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Introduction

Colliot-Thélène [CT] uses the technique of Kollár, Miyaoka, and Mori to prove the

following result.

Theorem A: Let K be an ample field of characteristic 0, x a transcendental element

over K, and G a finite group. Then there is a Galois extension F of K(x) with Galois

group G, regular over K. Moreover, F has a K-rational place ϕ.

In fact, Colliot-Thélène proves a stronger version:

Theorem B: Given a Galois extension L/K with Galois group Γ which is a subgroup

of G, one can choose F and ϕ so that the residue field extension of F/K(x) under ϕ is

L/K.

Case Γ = G of Theorem B means that K has the arithmetic lifting property of

Beckmann and Black [BB].

As the results of Kollár, Miyaoka, and Mori are valid only in characteristic 0,

Colliot-Thélène’s proof works only in this case. Nonetheless, Theorem A holds in ar-

bitrary characteristic ([Ha, Corollary 2.4] for complete fields, [Po1, Main Theorem A];

see also [Li] and [HV]). Moret-Bailly [MB], using methods of formal patching, extends

Theorem B to arbitrary characteristic.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic.

In fact, the main ingredient of the proof is almost contained in [HJ1]. Therefore this

note can be considered a sequel to [HJ1]; a large portion of it recalls the situation and

facts considered there.

We also notice that if K is PAC and F is an arbitrary Galois extension of K(x)

with Galois group G, regular over K, then, for every Galois extension L/K with Galois

group which is a subgroup of G, we can choose ϕ so that the residue field extension of

F/K(x) under ϕ is L/K. (After the first draft of this note has been written, P. Dèbes

informed us that he also made this observation in [De, Remark 3.3].) This answers a

question of Harbater. Notice that this stronger property does not hold for an arbitrary

ample field K [CT, Appendix].
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The idea (displayed in our Lemma 2.1) to use the embedding problem GnG→ G

in order to obtain the arithmetic lifting property has been used in [Po2]; we are grateful

to F. Pop for making his notes available to us.

1. Embedding problems and decomposition groups

Let K/K0 be a finite Galois extension with Galois group Γ. Let x be a transcendental

element over K. Put E0 = K0(x). Suppose that Γ acts (from the right) on a finite

group G; let Γ n G be the corresponding semidirect product and π: Γ n G → Γ the

canonical projection. We call

(1) π: Γ nG→ Γ = G(K/K0)

a finite constant split embedding problem. A solution of (1) is a Galois ex-

tension F of E0 such that K ⊆ F , G(F/E0) = Γ n G, and π is the restriction map

resK : G(F/E0) → G(K/K0).

In [HJ1, Theorem 6.4] we reprove the following result of F. Pop [Po1]:

Proposition 1.1: Let K0 be an ample field. Then each finite constant split embedding

problem (1) has a solution F such that F has a K-rational place. (In particular, F/K

is regular.)

In this section we show that the proof of Proposition 1.1 in [HJ1] yields a stronger

assertion.

Lemma 1.2: Let F be a solution of (1). Put F0 = FΓ. Let ϕ: F → K̃0 be a K-

place extending a K0-place of E0. Assume that ϕ is unramified in F/E0 and let Dϕ

be its decomposition group in F/E0. Then ϕ(F ) ⊇ K and the following assertions are

equivalent:

(a) ϕ(F ) = K and Γ = Dϕ;

(b) Γ ⊇ Dϕ;

(c) ϕ(F0) = K0;

(d) ϕ(F ) = K and ϕ(fγ) = ϕ(f)γ for each γ ∈ Γ and f ∈ F with ϕ(f) 6= ∞.
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Proof: As K ⊆ F , we have K = ϕ(K) ⊆ ϕ(F ). Since the inertia group of ϕ in F/E0

is trivial, we have an isomorphism θ: Dϕ → G(ϕ(F )/K0) given by

(2) ϕ(fγ) = ϕ(f)θ(γ), γ ∈ Dϕ, f ∈ F, ϕ(f) 6= ∞.

Hence |Dϕ| = [ϕ(F ) : K0] ≥ [K : K0] = |Γ|. This gives (a) ⇔ (b).

Since ϕ is unramified over E0, the decomposition field FDϕ is the largest inter-

mediate field of F/E0 mapped by ϕ into K0, and hence (b) ⇔ (c).

Clearly (d) ⇒ (c). If ϕ(F ) = K, apply (2) to f ∈ K to see that θ(γ) = γ for all

γ ∈ Dϕ. Hence (a) ⇒ (d).

Remark 1.3: Let K0 be an ample field and let F be a solution of (1). Suppose that F

has a K-rational place extending K0-places of E0 and unramified over E0 such that Γ

is its decomposition group in F/E0. Then F has infinitely many such places.

Indeed, put F0 = FΓ. Recall that F0 is regular over K0. By Lemma 1.2,

(a) the assumption is that there is a K0-place ϕ: F0 → K0 unramified over K0(x), and

(b) we have to show that there are infinitely many such places.

But (a) ⇒ (b) is a property of an ample field.

Proposition 1.4: Let K0 be an ample field. Then each finite constant split embedding

problem (1) has a solution F with a K-rational place of F extending a K0-place of E0

and unramified over E0 such that Γ is its decomposition group in F/E0.

Proof: Put E = K(x) = KK0(x).

Part A: As in the proof of [HJ1, Theorem 6.4], we first assume that K0 is complete

with respect to a non-trivial discrete ultrametric absolute value, with infinite residue

field and K/K0 is unramified.

In this case [HJ1, Proposition 5.2] proves Proposition 1.1. Claim C of that proof

shows that, for every b ∈ K0 with |b| > 1, x → b extends to a K-homomorphism

ϕb: R→ K, where R is the principal ideal ring K{ 1
x−ci

| i ∈ I}. From there it extends

to a K-place ϕb: Q→ K∪{∞} of the Q = Quot(R). Furthermore, [HJ1, Lemma 1.3(b)]

gives an E-embedding λ: F → Q. The compositum ϕ = ϕb ◦ λ is a K-rational place of
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F . Excluding finitely many b’s we may assume that ϕ is unramified over E0. To verify

that ϕ satisfies condition (d) of Lemma 1.2, we first recall the relevant facts from [HJ1].

(a) [HJ1, Proposition 5.2, Construction B] The group Γ = G(K/K0) lifts isomorphically

to G(E/E0). By the choice of the ci we have
(

1
x−ci

)γ = 1
x−cγ

i
, for each γ ∈ Γ. It

follows that Γ continuously acts on R in the following way

(
a0 +

∑
i∈I

∞∑
n=1

ain

( 1
x− ci

)n
)γ

= aγ
0 +

∑
i∈I

∞∑
n=1

aγ
in

( 1
x− cγi

)n
.

This action induces an action of Γ on Q.

(b) [HJ1, (7) on p. 334] The above mentioned action of Γ on Q defines an action of Γ

on the Q-algebra

N = IndG
1 Q =

{ ∑
θ∈G

aθθ | aθ ∈ Q
}

in the following way:

( ∑
θ∈G

aθθ
)γ

=
∑
θ∈G

aγ
θθ

γ aθ ∈ Q, γ ∈ Γ.

Furthermore, the field F is a subring ofN [HJ1, p. 332] and Γ acts on it by restriction

from N [HJ1, Proof of Proposition 1.5, Part A].

(c) The embedding λ: F → Q is just the restriction to F of the projection

∑
θ∈G

aθθ 7→ a1

from N = IndG
1 Q→ Q [HV, Proposition 3.4].

(d) The place ϕb: Q→ K∪{∞} is induced from the evaluation homomorphism ϕb: R→

K given by [HJ1, Remark 3.5]

ϕb

(
a0 +

∑
i∈I

∞∑
n=1

ain

( 1
x− ci

)n
)

= a0 +
∑
i∈I

∞∑
n=1

ain

( 1
b− ci

)n
.

In order to prove condition (d) of Lemma 1.2 it suffices to show that both λ and ϕb are

Γ-equivariant.
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Let f =
∑

θ∈G aθθ ∈ F ⊆ N . Then, by (b) and (c),

λ(fγ) = λ
( ∑

θ∈G

aγ
θθ

γ
)

= aγ
1 =

(
λ
( ∑

θ∈G

aθθ
))γ

= λ(f)γ .

Furthermore, let r = a0 +
∑

i∈I

∑∞
n=1 ain

(
1

x−ci

)n ∈ R. By (a) and (d),

ϕb(rγ) = ϕb

(
aγ
0 +

∑
i∈I

∞∑
n=1

aγ
in

( 1
x− cγi

)n
)

= aγ
0 +

∑
i∈I

∞∑
n=1

aγ
in

( 1
b− cγi

)n

=
(
a0 +

∑
i∈I

∞∑
n=1

ain

( 1
b− ci

)n
)γ

= ϕb(r)γ .

Thus ϕb is Γ-equivariant.

Part B: K0 is an arbitrary ample field. As in the proof of [HJ1, Theorem 6.4] let K̂0

be the field of Laurent series over K0. Then K̂ = KK̂0 is an unramified extension of

K̂0 with Galois group Γ and infinite residue field.

By Part A, K̂0(x) has a Galois extension F̂ which contains K̂(x), such that

G(F̂ /K̂0(x)) = Γ n G and the restriction map G(F̂ /K̂0(x)) → G(K/K0) is the pro-

jection π: Γ nG→ Γ. Furthermore, there is b ∈ K̂0 such that the place x→ b of K̂0(x)

extends to an unramified K̂-place ϕ̂: F̂ → K̂ and ϕ̂(F̂Γ) = K̂0. Put m = |G|.

Use Weak Approximation to find y ∈ F̂Γ mapped by the m distinct extensions of

x→ b to F̂Γ intom distinct elements of the separable closure of K̂0; then F̂Γ = K̂0(x, y).

Thus there exist polynomials f ∈ K̂0[X,Z], g ∈ K̂0[X,Y ], elements z ∈ F̂ , y ∈ F̂Γ,

and elements b, c ∈ K̂0, such that the following conditions hold:

(3a) F̂ = K̂0(x, z), f(x, Z) = irr(z, K̂0(x)); we may therefore identify G(f(x, Z), K̂0(x))

with G(F̂ /K̂0(x));

(3b) F̂Γ = K̂0(x, y), whence F̂ = K̂(x, y), and g(x, Y ) = irr(y, K̂0(x)); therefore

g(X,Y ) is absolutely irreducible;

(3c) discrg(b, Y ) 6= 0 and g(b, c) = 0.

All of these objects depend on only finitely many parameters from K̂0. So, there

are u1, . . . , un ∈ K̂0 So, let u1, . . . , un be elements of K̂0 such that the following condi-

tions hold:
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(4a) F = K0(u, x, z) is a Galois extension of K0(u, x), the coefficients of f(X,Z) lie in

K0[u], f(x, Z) = irr(z,K0(u, x)), and G(f(x,Z),K0(u, x)) = G(f(x, Z), K̂0(x));

(4b) the coefficients of g lie in K[u]; hence g(x, Y ) = irr(y,K0(u, x)); furthermore,

K0(u, x, y) = FΓ;

(4c) b, c ∈ K0[u] and discrg(b, Y ) 6= 0 and g(b, c) = 0.

Since K̂0 has a K-rational place, namely, x → 0, the field K̂0 and therefore also

K0(u) are regular extensions of K0. Thus, u generates an absolutely irreducible variety

U = Spec(K0[u]) over K0. By Bertini-Noether [FJ, Proposition 8.8] the variety U has

a nonempty Zariski open subset U ′ such that for each u′ ∈ U ′ the K0-specialization

u → u′ extends to a K-homomorphism ′: K[u, x, z, y] → K[u′, x, z′, y′] such that the

following conditions hold:

(5a) f ′(x, z′) = 0, the discriminant of f ′(x,Z) is not zero, and F ′ = K0(u′, x, z′) is the

splitting field of f ′(x, Z) over K0(u′, x); in particular F ′/K0(u′, x) is Galois;

(5b) g′(X,Y ) is absolutely irreducible and g′(x, y′) = 0; so g′(x, Y ) = irr(y′,K(u′, x));

furthermore, K0(u′, x, y′) = (F ′)Γ;

(5c) b′, c′ ∈ K0[u′] and discrg′(b′, Y ) 6= 0 and g′(b′, c′) = 0.

AsK0 is existentially closed in K̂0, and since u ∈ U(K̂0), there is u′ ∈ U(K0). Now

repeat the end of the proof of [HJ1, Lemma 6.2] (from “By (5a), the homomorphism. . .”

to conclude that F ′ is a solution of (1).

F ′
sss

F
mmmmmm F̂

sss
s

F ′0 F0 F̂

K(x)
uuu

K(u, x)
nn

K̂(x)
uu

K K(u) K̂

K0(x)
uu

K0(u, x)
oo

K̂0(x)
uu

K0 K0(u) K̂0

Condition (5c) ensures that the place x → b′ of K0(x) is unramified in in (F ′)Γ,

hence in F ′, and extends to a K0-rational place of (F ′)Γ. This ends the proof by

Lemma 1.2.
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2. Lifting property over ample fields

Let Γ be a subgroup of a finite group G. Let Γ act on G by the conjugation in G

gγ = γ−1gγ.

and consider the semidirect product ΓnG. To fix notation, ΓnG = {(γ, g) | γ ∈ Γ, g ∈

G} and the multiplication on Γ nG is defined by

(γ1, g1)(γ2, g2) = (γ1γ2, g
γ2
1 g2).

Notice that ΓnG ∼= Γ×G by (γ, g) 7→ (γ, γg). However, the above presentation gives a

different splitting of the projection Γ×G→ Γ. In particular, we have an epimorphism

ρ: Γ nG→ G given by (γ, g) 7→ γg. Let N denote its kernel.

Lemma 2.1: Let K0 be a field, K a Galois extension of K0 with Galois group Γ, and x

a transcendental element over K0. Assume that (1) has a solution F̂ with a K-rational

place ϕ̂ of F extending a K0-place of K0(x) and unramified over K0(x) such that Γ is

its decomposition group in F/K0(x). Let F = F̂N and let ϕ be the restriction of ϕ̂ to

F . Then

(6a) F is a Galois extension of K0(x) and G(F/K0(x)) ∼= G;

(6b) F/K0 is a regular extension;

(6c) ϕ represents a prime divisor p of F/K0 with decomposition group Γ in F/K0(x)

and residue field K.

Proof: By assumption, F̂ is a Galois extension of K0(x) containing K, with Galois

group ΓnG such that the restriction G(F̂ /K0(x)) → G(K/K0) is the projection ΓnG→

Γ, and F̂ /K is regular. Furthermore, ϕ̂: F̂ → K is a K-place unramified over K0(x),

with decomposition group ∆ = {(γ, 1) | γ ∈ Γ} ∼= Γ in F̂ /K0(x) and residue field

extension K/K0. In particular, F̂ is regular over K.

From the definition of F we get (6a) and ρ(∆) = Γ ≤ G is the decomposition

group of the restriction ϕ: F → K of ϕ̂ to F . As |∆| = [K : K0], the residue field of

ϕ is K. As Γ nG = NG, the fields F = F̂N and K(x) = F̂G are linearly disjoint over

K0(x). Therefore F is regular over K0.
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Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the following

result, originally proved by Colliot-Thélène [CT, Theorem 1] in characteristic 0:

Theorem 2.2: Let K0 be an ample field, G a finite group, Γ a subgroup, K a Galois

extension of K0 with Galois group Γ, and x a transcendental element over K0. Then

there is F that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors p of F/K0 with decomposition group Γ in

F/K0(x) and residue field K.

Remark 2.3: In case of Γ = G, Theorem 2.2 says that an ample field K0 has the

so-called arithmetic lifting property of Beckmann-Black [BB].

If K0 is a PAC field, an even stronger property holds.

Theorem 2.4: Let K0 be a PAC field, G a finite group, F a function field of one

variable over K0, and E a subfield of F such that F/E is Galois with Galois group G.

Let Γ be a subgroup of G and K a Galois extension of K0 with Galois group Γ. Then

there are infinitely many prime divisors p of F/K0 with decomposition group Γ in F/E

and residue field K.

Proof: By definition, F is a regular extension of K0. In particular, F is linearly disjoint

from K over K0. Hence,

G(FK/E) = G(FK/F )× G(FK/EK) ∼= Γ×G.

Consider the subgroup ∆ = {(γ, γ) ∈ Γ × G | γ ∈ Γ} of G(FK/E). It satisfies the

following conditions:

(7a) ∆ · (Γ× 1) = Γ× Γ and ∆ ∩ (Γ× 1) = 1.

(7b) ∆ · (1×G) = Γ×G and ∆ ∩ (G× 1) = 1.

Denote the fixed field of ∆ in FK by D and the fixed field of the subgroup Γ of

G = G(F/E) by F0. Condition (7) translates via Galois theory to the following one:

(8a) D ∩ F = F0 and DF = FK.

(8b) D ∩ EK = E and DK = FK.

As F/K0 is regular, so is FK/K. Hence, by (8b), D/K0 is a regular extension.

Since K0 is PAC, there exist infinitely many K0-places ϕ: D → K0. Use (8b) to extend
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each such ϕ to a K-place ψ: FK → K. As [FK : D] = |∆| = |Γ| = [K : K0], D is

the decomposition field of ψ in FK/E. By (8a), F0 is the decomposition field of ψ|F in

F/E.

Corollary 2.5: Let K0 be a PAC field, E a function field of one variable over K0, and

G a finite group. For i = 1, . . . , n let Γi be a subgroup of G and Ki a Galois extension

of K0 with Galois group Γi. Then E has a Galois extension F such that

(9a) G(F/E) ∼= G.

(9b) F/K0 is a regular extension.

(9c) For each i there exists a prime divisor pi of F/K0 with decomposition group over

E equal to Γi and with residue field Ki. Moreover, p1, . . . , pn are distinct.

Proof: The existence of F with the properties (9a) and (9b) is well known [HJ2,

Theorem 2]. Now apply Theorem 2.4 successively to Γi and Ki instead of to Γ and K.
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