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Introduction

The Zeta Function and Weil Conjectures
Let C be smooth projective curve over Fq; zeta function of C is

Z(T)=2Z(C;T)=exp (i N;j:)
k=1

with N, the number of points on C with coordinates in F gk
Weil Conjectures:

» Z(T) is rational function over Z and can be written as
P(T)
(1-7(@1—-qT)
> P(T) =[1%,(1 — o;T) with g genus of C and |a;| = \/q
> P(T) =329, a;T with ag = 1, ag = q9 and ag,; = q'ag_;
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Introduction

Ultimate Goal

» Given C over Fq of genus g, compute zeta function
efficiently (at least polynomial time) for a bounded range of

q9 < 2512

» g9 roughly the size of the group Jg(Fq)

» Current situation:
» Elliptic curves: efficient solution for all IF,
» Hyperelliptic curves: good solution for Fy» and p small, any
genus allowed
» Nondegenerate curves: decent solution for Fp, p small,

small genus
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Introduction

Central Object: Frobenius Endomorphism

v

Recall a € Fqis in Fq iff a9 = a
Frobenius automorphism ¢4 : Fqg — Fq : x — x9 induces

» morphism ¢q on C(Fq)
» endomorphism ¢4 on Je(Fq)

v

v

[F4-rational points are invariant under ¢q

Jo(Fq) = Ker(1 —¢q)  #Jc(Fq) = deg(1 — ¢q)

Theorem: P(T) = x(1/T)t%9
Remark: for g = p", then ¢4 is composition of n
morphisms of degree p (easy to handle for p small)

v

v
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Introduction

Overview of Existing Approaches

» /-adic: Schoof’s algorithm and generalisations
» consider the /-torsion as first order approximations of /-adic
cohomology (cfr. representation on Tate module)
» compute characteristic polynomial of Frobenius modulo /;,
for various small /; and recover x(T) mod [[; /;.
» p-adic:
» canonical lift
» p-adic cohomology
» p-adic deformation
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p-adic Numbers

p-adic Numbers

» p-adic valuation ordy(r) of r € Q is p with

r=pu/v, p,uvezZ, pjfu p/fv

» Non-archimedian p-adic norm |r|, = p~"
» Field of p-adic numbers Qp is completion of Q w.r.t. | - |p,

Y ap, ae€{01,...,p—1}, meL
m

» p-adic integers Zp is the ring with | - [, <1 or m > 0.
> ldeal M = {x € Qp | |X|p < 1} = pZp and Zp/M = F,.
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p-adic Numbers

p-adic Numbers in Practice

> Zp: for fixed absolute precision N, compute modulo oN
» Qp: write each element as p°% X u, with uy € Z;

v

Qp: for fixed relative precision of N, uy mod oN

No rounding off errors occur unlike floating point
Loss of absolute precision on division by p
Possible loss of relative precision when subtracting
All operations asymptotically in time O(N log p)'+¢
For log, pN < 512, schoolbook methods suffice

vV v . v. v Y
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p-adic Numbers

Unramified Extensions of p-adics

» K extension of Qp of degree n with valuation ring R and
maximal ideal Mgr = {x e K| |x|p <1} of R

K is called unramified iff its residue field R/Mg = Fq
K denoted with Qg4 and its valuation ring with Zq

v

v

v

O'ZIFq—>FqZXI—>Xp

v

Gal(Qq/Qp) =< X > generated by Frobenius substitution
Note: ¥ is not simple p-powering !

v
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p-adic Numbers

Representation of Q,

> Let Fq = Fp[t]/(f(t)) then Qq can be constructed as

Qq = Qplt]/(£(1)),

with f(t) any lift of f(t) to Zp|[t].
» Different choices of f(t) have different advantages
» Valuation ring Zq = Zp[t]/1(t); a € Zq represented as

n—1
a=>» at, acip.
i—0

» Reduction mod p™ gives (Z/p™Z)(t]/(fm(t)) with
fm(t) = f(t) mod p™
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p-adic Numbers

Frobenius Substitution

> Let Zq = Zpl6] = Zp[t)/((1)) with (t) = S0 fit

Z FE(9)" = £(Z(6)).

» Compute ¥(0) as zero of f(t) from X(0) = oP mod p.
> Frobenius of a= Y7 ai' € Qqis X(a) = X7, a=()’
» If 0 is (g — 1)-th root of unity (Teichmdiller lift), then

¥(0) = 0P

» Occurs when f(1)[t9 — t, i.e. is Teichmdller modulus
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p-adic Numbers

Newton Lifting
» Theorem: Let g € Z4[X] and assume that a € Z, satisfies
ordp(g'(a)) = kand ordy(g(a)) = n+k

for some n > k, then exists a unique root b € Zq of f with
b=a (mod p").
» ais called an approximate root of g known to precision n.
» Newton iteration: compute

g(a)
g'(a)

then z = b (mod p?"~ %), g(z) = 0 (mod p?") and
ordp(9'(2)) = k.
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p-adic Numbers

Newton Lifting: Minimal Precision

» z has to be correct modulo p?"—*
» g'(a) mod p”, so g’(a)/p¥ is a unit known modp” ¥

» g(a) mod p?", then g(a) = 0 mod p™* and g(a)/p"+*
known modp”—*

» Finally compute

n9(a)/p

g'(a)/p*

2n—k

z=a—-p mod p

where inversion and multiplication is computed mod p"—
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Satoh’s Algorithm

Frobenius Endomorphism

» Let E be an elliptic curve over a finite field Fy with g = p”
» Recall the g-th power Frobenius endomorphism

SOC] : E_) E: (Xay) = (anyq)
» Characteristic polynomial of ¢4 was of the form
X(T) = T? = Tr(pq) T + Deg(pq) = T2 —tT +q =0

and #E(Fq) =x(1)=q+1 -t
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Satoh’s Algorithm

Factorisation of x(T) over p-adic’s
» Qp is field of p-adic numbers, with valuation ring Z,
» Assume that t # 0 mod p, then
X(T)=T2—tT=T(T—-t)mod p

» Conclusion: x(T) splits over Z,, as

(T =(T=)(T- )

with X the unique root such that A = t mod p (X is unit)

» Conclusion: t = XA+ g/, since |t| < 2,/q only need
approximation of A modulo pN with N > n/2 + 2
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Satoh’s Algorithm

How to Compute \?

» Since A € Zp, need to lift the situation to p-adic integers
» Given elliptic curve E over Iy, can we find £ over Zg s.t.
» Reduction of £ modulo p equals E

» & comes with “lifted Frobenius endomorphism F,” with the
same characteristic polynomial

X(pq:i T) = x(Fq: T)

» Assume that we could compute £ and Fg, then how to
proceed?
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Satoh’s Algorithm

How to Compute \?

» Let E : f(x,y) = 0 over field K, then there exists an
invariant differential

_ax
Y= ofjay

Morphism ¢ : E; — E» induces by pullback a map Qo — Q4
¢"(gdh) = ¢7(9)de"(h) = (g o ¢)d(ho ¢)

Invariant: since Tpw = w
Linearization: ¢, 2 isogenies from E; — E, then

(D Y)'w=¢"w+ P w

Pullback of regular differential by isogeny again regular, so

v

vV Yy

v

P'w=cw,ceK
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Satoh’s Algorithm

How to Compute \?

> Since Fy satisfies T2 — tT + g = 0, the constant Fjw = cw
satisfies
c?—tc+q=0
» Conclusion: c is either A or g/ but which one?
» Use that 74 = ¢4 mod p and clearly pzw = 0 mod p, so

_4qg
°=

» Efficiency: would need extra n precision to recover A and
trace t

» Solution: consider the dual ﬁq of Fq, then ]?;;w = lw
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Satoh’s Algorithm

Canonical Lift

» The canonical lift £ of an ordinary elliptic curve E over Fq
is an elliptic curve over Qg which satisfies:

» the reduction of £ modulo p equals E,

» the ring homomorphism End(€) — End(E) induced by
reduction modulo p is an isomorphism.

» Deuring showed that the canonical lift £ always exists and
is unique up to isomorphism.
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Satoh’s Algorithm

Canonical Lift: Alternative Characterisation

» £ is the canonical lift of E.

» Reduction modulo p induces an isomorphism
End(€) ~ End(E).

» The g-th power Frobenius F; € End(E) lifts to an
endomorphism F4 € End(E).

» The p-th power Frobenius isogeny F, : E — E lifts to an
isogeny Fp : £ — EF, with T the Frobenius substitution.

Conclusion: last property implies that the j-invariant of £ has to
satisfy

®p(j(€), Z(j(€))) =0
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Satoh’s Algorithm

Canonical Lift: Lubin-Serre-Tate

> Let E be an ordinary elliptic curve over Fq with j-invariant
J(E) € Fg \ Fre.
» Then the system of equations

®p(X,Z(X)) =0 and X =j(E) (mod p),

has a unique solution J € Zq, which is the j-invariant of the
canonical lift £ of E (defined up to isomorphism).

> Example: ®2(X, Y) = x4+ v3 - x2v2 4 1488(xv2 + X2¥) — 162000(X + ¥2) +
40773375XY + 8748000000(X + Y) — 157464000000000

» When j(E) € Fre, then isomorphic to curve over Fy, or Fee,
SO can use simple enumeration.
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Satoh’s Algorithm

Canonical Lift: Satoh’s Algorithm

» To compute j(£) mod pV, Satoh considered E together
with all its conjugates E; = E” with0 < i < n
> Let F,; denote the p-th power Frobenius isogeny, then

F F, Fon_ Fon
EO p,0 X E1 p,1 o p,n 2‘ L p,n 1~ Eo.
» Satoh lifts cycle (Eg, Eq, . .., En_1) simultaneously
]:p70 ~7:p,1 Fp7n72 fp,nf1
&o - & - = En_1 &
T e e e l
Fpo Fo 1 Fon_o Fp.n—1
Eo = - En_4 05
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Satoh’s Algorithm

Canonical Lift: Weierstrass Model

p=2 : y2+xy=x°+a, J(E)=1/ag
p=3 : y*=x>4+x*+a, J(E)=—1/as
p>5 : y>?=x3+3ax+2a  j(E)=1728a/(1 + a)

Given j-invariant j(&) of the canonical lift of E, a Weierstrass
model for £ is given by

p=2 : y?>4+xy=x®+36ax+aq, a=1/(1728 — j(&))
p=3 : y?>=x%+x%/4436ax +aqa, a=1/(1728 —j(&))
p>5 : y2=x3+3ax+ 20, a=j(&)/(1728 — j(£))
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Satoh’s Algorithm

How to compute A\ ?

» From before: the dual ]?q of Fg, then ﬁ;w = \w
» The diagram implies

Fq=FpooFp1o---0Fpni
» Consider w; = w> for 0 < i < nand let ¢; be defined by
Fp,iwi) = Ciwit,

» Conclusion: A = [[p<i4Ci
» Commutative squares are conjugates, so ¢; = ¥/(cy) and

A = Nog,/q,(Co)
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Satoh’s Algorithm

How to compute ¢ ?

7
p70 ‘ 50

&4 /Ker(]?p,o)

&

» Know equations of & and £, assume we know Ker]?p,o

» Vélu's formulas: compute an equation of 51/Ker(ﬁp,0) and
isogeny g

» Since Ker(1p) = Ker(ﬁpvo), there exists an isomorphism
Ao & /Ker(j':pp) — & that makes diagram commutative
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Satoh’s Algorithm

How to compute ¢ ?

7
p»o '(C/‘O

E1/Ker(Fpo)

&

» Vélu’s construction: choses holomorphic differential such
that action of 1 is trivial

» Conclusion: it is sufficient to compute the action of A\ on wg
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Satoh’s Algorithm

Computing Ker(]?p70) ?

Note that Ker(fpvo) is a subgroup of order p of & [p].
Let Ho(x) be Ho(x) = HPe(Ker(ﬁp,o)\{O})/i (x —x(P))
Ho(x) divides the p-division polynomial W, 4(x) of &

v

v

v

v

Lemma: Hy(x) € Zg[x] is the unique monic polynomial that
divides W, (x) and such that Hp(x) is squarefree modulo
p of degree (p—1)/2

» Need to modifiy Hensel since reduction mod p of Hp(x) not
coprime with W, 4
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Satoh’s Algorithm

How to compute ¢;?
» For p > 3, & has equation y? = x3 + ayx + by
> Vélu: & /Ker(Fp o) has equation y? = x® + aqx + s
ar = (6 — 5p)ay — 30(h§ 4 — 2ho2)
01 = (15 — 14p)b1 — 70(—/78’1 + 3h0,1 ho’g — 3/’70,3) + 42a; h071
where hy « is coefficient of x(P~1)/2=K in Hy(x)
> Mto&:y?=x3+apx+byis Ao : (X,y) — (U3x, uSy) with
2 O bo
us=—1=
07 Bra
> Letwg = dx/y then \j(wo) = Uy 'wy k With wy x = dx/y

» Conclusion: ¢y =y
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Satoh’s Algorithm

Satoh’s Algorithm: Example
> Letp=5,d=7,Fp ~Fy(6) with 67 +30+3=0
» Elliptic curve E : y? = x3 4+ x + ag
as = 46° + 36° + 30* 4 360° + 36 + 3.
» The j-invariant of canonical lift with precision 6 then is
Jo = 6949T° 16806 T°+14297 T*+2260T°3+13542T24+-13130T+15215,

with Zq ~ Zp[T]/(G(T)) and G(T) = T" + 3T + 3.
Values fora, bof £: y> =x3+ax+ b

v

a = 6981T%+8408T° + 10337+ +8867T° +15614T2 + 3514T + 675
b = 4654T%+397T° +5897T* + 703T° + 520172 + 7551 T + 450
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Satoh’s Algorithm

Satoh’s Algorithm: Example

» Polynomial H describing the kernel of 7,

(x) =X + (1395T® + 7906 T° + 3737 T* + 9221 T3 + 9207 T2 + 5403 T + 7401)x
+ 60907 + 206 T° +5259T* + 7576 T® 4 3863 T2 + 8903 T + 7926

» Recover o and 5 as

a = 110867° +2618T° +6983T* + 1319272 + 15324 T2 + 13544 T + 1055(
B = 4940T° +30607° + 14966 T* + 658973 + 7934T2 + 6060T + 12470

» Norm of (ab)/(3a) and taking the square root,

Tr(pq) =433 and  |E(Fyq)| = 77693
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