REGULAR LIFTING OF COVERS OVER AMPLE FIELDS

by

Dan Haran^{*} and Moshe Jarden^{*}

School of Mathematical Sciences, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel e-mail: haran@math.tau.ac.il and jarden@math.tau.ac.il

May 29, 2000

^{*} Partially supported by the Minkowski Center for Geometry at Tel Aviv University and the Mathematical Sciences Research Institute, Berkeley.

Introduction

Colliot-Thélène [CT] uses the technique of Kollár, Miyaoka, and Mori to prove the following result.

THEOREM A: Let K be an ample field of characteristic 0, x a transcendental element over K, and G a finite group. Then there is a Galois extension F of K(x) with Galois group G, regular over K. Moreover, F has a K-rational place φ .

In fact, Colliot-Thélène proves a stronger version:

THEOREM B: Given a Galois extension L/K with Galois group Γ which is a subgroup of G, one can choose F and φ so that the residue field extension of F/K(x) under φ is L/K.

Case $\Gamma = G$ of Theorem B means that K has the arithmetic lifting property of Beckmann and Black [BB].

As the results of Kollár, Miyaoka, and Mori are valid only in characteristic 0, Colliot-Thélène's proof works only in this case. Nonetheless, Theorem A holds in arbitrary characteristic ([Ha, Corollary 2.4] for complete fields, [Po1, Main Theorem A]; see also [Li] and [HV]). Moret-Bailly [MB], using methods of formal patching, extends Theorem B to arbitrary characteristic.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic. In fact, the main ingredient of the proof is almost contained in [HJ1]. Therefore this note can be considered a sequel to [HJ1]; a large portion of it recalls the situation and facts considered there.

We also notice that if K is PAC and F is an *arbitrary* Galois extension of K(x) with Galois group G, regular over K, then, for every Galois extension L/K with Galois group which is a subgroup of G, we can choose φ so that the residue field extension of F/K(x) under φ is L/K. (After the first draft of this note has been written, P. Dèbes informed us that he also made this observation in [De, Remark 3.3].) This answers a question of Harbater. Notice that this stronger property does not hold for an arbitrary ample field K [CT, Appendix].

The idea (displayed in our Lemma 2.1) to use the embedding problem $G \ltimes G \to G$ in order to obtain the arithmetic lifting property has been used in [Po2]; we are grateful to F. Pop for making his notes available to us.

1. Embedding problems and decomposition groups

Let K/K_0 be a finite Galois extension with Galois group Γ . Let x be a transcendental element over K. Put $E_0 = K_0(x)$. Suppose that Γ acts (from the right) on a finite group G; let $\Gamma \ltimes G$ be the corresponding semidirect product and π : $\Gamma \ltimes G \to \Gamma$ the canonical projection. We call

(1)
$$\pi \colon \Gamma \ltimes G \to \Gamma = \mathcal{G}(K/K_0)$$

a finite constant split embedding problem. A solution of (1) is a Galois extension F of E_0 such that $K \subseteq F$, $\mathcal{G}(F/E_0) = \Gamma \ltimes G$, and π is the restriction map $\operatorname{res}_K: \mathcal{G}(F/E_0) \to \mathcal{G}(K/K_0).$

In [HJ1, Theorem 6.4] we reprove the following result of F. Pop [Po1]:

PROPOSITION 1.1: Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F such that F has a K-rational place. (In particular, F/Kis regular.)

In this section we show that the proof of Proposition 1.1 in [HJ1] yields a stronger assertion.

LEMMA 1.2: Let F be a solution of (1). Put $F_0 = F^{\Gamma}$. Let $\varphi: F \to \widetilde{K}_0$ be a Kplace extending a K_0 -place of E_0 . Assume that φ is unramified in F/E_0 and let D_{φ} be its decomposition group in F/E_0 . Then $\varphi(F) \supseteq K$ and the following assertions are equivalent:

- (a) $\varphi(F) = K$ and $\Gamma = D_{\varphi}$;
- (b) $\Gamma \supseteq D_{\varphi};$
- (c) $\varphi(F_0) = K_0;$
- (d) $\varphi(F) = K$ and $\varphi(f^{\gamma}) = \varphi(f)^{\gamma}$ for each $\gamma \in \Gamma$ and $f \in F$ with $\varphi(f) \neq \infty$.

Proof: As $K \subseteq F$, we have $K = \varphi(K) \subseteq \varphi(F)$. Since the inertia group of φ in F/E_0 is trivial, we have an isomorphism $\theta: D_{\varphi} \to \mathcal{G}(\varphi(F)/K_0)$ given by

(2)
$$\varphi(f^{\gamma}) = \varphi(f)^{\theta(\gamma)}, \qquad \gamma \in D_{\varphi}, \ f \in F, \ \varphi(f) \neq \infty.$$

Hence $|D_{\varphi}| = [\varphi(F) : K_0] \ge [K : K_0] = |\Gamma|$. This gives (a) \Leftrightarrow (b).

Since φ is unramified over E_0 , the decomposition field $F^{D_{\varphi}}$ is the largest intermediate field of F/E_0 mapped by φ into K_0 , and hence (b) \Leftrightarrow (c).

Clearly (d) \Rightarrow (c). If $\varphi(F) = K$, apply (2) to $f \in K$ to see that $\theta(\gamma) = \gamma$ for all $\gamma \in D_{\varphi}$. Hence (a) \Rightarrow (d).

Remark 1.3: Let K_0 be an ample field and let F be a solution of (1). Suppose that F has a K-rational place extending K_0 -places of E_0 and unramified over E_0 such that Γ is its decomposition group in F/E_0 . Then F has infinitely many such places.

Indeed, put $F_0 = F^{\Gamma}$. Recall that F_0 is regular over K_0 . By Lemma 1.2,

(a) the assumption is that there is a K_0 -place $\varphi \colon F_0 \to K_0$ unramified over $K_0(x)$, and (b) we have to show that there are infinitely many such places.

But (a) \Rightarrow (b) is a property of an ample field.

PROPOSITION 1.4: Let K_0 be an ample field. Then each finite constant split embedding problem (1) has a solution F with a K-rational place of F extending a K_0 -place of E_0 and unramified over E_0 such that Γ is its decomposition group in F/E_0 .

Proof: Put $E = K(x) = KK_0(x)$.

PART A: As in the proof of [HJ1, Theorem 6.4], we first assume that K_0 is complete with respect to a non-trivial discrete ultrametric absolute value, with infinite residue field and K/K_0 is unramified.

In this case [HJ1, Proposition 5.2] proves Proposition 1.1. Claim C of that proof shows that, for every $b \in K_0$ with |b| > 1, $x \to b$ extends to a K-homomorphism $\varphi_b: R \to K$, where R is the principal ideal ring $K\{\frac{1}{x-c_i} \mid i \in I\}$. From there it extends to a K-place $\varphi_b: Q \to K \cup \{\infty\}$ of the Q = Quot(R). Furthermore, [HJ1, Lemma 1.3(b)] gives an E-embedding $\lambda: F \to Q$. The compositum $\varphi = \varphi_b \circ \lambda$ is a K-rational place of F. Excluding finitely many b's we may assume that φ is unramified over E_0 . To verify that φ satisfies condition (d) of Lemma 1.2, we first recall the relevant facts from [HJ1]. (a) [HJ1, Proposition 5.2, Construction B] The group $\Gamma = \mathcal{G}(K/K_0)$ lifts isomorphically to $\mathcal{G}(E/E_0)$. By the choice of the c_i we have $\left(\frac{1}{x-c_i}\right)^{\gamma} = \frac{1}{x-c_i^{\gamma}}$, for each $\gamma \in \Gamma$. It follows that Γ continuously acts on R in the following way

$$\left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{x - c_i}\right)^n\right)^{\gamma} = a_0^{\gamma} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^{\gamma} \left(\frac{1}{x - c_i^{\gamma}}\right)^n$$

This action induces an action of Γ on Q.

(b) [HJ1, (7) on p. 334] The above mentioned action of Γ on Q defines an action of Γ on the Q-algebra

$$N = \operatorname{Ind}_{1}^{G} Q = \left\{ \sum_{\theta \in G} a_{\theta} \theta \mid a_{\theta} \in Q \right\}$$

in the following way:

$$\left(\sum_{\theta \in G} a_{\theta} \theta\right)^{\gamma} = \sum_{\theta \in G} a_{\theta}^{\gamma} \theta^{\gamma} \qquad a_{\theta} \in Q, \ \gamma \in \Gamma.$$

Furthermore, the field F is a subring of N [HJ1, p. 332] and Γ acts on it by restriction from N [HJ1, Proof of Proposition 1.5, Part A].

(c) The embedding $\lambda: F \to Q$ is just the restriction to F of the projection

$$\sum_{\theta \in G} a_{\theta} \theta \mapsto a_{1}$$

from $N = \text{Ind}_1^G Q \to Q$ [HV, Proposition 3.4].

(d) The place $\varphi_b: Q \to K \cup \{\infty\}$ is induced from the evaluation homomorphism $\varphi_b: R \to K$ given by [HJ1, Remark 3.5]

$$\varphi_b \Big(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \Big(\frac{1}{x - c_i} \Big)^n \Big) = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \Big(\frac{1}{b - c_i} \Big)^n.$$

In order to prove condition (d) of Lemma 1.2 it suffices to show that both λ and φ_b are Γ -equivariant.

Let $f = \sum_{\theta \in G} a_{\theta} \theta \in F \subseteq N$. Then, by (b) and (c),

$$\lambda(f^{\gamma}) = \lambda\Big(\sum_{\theta \in G} a_{\theta}^{\gamma} \theta^{\gamma}\Big) = a_{1}^{\gamma} = \Big(\lambda\Big(\sum_{\theta \in G} a_{\theta} \theta\Big)\Big)^{\gamma} = \lambda(f)^{\gamma}.$$

Furthermore, let $r = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{x-c_i}\right)^n \in R$. By (a) and (d),

$$\varphi_b(r^{\gamma}) = \varphi_b \left(a_0^{\gamma} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^{\gamma} \left(\frac{1}{x - c_i^{\gamma}} \right)^n \right) = a_0^{\gamma} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^{\gamma} \left(\frac{1}{b - c_i^{\gamma}} \right)^n$$
$$= \left(a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} \left(\frac{1}{b - c_i} \right)^n \right)^{\gamma} = \varphi_b(r)^{\gamma}.$$

Thus φ_b is Γ -equivariant.

PART B: K_0 is an arbitrary ample field. As in the proof of [HJ1, Theorem 6.4] let \hat{K}_0 be the field of Laurent series over K_0 . Then $\hat{K} = K\hat{K}_0$ is an unramified extension of \hat{K}_0 with Galois group Γ and infinite residue field.

By Part A, $\hat{K}_0(x)$ has a Galois extension \hat{F} which contains $\hat{K}(x)$, such that $\mathcal{G}(\hat{F}/\hat{K}_0(x)) = \Gamma \ltimes G$ and the restriction map $\mathcal{G}(\hat{F}/\hat{K}_0(x)) \to \mathcal{G}(K/K_0)$ is the projection $\pi: \Gamma \ltimes G \to \Gamma$. Furthermore, there is $b \in \hat{K}_0$ such that the place $x \to b$ of $\hat{K}_0(x)$ extends to an unramified \hat{K} -place $\hat{\varphi}: \hat{F} \to \hat{K}$ and $\hat{\varphi}(\hat{F}^{\Gamma}) = \hat{K}_0$. Put m = |G|.

Use Weak Approximation to find $y \in \hat{F}^{\Gamma}$ mapped by the *m* distinct extensions of $x \to b$ to \hat{F}^{Γ} into *m* distinct elements of the separable closure of \hat{K}_0 ; then $\hat{F}^{\Gamma} = \hat{K}_0(x, y)$.

Thus there exist polynomials $f \in \hat{K}_0[X, Z], g \in \hat{K}_0[X, Y]$, elements $z \in \hat{F}, y \in \hat{F}^{\Gamma}$, and elements $b, c \in \hat{K}_0$, such that the following conditions hold: (2) $\hat{F} = \hat{K}(z, y) = \hat{K}(z, y)$

- (3a) $\hat{F} = \hat{K}_0(x, z), f(x, Z) = \operatorname{irr}(z, \hat{K}_0(x));$ we may therefore identify $\mathcal{G}(f(x, Z), \hat{K}_0(x))$ with $\mathcal{G}(\hat{F}/\hat{K}_0(x));$
- (3b) $\hat{F}^{\Gamma} = \hat{K}_0(x, y)$, whence $\hat{F} = \hat{K}(x, y)$, and $g(x, Y) = \operatorname{irr}(y, \hat{K}_0(x))$; therefore g(X, Y) is absolutely irreducible;
- (3c) discr $g(b, Y) \neq 0$ and g(b, c) = 0.

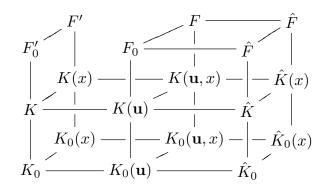
All of these objects depend on only finitely many parameters from \hat{K}_0 . So, there are $u_1, \ldots, u_n \in \hat{K}_0$ So, let u_1, \ldots, u_n be elements of \hat{K}_0 such that the following conditions hold:

- (4a) $F = K_0(\mathbf{u}, x, z)$ is a Galois extension of $K_0(\mathbf{u}, x)$, the coefficients of f(X, Z) lie in $K_0[\mathbf{u}], f(x, Z) = \operatorname{irr}(z, K_0(\mathbf{u}, x)), \text{ and } \mathcal{G}(f(x, Z), K_0(\mathbf{u}, x)) = \mathcal{G}(f(x, Z), \hat{K}_0(x));$
- (4b) the coefficients of g lie in $K[\mathbf{u}]$; hence $g(x, Y) = \operatorname{irr}(y, K_0(\mathbf{u}, x))$; furthermore, $K_0(\mathbf{u}, x, y) = F^{\Gamma}$;
- (4c) $b, c \in K_0[\mathbf{u}]$ and discr $g(b, Y) \neq 0$ and g(b, c) = 0.

Since \hat{K}_0 has a K-rational place, namely, $x \to 0$, the field \hat{K}_0 and therefore also $K_0(\mathbf{u})$ are regular extensions of K_0 . Thus, \mathbf{u} generates an absolutely irreducible variety $U = \operatorname{Spec}(K_0[\mathbf{u}])$ over K_0 . By Bertini-Noether [FJ, Proposition 8.8] the variety U has a nonempty Zariski open subset U' such that for each $\mathbf{u}' \in U'$ the K_0 -specialization $\mathbf{u} \to \mathbf{u}'$ extends to a K-homomorphism ': $K[\mathbf{u}, x, z, y] \to K[\mathbf{u}', x, z', y']$ such that the following conditions hold:

- (5a) f'(x, z') = 0, the discriminant of f'(x, Z) is not zero, and $F' = K_0(\mathbf{u}', x, z')$ is the splitting field of f'(x, Z) over $K_0(\mathbf{u}', x)$; in particular $F'/K_0(\mathbf{u}', x)$ is Galois;
- (5b) g'(X,Y) is absolutely irreducible and g'(x,y') = 0; so $g'(x,Y) = \operatorname{irr}(y', K(\mathbf{u}', x))$; furthermore, $K_0(\mathbf{u}', x, y') = (F')^{\Gamma}$;
- (5c) $b', c' \in K_0[\mathbf{u}']$ and discr $g'(b', Y) \neq 0$ and g'(b', c') = 0.

As K_0 is existentially closed in \hat{K}_0 , and since $\mathbf{u} \in U(\hat{K}_0)$, there is $\mathbf{u}' \in U(K_0)$. Now repeat the end of the proof of [HJ1, Lemma 6.2] (from "By (5a), the homomorphism..." to conclude that F' is a solution of (1).



Condition (5c) ensures that the place $x \to b'$ of $K_0(x)$ is unramified in in $(F')^{\Gamma}$, hence in F', and extends to a K_0 -rational place of $(F')^{\Gamma}$. This ends the proof by Lemma 1.2.

2. Lifting property over ample fields

Let Γ be a subgroup of a finite group G. Let Γ act on G by the conjugation in G

$$g^{\gamma} = \gamma^{-1} g \gamma.$$

and consider the semidirect product $\Gamma \ltimes G$. To fix notation, $\Gamma \ltimes G = \{(\gamma, g) \mid \gamma \in \Gamma, g \in G\}$ and the multiplication on $\Gamma \ltimes G$ is defined by

$$(\gamma_1, g_1)(\gamma_2, g_2) = (\gamma_1 \gamma_2, g_1^{\gamma_2} g_2).$$

Notice that $\Gamma \ltimes G \cong \Gamma \times G$ by $(\gamma, g) \mapsto (\gamma, \gamma g)$. However, the above presentation gives a different splitting of the projection $\Gamma \times G \to \Gamma$. In particular, we have an epimorphism $\rho: \Gamma \ltimes G \to G$ given by $(\gamma, g) \mapsto \gamma g$. Let N denote its kernel.

LEMMA 2.1: Let K_0 be a field, K a Galois extension of K_0 with Galois group Γ , and xa transcendental element over K_0 . Assume that (1) has a solution \hat{F} with a K-rational place $\hat{\varphi}$ of F extending a K_0 -place of $K_0(x)$ and unramified over $K_0(x)$ such that Γ is its decomposition group in $F/K_0(x)$. Let $F = \hat{F}^N$ and let φ be the restriction of $\hat{\varphi}$ to F. Then

- (6a) F is a Galois extension of $K_0(x)$ and $\mathcal{G}(F/K_0(x)) \cong G$;
- (6b) F/K_0 is a regular extension;
- (6c) φ represents a prime divisor \mathfrak{p} of F/K_0 with decomposition group Γ in $F/K_0(x)$ and residue field K.

Proof: By assumption, \hat{F} is a Galois extension of $K_0(x)$ containing K, with Galois group $\Gamma \ltimes G$ such that the restriction $\mathcal{G}(\hat{F}/K_0(x)) \to \mathcal{G}(K/K_0)$ is the projection $\Gamma \ltimes G \to \Gamma$, and \hat{F}/K is regular. Furthermore, $\hat{\varphi}: \hat{F} \to K$ is a K-place unramified over $K_0(x)$, with decomposition group $\Delta = \{(\gamma, 1) \mid \gamma \in \Gamma\} \cong \Gamma$ in $\hat{F}/K_0(x)$ and residue field extension K/K_0 . In particular, \hat{F} is regular over K.

From the definition of F we get (6a) and $\rho(\Delta) = \Gamma \leq G$ is the decomposition group of the restriction $\varphi: F \to K$ of $\hat{\varphi}$ to F. As $|\Delta| = [K:K_0]$, the residue field of φ is K. As $\Gamma \ltimes G = NG$, the fields $F = \hat{F}^N$ and $K(x) = \hat{F}^G$ are linearly disjoint over $K_0(x)$. Therefore F is regular over K_0 . Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the following result, originally proved by Colliot-Thélène [CT, Theorem 1] in characteristic 0:

THEOREM 2.2: Let K_0 be an ample field, G a finite group, Γ a subgroup, K a Galois extension of K_0 with Galois group Γ , and x a transcendental element over K_0 . Then there is F that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors \mathfrak{p} of F/K_0 with decomposition group Γ in $F/K_0(x)$ and residue field K.

Remark 2.3: In case of $\Gamma = G$, Theorem 2.2 says that an ample field K_0 has the so-called **arithmetic lifting property** of Beckmann-Black [BB].

If K_0 is a PAC field, an even stronger property holds.

THEOREM 2.4: Let K_0 be a PAC field, G a finite group, F a function field of one variable over K_0 , and E a subfield of F such that F/E is Galois with Galois group G. Let Γ be a subgroup of G and K a Galois extension of K_0 with Galois group Γ . Then there are infinitely many prime divisors \mathfrak{p} of F/K_0 with decomposition group Γ in F/Eand residue field K.

Proof: By definition, F is a regular extension of K_0 . In particular, F is linearly disjoint from K over K_0 . Hence,

$$\mathcal{G}(FK/E) = \mathcal{G}(FK/F) \times \mathcal{G}(FK/EK) \cong \Gamma \times G.$$

Consider the subgroup $\Delta = \{(\gamma, \gamma) \in \Gamma \times G \mid \gamma \in \Gamma\}$ of $\mathcal{G}(FK/E)$. It satisfies the following conditions:

(7a) $\Delta \cdot (\Gamma \times 1) = \Gamma \times \Gamma$ and $\Delta \cap (\Gamma \times 1) = 1$.

(7b) $\Delta \cdot (1 \times G) = \Gamma \times G$ and $\Delta \cap (G \times 1) = 1$.

Denote the fixed field of Δ in FK by D and the fixed field of the subgroup Γ of $G = \mathcal{G}(F/E)$ by F_0 . Condition (7) translates via Galois theory to the following one: (8a) $D \cap F = F_0$ and DF = FK.

(8b) $D \cap EK = E$ and DK = FK.

As F/K_0 is regular, so is FK/K. Hence, by (8b), D/K_0 is a regular extension. Since K_0 is PAC, there exist infinitely many K_0 -places $\varphi: D \to K_0$. Use (8b) to extend each such φ to a K-place ψ : $FK \to K$. As $[FK : D] = |\Delta| = |\Gamma| = [K : K_0]$, D is the decomposition field of ψ in FK/E. By (8a), F_0 is the decomposition field of $\psi|_F$ in F/E.

COROLLARY 2.5: Let K_0 be a PAC field, E a function field of one variable over K_0 , and G a finite group. For i = 1, ..., n let Γ_i be a subgroup of G and K_i a Galois extension of K_0 with Galois group Γ_i . Then E has a Galois extension F such that

- (9a) $\mathcal{G}(F/E) \cong G$.
- (9b) F/K_0 is a regular extension.
- (9c) For each i there exists a prime divisor p_i of F/K₀ with decomposition group over E equal to Γ_i and with residue field K_i. Moreover, p₁,..., p_n are distinct.

Proof: The existence of F with the properties (9a) and (9b) is well known [HJ2, Theorem 2]. Now apply Theorem 2.4 successively to Γ_i and K_i instead of to Γ and K.

References

- [BB] E.V. Black, Deformations of dihedral 2-group extensions of fields, Transactions of the AMS 351 (1999), 3229–3241.
- [CT] J.-L. Colliot-Thélène, Rational connectedness and Galois cover of the projective line, a preprint.
- [De] P. Dèbes, Galois Covers with Prescribed Fibers: The Beckmann-Black Problem, Ann. Scuola Norm. Sup. Pisa 28 (1999), 273–286.
- [FJ] M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 1986.
- [Ha] D. Harbater, Galois coverings of the arithmetic line, in: Lecture Notes in Mathematics 1240, 165–195, Springer-Verlag 1987.
- [HJ1] D. Haran and M. Jarden, Regular split embedding problems over complete valued fields, Forum Mathematicum 10 (1998), 329–351.
- [HJ2] D. Haran and M. Jarden, Regular split embedding problems over function fields of one variable over ample fields, Journal of Algebra, 208 (1998), 147–164.

- [HV] D. Haran and H. Völklein, Galois groups over complete valued fields, Israel Journal of Mathematics, 93 (1996), 9–27.
- [Li] Q. Liu, Tout groupe fini est un groupe de Galois sur $\mathbb{Q}_p(T)$, d'après Harbater, Contemporary Mathematics **186** (1995), 261–265.
- [MB] L. Moret-Bailly, Construction de revêtements de courbes pointées, preprint, June 1999.
- [Po1] F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996), 1–34.
- [Po2] F. Pop, On the BB theory, an unpublished note, 2 pages.