moser,!! we introduce a weighted
density-of-states function for the crystal states:

gnasmrar s (E) = (1/N) Z UX(naf) Udn'o'f")6(E—E,).
(3.7

From the orthogonality relation (3.3) which ensures
the closure property of the basis functions, one gets

/ gnaf,n’a’f’(E) dE:ann’aaa’aff’- (3.8)

The density of states in the energy spectrum per one
molecule is given by

g(E)=(No)™* 3 6(E—E.). (3.9)

From Egs. (3.2) and (3.7) it immediately follows that
8(E) = (No)™ I 20 2 grasna(E) = (No) ™ Trg(E).
(3.10)

The Green’s function (3.6) can now be expressed in the
integral form
® gnas e p(E)AE

L (3.11)

Gnafm’a’f’ (E) =
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The general relationship between the density of states
and the Green’s function can be readily established by
considering the Green’s function with an imaginary
argument G (E—zet), where €7>0, i.e., €/—0. The ap-
plication of the well-known symbolic identity

(E—E'—ie")1=P(E— E)"'+ind(E—E') (3.12)

leads to the separation of the matrix elements of the
Green’s function into real and imaginary parts:
Gna_f,n'a'f’ (E_ i€+) =Fnaf,n’a'f’(E) +'i7rgnaf,n’a'f’,

(3.13)
where

oy () dE!

Fuagaury () =P [ SL2eI05 - (5.14)

whereupon the general relation between the density of
states and the Green’s function is

¢(E) = (aNo)= Im TrG (E—ie").  (3.15)

Turning our attention to the case of a pure crystal,
we set

Uiy (naf) = bas* (k) exp(ik:R,o), (3.16)
and the Green’s function is then given by
GPuafmrary(E) =N"1

% ; ) [bas* (k) J*[bar # (k) ] exp[ik: (Rurar—Raa) ]

E—E,(k) ’
(3.17)
while the weighted density of exciton states is
Eratnversr(B) =N 30 3 [bast () b (1) ]
M
Xexpliks (Ruar—Raa) IXS[E—E.(k)]. (3.18)
The density of exciton states is now given by
go(E) = (No)™ g 2 8[E—E,(k)]=Trg"(E).
B
(3.19)

A comment concerning the diagonal matrix elements
of the g*(E) matrix for the pure crystal is in order.
These are given in the form

Erasnar(E)=N"1Y, }; | bost(k) B[ E—E,(k)].

(3.18")

If the molecules in the unit cell are crystallograph-
ically inequivalent, nothing can be done, and it is
necessary to know both the &’s and the energy levels.
If, however, the molecules of the unit cell can be
mapped one to another by factor-group operations,
these expressions may be simplified. In this case one
may group together the wave vectors k/, k”/, - -+ in the
“star”” of k obtained by transforming k by the factor-

191

group operations; the corresponding energies E,(k),
E,(k), E, k") +-+ are equal for each p. We denote
o’a’’+++ the sites to which « is sent by the factor group

operation. Therefore we can write

Lrasnas(E)=N71 3 ; (| bas (k) |4 | bap (K') [*

+ | bagt (B") P+ - ) oL E— Eu(k) ]
=N 20 2 (| bag () "4 | bor s (k) [2

PRRTY
+ | barr st (k) 24+ ) XS[E—Eu(K)], (3.18")

where {k} represents the summation taking one wave
vector from each “star.” Now using the normalization
condition (19), we obtain

2 @rapnas(E) =N~ 25 2L o[ E-E,()]. (3.20)
»

Hence, for the pure crystal all the diagonal sums over
the excited states are independent of the site indices.
In the special case under consideration the density of
states can be expressed from the knowledge of the ma-
trix elements of g°(E) for a single site.

The normalization condition for the density of states
function is directly obtained from Eq. (3.8) in the
form

[ w(®)ar=y, (3:21)
where f in Eq. (3.21) stands for the number of exciton
bands.

IV. THE ELECTRONIC STATES OF MIXED
MOLECULAR CRYSTALS

We shall consider now the effect of substitutional
impurities on the excited states of a molecular crystal.
The physical situation which is of the greatest interest
for the study of shallow traps in molecular crystals
prevails when the guest and host molecules differ in
isotopic substitution. In this case the perturbation po-
tential can be described in terms of a localized pertur-
bation. Small differences in intermolecular coupling
terms arising from nuclear displacements in the two
isotopic molecules can be neglected, so that the local
perturbation strength will correspond to the differences
between the excitation energies of the isolated mole-
cule. One can adopt a general perturbation scheme and
expand the mixed-crystal wavefunctions in terms of
the electronic states of the pure crystal [Eq. (3.1)].

Let H be the perturbed lattice Hamiltonian. Now
define a Hamiltonian 3¢= H— Ej relative to the ground-
state energy By of the perturbed system, the mixed-
crystal wavefunctions ¥, [Eq. (3.1)] corresponding to
eigenvalues E,. The perturbation due to the impurities
is defined by V'=3C—30,.

To proceed with the generalized perturbation treat-
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ment we now consider the perturbation operator V in
the localized representation. The matrix V is of rank »,
where » is equal to the number of perturbed sites (i.e.,
number of impurities times number of sites over which
the perturbation is extended) multiplied by number of
bands under consideration. In order to establish a rela-
tionship between the states of the mixed and the pure
crystal we shall make use of the operator identity

G(E)=G*(E)+G(E)VG(E). (4.1)

Now defining (I—GV)~! as the inverse of the matrix
[I—-G*(E)V], we write

G(E)=[I-G*(E)V]G*(E) (4.2)
or, alternatively,
G(E)=GE)+GYE)V[I-G*E)VI'G'(E). (4.3)

These are the general expressions for the mixed-crystal
Green’s functions in terms of the pure-crystal Green’s
function. The matrix elements of the reciprocal matrix
in Eq. (A.2) can be expressed in terms of the comple-
mentary minors Craf,nsary 0f the matrix [I-G°(E)V]:

{[(I-G*(E)V]natnrary=Crratpr mag/ D(E), (4.4)
where
Cratmrary=(3=1) minor[ (I—G'WV) Juasnrary (4.5)
and
D(E) =det | I-GY(E)V|. (4.6)

It is now apparent that G(E) has poles at the un-
perturbed energies and at the energy E, where D(E)
is singular, so that the perturbed energy levels of inter-
est are obtained from the simple relation

D(E) =0. 4.7

Since the matrix V is of rank », the structure of the
matrix (I-G%) is characterized by »X» filled rows
and columns followed by diagonal terms of unity, and
the other elements being zero. Thus the determinant
D(E) has dimension of »X». This general result was
first established in the work of Koster and Slater.t To
proceed, we shall derive the general expression for the
density of states of the mixed crystal. From Egs. (4.3)
and (4.4) we obtain

T1G(E) =TrG'(E)

+X 2

naf nlalf! allalifl! gltalilgtiy

Gttt 51 Vinras g7 yrvas g

XCnlllalllflll'"IlallfllGonll'all'flll,naf (4.8)

Now making use of the algebraic identities

ZGO,“!,'”I“/!IG‘)"I/ralnf'/lmaf: - (d/dE) Gonlllal'ljlll,”lulfl

naf

(4.9)
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and
D(E)'_' Z (I_GUV)nafm'a'f’cna!.n’a’f’r (4°10)

nlalf!

one obtains

Z Z Z Z Gonafm’a’!’Vn’a’f’.n”a”f”

naf nlalf! nllallflr glliglttfir?
XCnIIlaIIIfIII'nlIal)fllGonlllalllfII""af= (dD/dE) . (4.11)

From Eqgs. (4.8)-(4.11) the general expression for the
perturbed density of states is obtained:

¢(E) = go(E) + (xNo)= Im(d/dE) InD(E—ie").
(4.12)

Three comments should be made at this point: (a) The
general result (4.12) is a direct consequence of Dyson’s
equation. (b) The general perturbation expansion
should in principle include all exciton bands. (c) The
correction term is of the order of (1/Ns). The general
relations thus derived can now be applied for the study
of electronic states of mixed crystals.

V. THE WEAK VIBRONIC COUPLING LIMIT

In order to study the effects isotopic impurities have
on the excited states of molecular crystals, the rigid-
lattice approximation has to be relaxed so that the
effect of intramolecular vibrations has to be considered.
The effect of shallow traps can be studied in the vicinity
of the first exciton band. The first exciton bands of
typical molecular crystals of organic molecules arising
from singlet excitation are characterized by Davydov
splittings'®"” (and therefore exciton bandwidths) of the
order of 50-500 cm™!, while triplet exciton bandwidths
are of the order # of 1-50 cm™!; thus in all these cases
of interest the separation between intramolecular vi-
brational levels exceeds the exciton bandwidth. It is
well known that when the intermolecular interactions
are small compared to the intramolecular electronic-
vibrational coupling, then the vibrational intramolec-
ular interactions are diagonalized before the inter-
molecular interaction terms. In this weak vibronic
coupling limit the molecular vibronic functions form
the basis for the diagonalization of the crystal Hamil-
tonian.

The perturbation Hamiltonian for the isotopically
doped crystal will be displayed in the form

V=35—30=(H—H)— (E—E), (5.1)

where B and E, correspond to the ground-state ener-
gies of the mixed crystal and of the pure crystal,
respectively.

The orthogonal molecular wavefunctions are taken
in the harmonic approximation

(g, Q) =¢™(g, Q) =¢™(@)x™(0Q), (5.2)

where ¢ and Q refer to the electronic and nuclear co-
ordinates, respectively, while m and r label the elec-
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tronic state and the vibrational state, respectively. ¢™
and x™ represent the electronic and vibrational wave-
function of a single molecule.

The molecular perturbation terms arise from the
changes in nuclear kinetic energy and have the simple
form®

H—Hy=~}% 2 25 [(1/M) ~ (1/M) }(9*/6Q*
=2t (53)

i}
where {p} represents the sites occupied by the guest
molecules, while ¢ runs over all the coordinates of the
substituted nuclei.
The molecular ground-state wavefunction of a guest
molecule can be represented in the form

= (9XX(Q). (5.4)

The electronic wavefunction is unaffected by isotopic
substitution, while the vibrational wavefunction ¥*(Q)
can be expanded in terms of the vibrational wave-
functions of the host molecules x*(Q):

Q)= T an(Q).

Defining the matrix elements between vibrational states
by

(5.5)

wip= (| ¢ 1 x%) (5.6)

and neglecting anharmonicity effects, the molecular
energy levels are obtained from the secular equation:

04— € 0 w02 voe
0 €01+w]1"—§ 0 e
Otum—g +or| =0,

wo2 0 (5.7

Assuming that the off-diagonal vibronic matrix ele-
ments are smaller than the energy separation between
vibronic levels,” the first-order ground-state energy is

0= Q0. (5.8)

In a similar way, for a molecular excited state of the
guest molecule we set

¢=g=¢()x™(Q).
The first-order correction to the vibronic level 7u is
V= (0 | 1| )= en—en, (5.10)

47 For the case of a one-dimensional oscillator the ﬁrst-order
correction term is weo=[ (M1—M3) /2M,](3hv,), where Fivg is the
oscillator frequency, while the exact solution will y1eld the energy
correction {[ (M))2— (M2)V?]/(M2)Y2} ($hive) ; setting M,/M,=
3, we get woo=0.25(3%vo), while the exact solution is 0. 29 (3hv).
Hence the off-diagonal matrix elements are of the order of 0.1weo.

(5.9)
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Hence the difference in the 00 excitation energy be-
tween the guest and the host molecules is

Ug= 00— wio- (5.11)
From Egs. (5.3) and (5.11) we define the perturba-

tion operator
V= Z (tp—woo) .
{r]

(5.12)

Now limiting our attention to vibronic bands con-
structed from a single electronic state, we shall expand
the crystal wavefunction in terms of the pure crystal

states:
= le 2 U, war,
B

where I=na is the site index. The matrix elements
of V are

(@ | V| av)= (Zli B1p017p[ Buwr
¥4

(5.13)

—wooamc']- (514)
Thus the perturbation operator is local, being diagonal
in the site index. However, the scrambling of vibronic
states is rather awkward. Provided that the off-diagonal
matrix elements of the perturbation operator are rela-
tively small compared to the diagonal terms (this is
just the approximation we have used in the derivation
of the first-order correction to the molecular energies),
the perturbation operator in the localized representa-
tion is just
(o | V]am')= ‘Z‘ 8100 0 [V — wo].  (5.15)
P

In the work of Philpott and Craig,® second-order cor-
rections to the excited state (but not the ground-state)
energy of the vibronic states were included, leading
essentially to the same result.

To demonstrate the simplicity of this result, we
notice that for the case of a single impurity

det | I—GV | =[1—Ge.0(E) (t00—w00) ]

X[1—=Gu,n(E) (sn—ww) ]X+++, (5.16)
where
w(ENdE
Gouou(E) = g—o'q""oj;—(_‘_E),__ ’ (5.17)

£%q.0s being the density of states in the pth vibronic
band. Thus the localized state of interest is obtained
from the equation

I-GOO.OO(E) ('UOO“COOO) = I—Goo,oo(E) Up=0. (518)

From this discussion we conclude that, provided the
off-diagonal matrix elements of the nuclear kinetic-
energy operator are small, the isotopic substitution
can be considered as a localized perturbation. The
Green’s function in the weak coupling case has to be
expressed in terms of the density of states in the first
vibronic band. The latter is related to the exciton band
structure, where all the electronic coupling terms are
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modified by the proper Franck—Condon vibrational
overlap factors.

VI. THE LOCALIZED PERTURBATION PROBLEM

We shall now consider the simplest case of a molecu-
lar crystal in the weak-coupling approximation per-
turbed by the introduction of a single isotopic molecule
at the lattice site Oa. Considering a single electronic
configuration, the perturbation operator in the local-
ized representation is displayed in the simple form

Viams= Ubnobmodes- (6.1)
The perturbed energy levels are obtained from the rela-
tion (4.7),

where
Go(E) =G%a0a(E).

It is of considerable interest to consider now the ex-
pression for the density of states of the perturbed
system. Using Eq. (4.12) we obtain

g(E)=g(E)
+ (#No) ™t Tm(d/dE) In[1— UGo(E—ie)].  (6.3)

Using Eqs. (3.13) and (3.20) we separate the Green’s
function for the pure crystal into real and imaginary
parts

Go(B—iet) =F(B)+ing(E),  (6.4)
F(E) =P/5%)f', (6.5)

and now go(E) represents the density of states in the
lowest exciton vibronic band. By substitution of Eq.
(6.4) into Eq. (6.3) one gets

g(E)=g(E)— (No)™
UsF'(E) go(E) +Uo[1— UoF (E) Jgo' (E)
[1-UF(E) P+[xUwg(E) P ’

(6.6)

where

F(E)=dF/dE;  g'(E)=dg/dE.

The correction to the density of states induced by the
presence of the impurity molecule is characterized by
a maximum in the vicinity of the energy E=E,, where
1—UF(E,) =0. This result is of course consistent with
Eq. (6.2). It is now easy to demonstrate that the cor-
rection term exhibits an approximate Lorentzian shape.
Expanding the function F(E) around E=E, in a power
series

F(E)=F(E,)+(E—E,)F(E)+---

and substituting in Eq. (6.6), we get
g(E) =g(E)+(xNo)"{Ty(E) /[(E—E,)*+To(E)?]},
(6.8)

6.7
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where the energy dependent bandwidth is given by
Ty(E)=—ng(E)/F'(E,); (6.9)

provided that To(E) varies slowly with the energy at
the vicinity of E, (which is the case when E, is suffi-
ciently removed from critical points in the band), the
line shape is expected to be an asymmetric Lorentzian.
As the resonance energy is determined by the strength
Uy of the local perturbation, we can distinguish three
cases of physical interest:

(a) For limiting small values of | Uy | (i.e., | Up| <
| Ue|) there will be no solution for the energy equation
(6.2}, and the change in the density of states is a mono-
tonic function of the energy in the range of the un-
perturbed band. This case is encountered only when
the exciton band structure is determined by three-
dimensional interactions.

(b) For intermediate values of | Uy | the resonance
energy is located within the energy range of the un-
perturbed exciton band. In this case a virtual scattering
state is observed, being characterized by a width of
~To(E,). Again this case is only encountered in practice
in the three-dimensional model.

(c) For sufficiently large values of | U, |, E, will be
located outside the unperturbed band. In this case the
correction to the density of states outside the band
reduces to a delta function, since

7 Hm[e/ (a2+ &) ]=8(x),
>0

so that outside the band
g(E)=(No)~8(E—E,). (6.10)

A single state is then separated from the top or from
the bottom of the exciton band, depending on the sign
of Uo.

In Fig. 1 we display the general form of the density
of states and the F function for a typical three-dimen-
sional case. The go(E) function presented herein pro-
vides a zero-order approximation for the density of
states in the first singlet exciton band of crystalline
naphthalene, being approximated by the shape of the
“hot” 1—0 band in this system.’® The bandwidth was
chosen to be 210 cm~.. The typical shape of the F
function which is derived from the empirical data does
not reveal some analytic singularities, which are com-
plementary to the Van Hove analytic singularities in
the density-of-states function. These will be discussed
in Sec. VII. However, these singular points are of minor
importance for the impurity level split from the band.
The F function reveals the critical values U, and the
critical values U; and U_ of the perturbation param-
eter leading to bound states above and below the band,
respectively. Localized states are expected to occur
when | U] > | U_| for a negative perturbation and
when | Ue| > | U, | for a positive perturbation. It will
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Fic. 1. The pure-crystal density-of-states function (curve 1) and the F(E) function for a three-dimensional case (see text). The
maximum and minimum values of F(E) correspond to (U:%)1and (U:™) 7, respectively, where Ut and U, correspond to the limiting
strengths of the perturbation (| Uy |<Us* or | Us~|) for which no solution of the energy equation can be found. The intersections of
the dashed lines (which correspond to the band edges) with F(E) yield the values of U, and U_. Virtual states will be observed when
| U~ < | U] < | U] (for Up<0) or when U <Us<U, (for Us>0). Bound states will occur when | Up | > | U~ |, (Us<0) or

Uy>Uy, (Ug>0).

be demonstrated in Sec. VII that for the one-dimen-
sional and the two-dimensional cases U,=« and U, =
U_=0, so that localized states are obseived for an
arbitrarily small strength of the perturbation. In the
three-dimensional case when | Uy | exceeds the critical
values U, or U_, the intersection of 1/U, with the F
curve leads then to two solutions, one corresponding
to a bound state E, outside the band while the second
corresponds to an antiresonance E,, within the band.
This is easily demonstrated by noting that the condi-
tion for observing a resonance is Ty>0, so that F'<0,
which is the case outside the band, while for the case
of an antiresonance, I'y<0, so that F'>0. Using similar
arguments for the case of a virtual level, a resonance
is observed in the region where F’<0 followed by an
antiresonance in the range where F/>0.

We have thus demonstrated that each bound im-
purity state outside the band or a virtual state within
the band is accompanied by an antiresonance within the
band. These antiresonances compensate for the appear-
ance of a localized or a virtual level in another region
of the energy spectrum. As the total number of states
in the system is invariant, and not affected by the
perturbation, it is thus apparent that the increase in
the density of states due to the formation of a bound
or of a virtual state should be accompanied by an anti-
resonance.

Using the above-mentioned density of states func-
tion for the pure crystal, we have calculated the energies
E, and the changes in the density of states for the dilute
mixed crystal. These results are displayed in Figs. 2
and 3.

250 o _o
o
200 i "
F1c. 2. The dependence of the energy
of a bound or virtual impurity state on _ 150
the strength, Uy, of the local perturba- ¢
tion calculated for the unperturbed ex- ©
citon band structure presented in Fig. 1. 1w 100~
The dashed curves represent the band
edges. Note that for this model, U, =75
cm ! while U_=—80 cm™. Virtual states o~
are ?bse:lvl(}d in 6:)h—e7 ;egion Upy=-—70-—80
cm™ and U= ecm™, ol __ O S
O . - =550
—
sol—t 0o vov )y by )1y
<20 -100 -80 -60 .40 -20 ) 20 4 60 80 100 (20
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Fic. 3. The change in the density-of-states functions in the
region of the exciton band induced by a local perturbation, cal-
culated from the band structure of Fig. 1. Curve 1: Up=-+120
cmt, Curve 2: Ug=+490 cm™. Curve 3: Up=-+60 cm™. Curve 4:
Up=+30cm™. Curves 1 and 2 correspond to bound states. Curve
3 represents a virtual state, while Curve 4 corresponds to the
limit of a very weak perturbation where no solutions to Eg.
(6.2) are available.

VII. DIMENSIONALITY CRITERION FOR THE
APPEARANCE OF LOCALIZED STATES

Following the discussion of the general rules for the
appearance of bound and virtual states, we shall now
consider some general rules for the appearance of local-
ized states in one-, two-, and three-dimensional systems.
In the case of Frenkel exciton states, one- and two-
dimensional systems are of real physical interest. Thus
exciton states in polymers are governed by interactions
in one dimension, while in some other cases, such as
triplet states of aromatic hydrocarbons, the intermolec-
ular interactions are determined by intermolecular inter-
actions in two dimensions.

The general rules for the splitting of the localized
state from the edge of the exciton band can be derived
from the study of the behavior of the function F near
the critical analytical points in the exciton band. To
bring up our physical understanding of this treatment
and to introduce some definitions and notation we shall
first consider the derivation of the nonanalytic con-
tribution to the density of states near the critical point
using the method of Fourier transforms of generalized
functions.2*

Consider a single exciton band consisting of j=1:++¢
branches. The density of states can be written as

w(E)= 3 2B~ E®)]

8 M. J. Lighthill, An Introduction to Fourier Analysis and
Geggﬁ)’alized Functions (Cambridge University Press, London,
1958),

SOMMER AND J.

JORTNER

Using the delta-function expansion
3()= (200 [ dac=

and the integral representation for the summation over
the Brillouin zone

1 %
NS [

where 7, is the volume of the unit cell, the density of
states can be displayed in the form

a(B) =20 [ darto(@), (1)
where
fl@) = i) (1)
and
@)= [ PRl @al, (13

where I=1 for the one-dimensional case, /=2 for the
two-dimensional case, and /=3 for the three-dimen-
sional case.

The singularities in go(E) are determined by the be-
havior of f(«) for large values of ¢, this contribution
being determined from the region where ViE;(k) =0.
Around these Van Hove singular points the exciton
energy can be expanded in power series

3

Ei(RK)=Ef+ D> Bo(kv—k0) (ky—ky). (7.4)

»,p/=l

Linear transformation of the coordinate systems in the
k space leads to the results

4
> Bow (bu—ky) (ky—hy©) = le, (7.5)

v, v fum

where v;=+1 or y,= — 1. The number of the negative
~v; values is referred to as the index of the critical point.
The nonanalytic contribution to the density of states
20°(E) can be displayed in the form

88 = () . [ daexpl—i( B~ E)ali (@),
(7.6)

where
Ay,
(2m) e

i@ =3 [[[ dodeten explia D). (1.1)

A is the Jacobian of the transformation from the set of
coordinates {(k,—k%,%)} to {¢;}. The integral in Eq.
(7.7) is now separable, being reduced to the product of

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ELECTRONIC STATES OF MIXED MOLECULAR CRYSTALS

three integrals, each being given by
[ dovexpliavsedr=(x/ L | % expl Grve) sgna,

(7.8)

where sgna=1 for a>0 and sgna= —1 for a<0. Hence
for the I-dimensional case

A explh(in) sena 3 v (19)
~—— ——— exp[ 1 (im) s . (7.
(2m)ile || pLatim) sgna &

Making use of the Fourier transforms of generalized
functions, the well-known expression for the density of
states near the analytical critical points is obtained.?

We shall now demonstrate that the function F is
characterized by the same types of critical points as
the density-of-states function. Considering again a sin-
gle exciton band, we write

B o) E T [B-B® T

E—F
(7.10)

Following the arguments applied for the derivation of
Eq. (3.20), we notice that the second equality holds
for all crystals where the molecules in the unit cell can
be transformed into each other by one of the factor-
group operations. Finally we write

fi*(a) =

F(E)=P

s &k ,
F(B) = ;P[m. (7.10")

Using the expression for Chaucy’s principal part

a0
Px1=—Im lim dagregda, (7.11)
0% Jp
we write
L]
F(E)=—Im / doeaf(a),  (1.12)
0
= O 1
q.(E)\ /
Fo (E) E
° 1 DIMENSION
E
F1c. 4. A schematic re- 120 2
presentation of Van Hove GolE) A
type critical analytical £
points in the density-of-
states function and in the Fo(E) 2 DIMENSIONS
F function for one-, two-, E
and three-dimensional sys- ¢
tems.
js0 1 2 3
E)] + 4
E
Fo(E) + 1 3DIMENSIONS
E
J
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where f(a) is given by Egs. (7.2) and (7.3), so that
the same function f(«) determines the behavior of both
the density of states and of the F function. As before,
the behavior of f(a) for large values of a determines
the behavior of F near the critical points. The contri-
bution to F will be split to an analytic term and a non-
analytic part Fe. Using Eqgs. (7.12), (7.3), and (7.7),
we can write

F(B)=—Im Y f " dor exp[—i(E~ Es)a] ¥ (a),
3 Y0

(7.13)
where f;*(a) is given by Eq. (7.5). Finally making use
of Heaviside’s step function k(a)* [defined by %(a) =0
for <0 and %(e) =1 for a>0], we write

F(B)=—Im Y / " dah(a)

Xexp[—i(E—E;)a] fi(a). (7.14)

Making use of the Fourier transforms of generalized
functions as displayed by Lighthill,®® the following re-
sults are obtained for the behavior of the F function
near the critical points:

For one dimension,

I=0 (minimum) :
Fe(E) = — | E=E.["*h(E.— E);

I=1 (maximum) :

F(E)x | E—E,[V*h(E—E,). (7.15a)
For two dimensions,
I=0 (minimum) :
Fe(E)<—In| E—E.|;
I=1 (saddle point):
Fo(E) = sgn(E—E.);
I=2 (maximum):
Fe(E)« In| E—E,]|. (7.15b)
For three dimensions,
I=0 (minimum) :
Fe(E) « | E-E.|""h(E.— E);
I=1 (saddle point Sy):
F(E) « | E—E, |\?h(E—E.);
I=2 (saddle point Ss) :
F*(E) « — | E~E, |V*h(E.— E);
I=3 (maximum) :
Fe(E) < — | E—E, |"*h(E—E,).  (7.15c)

Thus the singularities in the F function are of the
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same form as the Van Hove analytic singularities in
the density of states. These results are displayed in
Fig. 4.

We can now demonstrate that the Lifschitz rules® for
the behavior of the localized state energy near the band
edge arise from the singularity of the F function at
the edge. Let E? be the energy corresponding to the
band edge and let the localized state near the exciton
band edge be characterized by the energy ES—AE
(AE>0). The strength of the perturbation U, which
gives rise to this localized state is now determined from
Eq. (7.15) in the following way:

For the one-dimensional case,

a| AE [-12=1/U,. (7.16a)
For the two-dimensional case,
—BIn| AE| =1/U,. (7.16b)
For the three-dimensional case,
v | AE [¥2=1/T,, (7.16¢)

where a, 8, and v are constants determined by the
structure of the unit cell. Thus we obtain:

One dimension,

AE=a2Ug. (7.17a)
Two dimensions,
AE=exp(—1/8Uy). (7.17b)
Three dimensions,
AE=1/vUg (7.17¢)

Thus for the one- and two-dimensional cases any
arbitrary small perturbation will lead to a bound state.
This is a direct consequence from the divergence of
the F integral near the band edge. In the case of a
one-dimensional perturbation the localized state will
depart from the band edge quadratically in U,, while
in the case of the two-dimensional perturbation the
localized state will depart exponentially in —1/U,.
Virtuel states can be observed when three-dimensional
intermolecular interactions determine the band struc-
ture.

VIII. IMPURITY PAIRS

The discussion of the single impurity state in a mo-
lecular crystal is only applicable for limiting small
impurity concentrations of the order of 1/¢N, when
the interaction between different impurity sites can be
neglected. Such interactions are of considerable interest
in the study of energy migration between traps. These
virtual coupling effects between guest molecules have
been previously considered by McConnel® for electron
transfer, and by Robinson ef @l.?® and by Craig??® for
the case of electronic excitation transfer. The inter-

9 H. McConnel, J. Chem. Phys. 35, 508 (1961).
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action between two impurity sites, which are character-
ized by a sufficiently large trap depth, to yield localized
states will lead to two energy levels below or above the
band, the splitting of the levels being determined by
the off-diagonal matrix elements of the density-of-states
matrix, which in turn is determined by the intermolecu-
lar interactions. In the case of isotopically substituted
molecules such studies will provide an extremely useful
information on the nature of the intermolecular inter-
actions which determine the exciton bandwidth. In the
case of short-range (electron-exchange or charge-trans-
fer) interactions, the splitting of the energy levels of
the impurity pair is expected to be of the order of the
Davydov splitting. On the other hand, when the inter-
molecular interactions are dominated by long-range
dipole-dipole coupling, the splitting between these local-
ized states is expected to be appreciably smaller than
the Davydov splitting in the pure crystal. We are not
aware of any direct spectroscopic study of the impurity-
pair splitting in the case of electronic spectra of mo-
lecular crystals. The study of the infrared spectra of
HCl/DCI mixed crystals® provides an example for the
information which can be obtained for impurity cou-
pling in the case of deep traps.

Consider now an impurity pair, with the identical
isotopically substituted molecules being located at sites
0=0c and /=mB. Considering again a single exciton
band, the determinant D(E) takes the form

1— UOGO.O(E_‘ 'I:€+) h U(]G(],l(E'— 1:6+)
D(E—i¢*) =

b

—UoGl,o(E—ie"') 1—U0G1,1(E—'i6+)

(8.1)

where the off-diagonal matrix elements are given by
Eq. (3.13). The imaginary part of the determinant
leads to damping of the virtual states. The condition
for the formation of a pair of localized states is given by

I—UoFo,o(E) —UOFO.I(E)

=0. (8.2)

—UoFo,i(E)  1-UcFoo(E)

To derive a first-order approximation to the splitting
of the energy levels, we write for the solutions of Eq.
(8.2)

E=E+4F, (8.3)

where E, is the solution for the single impurity problem
satisfying Eq. (5.18). Power expansion of Fog and of
Fy,1 around E,, retaining the first-order terms in E’,
leads to the results
EI:Fo,z(Er)/[Fo,ol(Er) _Fﬂ.l’(Er)] (8.4a)
and
E'=—Fu,i(E) /[Foo (E)+Fo,/(E)].  (8.4b)

® G. L. Hiebert and D. F. Hornig, J. Chem. Phys. 20, 919
(1952).
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For large separations of the impurity centers, Fo, ;(E)
decays exponentially with the separation Ro—R,, and
in this limiting case the splitting is symmetrical around
E,, so that

E——)E,:EFo,l(E,) /Fo‘o’(Er) . (8.5)

IX. MOMENTS EXPANSION METHOD

The general expressions derived herein are applicable
for any strength of the perturbation, When the strength
of the perturbation considerably exceeds the bandwidth,
the general expressions reduce to simple perturbation
expressions. This was pointed out by Philpott and
Craig.® Such perturbation expressions were previously
applied by Robinson and Nieman® for the interpreta-
tion of the quasiresonance shifts of isotopic guest mole-
cules. We shall now demonstrate how the perturbation
expressions for the limit of deep traps are related to the
moments of the density-of-states function.

The function Foae.(E) for E values which are ap-
preciably larger than the energies E’ within the exciton
band can be expanded in the form

Mhoa 0’
Fraga(E)=E1 3 E";’ ,
I=0

where a0, is the ¢th moment of the exciton density-
of-states function:

(9.1)

Pt 00D = / dena(E) (B)IAE.  (9.2)

The closure relation (3.8) implies that #ge,0.©@ = 1. For
a crystal where the molecules in the unit cell can be
interchanged by factor-group operations, we can write
oa0a=g(E) and

Mo =N T 5 BT

For the limit of a deep trap, Egs. (8.1) and (8.2)
lead to

E= U0+1n0a,0a(1)+ [”h)a,ﬂaz(z) - (mOa ,Oa(l)) 2]/ Uqte-- 3
(9.4)

resulting in the ordinary perturbation expression.
For the case of deep traps the off-diagonal term takes
the limiting form

(9.3)

Moa,m
Foams(E) = E—llz " , (9.5)
i)

where the moments of the off-diagonal matrix element
are

P ] (E') goams(E') dE’
=N~ Ek 2. [E;(k) ] Baj(k) Bsi* (k)

Xexp[ik: (Ros—Rumg) ] (9:6)
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From¥YEq. (3.8) it follows that #ems®=0, so that
for large E values Foqmg(E)—tMoams®/E2 For deep
traps, the splitting of the energy levels for the impurity
pair can now be obtained from Eq. (8.5) by setting
Floaga(EYRo—1/E2 so that the energy levels are E~s
UpMpams®, the limiting splitting being determined
by the first moment of the off-diagonal matrix element.

X. ESTIMATES OF EXCITON BANDWIDTHS

For the case of an intermediate trap depth, when
the strength of the perturbation is comparable to the
exciton bandwidth, some useful information can be
obtained by considering the energy shifts of isotopic
impurities. Consider a case of a negative perturbation
Uy<0, so that the localized state is located at the
energy — | AE | below the exciton lowest band edge.
Let us approximate the exciton density of states by a
simple step function of width A; then Eq. (6.2) leads
to the simple relation

|AE|/(|AE|+8)=exp(—4/| Us]). (10.1)

This relation is expected to hold when | Uy | ~A. As
the available information concerning exciton band-
widths is rather meager, such estimates are of interest.
The experimental results of Sheka® are available for
the CsDyo impurity in CsHy. The 2=0 component is
located at the bottom of the band.® From these data
one gets AE=—44 cm™, while Uy=—115 cm119:#
From Eq. (10.1) one gets A=190 cm™? for the width
of the first singlet exciton band in crystalline naphtha-
lene. This result is in good agreement with the ex-
perimental data based on hot-band spectra and an
electronic-vibrational cooperative excitation in crystal-
line naphthalene, which lead to an estimate of 150-200
cm™! for the bandwidth.” In the case of CgHg impurity
in CeDg Uy=—200 cm™, as inferred by Broude.s*
Nieman and Robinson® observed the impurity band
of CeH, at 37.853 cm. The first Davydov component
of crystalline CgHj is located at 37.803 cm1,% corre-
sponding to the bottom of the singlet exciton band as
inferred from the emission data of Vatulev ef a5 The
bottom of the exciton band in C¢Ds is reported to be
located at 38024 cm™, although this result is not
certain in view of the presence of CsD;H impurity in
the sample. Using these data, AE=—171 cm™ and
Eq. (10.1) yields A=80 cm™. This estimate indicates
that the Au Davydov component in crystalline benzene
(CeHs), which is symmetry forbidden, is expected to
be located at energy lower than 37 8054-80=37 885
cm™?, that is about 40 cm™ above the C polarized
component. The present treatment of the “quasireso-
nance shifts”® in Robinson’s terminology is self-con-

V. L. Broude, Usp. Fiz. Nauk. 79, 577 (1961) [Sov. Phys.—
Usp 4, 584 (1962)71.

#V. N. Vatulev, N, I. Sheremet, and T. M. Shpak, Opt.

Spectrosc. 12, 315 (1963).
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sistent and more general than the previous perturbation

expansions applied by Nieman and Robinson.

XI. EXPANSION COEFFICIENTS

We shall now turn our attention to the expansion
coefficients U,(na) which determine to what extent
the electronic excitation is localized on the impurity
site. For a weak local perturbation (relative to the
exciton bandwidth) appreciable delocalization of the
electronic excitation around the impurity center occurs,
so that the Jocalized states of the mixed crystal can be
considered as quasidelocalized excited states. These ex-
pansion coefficients were used by Craig and Philpott®*—%
for the study of optical transition strengths. For the
case of a system consisting of a single impurity at the
site O (or rather a dilute mixed crystal), the ampli-
tude of the expansion coefficient U,(Ox) is amenable
to direct experimental observation by the study of the
fluorescence spectrum of the mixed crystal.® Comple-
mentary experimental information concerning this ex-
pansion coefficient can be obtained from the cooperative
electronic—vibrational excitations in the pure crystal 1818

Consider a crystal with the impurity molecules local-
ized at the lattice sites {p} (where the impurity sites
are p=mf) ; the wavefunction in the localized basis set
is given in the form ¥= Y, U(})a; (where all the
lattice sites are denoted by /=#na). The wavefunction
can be displayed in the homogeneous Fredholm repre-
sentation:

¥=G"Vy, (11.1)

where again G=(E—3C)*. Using the orthogonality
relation (2.4), the following equation immediately re-
sults for the expansion coefficients:

Zl) U)oy = Zl: (ar |GV | a)U). (11.2)

Using the localized representation for the perturbation
operator [Eq. (5.15)7, one gets the general result

UW) =", g‘cy.po(m Up).  (11.3)

This equation provides a starting point for the theo-
retical studies of heavily doped crystals.

Considering again low impurity concentration limit,
for the case of a single impurity at the site =0, Eq.
(11.3) reduces to the well-known result

U(l') = UoGz'.oo(E) U(O) .

The normalization condition (3.2) and the algebraic
identity (4.9) lead to the result

1= 2| UW) P=U | U©) [ 22| GrX(E) I

1 i

=U¢ | U(0) PL—(d/dE)Gu’(E) ], (11.4)
s0 that for a localized impurity state
U(0)=[Up | —F'(E,) |\ (11.5)

SOMMER AND J. JORTNER

and
U()=Go,1°(E,)/ | —F'(E,) 2. (11.6)

In the limit of a deep trap we can apply the mo-
ments expansion method, which leads to the results
U(0)—1and U(¥')—my,»® /Uy, in agreement with per-
turbation theory.

It is interesting to point out that the step-function
approximation employed in Sec. X for the estimate
of the exciton bandwidth provides also useful semi-
quantitative information concerning the expansion co-
efficients. In this approximation we can write

F(E)=A"W[|AE|/(|AE|+4)], (11.7)

so that
F(E)=[|AE|(|AE|+A)T  (11.8)

an
| U0) = | AE| (| AE| +4)/Us.

For the case of CsHjq impurity in CsDyg, Up= —115 cm™!
and AE=—44 sm™%; using A=190 cm™, we calcu-
late | U(0) [2=0.89, in excellent agreement with the
experimental value® | U/(0) {2=0.9 obtained from the
emission spectrum of the mixed crystal. For the CgHy,
impurity in 8-CioHyDy, Uy=—78 co 13 and AE=19
cm1,% leading to | U(0) [2=0.61, which is consistent
with the experimental value® of | U(0) [2=0.5. Similar
data for the mixed benzene crystals will be of consider-
able interest, as they will provide complementary in-
formation concerning the exciton bandwidth in crystal-
line benzene.

XII. OPTICAL PROPERTIES

The theoretical study of mixed molecular crystals
originated in Rashba’s work on the polarization ratio
for shallow traps. Craig and Philpott®® % and Ross®
calculated the transition moments for optical excitation
using the expansion coefficients for the impurity states,
In order to consider both localized and virtual impurity
states on the same footing, it is useful to treat the
optical properties of dilute mixed crystals by consider-
ing the susceptibility tensor || Sy, || induced by the
electromagnetic-field perturbation, which can be dis-
played in the form®-5

S\(E) = o | nG(E—iet)p, [ o),  (12.1)

where s is the ground-state wavefunction and uy (A=1,
2, 3) corresponds to the components of the electric
dipole operator u. The dipole strength per unit energy®

AE)= 2| (ol ulv) B(E—E) (12.2)

will be given by
d(E)=7"1Im ), Su(E)=r1ImTrS. (12.3)
Y

% R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
% R. A. Harris, J. Chem. Phys. 39, 978 (1963).

( ‘9‘6 A. A, Maradudin and R. F. Wallis, Phys. Rev. 123, 777
1961).
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Considering a single exciton band and making use of
the localized representation, we write

H=rm T T

X (Gna | G(E—iet) | amg )y (12.4)
The one-molecule transition moments are
pa={ol vlan’) and p=(bo| ¥|ons)

Considering a crystal with an impurity molecule at
the site Oy, the Green’s function is obtained from Eq.
(4.3) in the form

GM.MB(E) = G%,ms(E)
+[UeGona,0v(E) Gy.ms(E) I/[1— UsGooy.01(E) 1.

(12.5)
We thus get

d(E)=d(E)++1Im 3 3, ; §: Ve

X{Uo/[1— UsGo( E—1€") ]} Gna0y(E—1€¥)

X Gy me(E—ict) ps, (12.6)
where the dipole strength for the pure crystal is just
PE)=rIm 3 X 20 3 eGramp(E—ic!) s

' (12.7)

Making use of the general relation (3.13) which leads
to the sum rules

2 Prams(E)= 2 Baj(0) Bs,(0)3[E—E;(0)]  (12.8)
and

2 Fuams(E)= 22 Baj(0) Bi(0) /[LE— E;(0)], (12.9)

we immediately obtain the well-known result
®(E)=N 2 M(j)-M(5)LE—E;(0)], (12.10)
i

where the transition moments for the pure crystal (for
each exciton branch) are

M(j)= 2 ¥aBai(0).

Turning our attention to Eq. (12.6), we can make
use of Eqs. (12.8) and (12.9) so that the second term
in (12.6) can be represented as a product of a line-
shape function L(E) and a term T'(E) determined by
the transition moments and the k=0 energy levels of
the unperturbed crystal,

d(E)=d(E)+L(E)T(E),

(12.11)

(12.12)
where

T(E)= ZM(j)/[E-E(0)]
X T M(7)/[E-Ex(0)] (12.13)
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and
2(E) Uy
[1— UF(E) P+ =2Usg(E)*

Making use of the simple power expansion (6.7), we
get the line function in the form of an asymmetric
Lorentzian:

L(E)=

(12.14)

go(Er) — (E—Ey) g’ (Er)

L =GB P (&) PO reo B U
(12.15)
Using the definition (6.9) we get
L(E)= | To(E) | (12.16)

| F/(E,) | [(B—E)*+To(E)4]

For the case of a localized impurity state the line-shape
function outside the band reduces to a delta function,
and one obtains in that region

d(E)=[T(E)/ | F'(E) | B(E—E,). (12.17)

This leads immediately to the Rasba result®# for
the anomalous polarization ratio P(i/7):

LP(3/7) Jpueat,
=[P(3/f) Joost{ [Er— E,(0) J/[E— Ec(0) ]} (12.18)

The absolute intensity of the intense components
of the adsorption band will be determined by
{F'(E,)[E,— E1(0) ]}, where E;(0) is the energy
of the k=0 component of the pure crystal which is
closest-lying to the band edge l%)c". From the general
relation (7.15) for the three-dimensional case, F'(E,) «
| E,—EJ® |2, so that the absolute intensity is propor-
tional to (E,—EMY[E,—E;(0) ]2 If the k=0 state
is located at the bottom of the band, which is the case
for the first singlet exciton bands of naphthalene and
of benzene, the band intensity for impurity states local-
ized below the band (U,<0) are expected to diverge
as [E,— E;(0) ¥ when E, approaches the band edge.
On the other hand, when E;(0) % ES, the intensity will
decrease when E—EJS.

What further information concerning the exciton
band structure can be obtained from the optical data?
From the experimental point of view we notice that
the Davydov components at k=0 are narrow (relative
to the bandwidth) at low temperatures. Hence the
background absorption induced by the impurity can
be in principle detected experimentally, From the the-
oretical point of view, comparing our result for the
line-shape function with the data of Goodings and
Moser," we notice that L(E) is determined by the
diagonal matrix element of the perturbed density-of-
states function.

In the case of a relative strong | Uy | when a localized
state is formed, the line-shape function will also have
a nonvanishing contribution in the region of the un-
perturbed exciton band. For a simple density-of-states
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F1G. 5. The line-shape function calculated from the band structure displayed in Figure 1. Curve 1: Up=+120 cm™. Curve 2: Uy=
490 cm™. Curve 3: Upy=—+60 cm™L. Curve 4: Uy=+30 cm™. Curve 5: Up=—120 cm™. Curve 6: U= —70 cm™. Curve 7: Up=—20
cm™. From the analysis of Fig. 3, we notice that Curves 1, 2, and 5 correspond to bound states, and yield a large contribution to
L(E) throughout the whole region of the exciton band. Curves 3 and 6 correspond to virtual state, leading to an appreciable contribu-
tion to L(E) only near the band edges. Curve 4 and 7 correspond to extremely small perturbation, which leads to L(E) functions which

are quite close to the shape of g(E).

function, as that displayed in Fig. 1, this contribution
will be characterized by a continuous background with
a broad Lorentzian superimposed on it at the energy
E,,, corresponding to the antiresonance in the density
of states, as demonstrated in Sec. IV. The Lorentzian
will be located in this case near the center of the band,
and will be appreciably attenuated, due to a large
T4(E) factor in the region where the density of states
is high.

In the case of an extremely weak perturbation, so
that | Ug| < | U. |, the line-shape function will be a
monotonous function of the energy throughout the
whole range of the unperturbed band, being roughly
proportional to the density of states. As the absolute
intensity depends on the factor 1/[E—E;(0) [, it is
expected that the impurity absorption will be mani-
fested in broadening of the wings of the Davydov com-
ponents accompanied by a strongly polarized back-
ground absorption. In this case and in the case of
bound impurity states, a careful experimental study
(using photoelectric detection methods) of the line
shape of the Davydov components and of the back-
ground absorption will be a difficult but interesting
task.

Finally, we consider the case of a virtual state lying
close to the band edge within the band. The line shape
will again be a Lorentzian superimposed on a continu-
ous background. However, in this case, the line will
be fairly narrow as the attenuation is minimum near

the band edge. The intensity will be high in one polar-
ization direction because of the contribution of the
energy denominator [E—~ E;(0) T2 Such state is defi-
nitely amenable to experimental observation. In Figs.
5 and 6, we have displayed the expected behavior of
the line-shape function and the absorption coefficient
based on the simple band model also employed in Fig. 1.
We have chosen the positions of the Davydov compo-
nents to be located at the bottom of the band and 150
cm! above it. These results demonstrate the appli-
cability of the impurity-induced electronic-absorption
method to monitor the exciton band structure.

XIII. DISCUSSION

The present paper considers the problem of dilute
isotopically mixed molecular crystals from a unified
point of view using the one-particle Green’s-function
method. The basic relations used are based on the
connection between the density of states of the per-
turbed and the pure crystal, and the general dispersion
relation connecting the real and the imaginary parts
of the one-particle Green’s function. This unified ap-
proach previously used for phonon states, electron
traps, magnetic impurities, and spin waves can be also
applied for the study of Frenkel exciton states in the
weak vibronic coupling limit.

The general structure of the equations determining
the energy levels and optical properties of dilute mixed
molecular crystals implies how these properties are re-
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lated to the density of states in the exciton band in the
pure crystal. In future papers we shall demonstrate
how theoretical and empirical information about the
density of states in singlet and triplet exciton bands of
crystals of organic molecules and of polymers can be

WEWLE-E (O em

L{E)/IE-Ej{0} 1% em

F1e. 6. Impurity-induced electronic absorption in molecular
crystals. The unperturbed exciton density of states is taken from
Fig. 1. Two Davydov components in the pure crystal are as-
sumed to be located at Fi(0) =0 cm™ and E;(0) =150 cm™.
The exciton bandwidth is A=210 cm™. Curve 1: U,=-+120
cm™. Curve 2: Up=+490 em™ Curve 3: Up=+60 cm". (a)
The absorption function L{E)/[ E— E;(0) ] for one polarization
direction. (b) The absorption function L{E)/[E~ E:(0)1* for
the second polarization direction. Note that in the case of localized
states (Curves 1 and 2) continuous absorption is induced through-
out the whole exciton-band region. For the case of a virtual
state (Curve 3) a resonance is observed near the band edge.
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utilized for the understanding of the electronic states
of mixed crystals and of energy trapping effects in
these systems. Contrary to what was often stated
before,® the diagonal and off-diagonal matrix elements
of the Green’s function can be calculated for real sys-
tems, so that the general relations obtained herein are
of current physical interest.

What are the experimental implications of the present
treatment? In the case of deep traps, the energy shifts
can be treated by perturbation theory and will lead to
complementary information concerning the intermolec-
ular interactions,® similar information will be obtained
from the study of impurity pairs in the deep-trap limit.
When the perturbation strength is of the order of the
exciton bandwidth, the energy shifts provide a useful
information concerning the exciton bandwidth. Finally,
for even weaker perturbation, virtual states can be
optically observed. Experimental studies of impurity-
induced electronic absorption, similar to current work
on far-infrared induced absorption,*® in the range of
the exciton band will be of considerable interest. The
information obtained from hot-bands spectroscopy*
is fraught with difficulties, as these experiments have
to be performed at relatively high temperatures (100°K)
when phonon broadening is appreciable. On the
other hand, the impurity-induced electronic-absorption
method is free from these difficulties.

In the present work we have assumed that the exciton
band structure is unaffected in the dilute mixed crystal.
This approximation is justified in view of Lifschitz’
optical model,® which shows that the energy shift is ex-
pected to be AE,=CUU_/(U_+U,), (Us<0), where
C is the impurity concentration. For a typical case like
naphthalene we set U_=—50 cm™; then for C=0.05
and U_=—115 cm™ the energy shift is AEy~1.5 cm™,
In this context it is worthwhile to point ocut that the
correction to the density of states is expected to be
singular near any Van Hove critical point in the band.
The correction of the order of C contains both the
derivatives of g and of F which diverge at these points
[see Eq. (6.6)]. A way out of this difficulty is to apply
the Lifschitz method,® expanding the integral number
of states in a power series in C. Such a treatment leads
to a general power expansion of the density of states
in terms of the impurity concentration, consisting of
divergent terms, which, however, can be summed up
at the critical points, leading to a uniform shift of the
order of AF, in the density of states.

% R. G. Body and L. G. Ross, Australian J. Chem. 19, 1 (1966).
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