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1. Algebraic Function Fields of One Variable

When we speak about a function field of one variable over a field K, we mean

a finitely generated regular extension F of K of transcendence degree 1. We briefly

recall the definitions of the main objects attached to F/K and their properties. See the

books [Che51] or [Sti93] for details. A more comprehensive survey can be found [FrJ08,

Sections 3.1-3.2].

A K-place of F is a place ϕ: F → K̃ ∪ {∞} such that ϕ(a) = a for each a ∈ F .

A prime divisor p of F/K is an equivalence class of K-places of F . Let ϕp be a

place in that class, vp the corresponding discrete valuation of F/K, and F̄p the residue

field. The latter field is a finite extension of K which is uniquely determined by p up to

K-conjugation. We set deg(p) = [F̄p : K]. A divisor of F/K is formal sum a =
∑

kpp,

where p ranges over all prime divisors of F/K, for each p the coefficient kp is an integer,

and kp = 0 for all but finitely many p′s. The degree of a is deg(a) =
∑

kp deg(p).

The divisor attached to an element f ∈ F× is defined to be div(f) =
∑

vp(f)p, where

p ranges over all prime divisors of F/K. This makes sense, since vp(f) = 0 for all

but finitely many p’s. Further, one attaches to f the divisor of zeros div0(f) =∑
vp(f)>0 vp(f)p and the divisor of poles div∞(f) = −

∑
vp(f)<0 vp(f)p. If f /∈ K,

the degrees of each of these divisors is equal to [F : K(f)]. Hence, deg(div(f)) =

deg(div0(f))−deg(div∞(f)) = 0. If a =
∑

kpp is a divisor of F/K, we write vp(a) = kp

for each prime divisor p of F/K and note that vp(div(f)) = vp(f) for each f ∈ F×.

Given two divisors a, b of F/K, we write a ≤ b if vp(a) ≤ vp(b) for each prime divisor

p of F/K. Finally, one attaches to each divisor a a finitely generated vector space L(a)

over K consisting of all f ∈ F with div(f) + a ≥ 0 and write dim(a) for dim(L(a)).
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Note that f ∈ L(a) if and only if div0(f) + a ≥ div∞(f). Since div0(f) and div∞(f)

have no common prime divisors, the latter condition is equivalent to a ≥ div∞(f). If

a ≤ b, then L(a) ⊆ L(b).

The Riemann-Roch theorem gives a nonnegative integer g, called the genus of

F/K, such that if deg(a) > 2g − 2, then dim(L(a)) = deg(a) + 1 − g. In the general

case dim(a) = deg(a) − 1 + g + dim(w − a), where w is a canonical divisor of F/K

[FrJ08, Thm. 3.2.1]. To this end recall that all canonical divisors of F/K are linearly

equivalent (i.e. differ from each other by a divisor of an element of F×), deg(w) = 2g−2

and dim(w) = g [FrJ08, Lemma 3.2.2].

As an example for the application of the Riemann-Roch theorem we consider a

function field F/K of genus 0 with a prime divisor p of degree 1. Since 1 > 2 · 0 − 2,

we have dim(L(p) = 2, so there exists x ∈ L(p) r K. It satisfies p ≥ div∞(x). Hence,

1 ≤ [F : K(x)] ≤ deg(p) = 1, so F = K(x) is a rational function field over K.

2. Curves

Let F/K be a function field of one variable. By assumption, F/K is a separably

generated extension, that is there exists x ∈ F such that x is transcendental over K

and F/K(x) is a finite separable extension. By the primitive element theorem, there

exists y ∈ F with F = K(x, y). Moreover, y can be chosen to be integral over K[x].

Thus, there exists a polynomial f ∈ K[X, Y ] such that f(x, Y ) = irr(x,K(y)). The

assumption that F/K is regular implies that f is absolutely irredicible. It defines an

absolutely irreducible affine plane curve Γ that may be defined as a functor L  Γ(L)

from the category of all field extension L of K to the category of sets given by

Γ(L) = {(a, b) ∈ L2 | f(a, b) = 0}.

Writing f(X, Y ) =
∑

i,j≤d aijX
iY j with d = deg(f), we may also consider the homo-

geneous polynomial f∗(X0, X1, X2) =
∑

i,j≤d aijX
d−i−j
0 Xi

1X
j
2 , of degree d. Associated

with f∗ is the projective plane curve Γ∗, where now

Γ∗(L) = {(a0:a1:a2) ∈ P2(L) | f∗(a0, a1, a2) = 0}.
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Here (a0:a1:a2) is the equivalence class of all nonzero triples (a′1, a
′
2, a

′
3) for which there

exists c ∈ L× satisfying (a′1, a
′
2, a

′
3) = (ca1, ca2, ca3).

A point (a, b) of Γ(L) (also called an L-rational point of Γ) is simple if
∂f
∂X (a, b) 6= 0 or ∂f

∂Y (a, b) 6= 0. Likewise, an L-rational point a = (a0:a1:a2) is sim-

ple if ∂f∗

∂Xi
(a) 6= 0 for at least one i between 0 and 2. The advantage of a simple point

over singular (=nonsimple) points is that its local ring

OΓ∗,a =
{ g(1, x, y)

h(1, x, y)
| h, g ∈ K[X0, X1, X2]

are homogeneous of the same degree and h(a) 6= 0}

(assuming that a0 6= 0) is a valuation ring of F . If L = K, then the local ring corresponds

to a K-rational place ϕa (with a = ϕa(1, x, y)), so to a prime divisor pa of degree 1.

The curve Γ∗ has two more affine open subsets Γ1,Γ2 with coordinate rings

K
[

1
x , 1, y

x

]
and K

[
1
y , x

y , 1
]
, respectively. They have the same function field F over

K as Γ. The three affine pieces Γ,Γ1,Γ2 together cover Γ.

The curve Γ∗ has only finitely many singular points. In an attempt ‘to get rid

of them’, we first consider the integral closure K[x, y]′ of K[x, y] in F . It is a finitely

generated ring over K[x, y], so has the form K[x1, . . . , xn] for some x1, . . . , xn ∈ F .

Assuming that K is perfect (e.g. char(K) = 0 or K is finite), then every local ring

of K[x1, . . . , xn] is a valuation ring. Thus, K[x1, . . . , xn] is the coordinate ring of a

smooth affine curve ∆ in An. Similarly, it is possible to normalize Γ1 and Γ2 to affine

smooth higher dimensional affine curves ∆1 and ∆2. Finally, one patches ∆, ∆1, and

∆2 together to obtain a projective normalization ∆∗ of ∆. The curve ∆∗ has the same

function field as ∆ and there is a surjective morphism π: ∆∗ → ∆.

The advantage of the projective smooth model ∆∗ of F/K on ∆ is that every

K-place ϕ of F gives rise to a point a ∈ ∆∗(K̃) (where K̃ denotes the algebraic closure

of K) whose local ring is the valuation ring of ϕ. This gives a bijective correspondance

between ∆∗(K) and the set of prime divisors of F/K of degree 1. In particular, ∆∗(K̃)

bijectively corresponds to the set of prime divisors of FK̃/K̃. It follows that the group

Div(FK̃/K̃) of divisors of FK̃/K̃ is isomorphic to the free additive Abelian group

Div(∆∗) generated by the points in ∆∗(K̃). The subgroup of all K-rational divisors of

3



∆∗ (i.e. those that are fixed by Gal(K) = Gal(K̃/K̃)) is isomorphic to Div(F/K).

3. Elliptic Curves and Jacobians

As before, let F be a function field of one variable over a field K (that we assume to be

perfect whenever necessary) and let C be a smooth projective model of F/K such that

C(K) 6= ∅. We choose a point o ∈ C(K).

First we consider the case where g = genus(F/K) = genus(C) is 1. Then there

is a bijective correspondance, p → [p − o] between C(K) and the set of equivalence

classes (modulo principal divisors) of divisors of degree 0. For example, if a is a divisor

of degree 0, then, by Riemann-Roch, dim(L(a + o)) = 1, so there exists f ∈ F× with

div(f) + a + o ≥ 0. Since the degree of the left hand side is 1, there exists p ∈ C(K)

such that div(f) + a + o = p. In other words, [a] = [p − o]. Thus, our map is indeed

surjective.

The set of equivalent K-rational classes of C of degree 0 forms a group. It is

therefore possible to apply the bijective correspondance of the preceding paragraph to

define addition on C(K) making it an additive Abelian group with o as the zero point.

Anothe application of Riemann-Roch shows that three points p1,p2,p3 ∈ C(K) lie on

the same line if and only if p1 + p2 + p3 = 0 (in the group C(K)).

Another application of the Riemann-Roch theorem allows us to choose C as a

projective plane curve (called an elliptic curve) defined by one homogeneous equation

of degree 3. If char(K) 6= 2, 3, that equation can be chosen to be

X3
2 = X0X

2
1 + AX2

0X1 + BX3
0 ,

where A,B ∈ K satisfy 4A2 +27B3 6= 0 and o = (0:1:0). The geometric rule of addition

on C(K) leads to explicit formulas of addition and negation that are often used for

computations.

In the general case, where g ≥ 1, there is a smooth projective variety J (called

the Jacobian of C) of dimension g defined over K with two morphisms J × J → J

and J → J , also defined over K, making J(K̃) an additive Abelian group such that

the first morphism gives the addition and the second one gives the negation. Thus, J
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is an Abelian variety. In addition, there is a unique rational morphism γ: C → J

defined over K satisfying γ(o) = 0 and having the following universal property: If α is

a rational map of C into an Abelian variety A defined over K such that γ(o) = 0, then

there exists a unique morphism map β: J → A such that α = β ◦ γ.

One proves that the image γ(C) is Zariski closed in J , the map γ: C(K̃)→ J(K̃)

is injective, and the set γ(C(K̃)) generates J(K̃). The map γ extends linearly to a

homomorphism β: Div(C)→ J(K̃) (that is β(
∑n

i=1 kipi) =
∑n

i=1 kiγ(pi)). A theorem

of Abel says that the restriction β0 of β to Div0(C) gives a short exact sequence:

0 −→ div((FK̃)×) −→ Div0(C)
β0−→ J(K̃) −→ 0.

Finally we note that when g = 1, J coincides with the elliptic curve C equipped with

the addition law described above. In this case, γ is the identity map.

4. Zeta Functions

The Riemann zeta function is defined for each complex number s with Re(s) > 1 by the

convergent series:

ζ(s) =
∞∑

n=1

1
ns

.

Its relation to number theory goes over the Euler product:

ζ(s) =
∏
p

1
1− p−s

,

where p ranges over all prime numbers. The zeta function satisfies a functional equation

that extends the definition of ζ(s) to a meromorphic function in the whole complex plane.

One of the most intriguing open questions in Mathematics is the Riemann Hypothesis:

If ζ(s) = 0 and Re(s) ≥ 0, then |s| = 1
2 . The Riemann Hypothesis has legion of

applications.

Likewise one defines a zeta function for a function field F of genus g over a finite

field K of q elements.

ζF/K(s) =
∑
a≥0

1
Nas

,
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where Re(s) > 1, a ranges over all nonnegative divisors of F/K, and Na = qdeg(a). The

Euler product in this case has the form:

ζF/K(s) =
∏
p

1
1−Np−s

,

where p ranges over all prime divisors of F/K.

It is usefull to make a change of variables t = q−s in order to get a Zeta function:

Z(t) =
∑
a≥0

tdeg(a)

that converges for |t| < q−1. If we write An for the number of nonnegative divisors of

F/K of degree n, we may rewrite Z(t) as a power series:

Z(t) =
∞∑

n=0

Antn.

In particular, A1 is the number of prime divisors of F/K of degree 1. We set N = A1.

It turns out that Z(t) is a rational function:

Z(t) =
L(t)

(1− t)(1− qt)
,

where L(t) = a0 + a1t + · · ·+ a2gt
2g ∈ Q[t]. Here a0 = 1 and a1 = N − (q + 1). Thus,

Z(t) has two poles at t = 1 and t = q−1. The zeros of Z(t) are the zeros of L(t).

Writing their inverses as ω1, . . . , ω2g, we find that L(t) =
∏2g

i=1(1−ωit). One version of

the Rieman Hypthesis for F/K asserts that

(1) |ωi| =
√

q, i = 1, . . . , 2g.

It was proved by André Weil in 1948 and reproved with elementary methods by Bombieri

[FrJ08, Chapter 4]. Condition (1) is equivalent to the statement that the zeros of

ζF/K(s) lie on the line Re(s) = 1
2 . Thus, the Riemann Hypothesis holds for ζF/K .

Another extremely important consequence of (1) follows from the observation that a1 =

−
∑2g

i=1 ωi:

(2) |N − (q + 1)| ≤ 2g
√

q.
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As an application of (2) consider an absolutely irreducible polynomial f ∈ Fq[X, Y ]

of degree d. Let Γ be the affine plane curve defined by f(X, Y ) = 0. Then

(3) q + 1− (d− 1)(d− 2)
√

q − d ≤ |Γ(Fq)| ≤ q + 1 + (d− 1)(d− 2)
√

q.

It follows that if q is sufficiently large (in fact, if q > (d − 1)4), then Γ(Fq) 6= ∅.

Consequently, if M is an infinite extension of Fq, then M is PAC, that is every absolutely

irreducible variety defined over M has an M -rational point.

5. l-adic Representations

Consider an Abelian variety A of dimension g over a field K. Let n be a positive integer

with char(K) - n. Then An(K̃) = {a ∈ A(K̃) | na = 0} is an Abelian group isomorphic

to (Z/nZ)2g. In particular, for each prime number l 6= char(K) and every positive

integer i, we have Ali(K̃) ∼= (Z/liZ)2g. The map a 7→ la is an epimorphism of Ali+1(K̃)

onto Ali(K̃). Thus, we may pass to a limit to get Tl = Tl(A) = lim←−Ali
∼= Z2g

l . The free

Zl-module Tl is called the Tate-module of A. Tensoring with Ql gives a vector space

Vl = Tl ⊗Zl
Ql over Ql of dimension 2g.

Now note that Gal(K) leaves each Ali(K̃) invariant. The action of Gal(K) com-

mutes with multiplication by l, so it induces an action of Gal(K) on Tl. Choosing a

Zl-basis of Tl, this action leads to the l-adic representation

ρl: Gal(K)→ GL2g(Zl)

of Gal(K) associated with A.

Next we turn our attention to the case where K is the field Fq of q elements. Let

ϕq be the Frobenius automorphism of F̃q defined by ϕq(x) = xq. As in Section 3, we

consider an absolutely irreducible curve C defined over Fq of genus g > 0 having an

Fq rational point o. Let J be the Jacobian variety of C. Then ϕq acts on C(F̃q) and

on J(F̃q). The latter action makes ϕq an endomorphism of J defined over Fq. As such

J(Fq) = Ker(idJ − ϕq) and |J(Fq)| = deg(idJ − ϕq) [Mum74, p. 180, Thm. 4].

Considering ϕq as an element of Gal(Fq), hence also as an element Aut(Vl), we

have for each prime number l relatively prime to q the characteristic polynomial of
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ρl(ϕq):

χ(t) = χC(t) = det(id · t− ϕq)

It is a monic polynomial of degree 2g with coefficients in Zl. Indeed, χ(t) does not

depend on l and its coefficients are in Z. Moreover, χl(1) = det(idJ − ϕq) = |J(Fq)|.

Finally let L(t) be the nomerator of the Zeta function descdribed in Section 6. It

turns out that L(t) = t2gχ( 1
t ), so L(1) = |J(Fq)|.
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