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was found not to be fulfilled except in the limit of elastic
collisions. A relation connecting the bulk viscosity with
the self-diffusion coefficient and the shear viscosity was
presented.

The applicability of the proposed model as a model
for planar molecules was analyzed by numerical calcu-
lations on models for C;H,, C¢He, and SOs. No final
conclusions could be drawn due to the lack of experi-
mental data. Qualitatively the predicted results seem
reasonable.

Note added in proof: The theory of nonspherical
molecules of Curtiss e/ /.1 has been rederived in a
later paper by Curtiss and Dahler.® A difference from

1 C, F. Curtiss and J. S. Dahler, J. Chem. Phys. 38, 2352
(1963).
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the original theory'—* appeared in the general form of
the Boltzmann-type equation. Equivalence with the
original theory was established for the SPHCL model.
For the C-P model used here the question of equivalence
has not been analyzed. Certain corrections to the Chap-
man-Enskog-solution method used in Refs. 1-3 are
given in the papers.*® They may be of importance
especially for the heat-conductivity coefficient, but are
not included in this paper. The author thanks Professor
J. S. Dahler for a discussion of these points.
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This paper reports a study of the normal modes of simple disordered systems using a dispersion oscillator
model with dipolar coupling for the unperturbed electronic states. An equation is derived for the normal-
mode frequencies and for the excitation amplitudes of the system. This equation displays the local structure
of the fluid in an explicit way. The nature of the resonance and localized impurity modes is discussed in
the particular case of an isotopically disordered uniform system. Finally, the contribution of the thermal
motion of the atoms to the damping of the normal modes is discussed. The significance of the results and
the relationship to other formal studies of disordered systems is briefly considered.

I. INTRODUCTION

The structure of the energy spectrum of a disordered
system has been extensively investigated in recent years.
We regard one of the most remarkable achievements of
these investigations to be the construction of formal
methods which permit analysis of the phonon spectrum
of a substitutionally disordered crystal; similar methods
can be used to describe electronic excitations in a dis-
ordered crystal."® However, the success of these formal
methods is limited by technical difficulties to the dis-
cussion of planewavelike electronic states, and in
mixed crystals to the range of low concentration of
impurity atoms. Moreover, the analyses published
usually fail to take into account the contribution of the
lattice vibrations to the shift and the damping of the
electronic excitation waves.

A theory of the electronic states of mixed molecular

* This paper belongs to the recent series of studies on the theory
of excitons in liquids and other disordered systems by the authors
and J. Popielawski.

1 Permanent address: Université Libre de Bruxelles.

11, M. Lifshitz, Advan. Phys, 13, 483 (1964).

2T, Matsubara and Y. Toyozawa, Progr. Theoret. Phys.
(Kyoto) 26, 739 (1961).

#'F. Yonezawa, Progr. Theoret. Phys. (Kyoto) 31, 357 (1964);
F. Yonezawa and T. Matsubara, ibid. 35, 357, 759 (1966).

crystals, including the influence of the lattice vibrations
on the electronic states in the weak coupling limit, has
been constructed by Sommer and Jortner using the
one-particle Green’s function method.* One important
generalization of the Sommer—Jortner analysis with
respect to the previous theories'™ is the discussion of
bound electronic states, such as the electronic states of
organic molecular crystals, which can be adequately
described in terms of the Frenkel excitation model.® All
of the extant theories predict an impurity-induced
splitting of the unperturbed electronic states of the
completely ordered crystal and the appearance, under
certain conditions, of new localized impurity states.
The usual proofs use an expansion in powers of the
concentration or neglect simultaneous interactions in-
volving more than two impurity atoms. Because of the
use of these approximations, doubts have been ex-
pressed concerning both the structure and the existence
of localized modes, as well as about other of the prop-
erties of the spectrum of heavily doped systems. For
the low-density approximation cannot be used to de-

4B.-S. Sommer and J. Jortner, “On the Electronic States of
Mizxed Molecular Crystals,” Preprint, Department of Chemistry,
Tel-Aviv University.

§ A. S. Davydov, Sov. Phys.—Usp. 82, 145 (1964).
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scribe the impurity subsystem when the concentration
is large. The reason that the low-density approximation
has not yet been substantially improved is related to
the great mathematical complexity involved in the use
of the Green’s function method for systems of arbitrary
structure. In particular, the absence of obvious param-
eters of smallness prohibits the application of perturba-
tion theoretic techniques to the description of dense
disordered systems.

Now, one might expect that the use of simplified
models, representing only the essential properties of the
system under consideration, will permit a more com-
plete mathematical treatment of the problem and lead
to results which will be valid over a wide range of
values of the parameters involved. Such simplified
models (in the main restricted to one-dimensional
systems) have been extensively investigated in the
past, both for the lattice-vibration problem®” and in
studies of the structure of the electronic spectrum.®

Among the more realistic three-dimensional models
we mention a generalization of Fano’s model of a cubic
lattice of dispersion oscillatorst to liquids or, more
generally, to systems in which the thermal motion of
the atoms cannot be neglected. This generalization,
which has been described in a recent series of papers,!-*
has provided a convenient starting point for the dis-
cussion of the structure of localized excited electronic
states in liquids. An essential feature of the original
model, as well as of its generalization, is the existence
of resonance coupling between the dispersion electrons
(oscillators), which coupling is treated in the dipole
approximation. We believe that this approximation
accurately represents the behavior of the system under
the influence of perturbations of long wavelength. Since
the typical electromagnetic excitations in the visible
or ultraviolet region have wavelengths which are large
relative to the near-neighbor separation, it may be
concluded that the model should give a satisfactory
description of the optical properties of the system.

The purpose of the present paper is to discuss the
properties of the electronic states of a disordered mixed
system using the optical model described above. In
Sec. IT we set up the equations of motion for the excita-
tion amplitudes of the dispersion electrons of a two-
component system, assuming that for each isolated
component a generalized Fano model provides a satis-
factory description. In Sec. IIT we consider the prop-
erties resulting from a completely random distribution
of the two components of the system. The equations

8 F. J. Dyson, Phys. Rev. 92, 1331 (1953).

7 A. A. Maradudin, Solid State Phys. 18, 273 (1966), and refer-
ences given therein.

8 P. Aigrain, Physica 20, 978 (1954).

? K. Hiroike, Phys. Rev. 138, A422 (1965).

1 E, DeDycker and P. Phariseau, Physica 35, 405 (1967).

17, Fano, Phys. Rev. 118, 451 (1960).

2 G, Nicolis and S. A. Rice, J. Chem. Phys. 46, 4445 (1967).

18 (a) S. A. Rice, G. Nicolis, and J. Jortner, J. Chem. Phys. 48,
2484 (1968); (b) G. Nicolis and S. A. Rice, “On the Theory of
Excitons in Liquids. V,” ibid. (to be published).
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found are relatively simple and yield a dispersion rela-
tion for the excitation frequencies (normal modes)
which takes full account of the local structure and
which contains contributions from arbitrary orders in
the concentrations of the two components. This dis-
persion relation is fully analyzed in a particular case,
and the existence of local modes is established for
arbitrary values of the concentrations. Section IV is
devoted to the discussion of the influence of the thermal
motion of the atoms on the frequencies of the electronic
excitations. In a final section, V, we discuss a number of
possible generalizations of the analysis of Sec. IV along
with some comments on the significance of the results
derived in the previous sections.

II. EQUATIONS OF MOTION

We consider a system consisting of two isotropic
components enclosed in a volume V. The N; atoms of
mass M; of component 1 occupy the positions r;,
(which may depend on time) and the N, impurity
atoms of mass M, occupy the positions r;,. We allow
the number densities ¢;= (NV./V) to be arbitrarily large.
At each atom there are a number of electrons of mass
m, represented by dispersion oscillators. Let the charges,
the amplitudes, and the natural dispersion frequencies
of these oscillators be ef,}2, @,, w, (n=1, +++, 51) and
ep,t?, by, ¢y (v=1, +++, s53) for components 1 and 2,
respectively. As usual, the coefficients f,/2, p,//? are the
oscillator strengths for the corresponding electronic
transitions. In the following only the dipole transitions
will be considered to be important. Thus, the inter-
atomic coupling within each component is given byl—:

Vu= E fﬂilllzfn'jlllzani1an'i1u11(riling"y p) (21)
ni1<n/jy

Va= Z Pvris 0515 by ,b0 jyten(Tininy, Xy P). (2.2)
vie<v/ s

Here #:;=0(¢?) is the spatial part of the resonance
dipole~dipole interaction, which depends on the dis-
tance r;=r;—T1;, on a polarization vector p, and on a
vector A characterizing the wavelength of the transi-
tions.

In general, the interatomic coupling between the two
components will not be represented by a resonance
interaction. At the present stage of our analysis it
suffices to express this intercomponent interaction in
the form

V12=V21= Z U12(ri1:iz,v Ay, b”)'

ni1,»J2

(2.3)

In addition to the energies V; (4, =1, 2) the system
is characterized by the “unperturbed” Hamiltonian
Hy=Hqi,+Hy+ Hy, (29

where H.i, is the kinetic energy of thermal motion of
the atoms, Hy is the kinetic energy of the dispersion
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electrons,

Hk= Z%(mnilz) + Z%('mj)"'z?) )

niy vig

(2.5)

and H; is the harmonic energy of interaction of the
dispersion electrons with their own nuclei:

Hy=) 3 (mw,2a,:)2) + Z% (me,?h,:2) .

nil vip

(2.6)

ni =~ iy = (full®/m) 2 D Mot (ir i) — ( fu*/m) 232 (9U/0us),

i#Ei m

bris= "qbvzbviz_ (Pvllz/m) EZ(GUD/abviz) - (Pvllz/m) E Zp#]ﬂbﬂizuﬂ(rfziz) .

g m
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AND JORTNER
The total energy of the system is, of course,

H=HytV=Het-Vu+ Vot Va. (2.7)
From Egs. (2.1)-(2.7) we deduce the following set of
classical equations of motion for the dispersion-oscillator
amplitudes:

(2.8)

J2 8

(2.9)

a7 B

It is convenient to express Egs. (2.8) and (2.9) in terms of the microscopic configurational distribution functions,

w;®. The result is

fa

m
;)—ll_é (bw'2+¢v2bvi2) = _Z ‘[drjl

The structure of this system of equations simplifies con-
siderably in the case that the intercomponent interac-
tion term V12 may be represented as a dipole interaction.
In particular, this covers the physically most interesting
case of an isotopic mixture of two components. Alterna-
tively, one might express Vs in the following form:

V12= V12d+ V12, (212)

where Vi is a dipole-dipole interaction and v, is at
least cubic in the oscillator amplitudes {e} and {b}.
Since we are interested primarily in the normal mode
structure of our system we may use the part Vi of
V2 as a starting point in our calculation and introduce
later the additional term v;; which will contribute to a
phase mixing of the normal modes derived from the

m

fn1/2

P2

where we have defined

m pry
fin (Gnsyten’tniy) = — melﬂ / drhamhuuwu(z)—z / dr;,
n 5

AUy
0b

U
@ 2.10
adm', Wi, ( )
- wy® — Zpull 2 / a1;,b,j tewn®. (2.11)
vig 2

equations with Vi,? alone. Here we use the part V¢
only and refer the reader to Sec. V and to Ref. 13 for
further comments on the role of the additional term v;,.

When Vi, is replaced by V2%, Egs. (2.10) and (2.11)
become linear in the amplitudes. We may, therefore,
seek solutions of the form

@ni=exp(—1ist) Zdnk exp(ik-r;),
k

byi=exp(—Qut) Db exp(ik-1;),  (2.13)
%

where 8 stands for the set of parameters {2, p} of the

resonance interaction* and Qp is an average response

frequency. Substituting (2.13) into Egs. (2.10) and

(2.11) and passing to relative and center-of-mass

coordinates, we finally obtain the system of equations

(— Qa2 G =— 5—3 / dK'dK" / dRdr exp[i(k'—k) -R] exp[i (k' — 2K+ k) - 3r]Sep 12,
T

Serir 2= i imartin (K, 0) w® (R, 1)+ 30,2,z (K”, 6) wis® (R, 1), (2.149)
m ®
2~ 042 ba=— 8% / dK'dk" f dRdr expl[i(K' — k) -R] exp[i (k' —2k"+k) }r]Spe 2,
Surrt =D, fr e ya (K, 0)wia® (R, 1)+ D0, 2barlea (K, 6) wex® (R, 1), (2.15)
m »
@:;(K) = (2) 2 [ dr exp(sk-r)ui;(1). (2.16)

In the next section this system of equations is analyzed for the interesting case of a uniform distribution of compo-

nents.

4 In the case of disordered systems, such as those formed from the mixing of two components, the translational symmetry is
destroyed. For this reason, a superposition of plane waves of the form (2.13) becomes necessary to describe the amplitudes, In the
particular case of a superlattice, a form of translational symmetry is restored and a single term in the k sum is sufficient in Eq.,(2.13),
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III. THE DISPERSION RELATION IN THE LIMIT OF A UNIFORM DISTRIBUTION OF COMPONENTS

We assume that the two components are distributed completely randomly, so that the distribution functions
w;;® are independent of the center-of-mass coordinate R. In this case the R and k' integrations in Egs. (2.14)
and (2.15) can be performed immediately. After integration these integral equations become a set of algebraic

equations:
m

f 1/2
n
pt?

where
B (K) = (87%) 1 f dr exp(ik-1)w;@(r). (3.3)

In order to obtain the frequency Q from the above
equations it is convenient to use the set of auxiliary

variables
X= an1/2dnk,
Y= 0%,

We first define the quantities v; and C;; by the following
relationships:

11(Q) =m 2L fo/ (02 —0) ],
v2(S2) =m“12[p,/(¢,2-—992) .—.l,

(3.4)

(3.5)

(3.6)

Cii(k, 9) = / dK'D,® (K —K)3y(K, 0).  (3.7)

The quantities X and ¥ may be shown to satisfy the
following algebraic equations in terms of 1, e, and
C.'j:

X =—1CuX-1C.Y,

Y = -— ')’2C1X —'Yng Y,

Sh( 2y

n=1 M n? — g

(3.8)
(3.9)

Co
4’"2 -

It is essential to remember that the structure coefficients
C;; depend on the polarization properties of the system.
Using the definition (3.7) and the fact that u«; is a
dipole—dipole interaction, it is inferred that these coeffi-
cients are either purely longitudinal, C;, or purely
transverse, C..

Equation (3.13) is to be compared with the disper-
sion relation found in Ref. 11-13:

2—].-Z:-,nn (w”2_902) 1= _EBll (0) ]_1} etc., (313)

where the Bi; are the counterparts of the Cy; in the
case of pure substances. It is seen that the presence

D (~ 08 b= — T fols 01 (6 —

-+ (CuCa—Cid) 3L wr—02) (02022 1) +1=0.

(— Qe+ wn?) Gt = — Zf,,,”?d,,,k/dk’wu@) (k' —k) (k) — anllzsykfdk’wlz(z) (k'—k)a,(k), (3.1)
m u

K) G (k) — 30,75 / K T® (K —K)am(K), (3.2)

and the secular equation of this system provides a
dispersion relation from which the normal frequencies
Qs of the electronic excitations may be determined:

(1+71C11) (1+72C22) —vrv:Cr?=0. (3.10)

Equation (3.10) is of considerable generality. In fact,
aside from the limitations introduced by the optical
model the only additional assumption has been the
neglect of the term v, in the decomposition (2.12) of
the interaction Vy,. Thus, Eq. (3.10) is exact as regards
the concentration dependence, contains the effects of
the local structure of the fluid explicitly (via the coefli-
cients C;;), and also describes those effects of the
thermal motion of the atoms which appear implicitly
through the influence of w;® in C;; and through the
values of the frequencies w, and ¢, upon which v; and
e depend. In order to simplify the discussion we now
make the additional assumption that the two compo-
nents forming the disordered system are isotopes of one
another. In this case we expect that

{fn} = {Pv} .

Upon substituting these relations into Eq. (3.10) and
taking definition (3.6) into account we obtain

(3.11)

(3.12)

m=1

of the two components leads to the existence of addi-
tional solutions of the dispersion relation. Alternatively,
each of the “unperturbed” excitation modes of the single
component may be said to split into two modes as a
result of the presence of the impurities.5* The impor-
tant point to note is that Eq. (3.13) provides a value
for this splitting in terms of the local structure and the
properties of thermal excitations of the system, and is
independent of any assumption of low-impurity density.
It is instructive to give a detailed analysis of Eq. (3.13)
in the neighborhood of a single resonance. We obtain,

1V, L. Broude and E. I. Rashba, Sov. Phys.—Solid State 3,
1415 (1962).
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then,
011 622 (611022— (7122) + 1 - O,
wnz - QBZ ¢n2 _962 (wn2 _902> (¢n2 -_ 992)
(3.14)
where _
Coy=(fo/m)Ci;. (3.15)

We first express Eq. (3.14) in terms of the unperturbed
excitation frequencies $q, Zy, of each of the two compo-
nents in the absence of the other. Using Eq. (3.13) we
obtain

205 =[ Qi+ Ze*+ A+ |
+£[4C1+ (U —Ze+An—Ag) 22, (3.16)

where we have defined

Aii=Cy—By;,

Obviously the quantities A;; depend on the differences
in structure of the configurational distribution functions
of components 1 and 2 in the binary mixture and in the
pure substance.

Let Qp2, Q5% be the two values of Q4? given by Eq.
(3.16). (8% refer to the longitudinal and transverse
modes.) The following sum rule is immediately deduced:

Qo2+ Qo 2 =Q+Z+ (An+Ass) . (3.18)

It is important to investigate the positions of Qg rela-
tive to the frequencies in the unperturbed system, Qo
and Z,. It is found that the relationship between the
perturbed and unperturbed frequencies depends on the
importance of the interaction term Cj,, as well as on
the differences in spatial distribution of the two compo-
nents in the mixture and in the pure substance. In Eq.
(3.16) these differences are accounted for by the quan-
tities A;. To illustrate the interplay between these
different factors we consider the form of Eq. (3.16) in
certain specific cases.

(a) We assume that the two components are regu-
larly distributed to form a rigid superlattice and that
their concentrations are equal. It follows that Ay =Ag
(see Ref. 11 and 12). It also follows that Cyy=Ca=
1B =Cy,. Equation (3.16) becomes, in this case,

202 =02+ Z2—BL[B*H (02 —Z2) 2. (3.19)

It is easy to find upper and lower bounds for the
quantities Q.2 and Q_?, respectively. Using the conven-
tion Q> Z¢? we obtain

0,2<08—3B+3 | B, (3.20)
QW 2>ZP—3B—% | B|. (3.21)

For longitudinal excitations one has B>0, whereas for
transverse excitations B<0.112 We have thus shown
that, both in the longitudinal and in the transverse
cases, the normal modes of the unperturbed system are

NICOLIS, RICE,

AND JORTNER

split into two components.’®” In the longitudinal case
one of these modes may lie below the “plasmon band”
of the unperturbed system but presumably within the
“exciton band” since Q02> Q. The other longitudinal
mode and the two transverse modes all lie within the
exciton band or the plasmon band and eventually decay
into the quasicontinuum of states belonging to these
bands. We conclude that in the case of an isotopically
disordered rigid superlattice there cannot appear any
localized modes as a result of an impurity substitution.

(b)The example of a rigid superlattice discussed
above shows the importance of the influence of the
thermal motion of the atoms upon the nature of the
modes arising as a result of an impurity splitting. Thus,
whenever the system is not rigid one always has
w.?# s Moreover, the simple relationships between
B, C, and A used above do not hold and the distribution
of normal frequencies may be markedly different. In
the next section we present a systematic discussion of
the influence of the thermal motion on the electronic
spectrum. Here we wish to comment on a particular
circumstance which may arise when nonrigid isotopi-
cally disordered lattices or two-component liquids are
considered. Consider a case where the interaction term
| Ciz| is much larger than the terms |Bu|,|Cul,
| Q2 —Z¢? |. Equation (3.16) may then be expanded in
the smallness parameter (Q0*—Zg>+Ayn—Ag) /2C)s. The
first-order result is

Q2 =3+ Z) +3 (Aut-An+2 | Cra |)
—[(QP—Z¢+Au—Awr) /8| Cia [1, (3.22)

Qo 2=3(2+ZH) +3(Aut+An—2 | Cr2 |)
—[(Q*—Z¢+Au—An) /8| Cia |1 (3.23)

Since the separation between Q¢* and Z¢* depends on
B,; only, and since | Ciz| is much larger than these
terms, we conclude that

Y 2< 22, (3.24)

There exists, therefore, a transverse mode lying below
the “exciton band” of the unperturbed systems, in
addition to a second transverse mode Qg2 lying above
or within the band of excited states. The former may
thus be described as a localized mode and the latter as
a resonance mode. In Egs. (3.22) and (3.23) the band
structure and the density dependence of both kinds of
modes is exhibited in the factors A;; and €, which have

18Tn the special case w.2=¢,? one also has Q@=Z¢ and Eq.
(3.19) yields a single solution:

Q2=02—3B—1| B|,
Q2=Q2—3B41 | B .

In the particular example of the rigid superlattice this yields
Q2=Qd, W2=Qu?, i.e., the modes are not split as a result of the
isotopic substitution,

17 We recall that the existence of this mode has been established
here under the condition that the system is in the neighborhood of
a resonance.
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been defined previously. It should be emphasized that,
apart from the assumption of large | C): |, no additional
approximation has been made in deducing this result.
In particular, no restrictions have been imposed on
the range of the impurity density.

In the opposite limit, when | C12 | is small compared

to | Q—Z@+An—As |, we obtain the following result:
Qo2 =02+ Au+t ( |Cre [P/ @ —Zé+An—An]), (3.25)
U 2=Z¢+An— (| Ci2 |Y/| QP —Z+Au—An |). (3.26)

For the transverse modes it can be shown from Refs. 11
and 12 that A;>0, A»>0. It follows that the two split
transverse modes lie within or above the “exciton band.”
However, in the particular case of vanishingly small-
impurity concentration one has A;=20, i.e., the normal
mode that may lie above the band at finite concentra-
tions is now pushed into the “exciton band.” As for the
longitudinal modes, for which A;;<0, one can see that
both lie within or below the “plasmon band,” but again
not below the exciton band.

From the above discussion we see that in a nonrigid
lattice the existence of localized modes depends on the
strength of the coupling term | Cj; | as well as on the
impurity concentration. The interplay between these
two factors becomes more subtle in the case of small
| Ciz |, whereas for large | Cis | the structure of the spec-
trum does not depend very critically on the magnitude
of the concentration.

Iv. SCATTERING BY THERMAL EXCITATIONS

Thus far our analysis has been concerned with the
derivation of the dispersion relation (3.16) for a mixed
disordered system, and with the properties arising from
the multicomponent nature of the system. In performing
this calculation we have neglected the influence of the

f 1/2
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interaction between an excited dispersion electron and
the surrounding atoms. [ This is obvious from the equa-
tions of motion (2.10) and (2.11) for the electron
excitation amplitudes.| As a result of this approxima-
tion we have derived expressions which describe the
excitation frequency O as a real quantity. Or, using
Eq. (2.13), it may be said that we have neglected the
damping of the collective electronic excitations arising
from the scattering between an excited electron and the
neighboring atoms undergoing thermal motion.®

In Ref. 13 we have presented systematic approaches
to the calculation of the shift and the damping of
excitation waves arising from the thermal motion in a
liquid. Because of their generality the methods devel-
oped therein can also be applied to the problem dis-
cussed in this paper. In order to keep the formalism in
as simple a form as possible, we prefer to present here
still another approach. The new approach, which has
considerable intrinsic interest, is suggested naturally
by the very use of the optical model (see also the
comment in Ref. 12). Thus, instead of describing the
free-atom electrons as undamped dispersion oscillators,
we introduce a damping and then couple the damped
oscillators through the dipole field considered in Sec. 11.
The damping coefficient will then be appropriately
related to the local structure of the system. We expect
that this phenomenological approach, which is closely
related to the idea underlying the polariton model, will
permit a straightforward and simple estimate to be
made of the damping of the collective excitations
described in Sec. IIT. It will not be found necessary to
introduce concepts and methods not already used in
the discussion of the first parts of this paper.

When the free-atom electrons are described as
damped oscillators the equations of motion (3.1) and
(3.2) are modified.”® The new system of equations reads

(— Q2+ wal+1Qvn) Gt = — Zf 1/2a'mk/dk D@ (k' — k) (k') — anlmgpk[dk’wu(k"‘ k)un(k), (4.1)

1,2( 0+ —i0h,) b=~ 1 f,,,wa,,,,, / A, (&= 1) 2 (&) = T b f K ® (K — B) i (K),  (4.2)

where <., 8, are the damping coefficients for the dis-
persion electrons of the free atoms of species 1 and 2,
respectively. These coefficients can easily be related to
observable quantities by using the expression for the
dielectric constant of a system of noninteracting atoms?

€(w) = 1+wp22[fﬂ/(wn2
=€ (w) +ie (w) ’

_".W'Yn_‘*’2) ]

(4.3)

where we have defined

wt=4mpWe/m (4.4)

and p® is the fluid-number density.

Since we are constructing a first-order theory, we
expand Eq. (4.3) in powers of wys/w,? and retain only
the first nontrivial term. Moreover, we introduce an
average damping coefficient y which is the same for

18 The influence of the thermal motion of the atoms also appears indirectly in the coefficients A and C of Eq. (3.16). This, how-
ever, cannot lead to a damping of the electronic excitations but only yields a shift of the frequency Q5 from its value in the absence of
thermal motion (as in the example of a rigid superlattice discussed in Sec. III).

19 The incorporation of the damping in the representation of the Hamiltonian presents problems which require further considera-
tion. Within the framework of our quasiphenomenological approach, it suffices to introduce the damping directly in the equations

of motion.

1956)

2 See, e.g., W. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley Publ. Co., Inc., Reading, Mass.,
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all the dispersion electrons. From Eq. (4.3) we obtain

v=e/we’, (4.5)
where

61/ = (d/dw2) el(w) . (4.6)

Using Eq. (4.5) and the stability conditions for the
dielectric function? we obtain the general result

RICE,

AND JORTNER

Proceeding in the same fashion we obtain
d=ey/we,’>0, (4.8)

where now e=e+ie; is the dielectric function of
species 2.

It is now straightforward to generalize the dispersion
relation obtained in Sec. III to the case of a system of
damped oscillators. Considering again the case of

isotopically related species in the neighborhood of a

v>0. (4.7) resonance, we obtain

206 = (R Zo*+ Aut D) £[4C12 (P — Z2+ Ay — Agn) 7]
(54 %) (8 2) @it
o e a e’/ [4012+ (QoP— Zgt+ Ay — D) Y12
In deriving this expression we have considered terms up to first order in the damping coefficient. Furthermore,
the real and imaginary parts of the dielectric function are now taken at frequencies satisfying the dispersion rela-
tions in the absence of coupling between the two species. The remaining symbols have exactly the same interpreta-

tion as in Sec. ITI. In particular, Qo and Zy are the exciton frequencies of species 1 and 2 in the absence of damping.
From Eq. (4.9) we obtain, again to first order in the damping coefficient,

J . (4.9)

Qs =S+, (4.10)
Qo =2 (24 Z+ An+ Do) :b[4é122+ (Q2—Z+ An—Ag) TJH2}12, (4.11)
€ € €@ € (Q—Zo?+An—Amw)
Q= — (2535) (— -—):I:(—— —) ; ] .

% ( ) [ &' + e’ &' T e’/ [4C12+ (P — Zd+An—Ag) T2 (112)

Combining Eq. (4.12) with Egs. (2.13), (4.7), and (4.8) (3.2) is equivalent to the Liouville equation

we conclude that 9<0, i.e., that the collective elec- .

da/dt=—iLae, (4.14)

tronic excitations are damped. The rate of damping is
seen to be proportional to a combination of the ratios

/e’y €/ €', (4.13)

where Qy is the real part of the frequency of the normal
modes. As a result of the isotopic mixing the damping
coefficient Qy assumes two different values, correspond-
ing to the two values of the real part Qi which have
been analyzed in Sec. III. In the case of the localized
mode lying below the exciton band [cf. Eq. (3.24)],
the frequency Qs is small relative to the frequencies of
the other modes, whereas the term of Eq. (4.12) pro-
portional to [ (es/e1’) 4 (e2/er’) ] is negligible.

We therefore conclude that whenever a localized
mode exists, it is damped more rapidly than are the
other modes.

A more satisfactory theory of the damping of the
normal modes, again using the equations of motion as
a starting point,2 could be constructed as follows. It is
known that the set of equations of motion (3.1) and

and

2V, M. Agranovich and V. L. Ginzburg, Spatial Dispersion in
Crystal Optics and the Theory of Excitons (Interscience Publishers,
Inc., New York, 1966).

2 'As contrasted to the kinetic equation approach which was
adopted in Ref. 13b.

where L is the Liouville operator descriptive of the
electrons. It has been shown recently® that a mechanical
equation of this form may be transformed to a stochastic
equation of the form

du ¢ s, i /
= - / Ay (t—u(t)+RW),  (4.15)

where # is an appropriate projection of @, and the
kernel ¢ (i—1¢') is defined in terms of the Liouville
operator L acting on the projection space. Finally, the
inhomogeneous term R plays the role of a stochastic
(Langevin) interaction. Clearly the solution of Eq.
(4.15) will yield a dispersion relation which will
describe the damping of the electronic excitations as a
result of the many-body interactions. However, unless
drastic approximations are made from the beginning
of the analysis, finding the solution of Eq. (4.15)
reduces to exactly the same problem as the one en-
countered in solving a kinetic equation in nonequilib-
rium statistical mechanics. An approximate treatment
of this problem was given in Ref. 13. In this paper we

# H. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).
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have followed a more phenomenological path in which
the damping is introduced by anticipating the results
one would expect to derive from a consistent statistical
mechanical treatment of the problem. As a result, we
have been able to derive explicit expressions for the
damping rate in terms of the local structure of the fluid
and the impurity concentration. These expressions are
very simple and permit a number of qualitative predic-
tions of interest to be made.

V. DISCUSSION

Aside from the limitations arising from the use of
the optical model, which have been discussed in previous
papers,'8 the main additional approximation which
has been introduced in this paper is the use of damped
oscillators to describe the damping of the collective
electronic excitations. This representation of the damp-
ing mechanism has certain obvious disadvantages.
From a purely conceptual point of view it is unsatis-
factory because it anticipates the existence of damping
instead of deducing it as a many-body effect from a
general statistical mechanical treatment. From a more
practical standpoint, it is clear that the use of indi-
vidually damped dispersion electrons neglects the effects
arising from the fluctuations of the instantaneous force
acting on the electron. In other words, the approach
described accounts only for the average field effects,
which are described here self-consistently. At present
it cannot be conjectured with any degree of certainty
whether the formalism based on the neglect of fluctua-
tions about the average force leads to a realistic repre-
sentation of the dynamics of the bound electronic
states.24 It is likely that this formalism will be most
useful in the limiting case in which there is small over-
lap between atomic states.

The principal motivation for using the damped
oscillator model lies in the simplicity of the formalism.
As we have shown in Sec. IV, one can easily derive
expressions for the damping coefficient in which the
local properties of the fluid and the influence of the
impurity concentration are displayed explicitly and to
all orders of the concentration. In addition, such explicit
expressions make possible certain interesting predictions
concerning the rates of damping of different impurity-
induced modes. Even if the model neglects certain
effects, as discussed earlier in this section, we anticipate
that our qualitative predictions will not be completely
altered by more refined descriptions of the damping.
Finally, it is useful to recall that, aside from the approxi-
mate treatment outlined in Ref. 13a, the formal study
of the damping of excitons in disordered systems other
than molecular crystals has not yet led to formulas
which can be simply applied to experimental data.'®b
In view of this situation, it is our openion that a reason-

% The reader should note that in many other problems (plasma

physics, equilibrium theory of fluids, etc.) average field theories
have met with considerable success.
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able model, such as the one introduced herein, will
provide desirable insights into the nature of the damp-
ing of excitons arising from thermal motion in a dis-
ordered system.

In addition to the questions concerning the damped
oscillator model, we wish to note again that the analysis
presented in this paper has been restricted to the case
of a uniform spatial distribution of both components.
Ii the distribution of one of the species is nonuniform,
the equations of motion are no longer algebraic, but
become instead coupled linear integral equations with
nondegenerate kernels. A Hilbert-Schmidt analysis of
these equations reveals the existence of a whole spec-
trum of modes induced by the inhomogeneities. We
do not present the details of this analysis here since
we believe that the case of a uniform distribution
describes correctly all physically interesting disordered
systems.

Within the framework of the assumptions described
above, there are two main points of interest in the
analysis presented herein. First, the manner in which
the disordered system is described is very general and
is equally applicable to crystals and to liquids, depend-
ing only on the specific expressions we assign to the
coefficients Ay, Cis, ¢, and e appearing in Egs. (3.16)
and (4.12). Second, the real part of the normal mode
frequency and the damping coefficient are both exact
to all orders in the impurity concentration. In particu-
lar, the existence of localized modes is established here
without the use of perturbation expansions.

When compared to previous general analyses of the
electronic structure of disordered systems* our
analysis appears simpler and more restrictive from the
point of view of the formal description of the spectrum.
It is, however, more general in some other respects,
since it avoids the use of perturbation theory and also
deals with the damping of the collective excitations. A
first-order theory of disordered systems, including
electronic vibrational coupling in the absence of damp-
ing, has been constructed by Sommer and Jortner# It
is our opinion that the work presented herein also
serves to illustrate some of the conjectures made in the
Sommer-Jortner analysis. At the same time, it provides
a bridge between the theory of excitons in liquids,
developed in earlier papers of this series, and some
phenomena specific to the electronic structure of mixed
disordered systems which, until now, have been investi-
gated only from the standpoint of solid-state theory.
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