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In this paper we present a formal theory of photochemical fragmentation reactions for the case that
intramolecular energy transfer is of importance. The zero-order spectrum of the molecule is assumed to
consist of a discrete level in resonance with a dense set of levels belonging to another electric manifold,
which in turn is in resonance with a translational continuum representing molecular fragmentation. The
exact eigenstates of the system are computed formally and shown to be resonant scattering states. Explicit
formulas are derived for the probability of the system being in a nonstationary state represented by a
wave packet localized in the discrete state, or the dense set of states resonant with the discrete state. In
the case that the resonant scattering state may be approximated by a quasistationary bound state, an
explicit formula relating the rate of unimolecular photochemical decomposition to the coupling matrix
elements and densities of eigenstates of the system is derived. The general relationship between translational
motion and internal molecular motion is discussed, as are some aspects of the dissociative decay process, the
nature of the excited states, and the possible role of interference phenomena involving coherently excited

states.

I. INTRODUCTION

When an isolated molecule absorbs a photon it may:

(a) be excited to a bound upper electronic state
with only small change in geometry,

(b) undergo a radical change of geometry to form a
new molecule, but without loss of atoms,

(c) ionize,

(d) decompose into two or more molecular frag-
ments,

(e) undergo some combination of processes (a)—(d).

Photochemical processes, which are normally classified
under (b) and (d) and their consequents, have been
studied for many years.! From these studies there has
emerged a taxonomy of possible reaction pathways. By
this statement we mean that interest in photochemical
reactions has been focused primarily on the problems
of delineating mechanisms of sequential reactions, of
discovering whether or not specific Born-Oppenheimer
electronic states are involved in a reaction, and of
deducing relationships between stereochemical factors
and reaction products. That this taxonomy is successful
is testified to by the increasing use of photochemical
methods for synthesis of compounds, and by the
accuracy with which one may predict the products of a
photochemical reaction.!

Similarly, an elaborate taxonomy of fragmentation
reactions has been built up for the case of electron-
impact excitation,? as studied by mass spectrometry.
This taxonomy is accurately enough known to permit
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determination of the structures of complex organic
molecules.?

Fragmentation and rearrangement reactions, whether
excitation occurs via absorption of a photon or via
electron impact, involve highly excited molecular
states which are not adequately described by the set of
Born-Oppenheimer states used to describe the ground
state and low-lying excited states of a molecule. Thus,
despite the successes cited above, we still have little
understanding of the fundamental molecular processes
underlying photochemical and related reactions. For
example, we do not know how the electronic, vibra-
tional, rotational, and translational degrees of freedom
of a molecule are coupled so as to favor some specific
mode of rearrangement or fragmentation, we do not
know the relative importance of the many possible
electronic states in influencing reaction pathways, and
we do not have a clear and physically incisive picture of
the nature of the states of the excited molecule before
reaction occurs. It is the purpose of this paper to
present a simplified description of the photochemical
act. In so far as we are now able to do so, we have
designed our analysis to elucidate the nature of the
electronic states of the photoexcited molecule and their
relationship with the mode of reaction.

An interesting and important qualitative theory of
photochemical reactions has been developed by Peters
and applied to the analysis of the photolytic decomposi-
tion of methane and ethane.? The ideas employed by
him are the following: it is supposed that the excited
state in which the decomposition occurs is formed by
populating an excited molecular orbital and that there
is just one well-defined molecular state in which the
decomposition occurs. It is also supposed that the
products of the reaction are formed in their electronic
ground states. In essence, this supposition is equivalent
to the condition that the electronic energy of the
excited molecule is lost in the form of vibrational and

3 D, Peters, J. Chem. Phys. 41, 1046 (1964).
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translational energy of the reaction products. An ob-
vious corollary of this condition is that vibrational
energy first turns up in the bonds which are formed or
seriously modified in the reaction. The vibrational
energy may then, later, be redistributed in many
different ways.

More recently Mies and Kraus have presented a
quantum-mechanical theory of the unimolecular decay
of activated molecules.* Because of the similarity
between this process and autoionization they used the
Fano theory of resonant scattering.’ Their theory pro-
vides a detailed description of the relationships between
level widths, matrix elements coupling discrete levels
to the translational continuum, and the rate of frag-
mentation of the molecule.

It is our opinion that the contributions of Peters and
of Mies and Kraus represent important advances in
the development of a theory of photochemical reactions.
However, these theories must be extended to include
interpretation of the following phenomena:

(1) Itis often possible to describe the photoexcitation
of a molecule in terms of a localized excitation, e.g.,
excitation of the C-O group of a ketone. In most photo-
chemical decompositions the bond that breaks and
leads to fragmentation is not the same as the site of
localized excitation.! Therefore, it is necessary to con-
sider the mechanism of intramolecular energy transfer
as part of the photochemical reaction.

(ii) As a bond stretches and breaks, there is estab-
lished a continuous connection between the translational
coordinate along which fragment separation occurs and
the vibrational motions of the molecule. Since the bond
stretching motion is not, in general, a normal mode of
vibration, it is necessary to understand how the vibra-
tional modes can be combined to give the decomposition
mode.

In the theory of Mies and Kraus, and also in the
theory of Peters, a reaction coordinate is identified
but its coupling to other modes of motion is not studied.
Also, in the theories mentioned it is supposed that the
molecule can be prepared in the state that will de-
compose, thereby avoiding discussion of intramolecular
energy transfer. Thus, in the theory of Mies and Kraus,
it is supposed that the true molecular state describing
the system is a mixed state of prediagonalized blocks
of states. One block consists of the excited molecular
states, and these states overlap the continuum which
describes the resulting dissociated fragments. Using our
previously published theory of radiationless processes,5—3
we take a different point of view. In this paper, we
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610 (1968).
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suppose that the mixed state representing an excited
molecule has components consisting of the molecular
excited state(s), a dense manifold of vibrational
states of some other electronic state(s), and the trans-
lational continuum of the molecular fragments. The
dense manifold of vibrational states acts as an inter-
mediary between the molecular state(s) which can be
excited directly and the translational states of the
continuum. In particular, we assume that there is no
direct coupling between the components of the mixed
state representing the discrete molecular states which
can be excited directly and the components representing
continua. Thus, if a nonstationary wave packet con-
centrates energy in the components corresponding to
discrete molecular states, this energy must “flow
through” the vibrational manifold in order to cause
molecular fragmentation. In setting up this formal
representation we are unavoidably confronted with
problems (i) and (ii). We shall show how the break-
down of the Born-Oppenheimer approximation is
intimately related to the mechanism of the reaction
and how an understanding of the energy-flow pattern
leads to at least partial understanding of the phenomena
cited under (i) and (ii).

II. GENERAL CONSIDERATIONS

In the upper excited states of a molecule, it is often
found that the vibrational levels corresponding to one
Born-Oppenheimer manifold overlap the dense set
of vibrational levels corresponding to some lower elec-
tronic Born-Oppenheimer state. If the energy separa-
tion between the overlapping levels is comparable
with or less than the off-diagonal matrix elements of
the nuclear kinetic-energy operator in the basis of
Born-Oppenheimer states, the Born-Oppenheimer rep-
resentation of the states of the molecule is no longer
adequate. In this limiting case the true molecular
eigenstate can be thought of as mixtures of Born-
Oppenheimer states.

In what follows we shall, as in our previous studies of
the theory of radiationless processes,>® assume that the
set of molecular Born—-Oppenheimer states is complete.
It is then possible to represent any eigenstate of the
molecule as a linear superposition of Born-Oppenheimer
states, with coefficients determined by the overlaps of
each of the Born—Oppenheimer states and the true
eigenstate. Of course, in the absence of knowledge of
the true eigenstate this expansion cannot be used.
However, there are situations when this exact represen-
tation is useful. Consider, for example, the case that the
ground state is adequately represented as a Born-
Oppenheimer state, and that a dipole transition from
the ground state is allowed to only one of the set of
B-O states. Then, by absorption of a photon, the
molecule can be prepared in a nonstationary state
which is a time-dependent superposition of exact
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F16. 1. Schematic energy-level diagram of (a) the zero-order
states and (b) the exact eigenstates in the absence of coupling
to the continuum.

eigenstates, each of which is itself a time-independent
superposition of B-O states. By following the evolution
in time of a system prepared in this way we can learn
much about energy redistribution in the molecule,
radiative and radiationless decay processes, etc. Of
course, assuming that both the B-O states and the
exact states form complete sets, a B-O state may be
represented in terms of a superposition of exact states.
Then, the procedure described is equivalent to preparing
the system in a B-O state, but that state is not to be
thought of as stationary.

We now apply the same expansion technique to the
description of photochemical decomposition. Suppose
that the set of molecular states has the following
characteristics:

(i) In the zeroth approximation, in the energy region
of interest, the spectrum of states consists of one discrete
state overlapping a dense but discrete set of vibrational
levels belonging to a different electronic state, the
dense set of vibrational states in turn overlapping the
translational continua corresponding to molecular frag-
mentation. The zero-order states need not be B-O
states, although it will sometimes be convenient to
assume that they are. What is important is that the
existence of a zero-order localized excitation implies
the existence of a zero-order separable Hamiltonian.
Our zero-order states are the eigenstates of that
separable Hamiltonian.

(ii) The discrete level is coupled to the dense set of
vibrational levels, and the vibrational levels are coupled
to the continuum, but the discrete level is not directly
coupled to the translational continua (see Fig. 1).

RICE, McLAUGHLIN, AND JORTNER

The energy-level scheme hypothesized can be thought
of as corresponding to the existence of a localized
electronic excitation coupled to electronic ground-state
vibrations which in turn are coupled to a fragmentation
continuum. Examples of this behavior are found in
many carbonyl compounds and in methyl-substituted
benzenes.!* In both classes of compounds, localized
excitation of a chromophore may lead to fragmentation
(often H-atom dissociation) at a distant bond.

Consider the excitation of a molecule with the
energy-level scheme described. Let ¥z be an eigenfunc-
tion of the complete Hamiltonian, 3¢, and ., {¢n}, &
be the eigenfunctions of the zeroth-order Hamiltonian,
3Co, corresponding to the single discrete state, the set
of vibronic states of another electronic state, and the
fragmentation continuum, respectively. We write

JC=3Co+ (3¢ —3Co)

=§Cp+V (1)

and

Vs =a( E)at 3 bn( ) dut f AEcp (E)En.  (2)

We shall later assume, in Sec. III, that the zero-order
states are B-O states, that the ground state is ade-
quately represented as a B-O state, and that the
ground state is connected, via dipole transition matrix
element, only to the state Y, and #ot to the states {¢,}
or £g. Absorption of a photon by a molecule will then
lead to the creation of the nonstationary state y,

(see Fig. 2).
-y
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{b) Allowed Dipole Transitions between Exact States in
the absence of Coupling to the Translational Continuum.

F16. 2. Schematic diagram showing transitions between the sets
of levels of the hypothetical spectrum. (a) Allowed dipole transi-
tions between zero-order states. (b) Allowed dipole transitions
between exact states in the absence of coupling to the translational
continuum.

¢ P. Johnson and S. A. Rice, Chem. Phys,. Letters 1, 709 (1968).
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Before Eq. (2) can be used, the expansion coefficients
a(E), b,(E), and ¢z (E) must be evaluated. For
simplicity of analysis we shall adopt the following
approximations: First, it will be assumed that the
states {¢.} are uniformly spaced with energy separation
¢ between consecutive states. It is then convenient to
use an energy scale defining the energies of the states
{¢.] relative to that of the state y,. Let the value #=0
be assigned to the nearest state of the set {¢,} below ,.
Set n< 0 for states lower than ¥, and n>0 for states
higher than ¢,. Then the energy of a state ¢, in the set
{om} is

E.=E,—a+tne,

a=FE,—F,. (3)

As the second approximation, we assume that the
matrix elements coupling ., and all the {¢,} are equal
and independent of the energy. In symbols,

(Ya | 3 | ¢n)=m=const, all n, (4)
(5)

We have already stated, in constructing the model
molecular-energy spectrum, that there is no direct cou-
pling between the state ¥, and the fragmentation

and
(¢n | 3C | E)=m=const, all .
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continuum. This condition may be represented by the

relation
(¥a| 30| £)=0. (6)

By standard procedures, using the matrix elements
defined by Egs. (4)-(6), the following set of equations
is obtained for the coefficients in the representation of
¥z in terms of zero-order functions [Eq. (2)]:

(Ea— E) a0 b.=0, (7N
(En— E)by+na+v, | dE ¢cg-=0, (8)
=0, =1, £2, ---. (9)

(E'—E)ce+v50_bn=0,

By combination of (7) and (9) we find
ce=(vo/m) O (E—E.)/(E—E)Jo+Y(E)§(E —E),
(10)

where the operator @ indicates that the principle value
of the quantity in brackets should be taken. The func-
tion Y (E), which is determined by the boundary condi-
tions on the wavefunction, will be specified below.

Having found cg, it is possible to evaluate b, from
Eq. (8). By substitution of (10) in (8) we find

bu=(E—E,) M {[ntir (v?/v) (Ea— E) Ja+0.V (E) }, (11)
and also
g (z/€) cot(my)nw¥Y (E) (12)
{(Ea— E)[14i(x%/€) v cot(my) 1+ (n/€) v cot(my) }
where we have used
2[1/(E—En)]=(/e) cot(my), (13)
with
Y(E) = (E—Esta) /e (14)

To evaluate ¥ ( E) we proceed, as did Mies and Kraus,* to examine the asymptotic form of the continuum wave-
tion. In terms of the fragment separation coordinate, X, this is

Epm~erx sin(K'X+), (15)

where x is the wavefunction of the major fragment, the minor fragment is regarded as a point mass, and X measures
the separation of the centers of mass of the two fragments. The asymptotic form (15) is accurate enough for our
purposes. Note, however, that although residual excitation of the major fragment is described, the minor fragment
is not allowed any internal degrees of freedom. Presumably, a photochemical dissociation producing radical and a
ground-electronic-state H atom, which is a common reaction, is described by (15). If the products are more com-
plex, (15) must be modified in an obvious way. The asymptotic form of ¥z is now obtained by substitution of (10)
in (2) followed by examination of the limit as X— . The result is

im ¥p~cxx[ —7(E— Es) a{ms/n) cos(KX+4)+Y sin(KX+1)]

~(crx/2i) {LY —in (E— E;) a(vs/v1) ] exp(iKX+in) —[Y+ir (E— E,) a(vo/v) ] exp(—iKX —in)}. (16)

The function ¥ is now determined by requiring that there be unit incoming flux in the incident channel and only
outgoing waves in the inelastic (fragmentation) channel. In formal terms, this condition requires that

Y(E)+in( E—E.)a(v/v) =1, (17)
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and by writing [see Eq. (12)]

RICE, McLAUGHLIN, AND JORTNER

a=—A(E)Y(E) (18)
it follows that
Y(E) =[1+4ir(E.—E) (w/n) A(E) ™\ (19)
A combination of (19) with (11) and (12) leads to expressions for ¢( E) and b,( E), namely
(w/€) cot(my) v,
E) =—
) = B BTIT (2rbiode) cot(my) T (ror/e) cotlay)] 20
and
bn(E) — v?(Ea—E) (21)

((E—E,) {( E.— E)[1+(2x%v:2/€) cot(my) ]+ (wv:2/€) cot(wy)})

A similar expression for cg/(E) may be obtained but will not be displayed here.
To obtain the probability of finding the molecule in the nonstationary state corresponding to one of the zero-
order components, we need merely determine the squares of the absolute magnitudes of the corresponding expansion

coefficients, e.g.,

(7/€¥) vive? cot(mry)

a*(E)a(E)=

[(E.— E)?Z2+2(Ea— E) Zo+ 77’

(22)

v (E,— E)?

b.*(E)bu(E) =

III. THE INTERACTION BETWEEN AN ISOLATED
MOLECULE AND THE RADIATION FIELD

In the preceding section we described the mixture of
zero-order states that can be thought of as the gen-
eralized Fourier representation of a true eigenstate of a
molecule in which a discrete zero-order state is coupled
to a dense set of zero-order vibrational states belonging
to a different electronic state, and in turn the vibra-
tional states are coupled to a zero-order translational
continuum. We did not, however, examine the effects
of coupling the molecule to a radiation field. Since the
photochemical process is initiated by photon absorption,
and since the nature of the excitation is determined by
the molecule-field interaction, a study of the time
evolution of the excited molecule must include in the
description the coupling between the molecule and the
radiation field.

We consider, now, the time development of a mole-
cule, with spectrum defined in Sec. II, under the
influence of an electromagnetic field. In what follows
we shall use the method of analysis employed by Bixon
and Jortner® in the theory of radiationless processes,
rather than more elaborate methods of Chock, Jortner,
and Rice?’

Suppose the molecule is in the ground state at time
£=0, at which time it is illuminated by a pulse of radia-
tion for a time interval 4, described by

() =2-us(1),
3e(t) =0,

OStStl,

1<0, t>1, (24)

(E—E) (E.—E)2Z2+2(E.— E) Z,+27]’
Z2=1+4(4x%/ ) vst cot?(my);

(23)

Zo=(mlr/e) cot(my).

where &(¢) is the electric-field intensity at the molecule
at time ¢, y is the transition dipole moment operator
of the molecule corresponding to the frequency of
the applied field, and ¢ is the field polarization vector.
Of course, because the pulse of radiation is of finite
length, the field cannot be monochromatic. We shall
later account for the polychromaticity of the field.
Using first-order perturbation theory, the state vector
at time ¢, | ¥(#) ), may be expressed in terms of the
ground-state vector at time {=0, | ¥,(0) ), as follows:

[W(t) )y=— ﬁi/;de’ | \I/Ef>exp(— % E’t)

% / " exp (% E’t’) &(0) (Wpr | 8- | We(0) VL. (25)
0

As already mentioned in Sec. II, we now suppose that
the molecular ground state is accurately described as a
B-O state, and that the ground state and the B-O state
¥, are connected by a dipole transition matrix element,
but that dipole transitions between the ground state
and the B-O states {¢,} or £ are forbidden (see Fig. 2).
Thus the dipole matrix element (¥g-|&-u|¥y(0)) is
proportional to the coefficient, ¢*(E), of the B-O

state in the state | ¥z ):
(Wi | 8w | Wo(0) )=a*(E) Y| 2-w| ¥o(0) )
=g*(E) Pa. (26)

We now examine the amplitudes of the states |.)
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and {| ¢,)} in the excited state of the system. From
(25),

1: tl 1 14 /
<¢a|\P(t>>=—ﬁPao/0 S O)8)dr,  (27)
where
CJ 1
Sit,t)=[ dE' |alexp(—- E(t—1)), (28
0= ["am apen(~; E0-0), 08
whilst
(¢ | T (D) )=—£Pao “T,,(t, He)dr, (29)
0
where
G 1
T4, )= | dE'a*b, ——FEG—=t)). (30
t,0)=["araben(~; EG-0) ). (0

Clearly, the probability of finding a molecule in the
nonstationary state | ¥, ) at time ¢ is determined by the
square of the projection of | ¥, ) onto the exact eigen-
state vector | ¥ (%) ):

wa(t, E) =[ (‘l’a | (1)) !2

. f s 0y S e
0 0

X&) drdt’. (31)

Similarly, the probability of finding the molecule in
the nonstationary state ¢, at time ¢ is

wn(t, E) =| (¢n [ (1)) [

Pa2 3]
=2 / / Tau(t, ) Ta(t, ) &(F)
X8&(¢")drde".

(32)

One of the interesting consequences of Egs. (31)
and (32) is the dependence of the probability of the
molecule being in a given nonstationary state on the
time correlations in the coupled radiation field. In
most experimental studies the radiation field employed

REACTIONS 2761

consists of a superposition of many frequencies with
random phases. It is convenient to represent that form
of field in terms of the correlation function

®(t, ¢") = ((&(1)&(¢") ) ) (33)

where the double brackets ({---)) indicate an average
over the distribution of frequencies in the field. If the
field has many harmonic components (as it must if the
pulse is of finite length), then in place of (31) and
(32) we introduce the average probabilities

P a02
(@)=~
and

((wa))=

i1 pi1
f S, 0)S(t, )82, Y drdl (34)
00

Pa()

¢
/ f Tl ) Talt, 0)B(E, £ dbdr.
1] 0
(35)

Because of the necessary polychromaticity of the field,
it is (34) and (35) that are related to observable
quantities.
Suppose that the field correlation function has the
form
&, 1) = (8xly/c) 5(t' —1") (36)

with ¢ the velocity of light and 7, defined by the spectral

density
I(v) =Iyexp{—[(v—ra) /A ]}, (37)

which, for simplicity, is taken to be Gaussian about the
frequency v,. Using (36) in (34) and (35) we find

((wa))= Sty P f “[S(t, ) e,

. (38)

((wn 87!'][)

YRdY.  (39)

Finally, from (38) and (39) and the conservation of
probability, we find for the probability of dissociation
of the molecule the relation

Pyies(t) =1— % - ([ LS, t)]2dt’+Z/ [Ta(t, ¢ :|2dt’) (40)
where, using Egs. (11), (12), and (22),
N °° exp[ —iE(t—1{) /h]
S, £) = ”2/ [(Ea— E)*Zi+2(Ea—E) Zs+- 2] (41)
and
U b (E.—E) (n/¢) cot(xy) exp[—iE(t—1t') /]
Talt, £) = o ”2/0  E—EN(Bm )22 B B) 2t 28] 42

In a number of cases the molecule under consideration has zero-order degenerate localized states, e.g., two
carbony! groups in a diketone. Interactions between the two chromophores will, in general, lift the zero-order
degeneracy. In such a molecule there are, say, two discrete levels coupled to a dense set of vibrational
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states belonging to another electronic state, the dense
set of vibrational states being, in turn, coupled to the
fragmentation continuum. An analysis of the proba-
bility of dissociation of a molecule with a spectrum of
the type just described will be found in the Appendix.

IV. VIBRATION-TRANSLATIONAL MOTION
COUPLING

It is now necessary to consider how the relative
translational motion of two receding molecular frag-
ments is related to the internal motions of the parent
molecule. For, the translational motion corresponding
to fragment separation is not usually along a normal
coordinate of the parent molecule. In the classical
mechanical theory of thermally induced unimolecular
reactions, due to Slater,! the motion in a selected direc-
tion is represented as a superposition of projections on
that direction of normal-mode motions. The molecule
fragments when the amplitude of motion along the
given direction exceeds a critical relative displacement.
This formulation differs somewhat from the theory of
Rice, Ramsperger, and Kassel,"® in which anharmonic
coupling between normal modes leads to internal
energy transfer until a sufficient amount of energy is
collected in one particular oscillator, whereupon the
molecule dissociates. At the risk of pedanticism we wish
to point out that both of the descriptions of unimolecu-
lar reactions cited suffer from the same deficiency as
does the perturbation-theory B-O state description of
radiationless processes.? That is, an excited molecule
about to dissociate is really in a resonant scattering
state, and not a bound state, so that a description of the
molecule in terms of transitions between well-defined
essentially uncoupled states (one of which is bound)
cannot be completely satisfactory. Our analysis ex-
plicitly contains the coupling between the dense set of
zero-order molecular vibrational states and the con-
tinuum, and the presence of a zero-order continuum
component in the final wavefunction shows that the
final state is indeed a resonant scattering state. Our
problem is, then, to unravel from the formalism a
physical picture descriptive of the state in terms
of molecular motions, etc.

Perhaps the most pertinent observation to make at
this point is that the process by which the molecule
with energy spectrum hypothesized decays is simply a
form of predissociation. There is one difference between
the process we consider and the usual case of predis-
sociation from a single zero-order molecular energy
level. Because the exact resonant level is represented

10 See, for example, N. B. Slater, Theory of Ummalecular
Reactions {Cornell University Press, Ithaca, N.Y.,

U For a convenient review of the RREM theory see 0. K.
Rice, in Energy Transfer in Gases, Proceedings of the XII Solvay
Congress on Chemistry (Interscience Publishers, Inc., New York,
1962), p. 17

12 G. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962
(1962); 38, 1187 (1963); S. H. Lin, ibid. 44, 3759 (1966) wW.
Slebrand ibid. 46, 440 (1967)
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as a linear combination of the zero-order localized
level, the dense set of vibrational levels, and the con-
tinuum, and because the zero-order B-O state which
can be excited is spread over many exact resonant
scattering states, absorption of a photon by the mole-
cule leads to the population of resonant scattering
states spread over a range of energy. Thus we deal with
predissociation from a band of states, and not from a
single state. Bearing this in mind, and recalling how
the Franck-Condon factors and interaction matrix
elements enter the description of radiationless pro-
cesses,®!? we see that the selection rules applicable to
predissociation reactions may also be used to describe
the process considered in this paper.’® (Note, however,
that the usual discussions use perturbation theory and
do not employ the concept of resonant state.!®4 As
shown by recent work on the theory of radiationless
processes, the selection rules which emerge from the
correct treatment are the same as those derived
earlier.878)

A complete description of the translational-motion—
internal-motion coupling and its effects is, in principle,
contained in Eqgs. (40)—(42). Unfortunately, even for
the simplified form of hypothetical molecular spectrum
studied in this paper, we have been unable to perform
the indicated quadratures. Even without actual cal-
culation, our previous studies of the theory of radiation-
less processes suffice to define the following general
properties of the photodissociative act:

(a) Because the zero-order B-O state which can be
excited is spread over many of the exact scattering
states, the usual light sources will coherently excite a
set of scattering states. We anticipate, then, that there
will be interference effects arising from the coherent
excitation of a set of states.®73

(b) The lifetime against decay into fragments will
appear naturally (not as an added assumption) as a
consequence of the mixing of continuum into the exact
eigenstates and because of interference between co-
herently excited states. Judging from the results of the
theory of radiationless processes, two lifetimes will
appear, proportional to )2 and v?, and of a form similar
to that derivable from Fermi’s Golden Rule.

(c) Provided that pyv? and pss? are of comparable
magnitude, where py=pyi, is the density of levels in
the dense vibrational set and ps= peons is the density of
states in the translational continuum, the rate of decay
of the molecule will depend on both #; and 5. A conse-
quence of p12¢? and pore? being comparable in magnitude
is that a nonstationary wave packet localized in the
discrete state y, will disperse into the nonstationary
states {¢,} about as rapidly as will a nonstationary

8 G, Herzberg, FElectronic Spectra of Polyatomic Molecules
(D. Van Nostrand Co., Inc., Princeton, N.J., 1966).

4 A very important and elegant treatment of predissociation
using the concept of resonant state is found in R. A, Harris, J.
Chem. Phys. 39, 978 (1963),
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wave packet localized in the states {¢.} disperse into
the translational continuum and ¥,. Thus, in this case,
in the language of kinetics, neither of the two inter-
manifold coupling steps can be thought of as rate
limiting.

(d) If py=>psve? the scattering state is very much
like a state of a long-lived vibrationally hot molecule.

(e) If pi*Kpsvs? the scattering state is very much
like an excited molecular state which decomposes
directly to fragments.

The remark made previously about the applicability
of the selection rules for predissociation reactions now
becomes clearer, since these selection rules merely
describe properties of the matrix element »,. That is,
although no assumption about the decay process has
been directly introduced, the lifetime against decay
will take a form similar to that obtained from first-order
time-dependent perturbation theory, and therefore be
proportional to psv,?.

Because we have not been able to evaluate (40)
analytically (numerical evaluation is possible but less
instructive), it is useful to consider some limiting
approximations. First, suppose that pyty™>ps12? as in
(d) above. Further, suppose that the lifetime of a non-
stationary wave packet localized in the dense set of
vibrational states is long enough that we may think of
the state as quasistationary. Then, decomposition of
the molecule may be represented approximately by use
of the Rice-Rampsberger-Kassel-Marcus theory of
unimolecular reactions.! We choose this form, rather
than the Slater form, because of the importance of
energy interchange between modes in our case. There
is one important difference between the usual RRKM
theory and the form which we need. In the usual
unimolecular reaction collisional excitation is taken to
result in a Boltzmann distribution of excited molecules.
In our photochemical decomposition the distribution of
molecules over the dense set of vibrational levels in the
initial wave packet is determined by the quantity
piz1. If there were no coupling to the translational
continuum, and v; were independent of energy, photo-
excitation of the molecule would lead to a Lorentzian
distribution of amplitude of B-O state ¥, in the dense
set of exact vibrational states.®® In our case, thermal
excitation is not involved, hence no average over a
Boltzmann distribution is taken, and therefore the
molecular partition function, etc., should not appear in
the expression for the rate constant.

Following the usual analysis' we write

k=[ kW (E)dE,

Em

(43)

where E, is the minimum energy required for fragmen-
tation along the reaction coordinate, W(E)dE is the
number of states excited in the energy range dE about
E, and kg is the specific rate of dissociation when the
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energy is E. For W(E) we take

p
Pnsrywar- TR CO)
(7v101)2+-[7%/ (p101)*]
where # is defined by E,= E,+#ne, n=0, £1, 32, «++.
Note that p;=1/e. The simplest representation of kg
in our approximate treatment is

W(E)=

kz=(2r/h) pww?, (43)
so that (using dE=edn),
-] 2
kl _ 2r P22 pldﬂ (46)

i B p1 (7v101) 2412/ (pr1)?]

Suppose that 21, m, p1, and p, are independent of energy
in the range of interest. Then

k= (2py2/h) {3n —tan [ En/m(p21) 2]}, (47)

Note that %; reproduces the intuitively desirable
limiting results:

1im k1= (1!'/71/) p2‘022, (483.)
Em>0

lim 2,=0. (48b)
p1v1~0

In particular, relation (48b) shows how stifling the
coupling between ¢, and the set of states {¢,}, thereby
preventing indirect coupling of ¥, with the translational
continuum, prohibits molecular fragmentation. Thus,
despite the fact that our quasistationary-state treat-
ment implies that p;9:=>ps1e%, the correct limit is found
as p1t1*—0. The limit (48b), in fact, displays an essential
feature of the “flow of energy” characteristic of the
energy spectrum and dissociation process considered
in this paper, and also forcefully illustrates the general
deductions (c), (d), and (e) listed above.

A different limiting case, in which the detailed
structure of the quasibound-state nuclear motion and
its coupling to the translational motion is less important,
occurs when py*Kpst?. A simple kinetic argument
suggests that in this limit the molecule dissociates as
rapidly as the nonstationary wave packet localized in
Y. can disperse into the nonstationary states {¢.}.
Thus, this case is analogous to, but not identical with,
that considered by Peters’—direct excitation to a non-
bonding state without intermediate intramolecular
energy transfer.

It is important to remind the reader that (47) results
from a serious approximation in which it is supposed
that the wave packet representing the scattering state
localized in the dense manifold is sufficiently long
lived that it may be considered quasistationary [this
assumption appears in the use of (45) and also (44) 7.
We emphasize that an exact representation is contained
within Eq. (40), but further work will be necessary to
reduce (40) to tractable form. Despite the use of the
approximations leading to (47), previous experience
with the theory of radiationless processes suggests that
an exact evaluation of (40) will reproduce the principle
features of (47).

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



2764

V. CONCLUDING REMARKS

In this paper we have presented a first formal analysis
of the primary act of molecular photodissociation for a
well-defined molecular-energy spectrum. It has been
shown how the absorption of a photon leads to the
formation of a resonant scattering state. Explicit
formulas, involving quadrature over the system energy
spectrum, have been presented but not evaluated.
When the resonant scattering state may be approxi-
mated in terms of a set of quasistationary bound states,
an explicit relationship is obtained for the rate of
dissociation in terms of the matrix elements coupling
zero-order states and the corresponding densities of
states. In principle this permits the use of experimental
rate data to evaluate the matrix elements v, and o,
if p1 and p» can be estimated.

It is clear that the analysis we have presented is only
the first step in developing a satisfactory theory of
photochemical reactions. For example, the energy spec-
trum studied is not typical of all photodecomposable
molecules, it is possible that direct photoexcitation of
the bond that breaks is most important in some reac-
tions, and that intramolecular energy transfer is
important in others, etc. We hope our work will stimu-
late others to provide new data and to invent new
concepts relevant to the theory of photochemical
reactions.
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APPENDIX

In this appendix we consider the photodissociation of
a molecule which, in zero order, has a set of two de-
generate discrete states. Interaction then removes the
degeneracy of these two states, leading to a molecular
spectrum consisting of two molecular states coupled to a
dense set of vibrational states belonging to another

RICE, McLAUGHLIN, AND JORTNER

electronic state, with the dense set of vibrational states
coupled to the fragmentation continuum. We shall
assume that the energy matrix has been partially pre-
diagonalized so that the two nondegenerate states
arising from the two zero-order degenerate states are
uncoupled, i.e.,

(Wa | 3C | ¥a)=0. (A1)

In place of Eq. (2), the exact eigenfunction corres-
ponding to energy E is

Vi =0(E)Yatd(E)Yat 2 bu( E) ¢n

+ [aBes (Bt (82)

with ¢, and £g- defined as in Sec. II. Clearly, the
coefficients in (A2) will differ from those derived earlier
because of the extra state, ¥4, in the spectrum of states.

As in the main text, we assume the {¢,} are equally
spaced and that

(Ya | 3C | ¢ )=1.=const,

(¥a | 3¢ | u)=1va=const,

(¢n | 3¢ | £)=0v,=const,

(Yol 31 £)=0,

(a] 3¢ | £)=0, (A3)

The set of equations (7), (8), and (9) are now replaced
by
(Ea—E)a+v,2_b.=0,

(Ea— E)d+vs)_b,=0,

( Fp— E) but+voa+vad+uv, f ® E g =0,

0
(E'—E)cp+v0 b,=0, n=0,21,+2 ---. (Ad)
Following the procedure outlined in Sec. II, the ex-
pansion coefficients in Eq. (A2) are found to be

_ — Valapt (AS)
= (E.—FE) (1t 2rivgn) tout o[ (Ea— E) / (Fa—E) 1’
_ Valoit
1=~ (=B (1 2miv) Foiat ol (FaeB) ) (Bam )T’ (46)
b, = 7)2(Ea—E) (A7)
" (E—EJ)[(E.—E) (14 2mwiv) +v2u+v[ (Ea— E) / (Ea— E) JuY
and
1247 ’
o= : E—E)'48(E—E
¢ [(1+1rw22u)+[va2u/(Ea—E)]+[vd2#/(Ed—E)](P< )y ’]
X( 1+[v2u/ ( Ec— E) 14-(van/ (Ea— E) J-inviu ) (48)
1+ [v2u/( Eam E) 1+ [02u/ (Ea— E) J+-2miviu)’

Downloaded 24 Feb 2009 to 132.66.152.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



THEORY OF PHOTOCHEMICAL DISSOCIATION REACTIONS 2765

where
p(E)=(w/e) cotlxy(E)],

v(E) = (1/¢) (E— Eata). (A9)

With the use of (A5)—-(A8) it is possible to evaluate the probability of finding the molecule in one of the nonsta-
tionary states ¥4, Y4, or {¢.}. The results are

20,2052
2=
o] (E.— E) (1+-4n’vs'?) +v'u?+oiw?[ ( Ea— E) / (Ea— E) P+202u(Es— E)+2v2u[ ( Ea— E)?/ (Ea— E) ]
(A10)
and a similar expression for | d |2, while
Vo tu? Vg4’ 20,2 2viu
22 — F )2 2,49

(tnltmst /| B b 4 2 Sy e BB )

Again, as in Sec. III, we use time-dependent perturbation theory to study the time evolution of nonstationary
states. Suppose that the ground state (assumed to be adequately represented as a B-O state) is connected via
dipole transition matrix elements only to ¥, and yg, and not to the {¢.} or £ In some cases transitions only to one
of Y, or Y, will be dipole allowed. A simple modification of our formulas is then necessary. When both ¢, and
¥4 may be reached via dipole transitions,

g | & u|¥)=a*(E) Puytd*(E) Pa. (A12)
Thus, the analogue of (27) becomes

Wa | ¥()) = — 7—; Pu fo " Sult, 1)8()dt — é Par /o R, VB, (A13)
where
Sult, ) = /0 TAF |al exp(— % B (i) ) (A14)
Ru(t, ) = /o " dEd%a exp(— % B (i—1) ) (A15)
Similarly,
Wa | () Y= — % Pao f " Rat, t')S(t’)dt’—% Pao f s, et dr, (A16)
where 0 °
Salt, 1) =/°°° dE' | dJ? exp(— % E’(t—t’)), (A17)
Ralt, 1) = / " AR da* exp(—- % B (1—1) ) (A18)
Finally, the analogue of (29) is '
($a | W(1) )= — % Pa fo Y Loty £)dl — % Pa /o Tty ) (A19)
where
Tun= /0 “ dE'a*, exp(— % E(—1) ) (A20)
Tim= /; * dF'd*, exp<-— ;E E’(t—t')). (A21)

Use of the correlation function of the radiation field, Eq. (33) and (36), now gives the following formulas for the
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average probability of finding the molecule in the nonstationary states ¥,, ¥4, or ¢y

87!'10

({wa))= —~—{ Py f ! [S.(t, t) JPdt' + Pag? / " CRa(¢, ¥') Pdt +2PyPay
0 0

((wa))=

87!‘.[ 0{

81['](]{

((wn))=

00/ [Ttm(t t,)]zdt’+Pd0/ [Tdn(t t ]2dt’+2PaoPd0
]

t1
R.(2, 1) Su(t, t’)dt’} , (A22)
0

¥ / [Ra(t, ¢) Jdi + Py / [Sult, ) Fdt+2PuPu | Ret, ) Salt, t’)dt’}, (A23)

0

Ta,,(t ") Tan(, t’)dt’} (A24)
0

Finally, the total probability of finding the molecule dissociated at time ¢ is

Paies(t) =1—(<wa>>—((wd))—; ((@n)).

THE JOURNAL OF CHEMICAL PHYSICS

VOLUME 49,

(A25)

NUMBER 6 15 SEPTEMBER 1968
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The frequencies and symmetries of the even-parity lattice vibrations of BaClF, BaBrF, and SrCIF are
determined by means of polarized Raman scattering from oriented single crystals. The polarizations and
frequencies of the vibrations are interpreted in terms of symmetry coordinates.

INTRODUCTION

Single crystals of barium chlorofluoride, strontium
chlorofluoride, and barium bromofluoride have been
prepared recently, and these materials are under in-
vestigation as host lattices for rare-earth ions.!? The
study of the phonon spectra of these crystals has
been undertaken both because it is of interest per se
and because it may aid the understanding of ion
behavior in such hosts. It has been shown recently®+
that spin—optical-phonon relaxation mechanisms can
dominate conventional Orbach processes at moderate
temperatures. Relaxation involving optical phonons
requires gerade-symmetry optical modes at low fre-
quencies.? As is discussed further in the present paper,
the Raman-active phonon frequencies in BaClF,
BaBrF, and SrCIF are very low, all less than 300 cm™.
Hence it appears that information from Raman
spectra may be useful for investigations®® of rare-
earth-ion-relaxation mechanisms in these hosts. Such

1Z. J. Kiss and H, A. Weakliem, Bull. Am. Phys. Soc. 9, 89

19
¢ 2 Z)] Kiss and H. A. Weakliem, Phys. Rev. Letters 15, 457
1965
( 3C)Y Huang, Phys. Rev. 154, 215 (1967).

¢N. Kumar and D. P, Sinha, Physica 34, 387 (1967).

§ A.S. M. Alam and B. DiBartolo, Bull. Am. Phys. Soc. 12, 60
(1967) ibid; 12, 656 (1967).

S. M. Alam and B. DiBartolo, Phys. Rev. Letters 19, 1030

(1967)

information should also facilitate analysis of the com-
plex vibronic spectra of systems such as BaClF:Smt+
under study currently.’

The frequencies and symmetries of the even-parity
phonon modes of BaClF, BaBrF, and SrCIF have
been determined in the present work by means of
polarized Raman scattering from oriented single crys-
tals. Normal-mode analysis is discussed qualitatively
in terms of symmetry coordinates.

THEORY

On the basis of powder-diffraction data, BaClF and
BaBrF are known to have tetragonal Dy7 symmetry,
or P4/nmm, with two formula groups per primitive
cell.? Accurate lattice parameters have been obtained?
by x-ray diffraction experiments on single crystals.
Tonic positions are shown in Fig. 1; note that Ba-Cl
distances are much smaller than Ba-F distances. The
barium (or strontium) and chlorine (or bromine) ion
positions have Cy, (or 4 mm) symmetry, while that
of the fluorine ions is Dsy (or 42 m), resulting in
a division of the 3N =18 degrees of freedom into modes

7H. A. Wealkiem (private communication).

8 Powder Diffraction File (ASTM Publication, Philadelphia, Pa.,
1967).

¢ Professor J. G. White, Fordham University (private commun-
ication).
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