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A treatment of radiationless transitions in an isolated molecule is considered using a Green’s-function
formalism. Molecular eigenstates are constructed by superposition of quasidegenerate Born-Oppenheimer
states, considering the mixing of one and two discrete zero-order BO states(s) with a manifold of quasi-
continuum BO states, which correspond to another electronic configuration. The nature of inhomogeneous
line broadening and the time evolution of the excited states are considered. The radiative decay following a
coherent excitation process is treated in detail. The various features and anomalies observed in the decay
times of medium-size and large molecules can be properly accounted for.

I. INTRODUCTION

Studies of aromatic compounds have revealed that in
complex molecules, even when isolated, nonradiative
decay of an excited state may compete very efficiently
with radiative decay of the same state. For example,
excitation of anthracene to the second singlet state
leads to fluorescence from the vibrationally excited
first-singlet state, not from the second singlet state.!
A second interesting example is benzene which, even in
the free molecule limit, undergoes intersystem crossing.’
That is, excitation of benzene to the first singlet state
leads to a finite yield of benzene in the lowest triplet
state. These and many other facts have been known
for some time, but it is only recently that an under-
standing of the processes observed has begun to develop.

The electronic states of a molecule are usually clas-
sified in the representation derived from the Born-
Oppenheimer (BO) approximation. It was demon-
strated by Franck and Sponer and by Kubo?® that the
nuclear kinetic-energy terms can induce radiationless
transitions between zero-order BO states. Robinson
and Frosch, Lin, and Siebrand* have presented analyses
of internal conversion and of intersystem crossing start-
ing from the assumption that the initial and the final
states are well-defined BO states. Now, it is well known
that the BO approximation is valid only if the energy
difference between the BO states is large relative to the
vibronic matrix elements connecting these states. When
there are near-degenerate or degenerate zero-order
vibronic states belonging to different electronic con-
figurations the BO approximation fails completely.
The breakdown of the BO approximation in such cir-
cumstances is well known as the Jahn Teller, the
Pseudo-Jahn Teller, and the Renner effects.

Provided that the BO states generate a complete set
of functions, the eigenstates of the molecular Hamil-
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tonian may be represented as a superposition of BO
states. This procedure, which was used by Bixon and
Jortner,? will be adopted in the present paper. It differs
from the Robinson—Frosch-Lin-Siebrand treatment in
that we do not regard the BO states as good zero-order
approximations to the excited states of the molecule. It
is just the very breakdown of the BO approximation
which plays the central role in the theory of radiation-
less transitions presented here.

In the present paper general-perturbation theoretic
methods are applied to the study of the coupling of one
or more zero-order states (which are connected to the
ground state by finite transition moments) with a dense
manifold of zero-order vibronic states belonging to a
second electronic configuration (which have vanishing
transition moments to the ground state). A detailed
examination of the time evolution of the excited states is
presented. We have chosen to use a Green’s function
formalism because of the generality of this method. The
general techniques have been applied by Harris® to the
study of predissociation. Our analysis is an extension
and generalization of the work of Bixon and Jortner.
The analysis presented herein may be shown to be com-
pletely equivalent to the configuration-interaction ap-
proach of Fano.” Indeed, at several points we shall com-
pare our predictions with those of Fano and of Mies and
Krauss.® A different point of view from that presented
herein was adopted by Jortner and Berry.? These in-
vestigators consider the nature of intramolecular
vibronic coupling and the decay of coherently excited
states as an example of a quantum-beat experiment.
Two extreme cases were considered: the resonant limit
and the statistical limit characterized by small and
large densities of molecular eigenstates, respectively.
Quantum-beat signals between closely spaced eigen-
states should be observed in a radiative decay process
in the resonance limit. In small molecules, e.g., SO,
the radiative lifetime is much longer than predicted
from the known integrated absorption curve. In the
statistical limit, intramolecular interference effects,
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which were considered by Jortner and Berry using a
simple step-function approximation for the line shape,
lead to a radiationless decay and to a reduction of the
quantum yield. In the present work we generalize the
treatment of the radiative decay of coherently excited
molecular eigenstates by taking into account the proper
line-shape function for the inhomogenously broadened
band.

The principal results of the theory of radiationless
transitions presented herein are the following:

(a) It is predicted that under certain circumstances
the rate of decay of a BO component of an excited state
cannot be described in terms of a simple single expo-
nential form. (See Note added in proof, Sec. VI.)

(b) The line shape corresponding to the radiative
decay of an excited molecule is shown to correspond to
a case of inhomogeneous broadening.

(c) The lifetime against radiative decay of an excited
BO component in resonance with a dense manifold of
BO components is lengthened by the dilution accom-
panying the mixing of states. This increase of the life-
time, which depends on the level spacing in the dense
manifold, may be very large. Such effects have been
observed with small molecules, e.g., SOz

(d) The lifetime against radiative decay depends on
the state to which the molecule is excited.

(e) In the case that transitions from the ground state
to a discrete BO state are allowed, but to the con-
tinuum are not allowed, the absorption line shape is
predicted to be Lorentzian unless the level shift and
linewidth are energy dependent. In the latter case the
absorption line shape is an asymmetric Lorentzian.

(f) The quantum yield of fluorescence depends on
both the nonradiative lifetime and certain features of
the energy spectrum of the dense quasicontinuum of
BO states. In cases of interest the usual relationship
between quantum yield and lifetime is recovered."

(g) Radiationless transitions in an isolated molecule
can be described as an intramolecular interference
phenomenon.

This paper is primarily devoted to describing the
theory of radiationless transitions in isolated molecules,
but one numerical example is considered for illustrative
purposes, i.e., in the last section we discuss radiation-
less transitions in anthracene.

II. GENERAL COMMENTS

In this paper we discuss the properties of an excited
free molecule in interaction with the radiation field.
Our analysis is based on establishing a relationship

thm A. E. Douglas, J. Chem. Phys. 45, 1007 (1966) and references
erein.

1 The usual definition of the quantum yield implies that the
decay is exponential. When this is not true, a new definition must
be adopted. On the scale of one decade of time we predict only
small deviations from exponential decay, hence the statement
made. :

ISOLATED MOLECULE 611
between approximate Born-Oppenheimer states and
the exact molecular eigenstates. To begin we represent
the molecular Hamiltonian of an isolated molecule in
the form

H=— ; (72/2Mx) V=3 (72/2m) V2

‘—Z ; (ZN62/fiN)+Z (e?/rij)

>7

+ X (ZnZuet/ry), (1)
N>M

where My and Zye denote the mass and charge of the
Nth nucleus of the molecule, m the mass of the electron,
and r;, rin, rvy the distance between two electrons,
between electron ¢ and nucleus N, and between two
nuclei, respectively. In the Born-Oppenheimer approxi-
mation the nuclei move in an effective potential
generated by the electron distribution, while the elec-
tron distribution is a function of the nuclear positions.
The BO wavefunctions are the well-known products

Ya2O({1}, {R}) =¢u({r}, (RDxa({R}), (2)

where ¢, ({r}, {R}) is the electronic wavefunction
corresponding to the stationary nuclear configuration
{R} and x..({R}) is the nuclear vibrational wavefunc-
tion corresponding to the electronic state . As should
be obvious, we have denoted by {r} and {R} the com-
plete sets of electronic and nuclear coordinates of the
molecule. Clearly, the product states defined in Eq. (2)
will be good approximations to the eigenstates of H
[defined in Eq. (1) ] only if the off-diagonal elements of
H in the basis defined by Eq. (2) are small relative to
the separation of vibronic levels. By direct computation
one finds®

<\l/u.sBO ‘ H | \LaiBO): <Xas l - ; (ﬁz/ZMN) VN2

-+ Z (ZNZM62/TNM) +Ea( {R})

N>M

+{da | =22 (B/2MN) Vn* | b0 | Xai)

N
= (1080 | HBO | ,,;B0)
= Fgs04i (3)

_12In Eqgs. (3) and (4), the brackets involving ¢’s imply integra-
tion over the electronic coordinates {r} only. The v,? operators
do not act outside the brackets. Note also that

[—Z(RY/2m)ve— E_§ (Zat*/1:n) +_‘z>3 (e/ri;) Jpa({r}, RD

=E.({R}¢a({r}, {R})
HBO= — % (h“/2MN)VN2+Egl(zzvzuﬁ/hvu) +2Z | ¢a)(Ea({R})

+ {ga | —g(h"/ZMN)sz | $a)) {dba |

The v x?in the first term acts only on xa ({R}).
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and

<¢MB0 | H l ¥B0) = (Xac ' <¢a l —; (R2/2M y) Vot l )
+ (g6 | ~2§V‘: (B/2Mu) Vx| ¢5)+ Vv | o)

= @ | V [ ¥0:5°). (4)

In Eq. (3) E.({R}) is the electronic energy correspond-
ing to the nuclear configuration {R}, while in Eq. (4)
V is defined as the difference between H and HBO
[defined in (3)]. Examination of the matrix element
displayed in Eq. (4) shows that it is proportional to the
reciprocal of the energy separation between the BO
vibronic states. Thus, when any given BO vibronic
level s is degenerate or quasidegenerate with one or
more other BO levels {i} the Born-Oppenheimer ap-
proximation breaks down, and the BO states must be
combined (mixed) in order to obtain an appropriate
wavefunction.

To proceed we assume that the BO states form a
complete orthonormal set such that

T3 linir] +};/de|er><er| 1 (5)

We shall also assume that the true eigenstates of the
total Hamiltonian H form a complete orthonormal set,

S np) o | +X [ B)E =1 (6)

In Egs. (5) and (6) we have used 7 and # to label the
energy and 7 and p to label all other parameters neces-
sary to describe the states of the molecule. We shall use,
in all that follows, 7 to refer to BO states and #p to refer
to exact molecular eigenstates.

Let z be a complex variable in the energy plane. Then
the Green’s functions corresponding to HBO and H are,
respectively,

Gro(z) = (s—HP%)™, (7)
G(z) = (z—H)™". (8)
From the definitions of Ggo and G, it follows that
Em[ (i | G(x—18) | 2)— (i | G(x+148) | i)]

-0

=tim( 5[ | #) FLwmib— B = (aoia— )]

7 4E| 6] B) FL(amio— L)~ (rtis— 1)),

Emin

9

where £> Enin In the integral term and 7 refers to a
BO state. Thus the form displayed in (9) is related to
the probability of finding a component | i) of HB® in a
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state | x) of H in the energy region between x and x-+dx.
Indeed,

Wi(x)dz=| (i | x) ['dx, (10)

which we evaluate by noting that the first term on the
right-hand side of (9) makes no contribution because
the E,’s define a discrete set, and that there exists a
formal relationship of the form

lim (x=£i8) = P (x) ' Find(x) (11)
8->0

with P(«)™! the principal part of (x)~!. The result is
Wi(x)da=(2m3) 2 im[ (i | G(x—1d) | i)
50

— (i | G(a+18) | 1)]da.

In the case of scattering theory the choices =46 with
6>0 correspond to outgoing and incoming spherical
waves, respectively. The coefficient of the delta func-
tion is compatible with the wavefunction having as its
asymptotic form a phase-shifted sinusoidal function.
With this normalization the Green’s function method
should lead to results identical with those obtained
from the Fano theory of configuration-interaction,
provided that the matrix elements satisfy the same
block diagonalization (partial prediagonalization) con-
ditions in both cases.

(12)

III. COUPLING BETWEEN ONE DISCRETE STATE
AND A QUASICONTINUUM

We now consider the special case of one discrete
Born-Oppenheimer state in resonance with a quasi-
continuum of other BO states. Let the ground-state
energy be taken as zero, and let E,, be the energy of
the BO state yq.. Further, let the quasicontinuum be a
manifold of BO states, {:}. Our principal assumption
will be that transitions from the ground state to g,
carry oscillator strength, but that transitions from the
ground state to the manifold {ys:} carry no oscillator
strength. If the state ., is singlet, and the manifold
{¥s:} is triplet, spin-selection rules are adequate to
make this assumption an accurate approximation. If
the manifold {¢s:} is singlet, and the lowest BO vibronic
levels of {ys:} and ¢, are well separated in energy, the
Franck—Condon factors for excitation of states of
{¥»:} degenerate or nearly degenerate with ¥, are so
small that the assumption used is a very good approxi-
mation. Although spin-selection rules are adequate to
insure that the oscillator strengths of singlet-triplet
transitions are small, the finite spin-orbit coupling leads
to mixing of states of different multiplicity. Of course,
mixing between states of the same multiplicity is spin
allowed. Thus, when ,, is in resonance with the mani-
fold {¢»:} it is to be expected that there is extensive
state mixing. It is important to reiterate that a con-
sequence of the overlapping of Y., and the {yu.} is the
breakdown of the BO description, so that a proper
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description of the states of the molecule must replace
the BO approximation.

The true molecular eigenstates in the energy region
corresponding to overlap of BO states can be repre-
sented as the superposition

Vo= | n)=ar | s)+20 b [4), (13)
where Yo,= | s)=vs, ¥5:= | )=y, and we have as-
sumed that no other BO states ¥, are close to | s) in
the energy region of interest. The state | s) must, there-
fore, be close to the bottom of its BO nuclear vibrational
potential-energy surface. Now, all the states used in
(13) are discrete, so that (12) cannot be directly used
to calculate the probability of finding the BO component
| 's) in the true molecular state | )" ie., | (n]s) |2
If the states | i) are very dense we may approximate
this quasicontinuous set of states by a continuum, so
that (12) may become applicable,

S 1wl = [ 1940 )eile) @) 1 de (1)

T 1)@ | = [ 19(B) Jou(B) @~(B) | dE,

(15)

where the energy densities p;(e) and p,(e) are defined

lar P= [ (s |[W"(En) ) [

=[27ripn(En) ]—I{EEH—Es+i6_ (SI F(En+16) | S>]_1_[En_E8—i6_ (S[ F(En_/“s) [ s)]—l}

or

[ a," |2=[Pn(En) ]“1{728/[(En_Es—7ls)2+7"2(72s) 2]}:

where E,= E,, introduced earlier. Using the complete-
ness relation

1= )|+ 2106, (22)

which is valid in the energy region under study, we find
(s| F(Entid) | s)=(s|V]s)
+ 224 @l V) /[ E+is—E)

=61V 1)+ P [deni(e

X L@ e [ VIs) [/ (E—e)]
—impi( En) | @H(E) |V [5) %

13 This is because the discrete part gives zero contribution in
Eq. (9). The broadening due to collision, etc., is neglected in our
low density limit.

(23)
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by
pie) =2 8(e—es),
pn(E) =) 8(E—E,). (16)

We now replace (16) by a Lorentzian function (to be
explained later). As a result of this replacement the

discrete sums (14) and (15) become continuous, and
from (12)

iigl[(s | G(Ex—1id) | s)— (s | G(Extid) | 5)]

=1im[| (s | 9*(E) ) [2oa( E)
30

X [( En—ib— E)"\— ( E,+i6— E)~]

= | (s | V. (E) ) ["2mwipu( En) (17
and of course,
U (E,) =V,.
Defining the projection operator®
P=[s)(s| (18)
and
(s | F(x£i8) | s)=71(x) Firs(x) (19)

and using (17), we find for the coefficient a,* of the
BO state | s)in | n)

(20)
(21)
Of course, using the defined BO states,
Wil V)= i | Bl )0 (24)
as displayed in (3). Also
(‘p'wl Vl¢a8>5 <S| VIS>=O. (25)
Thus, the level shit is just
i 2
E,—¢
and the linewidth is proportional to
ve'=pi(Ea) | @(EL) | V]s) [ (27)

In (27) it is satisfactory to approximate ¢ ( E,) by the
BO state with energy closest to E.,.

We have already noted that we intend to replace
Eqgs. (16) by Lorentzian functions. Thus far in the argu-
ment we have used no particular form for p;(e) or
pn( E), except that for (17) ef. seq. to be valid these
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functions must be continuous, i.e., they cannot be
delta functions. We now introduce the specific form

pu(En) = ()12 Him {en/[(En=Em)*+en’]}

m em>04

(28)

and assume that e,—0,, which is the energy spacing
between adjacent levels. Note that we do not allow
én to become zero. In what follows we shall let all
ém =€, =constant. Then

pu( En) = (1ren)~1[1+2§=:1 (m+1)71]  (29)

with the factor two arising from the addition of con-
tributions from above and below E,.. Now, let N—o
as an approximation. In this limit™

pu( En) = (men) ™ (142 {3n[ cothr+(m) 1]~ 1})
=(¢,)"" cothnr
s (fn> -

which is consistent with the assumption that e, corre-
sponds to the energy separation between the adjacent
true molecular states. We find, by a similar argument,

pi( En) =5 (e5) ™ (31)

at the energy nearest to E,. It is important to remark
that the interpretation of e, as the width of the state
is unphysical because an intrinsic statewidth (implying
intrinsic diffusion of states) in an isolated system is not
compatible with the uncertainty principle. The use of a
summation over a large number of states allows us to
interpret €, as the energy separation between states.

There is no restriction on the magnitudes of ¢; and
€n, €xcept that they must be infinitesimally small on the
energy scale of interest. The breakdown of the BO ap-
proximation ensures the condition

(30)

yoS> | (WH(EA) |V s)] (32)
whereupon
| @WiE) [V [ s) [/ei=0/e>1 (33)
and finally
Lo 2= (en/er) {VE/[(En— Ea—v1)* 72 (e%/€) 7]}
(34)

Clearly, e, and ¢; are of the same order of magnitude.
If the ratio (e,/e;) is replaced by unity (34) becomes
identical with the expression for the mixing coefficient
previously derived by Bixon and Jortner. Notice that
(34) is more general than the latter’s result in that »
need not be assumed constant. The assumption that v
is constant will be used in the later sections of this
paper when the damping is approximated by.a constant.

1V, Mangulis, Handbook of Series for Sczentzsts and Engineers
(Academic Press Inc., New York, 1965), p. 7

CHOCK, JORTNER, AND RICE

IV. COUPLING BETWEEN TWO DISCRETE
STATES AND A QUASICONTINUUM

Consider two BO states, | s) and | s’), with energies
E, and E,, respectively. Let | s) and | s”) have the same
multiplicity. We now consider the coupling of | s) and
| s} to a quasicontinuum of states { | i)}, with energies
{E;}, which may have the same or different multi-
plicity. Equation (17) remains valid, but (20) is modi-
fied because the projection operator (18) becomes in
the present case

P=s)s|+ [, (35)
1=P=X[)]; (36)
one then finds
(s1G*|s)y=[atid—FE,~—{s| F£|s)
— ([ FE]s) (| FE]s)
X (x£18—Eg— (s" | F£| s )11 (37)

In (37) we have used the definition G(x418) =G*.
A similar expression is obtained for {s"| Gt |s") merely
by interchanging s and s’. The off-diagonal element
{s | G*]s") is found to be

(s1G*]s")=(s| F*|s")[(a£id— E,— (s | F*|s))
K (xd=i6— Eg— (s | F=|5))
—(s| F]s' )" P2 | s)T
and {(s'| G*|s) is obtained merely by interchanging s

and s’. Proceeding as in Sec. IIT we now decompose the
matrix elements of F into real and imaginary parts:

(38)

(s | F(E,%i8) | s) =y Firys
/m(e> I <¢(e |V|s)

Finp:( Ey) | (W'(En) 'I VIisyk (39
(s | F(E,215) | sy =y Fimys’
p/”’ (o) | <¢ (e) LVIS>|2
Firpi(E,) | <‘//1(En) |V Is")[2 (40)

(s | F(E.%x148) | s")
={ ‘ F(E,%id) l sy=nTFiry:
< p[ HAEIVIFO 1 V1),

n~—"€

Fimpi( En) (s | V | ¥4(En) )(W,(E,.) | Vs (41)

In obtaining Eqs. (39)-(41) it has been assumed that
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the functions | ), | s), and | s’} are real, and that V is
Hermitian. Note also that

GLF=| )| FE]s)=((s| F]s))?

# [ (| Fx[s)[n (42)
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Of course, just as in Sec. III, the energy densities p;
and p, must be taken to be continuous. We use the
same representation as in Sec. III, so that again
pi(E.) =p.(E,) =¢L. Using Egs. (37), (39), (41), to-
gether with Eq. (9), we find for the coefficient a,*,

| 6 [P =[2wipa( Ex) T ({ Es— Es—v —imye' — [ (mitimy2) Y (Bu— By —vi¥ —inye®) )}~
—{Ea— Es—yr'+imye —[(vi—imv2) ¥/ ( Ea— Eo — v +imy2) 1} 7)
=[pa( En) v L( B Eo =7 )24+ (y2") T4 11ve (B Eo —11¥) +79* (2 —7v2) }
XAL(En—= Es—y1*) 272 (v2) AL (En— Eor —v1*") 22 (v2*) ] (7 +7oye) 2
=2 (En— E;—v1*) (Bx— Eor—v1") =12 y2* ] (v —2v22)

Fartyryal (En— Eo—v1) v+ (Ln— Eo —v1) v ]} (43)
In the limit that the energy shifts y1, v°, v1*’ are negligibly small, and if we set ya_ivs*ys*, then
Lo [?
~Du (BT el |
P (B BV (Eam B+ (Bum B (0) o+ (Eum )1 (v2) '+ 2( B Br) (Bne By w72 |’
(44)
which is identical with the result obtained by Mies and  where
Krauss® from the Fano configuration-interaction ap- V(1) =o(t) g (1) (48)
proach. and
We close this section with the remark that the Green’s .
function method and the Fano theory are sensibly Hpo() =h(0/38) (1)
equivalent, except that the Green’s function theory Yolt) = | ¥o) exp(—iEg/h). (49)

does not require any prediagonalization of matrix ele-
ments to block form. If there are transitions from the
ground state to the background continuum, our theory
predicts antiresonances just as does the Fano theory.
To actually calculate the antiresonant line shape,
prediagonalization of the matrix elements of the Green’s
function must be carried out, just as in the Fano theory.

V. THE TIME EVOLUTION OF EXCITED STATES

With the analyses of Secs. IT-IV we have prepared
the background for a discussion of the time evolution
of states undergoing radiationless transitions. For the
present the radiative transition is ignored. The simul-
taneous influence of radiative and radiationless transi-
tions on the time evolution of a state is considered in
Sec. VIL.

It is convenient to start by displaying the total
Hamiltonian in the form

Hr($) =H+H(t),
H=H?o4V,

(45)
(46)

and Hy(?) is the perturbation (to be specified later).
To first order we find for the equation of evolution

[3%(8/3t) — H WA (2) = Hi(£)¥o(2), (47)

It is well known that (¢) can be expressed in the form

¥(1) =%o(t)
+(21r)_1/;wdw exp(—iwt) (Awti6—H)" () | o)

(50)

where H1(w) is the Fourier transform of Hi(f). We
now must identify H;(f). We shall assume that the
perturbation is an electromagnetic pulse of the form

Hy(t) =pE'8(1), (51)

where u is the dipole moment in the direction of E'
and E’ has the dimension of electric field multiplied by
time. The Fourier transform of Hy(#) is just

Hi(w) =pFE'. (52)

We now consider again the cases discussed separately
in Secs. IIT and IV.
A. Coupling between One Discrete State and
a Quasicontinuum

We proceed by expanding (50) in the basis of the BO
states | s) and { | 7)}, in the energy region of interest.
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We assume that
pio={i|u|0)=0,
= (s | 1] 0)520. (53)

In terms of the matrix elements of the dipole moment
(50) may be represented as

W (t) =¢o(t) + (2m) /_ " G E exp(—ict)

XELs) s 1GH[s)(s [ w o)
FIOGIGH ) (s Lul vl (54)
We shall now assume that an adequate approximation
to the true ground state | ) is given by the BO ground

state, | B°). The ground-state energy, Ky, is taken to
be zero. Thus,

\l/o(t) zilloBO CXp( —’LEot/ﬁ) =¢0BO.

¥ (¢) can now be shown to be

(35)

Y (1) =vo(?) +(21r)_1/_mdwE’ exp( —iwf)

X{ Mso
hotid— Fa (s | F(hoti3) | 5)

S{RRSRCLRCTE] I

What is the probability of finding the BO component
I's) in ¢(#) as a function of time? This probability,

CHOCK, JORTNER, AND RICE

which we denote W,(?), is
W)= | {s|g(0)) 2
= (4m)~" | pwo PE
% t mdw exp ( —iwt) 2 s
L = Ee (5 | Fhatin) [0y | = 7

We now introduce into Egs. (19) and (23) for (s | F* | s)
and assume that vy,*(w) and ¥:*(w) are constant with
respect to w. The result is

We(t) = (| pao [*/H?) E'® exp(—2my21)

= ( [ Ms0 Iz/ﬁz) E? exp( —t/tn), (58)
where
Tr=(2mys*) "
=efi/2m (39)

is the nonradiative decay lifetime. Equation (58),
which describes an exponential decay of the BO com-
ponent | s) iny(¢), is in agreement with the description
obtained from a simple kinetic equation.

B. Coupling between Two Discrete States and a
Quasicontinuum

We consider now that there are transitions possible
from the ground state to two BO states, | s) and | s'),
each of which overlaps the quasicontinuum of BO states
{14)}. As before, we assume

Ms0= <5 ! o l 0>;'£0x
Msr0= (S’ | KM ‘ 0>#0;
pio= (i | u[0)=0. (60)

Proceeding as in Sec. IV, we expand (50) in terms of the
BO states | s), | s'), and { | ¢)}. The result is

110 =%(t)+(21r)“‘f_mdw exp(—iwt) L1 s)((s | G* | $ )t (s | G* [ " Dussro)

+ 1 TG | ot 8" | G 8 Do) + 201 DG GF | St G 1 GH ] s waw) ], (61)

where the delta function pulse is used as the perturbation. After use of Egs. (37) and (38) we find for the BO com-

ponent | s) in ¢(£) the result

[ 1) 2= (4n2) Lmdwexp(—iwt)E’

so that

x[ et id— By — (s’ | F(wrtid) | 5')) Furols | F(fotis) | ') ] )
(w18 — E,— (s | F(fiw+1i8) | 5)) (iw+id— Eg— (" | F(fiwo+18) | s')) — ((s | F(iw+18) | s'))2]|
and Egs. (39)-(41) define the several matrix elements of F(fiw-15).
It is evident that
PV i) ) P 7V [ (Rw) ) |22 | V [ (fiw) Y i(Fw) | V | 57) (63)
T2 2> 2y, (64)

a result we shall use later [see Eq. (72)].
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To evaluate W, it is necessary to evaluate a complicated integral. The notation is simplified if we use the new
variables
a=Etvr,

b .__“.,.hc’
c=Ey+v¥,
d =1r72”',
€=Y1,
f=mr (65)
In the new notation
W= (s[¥(0))
E"

2

_E e peefio— (c—id) Thsen(e =) }
e /_md“’ exp (i) {[ﬁw—(a—ib)][fzw—(c—id)]—(e—zf)z ‘ (66)
The integrand of (66) has two simple poles at

ho=%((a+c) —i(b+d) £{[(a—c) —i(b—d) P+4(e—1f)*}'#) (67)
so that

W= (E*/2) | (+++)7 (exp{ —3(it) [ (a+c) ~i(b+d) + (- - )]} (usod[ (¢ —¢) —i(b—d) + (- * )" ]+ us(e—1f)
—exp{—3(it) [(a+c) —i(b4d) = (++ )]} (ueok[(a—c) —i(b—d) — (- - - )" ]+pso(e—if) ) [ (68)
We now rewrite W, in the form
(A24B?)'4 exp[di arc tan(— B/ A) ]= ( A2+ B?)"*{cos[} arc tan(—B/A4) ]+ sin[} arc tan(—B/A4) ]}

=______(A2+Bz)”4[<11+ 4 )m:u'( 4 )m] (69)

where the positive sign is chosen if B<0, and the negative sign if B>0. The quantities 4 and B are defined by
A=(a—c)*— (b—d)*+4e*—4f?,
B=2[(a—c) (b—d)+t4ef]. (70)

To calculate W, we need only interchange s and s/, ¢ and ¢, and b and d.
Equations (68) and (69) are much too complicated to permit easy interpretation. There are, however, two limit-
ing cases of interest in which W, assumes simple forms.

1—

(i) Suppose that a=vc and b=zd. In this case the two BO levels | s) and | ') are very close and have about the

same lifetime.
Then

W,=(E"?/4%2) | exp[ —i5¢(a+c+2e) —51(b+d+2f) ] (mao+usro)
—exp[ —i3t(a-+c—2e) —5t(b+d—2f) J(uso—pa) |2,
= (E"?/472) exp[ —¢(b+d) I[ | paotueo |* exp(—2/0) + | moro—sie0 [2 exp(2ft) — (| oro [P— | a0 [*) 2 cos(et) ],
= (E"?/4%?) exp[ —nt(ye+v2") L | maotsaro 2 exp(—2myat) + | woro—paso |? exp(2myat)

— (| thor0 [2— | pao |2) 2 cosyit].  (71)
The total probability of decay in this case is then just

Wt W= (E?/27%) exp[—nt(ve'+v2") IL| peotiiero |2 €xp(—277at) + | poro—piso [ exp(2rvat) ] (72)

Note that the decay rate is not a simple exponential form. Indeed, because of the positive exponential term
in the brackets the decay rate is less than might have been expected and the decay rate decreases as time in-
creases. The calculation of Mies and Krauss? leads to the same conclusion.
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(ii) Suppose that a>>c and d=2d. In this case the two
BO levels are far apart, but have comparable lifetimes.
We find that

([(a—c) —i(b—d) F=4(e—if | *ac
and
exp[ —ita—3t(b+d) Juso(a—c)

W,=(E2/R) -

2

-+small term

= (E?/1?) | pso [* exp[ —mt(ys*+v2) 1.

The total probability of finding either |s) or | s’} in
¥ (1) is, thus,

Wot-Wor=(E*/2) (| teo [*+ | paro [2)
Xexp[ =t (vo"+72*) ],

which has the form of a simple exponential decay.
Equation (74) is, again, in agreement with the calcula-
tions of Mies and Krauss. We conclude that a simple
exponential decay is an adequate description of the
time dependence of W, provided that all the resonance
levels undergoing transitions are sufficiently far apart
(relative to their width).

(73)

(74)

VI. TIME EVOLUTION WITH COUPLED
RADIATIVE AND RADIATIONLESS DECAYS

Note added in proof: The results obtained in this
section are based on the assumption that each level
decays with its own natural lifetime, independently of
the other levels except for interference arising from
phase coherence. More recent work (Bixon and Jortner,
unpublished data) shows that when the only radiative
components of a set of levels all have the same parent-
age and are thereby indistinguishable, the level decays
are not independent. The consequence is that, in the
statistical limit, contrary to the results obtained with
our assumption, the radiative decay is exponential.

In this section we consider the nature of the emission
from an isolated excited molecule in which both radia-
tive and radiationless decay are possible. We suppose

(P(1) >=kZ| O, k,¢| U(1) | ¥(0), vac) |*

CHOCK, JORTNER, AND RICE

that the molecule is excited to a state ¥(¢) at time t=0
by application of a delta function light pulse, Hi(f) =
H'5(t). The radiative decay of the state ¥(0) is then
determined by counting the photons emitted.

Because the state ¥(¢) is prepared by exciting the
molecule from the ground-state, first-order perturbation
theory gives

1

v()=—1 fo i exp(i;—{ (r—t))Hl(r)

Xexp(—i %) |0), (75)

where H is the Hamiltonian of the isolated molecule.
If we set Hi(r)=H'8(r) and multiply (75) by
> n|n){n| we find

W(t)=—(i/h) D | n) exp(—iEd/B) n | H' | 0).

(76)

The reader is reminded that the states | #) are the true
molecular eigenstates. From (76) we find for the initial
state

¥(0)==(i/R) X [n)(n | H'10). (77
The decay of ¥(0) to the ground state is determined by
the amplitude

| O,k ¢| U®t) | ¥(0), vac) |

where Kk, & refer to the wave vector and polarization of
the emitted photon and U(?#) is the time-evolution
operator. We restrict attention to the case of single
photon emission. We also assume that the excited state
¥ (0) is sufficiently close (in energy) to the ground state
that radiative decay to the ground state dominates over
radiative decay to any other states.

The total Hamiltonian of the system molecule plus
radiation field is

Hy=H~+Ha+H:. (78)

In terms of Hy, the probability that one photon of any
polarization ¢ and wave vector k is emitted during
decay to the ground state is

=kZ (/B (221 (| H' 10| 0, Kk, ¢| exp(—iHzl/F) | m, vac) P+2Re}. (O H' |n)(n' | H'|0)

X {0, k, 2| exp(—iHypt/B) | n, vac){0, k, & | exp(—iHyt/R) | #’, vac)*}.

When the dipole transition moment is dominant,'

n>n/

(79)

0, k, 2| exp(—1iHrt/Ti) | n, vac)=—[ (2ne?fi2c) /Vok 12{0 | (¢:P/mc) | n) exp[ —i( Eo/fi+tkc)i]

1—exp{i[fikc— (E,— Ey) + (iT'\/2) Jt/h}
fikc— (En— Eo) + (iT4/2) ’

(80)

where £ is the wavenumber (k= | k|) of the photon, P the total momentum operator, E, and E, are the

L. Kelly, Phys. Rev. 147, 376 (1966).

15 See, e.g., M. L. Goldberger and K. M. Watson, Collision Theory (John Wiley & Sons, Inc., New York, 1964), p. 464. Also see R.
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energies of | #) and | 0), respectively, and V, is the
volume of the box in which the electromagnetic field is
quantized. Finally, the natural linewidth T, is given by

T= (/2076 (Ba En) (44X ] O] (2-B/mo) | m) P
(81)

As is usual in problems of this sort we change the sum
over wave vectors, Zk to an integration by the formula

; (2m)3
where dQ is the solid angle. We now assume that the
monochromator used in the experiment passes all
radiation with frequency in the vicinity of E, in a
bandpass much larger than T',. In that case [kdk may
be replaced by [(E./#ic)dk. Using these replacements
(79) gives

f B2k,

IH’InH2

)=z 8 —exp(~Tol/B)]

OIH |n)n|H|0)

—2Im),

) 72
X Pnn’
_En’+z(rn+rn')/2
X {1 —exp[i(E,— En)t/R] exp[ —3(TwtTw) t/A]}.

(82)

If we differentiate (P(f)) with respect to ¢ there is
obtained the rate of photon counting. This is

(d(P()))/dt=FE) {2 | O| H' | n) [(TW/5)
Xexp(—Taut/A)+2Red, O H | #'Yn|H' | 0)Tpy
n>nl

Xexp[i(Ey— En)t/%] exp[ —3(To4Tw) /5], (83)
where
Taw= 5o [H (Bt E, >——Eo]/dszk

EO[ENGIED

Explicit evaluation of (d(P(f) )/dt) is achieved by
expressing the states | #) and | #’) in terms of the BO
states | s) and | 1), which overlap in the energy region
of interest. We assume that radiative decay can only
occur from |s) to | 0). Thus, {(» | H’|0) may be re-
placed by a/*(s| H'|0). Following the analysis of
Bixon and Jortner, assuming all wavefunctions to be
real, and setting E,=0, we write (henceforth a,=a,")

a?=[ (/&) (¢/v)n* ], (85)

where # is an integer corresponding to the state | n).
That is, # is defined by

E,=E,+ne,

1 i

n=0, %1, £2, ++- (86)

ISOLATED MOLECULE 619

v will be assumed to be constant’ [see Eq. (33)].
Substitution of (85) and (86) into (81) and (84) and
defining

62 2
Fs= m Es/dgk; ) (87)
211'72,203 / dﬂ’“Z K * (88)
we find
neAd+T;
o= (ned+T,)a.2= )k (Jo) (89)

Tpnr = [2 (n+n,) ed +I‘s]anan:
=[3(n+n")eA+T,]

X AL(7v/ €)%+ (e/) 0 I (wv/€) 2+ (¢/v) 22 ]} 12 (90)
It is interesting that
AEE foo/ dnme’h S (€2/Fic) ¥, (91)

where ¢2/fic=a=1/137 and f, is the oscillator strength.
The rate of photon counting now assumes the form

a(P(t)) 1 , , 3eA(ntn')+T,
at —723Re,§,| IO P e (Bren
ex [i(n—n’)et] (_ L){Aen+Fs+Aen'+I‘s}

P |"\T /)| Brce " Brcw)
(92)
where
B=(7v/e)2>1,
C=(¢/v)21. (93)

To evaluate (92) we can replace the summation by an
integration provided that ef/fi<<l. With negligible
error the domain of integration can be extended to
=+, Furthermore, we neglect Aen relative to T,
This approximation is valid because the excitation
energy considerably exceeds the linewidth, so that
E;>>ne. With these operations carried out,

d({’:)) K Hﬁ; 10)[* Re/_";/dﬂdn'rs

expli(n—n') et/ ]
(B+Cn?) (B+Cn'®)

xewp( - %)[(B+Cn2>-l+<3+cw>~lj

=|_<S_'_”ﬁ1;.|_°>f r,(4{ /0 " dn(B+Cn2)-t

Xcos( ﬁt) exp[—- Lt (B+Cn2)—1} ])

=(| (s| H'|0) /AT (94)
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The remaining step is, of course, the evaluation of
the integral in Eq. (94). The reader should note that
the integral is similar to that encountered in the theory
of diffraction from a slit. We have not found an exact
quadrature possible and have, therefore, considered the
following approximations:

(a) Let a,? be replaced by a step function of height
B-1 and width 2(B/C)'2. This corresponds to replacing
the true bell shape a.* by a rectangular distribution of
the same width at half-height. With this replacement
(94) may be integrated to give

d(PW) | (s|H|0)
a 73
| Tie 4 sin?[ (¢/2) 7}
Xe“’( ﬂzv?ﬁ)“ 2 T
where

Tar =€/ 2w

as in (59) is the lifetime against nonradiative decay.
Note that the rate of decay resembles the diffraction
pattern from a rectangular slit modulated by an ex-
ponential decay. (See note after Sec. VL)

(b) Let a,? be replaced by a triangular function of
height B, i.e.,

a.2=B[14+L(C/B)*] for »<0,

a2=B"[1-3(C/B)Y*%] for #n>0. (96)
It is then found that
d(P(®)) | (s|H]0)P ( I’sk?) 4
= expl — —=Ts—
dt 7 w2/ w?
1—exp(Tlet/2n%h) cos(t/Tur) >2
, (97
X( #/2r,2 o7)

which again resembles a diffraction pattern modulated
by an exponential decay.

(c) We write, for the case that a,? has a bell shape,
the approximation

fmdn(B-i-an)—l cos(%d) exp[— ;‘—ﬁ (B+Cn2)—1]

=exp< 23ﬁ>/ dn(B+Cn?)1
Xexp[(— ;;)[(B-I-Cn?)_l-—B*l]] cos ﬁﬁl

J N o t
%exp(— ﬁﬁ) [) dn(B+Cn®)™1 cos 7—;;—
=exp{ —TI,¢/2B%) (n/2C) z71/* exp(—yz'/?)

=1 exp(—~T.t/2BAk) exp(—1t/27u) (98)
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and therefore

dPt)y | G|H|O0)P
a #2

T'pe .
I‘sexp - ;21}—27;"'}‘7'"{“ il

(99)
In (97) we have set
y=et/h,
z=B/C,
ya2= (/27 .

Approximation (c) is valid only if ef/A<<1, and T';t/A B<K1
depending on which restriction on ¢ is more stringent.
In general, the former restriction appears to be domi-
nant, for molecules in the statistical limit. A good
approximation to this is e£B/A=z1. This will serve as a
validity criteria for the approximation (c). In this
limit

exp[— (Tst/2k) (B4 Cn?)~ V1

for both small # and large #. Although the approxima-
tion leading to a simple exponential decay is use-
ful it cannot be correct everywhere. Equation (99)
does account for the anomaly in the radiative decay
rate (because of the factor €2/71® in the exponential and
for the fact that the rate of the radiationless transition
overtakes the rate of radiative transition when both
occur simultaneously. For longer times the rate of decay
is not a simple exponential form.

As our last topic we consider the quantum yield of
fluorescence. To calculate the quantum yield we need
the total number of photons emitted, i.e., {(P(®)}).
We therefore integrate the expression for d(P(t))/dt

using approximation (c) to find
F 1 t
Tar,

PETRICLAUIRY
=( | <S I 24 l 0> |2/ﬁ2) [anB/(an+TrB)]

=(| &1 H [0)[/R)e, (100)
where 7,,=eh/2r* and 7,=%/T, is the uncorrected
radiative lifetime. Since B=(wv/e)? is very much
larger than unity, and 7., $7. in general, we find

(P(0) )=(| (s | H'|0) 2/72) (rnr/7:)  (101)

or

¢=7'm‘/7'r (102)

as given by elementary kinetic arguments. Notice that
(100) and hence (101) is valid only if the exponential
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decay law (98) holds. Since the numerical calculation
shows that this is not so at large £, (100) and (101)
can only be treated as a very crude approximation.

VII. DISCUSSION

We have already commented extensively on the
formalism used in the course of the analysis, so that
this concluding section will deal with only a few points
of interest. We note that:

(a) The treatment of the breakdown of the BO ap-
proximation presented herein is very general and does
not depend on any explicit assumptions about level
spacing in the statistical limit. Qur analysis is philo-
sophically different from the Robinson—Frosch-Lin-
Siebrand theory in that we focus attention on the
properties of the true molecular eigenstates. The ad-
vantage of the present approach is that it permits
explicit description of the time evolution of an arbitrary
BO component of an exact eigenstate, of the absorption
line shape, of the radiative decay from the molecular
state, and of the coupling between radiative and non-
radiative decay processes.

(b) It is a direct prediction of our theory that the
mixing of BO states in the true molecular eigenstate
leads to a lengthening of the radiative lifetime of each
molecular eigenstate. This phenomenon is noticeable in
triatomic molecules which have large enough coupling
constants to make up for the intrinsic low density of
states. It has been reported for the case of SO, CS,,
and NO..! The interpretation given by Douglas is thus
explicitly verified. :

{¢) The nonradiative component of the decay of a
molecular state can be thought of as arising from the
interference between the many coherently excited
states within the inhomogeneously broadened line.
The inhomogeneous line broadening itself arises from
the differential distribution of a single BO component
amongst the many components of the dense BO mani-

IN AN ISOLATED MOLECULE 621
fold, which all together constitute the representation
of the exact molecular eigenstate.

(d) Although it is customary to assume that the
radiative and nonradiative decay modes are inde-
pendent, and that the observed decay process can be
separated into two components, Eq. (99) shows clearly
that the radiative decay time is altered by the existence
of inhomogeneous broadening of the line. That is, the
radiative decay time depends on the number of states
within the half-linewidth. The correct relationship
between the observed decay time (ros), the nonradia-
tive decay time, and the apparent radiative decay time

(determined from the oscillator strength) is
1/7obe= (1/Br) + (1/7nr)

in the limit where 7 is small (in general, of the order of
the nonradiative decay time).

(e) If the widths of two states exceed their separation,
as can occur in the case of two low-lying vibrational
components of a second higher excited-singlet state, the
decay rate becomes nonexponential. Perhaps the use of
picosecond laser pulses will provide a means of directly
testing this prediction.

We close by remarking that our description of the
decay of excited molecular states implies that such
states are best thought of as resonant states of a com-
pound system analogous with the resonant states which
are encountered in autoionization, predissociation, and
photochemical unimolecular processes.
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