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The Zeta Function and Weil Conjectures
Let C be smooth projective curve over Fq; zeta function of C is

Z (T ) = Z (C; T ) = exp

( ∞∑
k=1

Nk
T k

k

)

with Nk the number of points on C with coordinates in Fqk .
Weil Conjectures:

I Z (T ) is rational function over Z and can be written as

P(T )

(1− T )(1− qT )

I P(T ) =
∏2g

i=1(1− αiT ) with g genus of C and |αi | =
√

q

I P(T ) =
∑2g

i=0 aiT i with a0 = 1, a2g = qg and ag+i = qiag−i
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Ultimate Goal

I Given C over Fq of genus g, compute zeta function
efficiently (at least polynomial time) for a bounded range of

qg ≤ 2512

I qg roughly the size of the group JC(Fq)
I Current situation:

I Elliptic curves: efficient solution for all Fq
I Hyperelliptic curves: good solution for Fpn and p small, any

genus allowed
I Nondegenerate curves: decent solution for Fpn , p small,

small genus

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields



Introduction
p-adic Numbers

Satoh’s Algorithm

Central Object: Frobenius Endomorphism

I Recall a ∈ Fq is in Fq iff aq = a
I Frobenius automorphism ϕq : Fq → Fq : x 7→ xq induces

I morphism ϕq on C(Fq)
I endomorphism ϕq on JC(Fq)

I Fq-rational points are invariant under ϕq

JC(Fq) = Ker(1− ϕq) #JC(Fq) = deg(1− ϕq)

I Theorem: P(T ) = χ(1/T )t2g

I Remark: for q = pn, then ϕq is composition of n
morphisms of degree p (easy to handle for p small)
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Overview of Existing Approaches

I l-adic: Schoof’s algorithm and generalisations
I consider the l-torsion as first order approximations of l-adic

cohomology (cfr. representation on Tate module)
I compute characteristic polynomial of Frobenius modulo li ,

for various small li and recover χ(T ) mod
∏

i li .
I p-adic:

I canonical lift
I p-adic cohomology
I p-adic deformation
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p-adic Numbers

I p-adic valuation ordp(r) of r ∈ Q is ρ with

r = pρu/v , ρ,u, v ∈ Z, p 6 | u, p 6 | v

I Non-archimedian p-adic norm |r |p = p−ρ

I Field of p-adic numbers Qp is completion of Q w.r.t. | · |p,

∞∑
m

aipi , ai ∈ {0,1, . . . ,p − 1}, m ∈ Z.

I p-adic integers Zp is the ring with | · |p ≤ 1 or m ≥ 0.
I Ideal M = {x ∈ Qp | |x |p < 1} = pZp and Zp/M ∼= Fp.
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p-adic Numbers in Practice

I Zp: for fixed absolute precision N, compute modulo pN

I Qp: write each element as pordp(x)ux with ux ∈ Z×p
I Qp: for fixed relative precision of N, ux mod pN

I No rounding off errors occur unlike floating point
I Loss of absolute precision on division by p
I Possible loss of relative precision when subtracting
I All operations asymptotically in time O(N log p)1+ε

I For log2 pN < 512, schoolbook methods suffice
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Unramified Extensions of p-adics

I K extension of Qp of degree n with valuation ring R and
maximal ideal MR = {x ∈ K | |x |p < 1} of R

I K is called unramified iff its residue field R/MR
∼= Fq

I K denoted with Qq and its valuation ring with Zq

I Gal(Qq/Qp) ∼= Gal(Fq/Fp) and Gal(Fq/Fp) =< σ > with

σ : Fq → Fq : x 7→ xp

I Gal(Qq/Qp) =< Σ > generated by Frobenius substitution
I Note: Σ is not simple p-powering !
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Representation of Qq

I Let Fq ∼= Fp[t ]/(f (t)) then Qq can be constructed as

Qq ∼= Qp[t ]/(f (t)),

with f (t) any lift of f (t) to Zp[t ].
I Different choices of f (t) have different advantages
I Valuation ring Zq ∼= Zp[t ]/f (t); a ∈ Zq represented as

a =
n−1∑
i=0

ai t i , ai ∈ Zp .

I Reduction mod pm gives (Z/pmZ)[t ]/(fm(t)) with
fm(t) ≡ f (t) mod pm
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Frobenius Substitution

I Let Zq ∼= Zp[θ] ∼= Zp[t ]/(f (t)) with f (t) =
∑n−1

i=0 fi t i

0 = Σ(f (θ)) =
n−1∑
i=0

fiΣ(θ)i = f (Σ(θ)) .

I Compute Σ(θ) as zero of f (t) from Σ(θ) ≡ θp mod p.
I Frobenius of a =

∑n−1
i=0 aiθ

i ∈ Qq is Σ(a) =
∑n−1

i=0 aiΣ(θ)i

I If θ is (q − 1)-th root of unity (Teichmüller lift), then

Σ(θ) = θp

I Occurs when f (t)|tq − t , i.e. is Teichmüller modulus
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Newton Lifting

I Theorem: Let g ∈ Zq[X ] and assume that a ∈ Zq satisfies

ordp
(
g′(a)

)
= k and ordp

(
g(a)

)
= n + k

for some n > k , then exists a unique root b ∈ Zq of f with
b ≡ a (mod pn).

I a is called an approximate root of g known to precision n.
I Newton iteration: compute

z = a− g(a)

g′(a)

then z ≡ b (mod p2n−k ), g(z) ≡ 0 (mod p2n) and
ordp

(
g′(z)

)
= k .
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Newton Lifting: Minimal Precision

I z has to be correct modulo p2n−k

I g′(a) mod pn, so g′(a)/pk is a unit known modpn−k

I g(a) mod p2n, then g(a) ≡ 0 mod pn+k and g(a)/pn+k

known modpn−k

I Finally compute

z ≡ a− pn g(a)/pk

g′(a)/pk mod p2n−k

where inversion and multiplication is computed mod pn−k
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Frobenius Endomorphism

I Let E be an elliptic curve over a finite field Fq with q = pn

I Recall the q-th power Frobenius endomorphism

ϕq : E → E : (x , y) 7→ (xq, yq)

I Characteristic polynomial of ϕq was of the form

χ(T ) = T 2 − Tr(ϕq)T + Deg(ϕq) = T 2 − tT + q = 0

and #E(Fq) = χ(1) = q + 1− t
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Factorisation of χ(T ) over p-adic’s

I Qp is field of p-adic numbers, with valuation ring Zp

I Assume that t 6≡ 0 mod p, then

χ(T ) ≡ T 2 − tT ≡ T (T − t) mod p

I Conclusion: χ(T ) splits over Zp as

χ(T ) = (T − λ)(T − q
λ

)

with λ the unique root such that λ ≡ t mod p (λ is unit)
I Conclusion: t = λ+ q/λ, since |t | ≤ 2

√
q only need

approximation of λ modulo pN with N > n/2 + 2
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How to Compute λ?

I Since λ ∈ Zp, need to lift the situation to p-adic integers
I Given elliptic curve E over Fq, can we find E over Zq s.t.
I Reduction of E modulo p equals E
I E comes with “lifted Frobenius endomorphism Fq” with the

same characteristic polynomial

χ(ϕq; T ) = χ(Fq; T )

I Assume that we could compute E and Fq, then how to
proceed?
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How to Compute λ?
I Let E : f (x , y) = 0 over field K, then there exists an

invariant differential

ω =
dx

∂f/∂y

I Morphism φ : E1 → E2 induces by pullback a map Ω2 → Ω1

φ∗(gdh) = φ∗(g)dφ∗(h) = (g ◦ φ)d(h ◦ φ)

I Invariant: since τ∗Pω = ω
I Linearization: φ, ψ 2 isogenies from E1 → E2 then

(φ⊕ ψ)∗ω = φ∗ω + ψ∗ω

I Pullback of regular differential by isogeny again regular, so

φ∗ω = cω , c ∈ K
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How to Compute λ?

I Since Fq satisfies T 2 − tT + q = 0, the constant F∗qω = cω
satisfies

c2 − tc + q = 0

I Conclusion: c is either λ or q/λ but which one?
I Use that Fq ≡ ϕq mod p and clearly ϕ∗qω ≡ 0 mod p, so

c =
q
λ

I Efficiency: would need extra n precision to recover λ and
trace t

I Solution: consider the dual F̂q of Fq, then F̂∗qω = λω
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Canonical Lift

I The canonical lift E of an ordinary elliptic curve E over Fq
is an elliptic curve over Qq which satisfies:

I the reduction of E modulo p equals E ,
I the ring homomorphism End(E)→ End(E) induced by

reduction modulo p is an isomorphism.
I Deuring showed that the canonical lift E always exists and

is unique up to isomorphism.
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Canonical Lift: Alternative Characterisation

I E is the canonical lift of E .
I Reduction modulo p induces an isomorphism

End(E) ' End(E).
I The q-th power Frobenius Fq ∈ End(E) lifts to an

endomorphism Fq ∈ End(E).
I The p-th power Frobenius isogeny Fp : E → Eσ lifts to an

isogeny Fp : E → EΣ, with Σ the Frobenius substitution.

Conclusion: last property implies that the j-invariant of E has to
satisfy

Φp
(
j(E),Σ

(
j(E)

))
= 0
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Canonical Lift: Lubin-Serre-Tate

I Let E be an ordinary elliptic curve over Fq with j-invariant
j(E) ∈ Fq \ Fp2 .

I Then the system of equations

Φp
(
X ,Σ(X )

)
= 0 and X ≡ j(E) (mod p),

has a unique solution J ∈ Zq, which is the j-invariant of the
canonical lift E of E (defined up to isomorphism).

I Example: Φ2(X ,Y ) = X3 + Y 3 − X2Y 2 + 1488(XY 2 + X2Y )− 162000(X2 + Y 2) +

40773375XY + 8748000000(X + Y )− 157464000000000

I When j(E) ∈ Fp2 , then isomorphic to curve over Fp or Fp2 ,
so can use simple enumeration.
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Canonical Lift: Satoh’s Algorithm
I To compute j(E) mod pN , Satoh considered E together

with all its conjugates Ei = Eσi
with 0 ≤ i < n

I Let Fp,i denote the p-th power Frobenius isogeny, then

E0 E1 · · · En−1 E0.- - - -
Fp,0 Fp,1 Fp,n−2 Fp,n−1

I Satoh lifts cycle (E0,E1, . . . ,En−1) simultaneously

E0 E1 · · · En−1 E0,
- - - -

Fp,0 Fp,1 Fp,n−2 Fp,n−1

E0 E1 · · · En−1 E0
- - - -

Fp,0 Fp,1 Fp,n−2 Fp,n−1

? ? ? ?

π1 π1 π1 π1
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Canonical Lift: Weierstrass Model

p = 2 : y2 + xy = x3 + a6, j(E) = 1/a6
p = 3 : y2 = x3 + x2 + a6, j(E) = −1/a6
p > 5 : y2 = x3 + 3ax + 2a, j(E) = 1728a/(1 + a)

Given j-invariant j(E) of the canonical lift of E , a Weierstrass
model for E is given by

p = 2 : y2 + xy = x3 + 36αx + α, α = 1/
(
1728− j(E)

)
p = 3 : y2 = x3 + x2/4 + 36αx + α, α = 1/

(
1728− j(E)

)
p > 5 : y2 = x3 + 3αx + 2α, α = j(E)/

(
1728− j(E)

)
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How to compute λ ?

I From before: the dual F̂q of Fq, then F̂∗qω = λω

I The diagram implies

F̂q = F̂p,0 ◦ F̂p,1 ◦ · · · ◦ F̂p,n−1

I Consider ωi = ωΣi
for 0 ≤ i < n and let ci be defined by

F̂∗p,i(ωi) = ci ωi+1,

I Conclusion: λ =
∏

0≤i<d ci

I Commutative squares are conjugates, so ci = Σi(c0) and

λ = NoQq/Qp (c0)
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How to compute c0 ?

E1 E0
F̂p,0

E1/Ker(F̂p,0)
�
�
�
�3Q

Q
Q
Qs

-

ν0 λ0

I Know equations of E0 and E1, assume we know KerF̂p,0

I Vélu’s formulas: compute an equation of E1/Ker(F̂p,0) and
isogeny ν0

I Since Ker(ν0) = Ker(F̂p,0), there exists an isomorphism
λ0 : E1/Ker(F̂p,0)→ E0 that makes diagram commutative
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How to compute c0 ?

E1 E0
F̂p,0

E1/Ker(F̂p,0)
�
�
�
�3Q

Q
Q
Qs

-

ν0 λ0

I Vélu’s construction: choses holomorphic differential such
that action of ν0 is trivial

I Conclusion: it is sufficient to compute the action of λ0 on ω0
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Computing Ker(F̂p,0) ?

I Note that Ker(F̂p,0) is a subgroup of order p of E1[p].
I Let H0(x) be H0(x) =

∏
P∈(Ker( bFp,0)\{O})/±

(
x − x(P)

)
I H0(x) divides the p-division polynomial Ψp,1(x) of E1

I Lemma: H0(x) ∈ Zq[x ] is the unique monic polynomial that
divides Ψp,1(x) and such that H0(x) is squarefree modulo
p of degree (p − 1)/2

I Need to modifiy Hensel since reduction mod p of H0(x) not
coprime with Ψp,1
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How to compute c0?
I For p > 3, E1 has equation y2 = x3 + a1x + b1

I Vélu: E1/Ker(F̂p,0) has equation y2 = x3 + α1x + β1

α1 = (6− 5p)a1 − 30(h2
0,1 − 2h0,2)

β1 = (15− 14p)b1 − 70(−h3
0,1 + 3h0,1h0,2 − 3h0,3) + 42a1h0,1

where h0,k is coefficient of x (p−1)/2−k in H0(x)

I λ0 to E0 : y2 = x3 + a0x + b0 is λ0 : (x , y)→ (u2
0x ,u3

0y) with

u2
0 =

α1

β1

b0

a0

I Let ω0 = dx/y then λ∗0(ω0) = u−1
0 ω1,K with ω1,K = dx/y

I Conclusion: c0 = u−1
0
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Satoh’s Algorithm: Example

I Let p = 5, d = 7, Fpd ' Fp(θ) with θ7 + 3θ + 3 = 0
I Elliptic curve E : y2 = x3 + x + a6

a6 = 4θ6 + 3θ5 + 3θ4 + 3θ3 + 3θ2 + 3.

I The j-invariant of canonical lift with precision 6 then is

J0 ≡ 6949T 6+6806T 5+14297T 4+2260T 3+13542T 2+13130T +15215,

with Zq ' Zp[T ]/
(
G(T )

)
and G(T ) = T 7 + 3T + 3.

I Values for a, b of E : y2 = x3 + ax + b

a ≡ 6981T 6 + 8408T 5 + 1033T 4 + 8867T 3 + 15614T 2 + 3514T + 675
b ≡ 4654T 6 + 397T 5 + 5897T 4 + 703T 3 + 5201T 2 + 7551T + 450

Fré Vercauteren Computing Zeta Functions of Curves over Finite Fields



Introduction
p-adic Numbers

Satoh’s Algorithm

Satoh’s Algorithm: Example

I Polynomial H describing the kernel of Fp

H(x) ≡ x2 + (1395T 6 + 7906T 5 + 3737T 4 + 9221T 3 + 9207T 2 + 5403T + 7401)x

+ 6090T 6 + 206T 5 + 5259T 4 + 7576T 3 + 3863T 2 + 8903T + 7926

I Recover α and β as

α ≡ 11086T 6 + 2618T 5 + 6983T 4 + 13192T 3 + 15324T 2 + 13544T + 10550
β ≡ 4940T 6 + 3060T 5 + 14966T 4 + 6589T 3 + 7934T 2 + 6060T + 12470

I Norm of (αb)/(βa) and taking the square root,

Tr(ϕq) = 433 and |E(Fpd )| = 77693
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