
1.1 Places.

Convention: When we say a ring we mean a commutative ring with 1.

Let K be a field. Adjoin the symbol ∞ to K together with the following rules for

a ∈ F :

a+∞ =∞, a · ∞ =∞ if a ̸= 0,

∞ ·∞ =∞, 1/0 =∞, , and 1/∞ = 0.

The expressions ∞+∞, 0 · ∞ and ∞/∞ are undefined.

A place φ of a field F into a field K is a mapping φ: F → K ∪ {∞} such that

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b) whenever the expressions on the right

sides of these formulas are defined, and such that φ(1) = 1. The place φ is trivial if

φ(a) ̸= 0 for every a ∈ F . In this case φ is an embedding of F into K.

Example 1.1: Let R be a unique factorization domain (e.g. R = Z or R = K0[X],

where K0 is a field). Denote the quotient field of R by F . To each prime element p of

R we attach a place φp of F into F p = R/pR by the following rule:

φ
(a
b
pm

)
=

{
0 if m > 0
ā/b̄ if m = 0
∞ if m < 0.

Here a, b ∈ R are relatively prime to p, ā is the residue class of a modulo p and m ∈ Z.

Exercise 1.2: Let φ be a place of a field F and let x1, . . . , xn be elements of F . Prove

that there exists i between 1 and n such that φ is finite at x1/xi, . . . , xn/xi.

A local ring is a ring R with a unique maximal ideal m. The elements of R−m

are then the units of R. For example, if φ is a place of a field F , then R = {x ∈

F | φ(x) ̸= ∞} is a local ring whose maximal ideal is m = {x ∈ F | φ(x) = 0}. It is the

valuation ring of φ.

Conversely let R be a valuation ring of a field F (i.e., R ̸= F and for each x ∈ F

either x ∈ R or x−1 ∈ R. Then R is a local ring whose maximal ideal is the set p

of all nonunits of R. Indeed, if a ∈ p and r ∈ R, then ra is not a unit and therefore
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belongs to p. If a, b ∈ p are nonzero, then we may assume that ab−1 ∈ R. Hence

a + b = b(ab−1 + 1) ∈ p. Finally each u ∈ R − p is a unit of R. Hence p is the unique

maximal ideal of R.

The map φ that maps x ∈ R onto its residue modulo m and x ∈ F −R onto ∞ is

a place of F whose valuation ring is R.

If p is a prime ideal in an arbitrary ring R, then

Rp =
{a
b
| a, b ∈ R and b /∈ p

}
is a local ring whose maximal ideal is pRp. It is the local ring of R at p.

Our first goal is to extend homomorphisms of rings to places of fields.

Lemma 1.3: Let φ be a homomorphism of an integral domain R into an algebraically

closed field K and let x be a nonzero element of a field that contains R. Then φ extends

to a homomorphism of at least one of the rings R[x] and R[x−1] into K.

Proof: Let p = Ker(φ). Extend φ to Rp by

φ
(a
b

)
=
φ(a)

φ(b)
for a ∈ R, b ∈ R− p.

So, we may assume that R is a local ring and p is its maximal ideal.

We prove that at least one of the rings p · R[x] and p · R[x−1] of the rings R[x]

and R[x−1] respectively is proper. Otherwise there exist positive integers m and n and

elements ai, bj ∈ p such that

1 = a0 + a1x+ · · ·+ amx
m(1a)

1 = b0 + b1x
−1 + · · ·+ bnx

−n(1b)

Assume that m and n are minimal integers that satisfy (1). Observe that 1 − a0 is a

unit of R. We may therefore bring a0 to the left hand side of (1a) and multiply by

(1− a0)−1 to obtain an equation of the form

(2a) 1 = c1x+ · · ·+ cmx
m, ci ∈ p.
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Similarly (1b) can be transposed to

(2b) 1 = d1x
−1 + · · ·+ dnx

−n, dj ∈ p.

Assume that m ≥ n. Then multiply (2b) by xm and substitute in (2a) to obtain an

equation of the form (2a) of smaller degree. This contradiction to the minimality of m

proves our assertion.

Suppose therefore that p · R[x] is a proper ideal. By Zorn’s lemma, R[x] has a

maximal ideal P that contains p. As P∩R = p, we may embed F = φ(R) into R[x]/P.

Let x̄ = x + P. Then F [x̄] = R[x]/P and the canonical map R[x] → F [x̄] extends φ.

Furthermore, F [x̄] is a field. Hence x̄ is algebraic over F and therefore lies in K.

Proposition 1.4 (Chevalley): Let φ be a homomorphism of an integral domain R into

an algebraically closed field K. Let F be a field that contains R. Then φ extends to a

place of F into K.

Proof: Consider the set Φ of all pairs (Ri, φi) where Ri is a subring of F that contains

R and φi is a homomorphism of Ri into K that extends φ. Define a partial ordering

on this set by (Ri, φi) ≤ (Rj , φj) if Ri ⊆ Rj and φj extends φi. By Zorn’s Lemma

Φ contains a maximal element (R′, φ′). From the maximality, R′ is a local ring and

Ker(φ′) is its unique maximal ideal. By Lemma 1.3, for each x ∈ F either x ∈ R′ or

x−1 ∈ R′. If R′ = F , then φ′ is a monomorphism of F into K. Otherwise, the extension

of φ′ to F that maps each x ∈ F −R′ to∞ is a place of F into K that extends φ.

Exercise 1.5: Let φ be a monomorphism of a field E into a field K. Let F be an

algebraic extension of E. Then every place of F that extends φ is trivial.
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2. Transcendence bases.

Let F/K be a field extension. Elements x1, . . . , xn are said to be algebraically inde-

pendent over K if f(x1, . . . , xn) ̸= 0 for each nonzero polynomial f ∈ K[X1, . . . , Xn].

A subset B of F is algebraically independent over K if every finite subset of B is

algebraically independent over K. If in addition, F is algebraic over K(B), then B is a

transcendence base for F/K.

The existence of transcendence bases follows from Zorn’s lemma. Moreover, if S

is a set of generators of F/K and T0 is a subset of S which is algebraically independent

over K, then a maximal subset T of S which contains T0 and which is algebraically

independent over K is a bases of F/K.

The cardinality of the transcendence bases is an invariant of F/K. As in the case

of linear bases for vector spaces this result depends on an exchange lemma:

Lemma 2.1: Let F/K be a field extension. Consider algebraically independent el-

ements w1, . . . , wr ∈ F over K and let x1, . . . , xs ∈ F . If wr is algebraic over E1 =

K(w1, . . . , wr−1, x1, . . . , xs), then one of the xi’s can be exchanged by wr. That is, there

exists i between 1 and s such that xi is algebraic over E2 = K(w1, . . . , wr, x1, . . . , x̂i, . . . , xs)

(where the hat over xi means that this element is omitted). In particular Ẽ1 = Ẽ2.

Proof: By assumption there exists a nonzero polynomial f with coefficients in K such

that

f(w1, · · · , wr, x1, . . . , xs) = 0.

Since w1, . . . , wr are algebraically independent overK there exists i such that xi appears

in f . Then xi is algebraic over E2.

Lemma 2.2: Any two transcendence bases of a field extension F/K have the same

cardinality.

Proof: We prove only that if there exists one finite transcendence base, say {x1, . . . , xs},

s ≥ 1, then any other transcendence base must also have s elements. Using symmetry,

it suffices to prove: If w1, . . . , wr are elements of F which are algebraically independent

over K, then r ≤ s. But this follows by induction from Lemma 2.1.
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The case where F/K has an infinite transcendence base can be dealt with Zorn’s

lemma and is left to the reader.
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3. Algebraic sets.

For the rest of this chapter (unless otherwise is specified) K will denote an algebraically

closed field, known as the ground field. To each subset a of K[X] = K[X1, . . . , Xn]

we associate the set

V (a) = {a ∈ Kn| f(a) = 0 for each f ∈ a}.

We call it an algebraic set. Each a ∈ V (a) is a K-rational zero of a. If a is the

ideal generated by a subset a0 of K[X], then V (a) = V (a0). To each subset A of Kn

we associate an ideal of K[X1, . . . , Xn]:

I(A) = {f ∈ K[X1, . . . , Xn]| f(a) = 0 for each a ∈ A}.

This correspondence between algebraic sets and ideals is compatible with the lattice

structures:

Lemma 3.1: For ideals a, b, ai in K[X1, . . . , Xn] and subsets A,B of Kn we have:

(a) a ⊆ b implies V (a) ⊇ V (b),

(b) A ⊆ B implies I(A) ⊇ I(B),

(c) V (⟨ai⟩i∈I) =
∩

i∈I V (ai), and

(d) V (a ∩ b) = V (a) ∪ V (b).

(e) I(A) ∩ I(B) = I(A ∪B)

Proof: All are obvious except possibly (d). But by (a), V (a) ∪ V (b) ⊆ V (a ∩ b). Con-

versely, if x /∈ V (a) ∪ V (b), then there exist polynomials f ∈ a and g ∈ b such that

f(x) ̸= 0 and g(x) ̸= 0. But then fg ∈ a∩b and (fg)(x) ̸= 0, hence x /∈ V (a∩b).

Note that V (K[X]) = ∅ and V (0) = Kn. We denote Kn also by An(K), and if

K is clear from the context also by An. The correspondence between algebraic sets and

ideals becomes bijective if we restrict the domain of V to ideals that coincide with their

“radical”. This is a consequence of Hilbert’s Nullstellensatz:

Proposition 3.2 (Weak Nullstellensatz): Each proper ideal of K[X] has a K-rational

zero.
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Proof: By Zorn’s lemma it suffices to prove that each maximal ideal m has a K-rational

zero.

Indeed, with xi = Xi +m, i = 1, . . . , n, the ring K[x] is a field. Let t1, . . . , tr be a

transcendence base for K[x]/K. Each xi satisfies an equation with coefficients in K[t]:

(1) gi,mi
(t)xmi

i + · · ·+ gi,0(t) = 0

where gi,mi ̸= 0. Choose a1, . . . , an ∈ K such that gi,mi(a) ̸= 0, i = 1, . . . , n. Then

extend the K-homomorphism K[t]→ K which maps ti onto ai, i = 1, . . . , n to a place

φ of K(x) into K (Proposition 1.4). If φ(xi) = ∞ for some i, divide (1) by xmi
i and

apply φ to get a contradiction. Thus φ(x) = x′ is a K-rational zero of m.

Corollary 3.3: If f1, . . . , fm ∈ K[X] have no common zero, then there exist g1, . . . , gm ∈

K[X] such that g1f1 + · · ·+ gmfm = 1.

Exercise 3.4: (a) Let x1, . . . , xn be elements of an extension of K. Use the weak

Nullstellensatz to prove that if K[x] is a field, then x1, . . . , xn ∈ K.

(b) Prove that every maximal ideal of K[X] has the form ⟨X1−x1, . . . , Xn−xn⟩, where

x1, . . . , xn ∈ K. Hint: Use Taylor expansion around (x1, . . . , xn).

Let a be an ideal in a ring R. Define

√
a = {f ∈ R| fn ∈ a for some n ∈ N}.

The ideal
√
a is the radical of a.

Exercise 3.5: Prove that
√
a is the intersection of all prime ideals that contain a. Hint:

If no power of an element f of R belongs to a use Zorn’s Lemma to find a maximal

element among all ideals that contain a and disjoint to the set of powers of f .

Proposition 3.6 (Strong Nullstellensatz): Let a be an ideal of K[X1, . . . , Xn]. If a

polynomial f ∈ K[X] vanishes on V (a), then f ∈
√
a.

Proof: We use the, so called, “Rabinovich trick”. Consider the ideal b ofK[X1, . . . , Xn+1]

generated by a and 1 − Xn+1f . If b were a proper ideal, then by the weak form

of Hilbert’s Nullstellensatz it would have a K-rational zero (a1, . . . , an+1). But then
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(a1, . . . , an) ∈ V (a) and an+1f(a1, . . . , an) = 1. Hence, f(a1, . . . , an) ̸= 0. This con-

tradiction to the assumption of the Proposition implies that 1 ∈ b. Thus, there exist

f1, . . . , fm ∈ a and h1, . . . , hm+1 ∈ K[X1, . . . , Xm+1] such that

1 =
m∑
i=1

hi(X1, . . . , Xn+1)fi + hm+1(X1, . . . , Xn+1)(1−Xn+1f).

Substitute Xn+1 = f−1 in this formula to get:

1 =
m∑
i=1

hi(X1, . . . , Xn, f
−1)fi(X1, . . . , Xn).

Clearing denominators this gives:

f(X1, . . . , Xn)
r =

m∑
i=1

h′i(X1, . . . , Xn)fi(X1, . . . , Xn)

for some h′i ∈ K[X1, . . . , Xn]. This means that f ∈
√
a.

Corollary 3.7: If a is an ideal of K[X], then I(V (a)) =
√
a. In particular, if p is a

prime ideal of K[X], then I(V (p)) = p.

Problem 3.8: Prove for each subset a ⊆ K[X] and each subset A ⊆ Kn: If A = V (a),

then A = V (I(A)). If a = V (A), then a = I(V (a)).
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4. Zariski topology.

A topological space X is called irreducible if for any decomposition X = A1∪A2 with

closed subsets Ai of X we have X = A1 or X = A2. A subset X ′ of a topological space

X is called irreducible if X ′ is irreducible as a space with the induced topology.

Lemma 4.1: For a topological space X the following statements are equivalent.

(a) X is irreducible.

(b) If U1, U2 are nonempty open subsets of X then U1 ∩ U2 ̸= ∅.

(c) Any nonempty open subset of X is dense in X.

Proof: The equivalence of (a) and (b) follows from the definition by taking complements.

the equivalence of (b) and (c) is clear by the definition of density.

Corollary 4.2: For a subset X ′ of a topological space X the following statements are

equivalent.

(a) X ′ is irreducible.

(b) If U1, U2 are open subsets of X with Ui ∩X ′ ̸= ∅, i = 1, 2, then U1 ∩U2 ∩X ′ ̸= ∅.

(c) The closure X ′ of X ′ is irreducible.

Proof: The equivalence of (a) and (b) is a consequence of Lemma 4.1. That of (b) and

(c) follows from the fact that an open set meets X ′ if and only if it meets X ′.

Corollary 4.3: Every open subset of an irreducible topological space is irreducible.

An irreducible component of a topological space X is a maximal irreducible

subset of X.

By Corollary 4.2(c) each irreducible component is closed.

Lemma 4.4: Let X be a topological space.

(a) Any irreducible subset of X is contained in an irreducible component.

(b) The space X is the union of its irreducible components.

Proof: Since each point x ∈ X is irreducible, (b) follows from (a). Statement (a) follows

from Zorn’s Lemma:

For an irreducible subset X0 of X consider the set X of all irreducible subsets

of X that contain X0. It is non empty, and if {Xλ}λ∈Λ is a linearly ordered family of
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elements of X , then Y =
∪

λ∈ΛXλ is also a member of X . Indeed, if U1, U2 are open

subsets of X that intersect Y , then Ui ∩ Xλi ̸= ∅, for some λi ∈ Λ, i = 1, 2. If, say,

Xλ1 ⊆ Xλ2 , then U1 ∩ U2 ∩ Xλ2 ̸= ∅. Hence U1 ∩ U2 ∩ Y ̸= ∅. Conclude that Y is

irreducible.

By Zorn’s Lemma X has a maximal element. It is an irreducible component of X

that contains X0.

A topological space X is called Noetherian if every descending sequence A1 ⊇

A2 ⊇ · · · of closed subsets of X is stationary. It is clear that X is Noetherian if and

only if every ascending sequence of open subsets is stationary. Also, X is Noetherian

if and only if every family of closed subsets has a minimal element, or equivalently,

every family of open subsets has a maximal element. In particular every Noetherian

space is compact (but not necessarily Hausdorff. Some authors call such spaces quasi

compact.) Any subset Y of a Noetherian spade X is Noetherian in its induced topology.

Indeed, if U1, U2, U3, . . . is a sequence of open subsets of X such that U1∩Y ⊆ U2∩Y ⊆

U3 ∩ Y ⊆ · · ·, then U1 ⊆ U1 ∪ U2 ⊆ U1 ∪ U2 ∪ U3 ⊆ · · · is stationary and therefore so is

U1∩Y ⊆ U2∩Y ⊆ U3∩Y ⊆ · · ·. Also, a finite union of Noetherian spaces is Noetherian.

Lemma 4.5: A Noetherian topological space X has only finitely many irreducible com-

ponents. No component is contained in the union of the others.

Proof: Let X be the family of all closed subsets of X that cannot be written as a finite

union of irreducible subsets of X. Suppose X is not empty.

By the minimal condition there is a minimal element Y ∈ X . The set Y is not

irreducible, so Y = Y1 ∪ Y2 where Y1 and Y2 are proper closed subsets of Y . But then

Yi /∈ X and therefore Yi is a finite union of irreducible subsets of X, i = 1, 2, and

therefore so is Y . This contradiction proves that X is empty.

In particular X is a finite union of irreducible subsets. By Lemma 4.4(a), each

of them is contained in an irreducible component of X. So X = X1 ∪ · · · ∪ Xn with

irreducible components Xi of X, and Xi ̸= Xj for i ̸= j.

If Y is an arbitrary irreducible component, it follows from the relation Y =∪n
i=1(Xi ∩ Y ) that Y = Xi ∩ Y for some i, and therefore Y = Xi. Thus, all com-
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ponents occur among the Xi. The same argument implies that Xi ̸⊆
∪

j ̸=iXj . This

proves the Lemma.

We would like to equip algebraic sets with a Noetherian topology.

Lemma and Definition 4.6: A ring R is said to beNoetherian if one of the following

equivalent conditions holds:

(a) Every ideal of R is finitely generated.

(b) Any ascending sequence of ideals of R becomes stationary.

(c) Any nonempty set of ideals of R has a maximal element.

Examples of Noetherian rings are the principal ideal rings, in particular all fields,

as well as Z and K[X], if K is a field. Any homomorphic image of a Noetherian ring is

Noetherian.

Proposition 4.7 (Hilbert’s basis theorem): If R is a Noetherian ring, so is R[X].

Proof: Assume that I is an ideal of R[X] which is not finitely generated. Let f1 ∈ I

be a polynomial of least degree. If fk (k ≥ 1) has already been chosen, let fk+1 be a

polynomial of least degree in I − ⟨f1, . . . , fk⟩. Let nk be the degree and ak ∈ R the

leading coefficient of fk, k = 1, 2, . . . ,. Then n1 ≤ n2 ≤ · · ·. Moreover, ⟨a1⟩ ⊆ ⟨a1, a2⟩ ⊆

· · · is a chain of ideals that does not become stationary. For suppose ⟨a1, . . . , ak⟩ =

⟨a1, . . . , ak+1⟩. Then ak+1 =
∑k

i=1 biai with bi ∈ R and

g = fk+1 −
k∑

i=1

biX
nk+1−nifi ∈ I − ⟨f1, . . . , fk⟩

is of lower degree than fk+1. This contradiction to the choice of fk+1 proves that R[X]

is Noetherian.

Corollary 4.8: Let R be a Noetherian ring and S = R[x1, . . . , xn] an extension ring

of R which is finitely generated. Then S is also Noetherian.

Proof: As S is a homomorphic image of a polynomial ring R[X1, . . . , Xn] is suffices to

prove that the later is Noetherian. But this follows by induction on n from Proposition

4.7.
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In particular, for a principal ideal ring R the polynomial ring R[X1, . . . , Xn] and

its homomorphic images are Noetherian. In particular Z[X1, . . . , Xn] and F [X1, . . . , Xn]

for any field K are Noetherian. The last fact has the following consequence for algebraic

sets in An.

Corollary 4.9: Every decreasing chain A1 ⊇ A2 ⊇ · · · of algebraic subsets of An is

stationary.

Since finite unions and arbitrary intersections of algebraic subsets of An are al-

gebraic sets (Lemma 3.1), the algebraic sets form the closed sets of a topology on An

known as the Zariski topology. Equipped with the Zariski topology An is the affine

space of dimension n. Corollary 4.9 implies that An and therefore each algebraic set

is Noetherian space. We may therefore apply Lemma 4.5 on these spaces:

Proposition 4.10: Every algebraic subset V of An has only finitely many irreducible

components V1, . . . , Vm. We have V = V1 ∪ · · ·Vm and no Vi is contained in the union

of the others.

Problem 4.11: Prove that an algebraic subset V of An is irreducible if and only if

I(V ) is a prime ideal.
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5. The projective space.

Define Pn(K) to be the set of (n+1)-tuples (x0, . . . , xn) ∈ Kn+1 such that some xi ̸= 0

modulo the equivalence relation

(x0, . . . , xn) ∼ (αx0, . . . , αxn), α ∈ K×.

Denote the equivalence class of an (n + 1)-tuple (x0, . . . , xn) by x0: · · · :xn or also by

x and call it a point of Pn(K). The (n + 1)-tuple itself is a set of homogeneous

coordinates for x. We will also write Pn for Pn(K).

The space Pn can be covered by n + 1 subsets U0, U1, . . . , Un where Ui = {x ∈

Pn| xi ̸= 0}. For each i there is a natural bijection Ui → An:

x0:x1: · · · :xn 7→ (
x0
xi
,
x1
xi
, . . . ,

xn
xi

),
(xi
xi

omitted
)
.

We may use this correspondence to equip Ui with a topology. Then we need to

glue these topologies to a topology of Pn. Instead we take a direct approach, analogous

to the one taken for An.

Each polynomial f ∈ K[X0, . . . , Xn] can be uniquely written in the form f =∑d
i=1 fi, where fi is a homogeneous polynomial of degree i called the homogeneous

component of f of degree i. An ideal a of K[X0, . . . , Xn] is said to be homogeneous

if it contains which each f every homogeneous component of f . Any ideal a generated

by homogeneous ideals is homogeneous. For let hi, i ∈ I, be homogeneous generators

of a, and set d(i) = deg(hi). Let f =
∑

i gihi be in a. Write f =
∑

k fk, with fk

homogeneous of degree k. Write gi =
∑

j gij where gij homogeneous of degree k. Then∑
k

fk =
∑
k

( ∑
j+d(i)=k

gijhi
)
.

The kth term on the right hand side is homogeneous of degree k. Hence fk =
∑

j+d(i)=k gijhi ∈

a. By Hilbert’s basis theorem, a has a finite set of generators and therefore also a finite

set of homogeneous generators.

Definition 5.1: A closed algebraic set in Pn is a set consisting of all zeros of a finite

collection of homogeneous polynomials fi ∈ K[X0, . . . , Xn], i = 1, . . . ,m. We denote it

by V (f1, . . . , fm).
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This makes sense because if f is homogeneous, and (x0, . . . , xn), (αx0, . . . , αxn)

are two sets of homogeneous coordinates of the same point, then f(x0, . . . , xn) = 0 if

and only if f(αx0, . . . , αxn) = 0. From the preceding discussion V (f1, . . . , fm) is also

the set of zeros of the homogeneous ideal a = ⟨f1, . . . , fm⟩:

V (a) = {x ∈ Pn| f(x) = 0 for each f ∈ a}

Dually, we define for A ⊆ Pn:

I(A) = {f ∈ K[X0, . . . , Xn]| f(x) = 0 for all x ∈ A}.

This is a homogeneous ideal. Indeed, if f ∈ I(A) and f =
∑
fi is a presentation of f

as a sum of its homogeneous components and x ∈ a, then

∑
i

fi(x)t
i =

∑
i

fi(tx) = f(tx) = 0

for each t ∈ K. Hence fi(x) = 0. Conclude that fi ∈ I(A) for each i = 1. Obviously

(1a) a ⊆ I(V (a)) for each homogeneous ideal a and

(1b) A ⊆ V (I(A)) for each subset A of Pn.

It follows that

(2a) A = V (a) implies V (I(A)) = A and

(2b) a = I(A) implies I(V (a)) = a.

Indeed, if A = V (a), then, by (1), a ⊆ I(V (a)) = I(A) and A ⊆ V (I(A)) ⊆ V (a) = A.

Thus A = V (I(A)). Statement (2a) is proved analogously.

Proposition 5.2: The map I maps the family of all algebraic subsets of Pn bijectively

onto the set of all homogeneous ideals a ⊆ K[X0, . . . , Xn] such that a ̸= ⟨X0, . . . , X1⟩

and a =
√
a.

Proof: By (2), I maps the family of all algebraic subsets of Pn bijectively onto the set

of all homogeneous ideal a that satisfy

(3) a = I(V (a)).
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Each of these ideals certainly equal its radical. Moreover, V (⟨X0, . . . , Xn⟩) = ∅. Hence

1 ∈ I(V (⟨X0, . . . , Xn⟩)). So ⟨X0, . . . , Xn⟩ does not satisfy (3).

To complete the proof we have to show that if a =
√
a, and a ̸= ⟨X0, . . . , Xn⟩,

then a satisfies (3). Indeed, let V ∗(a) be the algebraic set corresponding to a in the

affine space An+1. Then (x0, . . . , xn) ∈ V ∗(a) implies (αx0, . . . , αxn) ∈ V ∗(a) for each

α ∈ K. Therefore, either

(4a) V ∗(a) is empty,

(4b) V ∗(a) equals the origin only, or

(4c) V ∗(a) is the union of lines through the origin: i.e., it is the cone over the subset

V (a) in Pn.

Moreover, by Hilbert’s Nullstellensatz (Proposition 3.6)

(5) a = I(V ∗(a)).

In case (4a), statement (5) implies that a = K[X0, . . . , Xn] (Proposition 3.2), hence

I(V (a)) –which always contains a – must equal a since there is no larger ideal. In

case (4b), (5) implies that a = ⟨X0, . . . , Xn⟩ which we have excluded. In case (4c),

if f is a nonzero homogeneous polynomial and f vanishes on V (a) = {x0: · · · :xn| 0 ̸=

(x0, . . . , xn) ∈ V ∗(a)}, then f vanishes on a nonempty set of An. Hence deg(f) > 0 and

f vanishes on V ∗(a). Hence, by (5), I(V (a)) ⊆ a. The other inclusion is stated in (1a).

So, I(V (a)) = a and Proposition 5.2 is proven.

The same lattice-theoretic identities hold as in the affine case:

Proposition 5.3: For homogeneous ideals a, b, ai in K[X0, . . . , Xn] and algebraic sub-

sets A,B of Pn we have:

(a1) a ⊆ b implies V (a) ⊇ V (b),

(a2) A ⊆ B implies I(A) ⊇ I(B),

(a3) V (⟨ai⟩i) =
∩

i V (ai), and

(a4) V (a ∩ b) = V (a) ∪ V (b).

It follows as in the affine case that the algebraic subsets are the closed sets of a

Noetherian topology on Pn. As in the affine case, a basis for this topology are the sets

(Pn)f = {x ∈ Pn| f(x) ̸= 0}.
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So we have the notion of irreducible algebraic sets and we may apply Lemma 4.4 again:

Proposition 5.4: In the bijection of Proposition 5.2, the irreducible algebraic sets

correspond exactly to the homogeneous prime ideal (the empty set corresponds to the

ideal ⟨X0, . . . , Xn⟩). Moreover, every closed algebraic set V can be written in exactly

one way as

V = V1 ∪ · · · ∪ Vm,

where the Vi are irreducible algebraic sets and Vi ̸⊆ Vj if i ̸= j.

Proof: We have to prove the statment about the irreducible sets and prime ideals.

First suppose that p is a homogeneous prime ideal of K[X0, . . . , Xn]. We prove

that V (p) is irreducible. In fact suppose that V (p) = A∪B with A,B algebraic sets in

Pn. Then p = I(V (p)) = I(A) ∩ I(B) ⊇ I(A)I(B). Hence p ⊇ I(A) or p ⊇ I(B). So,

V (p) ⊆ A or V (p) ⊆ B. Conclude that V (p) = A or V (p) = B, and therefore V (p) is

irreducible.

Conversely, suppose that C is an irreducible set in Pn. We prove that I(C)

is prime. Indeed, let f, g be polynomials K[X0, . . . , Xn] such that fg ∈ I(C). Let

f =
∑

i fi and g =
∑

j gj be a presentation of f and g as sums of homogeneous

polynomials. Assume that f, g /∈ I(C). Then at least one of the components of f

(resp., g) does not belong to I(C). Let r (resp., s) be the smallest integer such that

fr ̸ I(C) (resp., gs /∈ I(C)). Then
∑

k

∑
i+j=k figj = fg ∼= 0 mod I(C). Hence

frgs +
∑

i+j>k figj
∼= 0 mod I(C). Since I(C) is homogeneous frgs ∈ I(C).

Thus, without loss, we may assume that f and g are homogeneous. But then

a = ⟨I(C), f⟩ and b = ⟨I(C), g⟩ are homogeneous ideals and C = V (a) ∪ V (b). Since C

is irreducible we have, e.g., C = V (a). In particular f vanishes on C. Hence f ∈ I(C).

Conclude that I(C) is prime.

Problem 5.5: Let A ⊆ Pn be a closed algebraic set, and let H be the hyperplane at

infinity X0 = 0. Identify U0 = Pn −H with An in the usual way. Prove that A ∩ U0

is a closed algebraic subset of An and show that the ideal of A∩U0 is derived from the

ideal of A in a very natural way.
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Example 5.6: Hypersurfaces. Let f(X0, . . . , Xn) be an irreducible homogeneous poly-

nomial. Then the principal ideal ⟨f⟩ is prime, so f = 0 defines an irreducible algebraic

set in Pn called a hypersurface (e.g., plane curve, surface in 3-space, etc.).
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6. Morphisms.

Let V be an irreducible algebraic set in An. Then the affine coordinate ring is the

ring

(1) K[V ] = K[X1, . . . , Xn]/I(V ).

Each element f ∈ K[V ] can be considered as a function from V to K: Lift f to a

polynomial f ′ ∈ K[X1, . . . , Xn] and set f(x) = f ′(x) for each x ∈ V . If f ′′ is another

lifting of f , then f ′ − f ′′ ∈ I(V ) and therefore f ′(x) = f ′′(x). Among the the elements

of K[V ] we find the coordinate functions xi = Xi + I(V ), i = 1, . . . , n, and we have

K[V ] = K[x1, . . . , xn]. Note that we are using xi also to denote the ith coordinate of

a point x of V . If x and x′ are distinct points of V , then xi ̸= x′i for at least one i

between 1 and n. A fortiori there exists g ∈ K[V ] such that g(x) ̸= g(x′).

For each subset A of V let

I(A) = {f ∈ K[V ]| f(x) = 0 for each x ∈ A}.

For each subset a of K[V ] let

V (a) = {x ∈ V | f(x) = 0 for each f ∈ a}

As in the case V = An (Section 3) we have:

(2a) a ⊆ b implies V (a) ⊇ V (b),

(2b) A ⊆ B implies I(A) ⊇ I(B),

(2c) for ideals ai, i ∈ I, of K[V ], V (⟨ai⟩i∈I) =
∩

i∈I V (ai),

(2d) for ideals a, b of K[V ], V (a ∩ b) = V (a) ∪ V (b),

(2e) I(A) ∩ I(B) = I(A ∪B).

(2f) V (a) = V (⟨a⟩).

Also,

(3a) a ⊆ I(V (a)), and

(3b) A ⊆ V (I(A)).

It follows that

14



(4a) A = V (a) implies V (I(A)) = A, and

(4b) a = I(A) implies I(V (a)) = a.

Denote the canonical epimorphism K[X] → K[V ] with kernel I(V ) by φ. If a is

an ideal of K[V ], then a′ = φ−1(a) is an ideal of K[X] which contains I(V ). Hence,

V (a) = V (a′). In particular V (a) is a closed subset of An. Conversely, if b is an ideal

of K[X], then V (b) ∩ V = V (φ(b)). Thus, the Zariski topology of V defined by the

complements of V (a) in V coincides with the topology induced on V by the Zariski

topology of An.

A basis for the open sets in the Zariski topology on V is given by the open sets:

Vf = {x ∈ V | f(x) ̸= 0}

for elements f ∈ K[V ]. In fact Vf = V − V (f), hence Vf is open. And if U = V − V (a)

is an arbitrary open set, then

U =
∪
f∈a

Vf .

Exercise 6.1: In the above notation prove that 1/f : Vf → K is a continuous map.

Lemma 6.2: Let V be an irreducible algebraic set in An.

(a) If A is a subset of V , then A = V (I(V )) is the closure of A.

(b) If a is an ideal of K[V ], then I(V (a)) =
√
a.

Proof of (a): Since V (I(A)) is a closed set, A ⊆ V (I(A)). If A ⊆ B ⊆ V (I(A)) is a

closed set, then I(A) ⊇ I(B) and therefore V (I(A)) ⊆ B (by (4a)). Hence B = V (I(A))

and therefore A = V (I(A)).

Proof of (b): Let f ∈ I(V (a)). Lift f to polynomial f ′ in K[X]. In the above notation,

let a′ = φ−1(a). Then f ′ ∈ I(V (a′)) =
√
a′. Hence f ′

r ∈ a′ for some positive integer

r (Hilbert’s Nullstellenzatz). Apply φ to conclude that fr ∈ a and therefore f ∈
√
a.

If m is a maximal ideal of K[V ], then V (m) = {a} is a one point subset of V .

Conversely, for each a ∈ V , m = {h ∈ K[V ]| h(a) = 0} is a maximal ideal of K[V ].
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One should notice that the Zariski topology is very weak. On A1 itself, for instance,

it is just the topology of cofinite sets, the weakest T1-topology (since any ideal a in K[X]

is principle – a = ⟨f⟩ – therefore V (a) is just the finite set of roots of f). It follows that

any bijection α: K → K is continuous, so not all continuous maps are morphisms. In

any case this is a very unclassical type of topological space.

We will certainly want to know when two algebraic sets are to be considered

isomorphic. More genrally, we will need to define not just the set of all algebraic sets,

but the category of algebraic sets (for simplicity, we will stick to the irreducible ones).

Example 6.3: Parabola. Look at

(5a) A1, the affine line,

(5b) Y = X2 in A2, the parabola. Projection of the parabola onto the X-axis should

surely be an isomorphism between these algebraic sets.

More generally, if V ⊆ An is an irreducible algebraic set and if f ∈ K[X], then the set

W = {(x, f(x)) ∈ An+1| x ∈ V }

is an irreducible algebraic set.

Indeed, rewrite W as {(x, xn+1)| x ∈ V and xn+1 − f(x) = 0} to observe that W

is an algebraic set. Secondly, I(V ) ⊆ I(W ) and Xn+1 − f(X) ∈ I(W ). Conversely, for

g ∈ K[X1, . . . , Xn+1] we have

(2) g(X, Xn+1) ∼= g(X, f(X)) modXn+1 − f(X).

If g ∈ I(W ), then g(x, f(x)) = 0 for each x ∈ V . Hence g(X, f(X)) ∈ I(V ) and therefore

g(X, Xn+1) = g(X, f(X))+
(
g(X, Xn+1)−g(X, f(X))

)
belongs to ⟨I(V ), Xn+1−f(X)⟩.

Conclude that I(W ) = ⟨I(V ), Xn+1 − f(X)⟩. By (2), the maps h(X) 7→ h(X) and

g(X, Xn+1) 7→ g(X, f(X)) define an isomorphism of rings:

K[X]/I(V ) ∼= K[X, Xn+1]/I(W ).

Since the left hand side is an integral domain so is the right hand side and therefore

I(W ) is a prime ideal. Conclude that W is an irreducible algebraic set.
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The projection (x, xn+1) 7→ x should define an isomorphism from W onto V .

Example 6.4: Conic. A conic in P2 is a curve defined by a homogeneous polynomial

of degree 2. An irreducible conic C will turn out to be isomorphic to the projective line

P1 under the following map: Fix a point p0 ∈ C which we may assume to be the origin.

Identify P1 with the set of all lines through p0 in the classical way. Then define a map

φ: P1 → C

by letting φ(L) for all lines through p0 be the second point in which L meets C, besides

p0. Also, if L is the tangent line to C at p0, define φ(L) to be p0 itself (since p0 is a

“double” intersection of C and this tangent line).

Example 6.5: Twisted cubic. Define an embedding

φ: P1 → P3

by φ(x) = 1:x:x2:x3: and φ(∞) = 0:0:0:1. Check that the image of φ is the algebraic

set

C = {x ∈ P3| x0x2 = x21, x1x3 = x22, x1x2 = x0x3}

The “affine part” of C, i.e., the open subset C0 = C −{0:0:0:1}, is defined in A3 by the

equations Y = X2, XZ = Y 2 and Z = XY . Its projection on the (X,Z)-plance is the

cubic Z = X3. Therefore C is called the twisted cubic.

The map (X,Y, Z) 7→ (X,X2, X3) defines an isomrphism

K[X,Y, Z]/⟨Y −X2, XZ − Y 2, Z −XY ⟩ ∼= K[X,X2, X3]

whose inverse is induced by the mapX 7→ X. Hence, I(C0) is a prime ideal inK[X,Y, Z]

and and C0 is a closed irreducible algebraic subset of A3. If we prove that C0 is dense

in C, then we may conclude from Corollary 4.2 that C is irreducible in P3.

Indeed, consider a homogeneous polynomial f ∈ K[X0, X1, X2, X3] of degree d

such that f(0, 0, 0, 1) ̸= 0. We have to prove that there exists t such that f(1, t, t2, t3) ̸=

0. In fact, f can be written as

f(X) =
∑

ciX
i0
0 X

i1
1 X

i2
2 X

i3
3 + cXd

3
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where i ranges over all 4-tuples (i0, i1, i2, i3) ̸= (0, 0, 0, 1) of nonnegative integers such

that i0+ i1+ i2+ i3 = d and ci, c ∈ K, c ̸= 0. For each such i we have i1+2i2+3i3 < d.

Hence deg f(1, T, T 2, T 3) is d. In particular, this polynomial is nonzero. Conclude that

there exists t such that f(1, t, t2, t3) ̸= 0, as desired.

Example 6.6: A cubic curve in P2. Let C be a cubic curve in P2 (C is defined by a

form in X0, X1, X2 of degree 3) and let p0 ∈ C. For any point p ∈ C, let L be the line

through p and p0 And let α(p) be the third point in which L meets C. Although this

may not seem as obvious as the previous examples, α will be an automorphism of C of

order 2.

Now turn to the problem of actually defining morphisms, and hence isomorphisms,

of irreducible algebraic sets. First consider the case of two irreducible affine algebraic

sets.

Definition 6.7: Morphism. Let V ⊆ Am and W ⊆ An be two irreducible algebraic

sets. A map

φ: A→ B

is called a morphism if there exist n polynomials f1, . . . , fn ∈ K[X1, . . . , Xm] such

that

(6) φ(x) = (f1(x), . . . , fn(x))

for all points x = (x1, . . . , xm) ∈ V .

Note one feature of this definition: it implies that every morphism φ from V toW

is the restriction of a morphism φ′ from Am to An. Note also that with this definition

the map in Example 6.3 above is an isomorphism, i.e., both it and its inverse are

morphisms.

To analyze the definition further, set

R = K[X1, . . . , Xm]/I(V ) and S = K[X1, . . . , Xn]/I(W )

Then R (resp., S) is just the ring of K-valued functions on V (resp., W ) obtained by

restricting the ring of polynomial functions on ambient affine space. Suppose that g ∈ S.
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Regarding g as a function on W , the definition of morphism implies that the function

g ◦ φ on V is in R – in fact

(g ◦ φ)(X1, . . . , Xm) = g
(
f1(X1, . . . , Xm), . . . , fn(X1, . . . , Xm)

)
.

Therefore φ induces a K-homomorphism

φ∗: S → R,

φ∗(g) = g ◦φ. Moreover, note that φ is determined by φ∗. This is so because the poly-

nomials f1, . . . , fn can be recovered – up to an element of I(V ) – as φ∗(X1), . . . , φ
∗(Xn);

and the point φ(x), for x ∈ V , is determined via f1 . . . , fn modulo I(V ) by the equation

(6).

Even more is true. Suppose you start with an arbitrary K-homomorphism

λ: S → R.

Let fi be a polynomial in K[X1, . . . , Xm] such that λ(Xj + I(W )) = fj + I(V ), j =

1, . . . , n. Then define a map

φ′: Am → An

by

φ′(x1, . . . , xm) =
(
f1(x1, . . . , xm), . . . , f(x1, . . . , xm)

)
.

If x = (x1, . . . , xm) ∈ V , then actually φ′(x) is in W : for if g ∈ I(W ), then

g(φ′(x)) = g(f1(x), . . . , fn(x)).

But
g(f1, . . . , fn) ∼= g

(
λ(X1), . . . , λ(Xn)

)
mod I(V )

∼= λ(g) mod I(V )

∼= 0 mod I(V ).

Conclude that g(φ′(x)) = 0 and φ′(x) ∈W .

We can summarize this discussion in the following:
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Proposition 6.8: If V and W are two irreducible affine algebraic sets, then the set

of morphisms from V to W and the set of K-homomorphism from K[W ] to K[V ] are

canonically isomorphic:

Hom(V,W ) ∼= HomK

(
K[W ],K[V ]

)
.

Corollary 6.9: If V is an irreducible affine algebraic set, then K[V ] is canonically

isomorphic to the set of morphisms from V to A1.

Proof: Note that K[A1] is just K[X]. Also the map η 7→ η(X) is a K-isomorphism of

HomK(K[X],K[V ]) ∼= K[V ].

Even more than Proposition 6.8 is true:

Proposition 6.10: The assignment

V 7→ K[V ]

extends to a contravariant functor:Category of irreducible
algebraic sets +
morphisms

 −→
Category of finitely generated

integral domains over K +
K-homomorphisms


which is an equivalence of categories.

Proof: Proposition 6.8 asserts that the assignment is a fully faithful functor. The other

fact to check is that every finitely generated integral domain R over K occurs as K[V ].

But every such domain can be represented as

R ∼= K[X1, . . . , Xn]/⟨f1, . . . , fm⟩,

therefore as K[V ] where V is the locus of zeros of f1, . . . , fm in Kn.

Note that morphisms are continuous maps in the Zariski topology. Indeed, it

suffices to prove the statement for each morphism φ: Am → An, given by (6). But if

B = V (g1, . . . , gk) is a closed algebraic subset of An, then

φ−1(B) = {x ∈ Am| gj(f1(x), . . . , fk(x)) = 0, j = 1, . . . , k}
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is a closed algebraic subset of Am.

Our simple definition of morphism for affine algebraic sets does not work for

projective algebraic sets. The trouble is that it automatically implied that the morphism

will extend to a morphism of the ambient space. There is no analogous fact in the

projective case. Consider for example the parabola

C : X0X2 = X2
1

Define a map φ1: C → P1 by φ1(x0:x1:x2) = x1:x2. The coordinates of the image

of φ1 are homogeneous polynomials in the coordinates of the domain but φ1 is not

defined at the origin 1:0:0. Consider therefore a second map φ2: C → P1 defined by

φ2(x0:x1:x2) = x0:x1. This map is defined at the origin but is undefined at 0:0:1. If x

is in the common domain of definition of φ1 and φ2, then x2, x1 ̸= 0, x0/x1 = x1/x2

and therefore φ1(x) = φ2(x). Hence φ1 and φ2 together define everywhere a map from

C to P1. On the other hand, it will turn out that there are no epimorphism at all from

P2 to P1.

Thus defining morphisms between projective sets is more subtle. We find that we

must define morphisms locally and patch them together. But the problem arises: on

which local pieces? We could use the affine algebraic sets V − H where H ⊆ Pn is a

hyperplane. But in general these will not be small enough. We shall need arbitrarily

small open sets in the Zariski-topology.

Finally to define morphisms locally, we will need to attach affine coordinate rings

to a lot of the Zariski-open sets U and give a definition of affine morphism in terms

of local properties. Clearly, we should begin by constructing the apparatus used for

defining things locally.
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7. Sheaves.

Definition 7.1: Let X be a topological space. A presheaf F on X is a data consists

of

(a1) a set F(U) for each open set U ⊆ X and

(a2) a map resU2,U1 : F(U2) → F(U1) (called restriction) for each pair of open set

U1 ⊆ U2, such that the following axioms are satisfied:

(1a) resU,U = idF(U) for all U and

(1b) if U1 ⊆ U2 ⊆ U3, then resU2,U1 ◦ resU3,U2 = resU3,U1 .

Definition 7.2: If F1,F2 are presheaves on X, a map φ: F1 → F2 is a collection of

maps φ(U): F1(U) → F2(U) for each open U such that if U ⊆ V , then the following

diagram commutes:
F1(V )

φ(V )−→ F2(V )yresV,U

yresV,U

F1(U)
φ(U)−→ F2(V )

Definition 7.3: A presheaf F is a sheaf if for each collection {Ui} of open sets in X

with U =
∪
Ui, the diagram

F(U) −→
∏
i

F(Ui)
−→
−→

∏
i,j

F(UI ∩ Uj)

is exact, i.e.: the map ∏
i

resU,Ui : F(U) −→
∏
i

F(Ui)

is injective, and its image is the set on which

∏
i,j

resUi,Ui∩Uj :
∏
i

F(Ui) −→
∏
i,j

F(Ui ∩ Uj)

and ∏
i,j

resUj ,Ui∩Uj :
∏
i

F(Uj) −→
∏
i,j

F(Ui ∩ Uj)

agree.

When we pull this high-flown terminology down to earth, it says this:

21



(2a) If f1, f2 ∈ F(U) and for all i we have resU,Uif1 = resU,Uif2, then f1 = f2. (That

is, elements are uniquely determined by local data.)

(2b) If we have a collection of elements fi ∈ F(Ui) such that resUi,Ui∩Ujfi = resUj ,Ui∩Ujfj

for all i and j, then there is an f ∈ F(U) such that resU,Uif = fi for all i. (That

is, if we have local data which are compatible, they actually “patch together” to

form something in F(U).)

Example 7.4: Sheaf of continuous functions. Let X and Y be topological spaces. For

each open set U ⊆ X, let F(U) be the set of continuous maps U → Y . This is a presheaf

with the restriction maps given by simply restricting maps to smaller sets. It is a sheaf

because a function is continuous on
∪
Ui if and only if its restrictions to each Ui are

continuous.

Example 7.5: Presheaf of continuous functions with bounded images. Let X and Y

be topological spaces. For each open subset U of X let G(U) be the set of continuous

functions U → Y which have relatively compact images. This is a subpresheaf of F ,

but clearly need not be a sheaf. For example, the function f(x) = 1/x is bounded on

each interval (ε, 1], with ε > 0, but is not bounded on [0, 1].

Example 7.6: Presheaf of locally constant functions. Let X be a topological space

and for each open subset U of X let F(U) be the vector space of locally constant real-

valued functions on U (i.e., functions which are constant on a compact neighborhood

of each point), modulo the constant functions on U . This is clearly a presheaf. But

every s ∈ F(U) goes to zero in
∏
F(Ui) for some open covering {Ui}, while if U is not

connected, F(U) ̸= 0. Therefore it is not a sheaf.

Definition 7.7: Stalks. Let F be a sheaf on X and let x ∈ X. The collection of F(U),

U open containing x, is a directed system and we can form the direct limit

Fx = lim→
x∈U

F(U),

called the stalk of F at x.

Example 7.8: Germs of continuous functions. For each open subset U of a topological

space X let F(U) be the set of continuous functions U → R. Then Fx is the set
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of germs of continuous functions at x. It is
∪

x∈U F(U) modulo an equivalence

relation: f1 ∼ f2 if f1 and f2 agree in a neighborhood of x.

Exercise 7.9: Sheafification of a presheaf. Let F0 be a presheaf on X. Show that

there is a sheaf F and a map f : F0 → F such that if g: F0 → F ′ is any map with F ′ a

sheaf, then there is a unique map h: F → F ′ such that h ◦ f = g.

Definition 7.10: Sections. We may write Γ(U,F) for F(U) and call it the set of

sections of F over U . The set Γ(X,F) is the set of global sections of F . In other

contexts we may denote F(X) by H0(X,F) and call it the “the zeorth cohomology

group” (In those contexts it will be a group, and there will be higher cohomology

groups.)

Suppose that for all U , F(U) is a group (ring, module, etc.) and that all the

restriction maps are group (ring, module, etc.) homomorphisms. Then F is called a

sheaf of groups (rings, modules, etc.). In this case Fx is a group (ring, module, etc.).

Example 7.11: Sheaf of rings. For any topological space X let Fcont,X(U) be the set

of all continuous functions U → R. Then Fcont,X(U) is a sheaf of rings.

Note that if φ: X → Y is a continuous function, the operation f 7→ f ◦φ gives for

every open U ⊆ Y a map Fcont,Y (U)→ Fcont,X(φ−1(U)) such that the diagram

Fcont,Y (U) −→ Fcont,X(φ−1(U))yres

yres

Fcont,Y (V ) −→ Fcont,X(φ−1(V ))

commutes for all open sets V ⊆ U . This set-up is called a morphism of the pair

(X,Fcont,X) to the pair (Y,Fcont,Y ).

Definition 7.12: Subsheaf. A subsheaf of a sheaf F is a sheaf F ′ such that for every

open set U ⊆ X, F ′(U) is a subset (subgroup, subring, submodule if F is a sheaf of

groups, rings, modules, respectively) of F(U), and the restriction maps of the sheaf F ′

are induced by those of F . It follows that for any point x, the stalk F ′
x is a subset

(resp., subgroup, subring, submodule) of Fx.
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Definition 7.13: Restriction of a sheaf to an open subset. Suppose that Z is an open

subset of a topological space X. Let F be a sheaf over X. Define the restriction F
∣∣
Z

of F to Z to be the sheaf such that for each open subset U of Z

F
∣∣
Z
(U) = F(U).
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8. Affine varieties.

Let X ⊆ An be an irreducible algebraic set, R its coordinate ring. Since X is irreducible,

I(X) is prime and R is an integral domain. Let F be its field of fractions. Recall that

R has been identified with the ring of all polynomial functions on X. For x ∈ X,

mx = {f ∈ R| f(x) = 0} is a maximal ideal. The local ring Rmx is called the local

ring of X at x and is denoted by Ox,X or also by Ox if X is clear from the context.

By definition

Ox = {f/g| f, g ∈ R, g(x) ̸= 0}

and R ⊆ Ox ⊆ F . For U open in X, let

OX(U) =
∩
x∈U

Ox.

All the OX(U) are subrings of F . If U ⊆ V , then OX(U) ⊇ OX(V ). If we take the

inclusion as the restriction map, this defines a sheaf OX called the structure sheaf

of X. We verify only axiom (2b) of Section 7: Let U =
∪

i Ui be open subsets of X.

Suppose that for each i, fi is an element of OX(Ui) such that fi = fj for each i, j. The

element f = fi belongs to Ox for each x ∈ Ui and for each i. Hence f ∈ Ox for each

x ∈ U , that is f ∈ OX(U). We shall therefore denote OX(U) also by Γ(U,OX).

The elements of Γ(U,OX) can be viewed as functions on U . Say h ∈ Γ(U,OX),

and x ∈ U . Then h ∈ Ox, so we can write h = f/g with f, g ∈ R and g(x) ̸= 0. We then

define h(x) = f(x)/g(x). This definition is independent of f and g. To prove that this

identification is faithful suppose that h(x) = 0 for each x ∈ U . Choose x ∈ U and write

h = f/g with g(x) ̸= 0. Then f(x) = 0. If x′ is another point of U , then h = f ′/g′ with

g′(x′) ̸= 0 and f ′(x′) = 0. From fg′ = f ′g deduce that f(x′)g′(x′) = f ′(x′)g(x′) = 0.

Hence f(x′) = 0. Since U is dense in X (Lemma 4.1(c)) and f is continuous f vanishes

on X. Conclude that f = 0 and therefore that h = 0.

Proposition 8.1: Let X be an irreducible algebraic set and let R be its coordinate

ring. For f ∈ R let Xf = {x ∈ X| f(x) ̸= 0} and let Rf = {g/fn| g ∈ R, n ∈ N}. Then

Γ(Xf ,OX) = Rf .

Proof: By definition Γ(Xf ,OX) =
∩

f(x) ̸=0Ox. Hence, Rf ⊆ Γ(Xf ,OX).
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Conversely, suppose that u ∈ Γ(Xf ,OX). Then b = {h ∈ R| hu ∈ R} is an ideal

of R. If we prove that f vanishes on V (b), then, by the Nullstellensatz, fr ∈ b for some

positive integer r and therefore u ∈ Rf .

Indeed, if x ∈ X and f(x) ̸= 0, then u ∈ Ox. Hence, u = g/h with g, h ∈ R and

h(x) ̸= 0. In particular h ∈ b and x is not a zero of b.

In particular for f = 1 we have Xf = X and Rf = R.

Corollary 8.2: Γ(X,OX) = R.

Remark 8.3: (a) Assume that f ∈ Γ(U,OX) and that f vanishes nowhere on U . Then

1/f ∈ Γ(U,OX).

Indeed, f(x) ̸= 0 implies that 1/f ∈ Ox.

(b) The stalk of OX at x is the local ring Ox.

Indeed, since the sets Xf , f ∈ R, form a basis of the Zariski topology of X and

since the restrictions maps are inclusions, the stalk is

lim→
x∈U

Γ(U,OX) =
∪
x∈U

Γ(U,OX) =
∪

f(x)̸=0

Γ(Xf ,OX) =
∪

f(x) ̸=0

Rf = Ox,

by Proposition 8.1.

(c) The field F can also be recovered from the sheaf OX . Recall that since X is

irreducible, the intersection of any two nonempty open sets is nonempty. Hence, the

collection of nonempty open sets forms a direct system and therefore we may define a

generic stalk of any sheaf over X as the corresponding direct limit. In particular the

generic stalk of OX is the union of all local rings Ox, i.e., the field F itself.

(d) If h ∈ Γ(U,OX) for some open U ⊆ X, then it need not be true that h = f/g, with

f, g ∈ R and g vanishing nowhere on U .

For example, let V ⊆ A4 be V (XW−Y Z), let x, y, z, w be the images ofX,Y, Z,W

modulo I(V ). Consider the open set U = Vy ∪ Vw. Define a function h ∈ Γ(U,OV ) in

the following way: h = x/y on Vy, and h = z/w on Vw. Using the notion of dimension

we will show in Section ? that h is not equal to f/g with g ̸= 0 on U .

Proposition 8.1 shows that this is true however if U has the form Xg.
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Proposition 8.4: Let X ⊆ Am, Y ⊆ An be irreducible algebraic sets, and let φ: X →

Y be continuous map. The following conditions are equivalent:

(a) φ is a morphism,

(b) for all g ∈ Γ(Y,OY ), g ◦ φ ∈ Γ(X,OX),

(c) for all open U ⊆ Y and g ∈ Γ(U,OY ) we have g ◦ φ ∈ Γ(φ−1(U),OX), and

(d) for all x ∈ X and g ∈ Oφ(x) we have g ◦ φ ∈ Ox.

Proof: Condition (b) is a special case of condition (c).

To prove that (d) implies (c) let U be an open subset of Y and g ∈ Γ(U,OY ).

Then φ−1(U) is an open subset of X and g ∈ Oφ(x) for each x ∈ φ−1(U). Hence, by

(d), g ◦ φ ∈
∩

x∈φ−1(U)Ox = Γ(φ−1(U), X).

The equivalence of (a) and (b) is essentially proved in Proposition 6.6.

Finally, to prove that (b) implies (d) let x ∈ X and g ∈ Oφ(x). Then g = p/q

with p, q ∈ Γ(Y,OY ) and (q ◦ φ)(x) = q(φ(x)) ̸= 0. By (b), p ◦ φ, q ◦ φ ∈ Ox. Hence,

g ◦ φ = p ◦ φ/q ◦ φ ∈ Ox.

This shows, among other things, that our sheaf gives us all the information we

need for defining morphisms. We are ready, then to cut loose from the ambient spaces.

Definition 8.5: An affine variety is a topological space X plus a sheaf of K-valued

functions OX on X which is isomorphic to the structure sheaf of an irreducible algebraic

subset of some An.

In particular An together with its structure sheaf is called the affine n-space and

is also denoted by An.

Consider the following statement:

Bijective morphisms are isomorphisms.

This statement is correct, for example, in the category of compact Hausdorff topological

spaces and the category of Banach spaces (the open map theorem). On the other hand,

it is false for differential manifolds – consider the map f : R→ R where f(x) = x3.

The statement is also false in the category of affine varieties: A homeomorphism

φ: X1 → X2 may well correspond to an isomorphism of the ring of X2 with a proper

subring of the ring of X1. Here are three key examples to bear in mind.
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Example 8.6: Frobenius map. Let char(K) = p ̸= 0. Define a morphism φ: A1 →

A1 by φ(t) = tp. This is bijective. On the ring level, this corresponds to the inclusion

map in the pair or rings: K[Xp] ↪→ K[X]. Since these rings are not equal φ is not an

isomorphism.

Example 8.7: Let K be any algebraically closed field. Define the morphism φ: A1 →

A2 by φ(t) = (t2, t3). The image of this morphism is the irreducible closed curve

C : X3 = Y 2.

The morphism φ from A1 to C is a bijection which corresponds to the inclusion map

in the pair of rings: K[T 2, T 3] ↪→ K[T ]. These rings are not equal, so φ is not an

isomorphism.

Example 8.8: Define φ: A1 → A2 by x = t2 − 1, y = t(t2 − 1). It is not hard to check

that the image of this morphism is the curve

D : Y 2 = X2(X + 1).

(Simply note that one can solve for the coordinate t of the point in A1 by the equation

t = y/x.) Also, φ is bijective between A1 and D except that both the points t = −1 and

t = 1 are mapped to the origin. Let X1 = A1 − {1}, an affine variety with coordinate

ring K[T, (T − 1)−1] (Lemma 8.18 or better Proposition 9.2). Then φ restricts to a

bijection φ′ from X1 to D. This morphism corresponds to the inclusion in the pairs of

rings

K[T 2 − 1, T (T 2 − 1)] ↪→ K[T, (T − 1)−1].

Since these rings are unequal, φ′ is not an isomorphism.
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9. Open and closed sets of affine varieties.

We study in this section the induced variety structure on open and closed subsets of

affine varieties.

Let Y be an irreducible closed subset of an affine variety (X,OX). (Irreducible,

now, in the sense given by the topology on X.) Define an induced sheaf of functions

O′
Y on Y as follows: If V is open in Y , then

O′
Y (V ) =

f : V → K

∣∣∣∣∣∣
For all x ∈ V there exists a neighborhood U of
x in X and a function f ′ ∈ Γ(U,OX) such that
the restrictions of f and f ′ to U ∩ V coincide


We varify only axiom (2b) of Section 7 for O′

Y . Suppose that V =
∪

i Vi is a union

of open subsets of V and for each i we are given fiΓ(V,O′
Y ) such that fi and fj coincide

on Vi∩Vj . We show that the unique function f : V → K that coincides with fi on Vi, for

each i, belongs to O′
Y (V ). Indeed, let x ∈ V . Take i such that x ∈ Vi. By assumption

x has a neighborhood Ui in X and there exists fi ∈ Γ(Ui,OX) that coincides with f

on Ui ∩ Vi. Also, Vi = Y ∩ U ′
i = V ∩ U ′

i for some open subset U ′
i of X. Let f ′ be

the restriction of fi to Ui ∩ U ′
i . Then f ′ ∈ Γ(Ui ∩ U ′

i ,OX) and f ′ coincides with f on

V ∩ Ui ∩ U ′
i . Conclude that f ∈ O′

Y (V ).

Proposition 9.1: (Y,O′
Y ) is an affine variety.

Proof: Without loss we may assume that X ⊆ An. Then Y is an irreducible closed

subset of An and therefore (Y,OY ) is an affine variety. We prove, that under this

identification (Y,O′
Y ) = (Y,OY ). Indeed, for each open set V of Y we identify O′

Y (V )

with a subset of K(Y ) and show that under this identification O′
Y (V ) = Γ(V,OY ).

Let f ∈ O′
Y (V ). Choose x ∈ V . By assumption there is an open set U ⊆ X

that contains x and g ∈ Γ(U,OX) that coincides with f on U ∩ V . In particular

g ∈ Ox,X ⊆ Ox,Y . If x
′ is another point of V , U ′ is an open neighborhood of x′ in X,

and g′ ∈ Γ(U ′,OX) is a function that coincides with f on V ∩U ′, then g and g′ coincide

on V ∩ U ∩ U ′. Since the latter set is nonempty and open in Y the elements resV ∩Ug

and resV ∩U ′g′ of K(Y ) are the same. We may therefore identify f with resV ∩Ug. In

particular f ∈ Ox,Y for every x ∈ V . Conclude that f ∈ Γ(V,OY ).
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Conversely, if f ∈ Γ(V,OY ) and x ∈ V , then f ∈ Ox,Y . This means that f = g/h

where g, h ∈ Γ(Y,OY ) and h(x) ̸= 0. It follows that there exists polynomial functions

g′, h′ on An whose restrictions to Y is g, h, respectively. In particular x ∈ Xh′ . Denote

the restriction of g′/h′ to Xh′ by f ′. Then f ′ ∈ Γ(Xh′ ,OX) and the restriction of f ′ to

Xh′ ∩ V is f . Conclude that f ∈ O′
Y (V ).

If (X,OX) is an affine variety and U is an open subset of X, then the restriction of

OX to U is a sheaf over U which we have denoted by (U,OX

∣∣
U
). By definition 7.13, the

ring of functions associated with an open subset of V of U is Γ(V,OX

∣∣
U
) = Γ(V,OX).

There is one important case where this sheaf is an affine variety.

Proposition 9.2: Let (X,OX) be an affine variety, and let f ∈ Γ(X,OX). Then

(Xf ,OX

∣∣
Xf

) is an affine variety.

Proof: Identify (X,OX) with (V,OV ) where V is an irreducible algebraic set in An.

Then f is the restriction to X of a polynomial f ∈ K[X], with X = (X1, . . . , Xn). If f

vanishes at each point of V , then f = 0 in Γ(V,Of ), Vf is empty and the proposition

holds. So assume that f /∈ I(V ).

Let x = (x1, . . . , xn) where xi = Xi + I(V ), i = 1, . . . , n. Then K[x] = Γ(V,OV )

is the coordinate ring of V . Since V is irreducible, K[x] is an integral domain with

quotient field F , and f(x) ̸= 0.

Let b be the ideal of K[X, Xn+1] generated by I(V ) and Xn+1f(X)−1. Consider

the algebraic subset W = V (b) of An+1. The projection (a, an+1) 7→ a maps W con-

tinuously and bijectively onto Vf . Denote its restriction to W by φ. If h ∈ K[X, Xn+1]

is a polynomial of degree d in Xn+1, then h′(X) = f(X)dh(X, f(X)−1) ∈ K[X] and

φ(Wh) = Vf ∩ V ′
h. Hence φ is also an open map and therefore a homeomorphism of W

onto Vf . Since Vf is open in V it is irreducible (Lemma 4.1) and therefore W is also

irreducible. We prove that

(1) (Vf ,OV

∣∣
Vf
) ∼= (W,OW ).

and thereby prove that (Vf ,OV

∣∣
Vf
) is an affine variety.

30



First we identify Γ(W,OW ) with Γ(Vf ,OV ): The map (X, Xn+1) 7→ (x, f(x)−1)

extends to an epimorphism

α: K[X, Xn+1]→ K[x, f(x)−1]

whose kernel contains b. Conversely, suppose that g ∈ K[X, Xn+1] and g(x, f(x)
−1) =

0. Write g as g(X, Xn+1) =
∑d

i=0 gi(X)Xi
n+1. Then

g(X, Xn+1) = g(X, f(X)−1) +
[
g(X, Xn+1)− g(X, f(X)−1)

]
= g(X, f(X)−1) +

d∑
i=0

gi(X)(Xi
n+1 − f(X)−i)

= g(X, f(X)−1) + (Xn+1 − f(X)−1)h(X, Xn+1, f(X)−1)

where h ∈ K[X, Xn+1, Xn+2] has degree d − 1 in Xn+2. Multiply this equation by

f(X)d:

f(X)dg(X, Xn+1) = g1(X) + (Xn+1f(X)− 1)h1(X, Xn+1),

where g1(X) = f(X)dg(X, f(X)−1) vanishes on V and h1 ∈ K[X]. Hence f(X)dg(X, Xn+1) ∼=

0 mod b, and therefore
(
Xn+1f(X)

)d
g(X, Xn+1) ∼= 0 mod b. But Xn+1f(X) ∼= 1 mod b.

Hence g ∈ b. Conclude that b = Ker(α). Hence b is a prime ideal and therefore

b = I(W ) and Γ(W,OW ) = K[X, Xn+1]/I(W ) = K[x, f(x)−1]. By Proposition 8.1,

this ring is isomorphic to Γ(Vf ,OV ).

For each open subset U of Vf let U ′ = {(a, f(a)−1)| a ∈ U} be the corresponding

open subset of U . We have identified Γ(U,OV

∣∣
Vf
) = Γ(U,OV ) and Γ(U ′,OW ) with

subrings of K(V ). To prove (1) it suffices to prove that the two rings are equal.

Indeed, Γ(U,OV ) =
∩

a∈U Oa,V and Γ(U ′,OW ) =
∩

a∈U O(a,f(a)−1),W . So the

equality of the above rings follows from the equality

Oa,V = O(a,f(a)−1),W .

which obviously holds for each a ∈ Vf .

What we have done to get Xf is to push the zeros of f out to infinity. For example,

suppose X = A1 and f is the coordinate X1. Then b = ⟨1−X1X2⟩ gives the hyperbola.

Projection of the hyperbola down to the axis is an isomorphism with Xf .
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Example 9.3: An open subset of an affine variety which is not affine. We prove that

the open subset A = A2 − {(0, 0)} of A2 is not affine.

Indeed, suppose that

φ: (A,OA2

∣∣
A
)→ (W,OW ),

is an isomorphism, where W is an irreducible algebraic subset of An, for some positive

integer n. Let πi be the projection of An on the ith coordinate. Then fi = πi ◦ φ is

an element of Γ(A,OA), i.e., an element of K(X,Y ) which belongs to the local ring of

each point of A (We then say that f is defined at each point of A.)

Claim: If f ∈ K(X,Y ) is defined at each point of A, then f ∈ K[X,Y ].

Indeed, let f = g/h, where g, h ∈ K[X,Y ] are relatively prime. If h is not a

constant, then, say degX h > 0. Since K(X)[Y ] is a Euclidean domain there exist

p, q ∈ K[X,Y ] and r ∈ K[X], r ̸= 0, such that

(2) p(X,Y )g(X,Y ) + q(X,Y )h(X,Y ) = r(X).

If r were not relatively prime to h, then r had a zero x such that X − x divides h.

For each y ̸= 0 there are by assumption g′, h′ ∈ K[X,Y ] such that f = g′/h′ and

h′(x, y) ̸= 0. From gh′ = g′h conclude that g(x, y) = 0. Hence X − x divides each

coefficient of g(X,Y ) and therefore g itself. But, as g and h are relativly prime, this is

a contradiction. Conclude that r is relatively prime to h.

As K(Y )[Y ] is Euclidean there exist u, v ∈ K[X,Y ] and w ∈ K[Y ], w ̸= 0 such

that

(3) u(X,Y )r(X) + v(X,Y )h(X,Y ) = w(Y ).

Now choose y ∈ K such that degX h(X, y) = degX h(X,Y ) > 0 and w(y) ̸= 0. Then

choose x ∈ K such that h(x, y) = 0. It follows from (3) that r(x) ̸= 0 and hence, by

(2), g(x, y) ̸= 0.

By assumption f = g′/h′ where g′, h′ ∈ K[X,Y ] and h′(x, y) ̸= 0. But then

g(x, y)h′(x, y) = g′(x, y)h(x, y). As the left hand side is nonzero while the right hand

side is zero we get a contradiction, and our claim is true.
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It follow that fi is a polynomial, i = 1, . . . , n. Hence φ extends to a continuous

map ψ: A2 → An. AsW is closed and (0, 0) ∈ A, we have ψ(0, 0) ∈W . Let (a, b) ∈ A be

the unique point such that φ(a, b) = ψ(0, 0). Assume for example that b ̸= 0. Consider

the open subset A0 = {(x, y) ∈ A2| y ̸= 0}. Since φ: A → W is a homeomorphism

W0 = φ(A0) is an open subset of W . But then A1 = A0 ∪ {(0, 0)} = ψ−1(W0) is an

open subset of A2. It follows that for A1 = {(x, 0)| x ∈ K} the intersection A1 ∩ A1 =

{(0, 0)} is a nonempty open set. However such a set must be cofinite, and we have a

contradiction.
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10. Prevarieties.

Let OX be a sheaf of K-valued functions over a topological space X. An open subset

U of X is called an open affine set if (U,OX

∣∣
U
) is an affine variety.

The pair (X,OX) is a prevariety if

(1a) X is connected, and

(1b) there is a finite covering {Ui} of X by affine open sets Ui.

Note that the open affine sets form then a basis of the topology. In fact, we know

from Proposition 9.2 that this is true within each Ui and they cover X.

Proposition 10.1: Every prevariety X is an irreducible topological space. In partic-

ular every open set is dense.

Proof: Let U and V be an open and nonempty in X. We have to prove that U ∩V ̸= ∅.

Denote the union of all open affine sets that meets V by U1. We claim that

U1 = X.

Otherwise the union U2 of all open affine sets which are disjoint from V is

nonempty. As U1 ∪ U2 = X and X is connected U1 ∩ U2 ̸= ∅. Let y ∈ U1 ∩ U2. Then

there are affine open sets W1,W2 containing y, such that W1 ∩ V ̸= ∅ and W2 ∩ V = ∅.

But thenW1∩V andW1∩W2 are nonempty open sets in the affine setW1 and therefore

they meet. In particular W2 ∩ V = ∅. This contradiction proves the claim.

Now let x ∈ U . By the claim, there is an affine open set W containing x and

meeting V . Then both V ∩W and U ∩W are nonempty open sets in the affine set W ,

so V ∩W ∩ U ̸= ∅. A fortiori U ∩ V ̸= ∅.

Conclude that X is irreducible.

Proposition 10.2: If X is a prevariety, then X is a Noetherian space. In particular

X is compact.

Proof: Let Z1 ⊇ Z2 ⊇ Z3 · · · be a descending sequence of closed sets. Since {Zi ∩ U}

is stationary for each open affine set U (Corollary 4.9) and since X has an open affine

covering {Zi} is stationary. Conclude that X is Noetherian.
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Let X be a prevariety. The function field K(X) is the generic stalk of OX , i.e.,

K(X) = lim
−→

Γ(U,OX),

where U ranges over all nonempty subsets of X. Since each two of them has a nonempty

intersection the directed limit makes sense. Moreover, for each open affine set U in X,

the open subsets of U are cofinal. Hence, K(X) = K(U). In particular, this shows that

K(X) is really a field. The elements of K(X) are called rational functions on X,

although they are, strictly speaking, only functions on open dense subsets of X.

Every open set U is covered by a finite set of open affine sets Ui. If f ∈ Γ(U,OX),

then its restriction fi to Ui is a polynomial function intoK (whose “number of variables”

depends on i) and it belongs to K(X). Hence f is a function into K and it belongs to

K(X).

Another type of directed limit over Γ(U,OX)’s is sometimes very useful. This is

intermediate between the limit that lead to Ox and that that leads to K(X). Let Y be

an irreducible subset of X. Set:

OY,X = lim
−→

Γ(U,OX),

where U ranges over all open sets that intersect Y .

To express more simply the ring which we get in this way, fix one open affine set

V which intersects Y . Let R be the coordinate ring of V and p = I(Y ∩ V ) the ideal of

all f ∈ R which vanish on Y ∩ V . If U is an arbitrary open set that intersects Y , then,

since Y is irreducible, Y ∩ U ∩ V ̸= ∅. Take an open subset of Y ∩ U ∩ V of the form

Vf . If x ∈ Vf , then f(x) ̸= 0. Thus f does not vanish on all Y ∩ V and therefore f /∈ p.

It follows that

OY,X = lim
−→

Γ(Vf ,OX), f ranges on R− p.

By Lemma 8.1, Γ(Vf ,OX) = Γ(Vf ,OV ) = Rf . Hence

OY,X = Rp.

In particular OY,X is a local ring with quotient field K(X). Its residue field is Rp/pRp =

K(Y ∩ V ) = K(Y ).
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If we identify each Γ(U,OX) with a subring of K(X), and consider K(X) as a

field of functions on X, then OY,X is the ring of all functions in K(X) which are defined

on an open dense subset of Y and the maximal ideal mY,X of OY,X is the ideal of all

functions in K(X) which are defined and vanishes on an open dense subset of Y .

Proposition 10.3: An open subset of a prevariety is a prevariety.

Proof: Let U be an open subset of a variety X. By Corollary 4.3, U is irreducible and

therefore connected. Also, U is a union of affine open subsets. Since X is Noetherian,

U is a union of finitely many open affine subsets. Thus, U is a prevariety.

Now let Y be a closed irreducible subset of a prevariety X. The sheaf OX induces

a sheaf OY on Y . For V open in Y :

Γ(V,OY ) =

f : V → K

∣∣∣∣∣∣
For all x ∈ V there exists a neighborhood U of
x in X and a function f ′ ∈ Γ(U,OX) such that
the restrictions of f and f ′ to U ∩ V coincide


Proposition 10.4: If Y is a closed irreducible subset of a prevariety X, then (Y,OY )

is a prevariety.

Proof: As an irreducible set Y is connected. Secondly, let {Ui} be a finite open affine

covering of X. Then, by Proposition 9.1, {Y ∩Ui} is an open affine covering of Y . Thus,

(Y,OY ) is a prevariety.

A locally closed subset Z of a topological space X is an intersection of open and

closed subsets of X. Alternatively, Z in locally closed in X if, for every point z ∈ Z,

there exists an open neighborhood Uz of z in X such that Uz ∩ Z is closed in Uz, i.e.,

Uz∩Z = Uz∩Cz for some closed subset Cz in X. Indeed, in this case Z =
∪

z∈Z Uz∩Cz.

Let C =
∩

z∈Z Cz ∪ (X − Uz) and U =
∪

z∈Z Uz. Then C is closed, U is open, and

Z = U ∩ C.

Combining Propositions 10.3 and 10.4, we can now give a prevariety structure to

every locally closed irreducible subset of a prevariety X. Each variety obtained in this

way is called sub-prevariety of X.

Example 10.5: The projective line. Take two copies U and V of A1. Let u, v be

the coordinates on these two affine lines. Let U0 ⊆ U (resp. V0 ⊆ V ) be defined by
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u ̸= 0 (resp. v ̸= 0). Then Γ(U,OU ) = K[u], so Γ(U0,OU ) = K[u, u−1]. Similarly

Γ(V0,OV ) = K[v, v−1]. Define a map φ: U0 → V0 by φ(a) = a−1. This gives a map

φ∗: K[v, v−1] → K[u, u−1] taking v to u−1 and v−1 to u. As φ∗ is an isomorphism of

rings, φ is an isomorphism of varieties (φ has an inverse). Now we patch together U

and V via φ, i.e., we form U ∪ V with U0 and V0 identified via φ. This has a sheaf

structure on it in the obvious way, and is a prevariety. The space is homeomoprhic to

P1 (say u 7→ 1 : u and v 7→ v : 1). We call it the variety P1.

We could have patched U and V by the map a 7→ a, for a ∈ U0. This also gives

an isomorphism of U0 onto V0. However, we are leaving out the same point each time

and the result is A1 with the zero doubled. This is still a prevariety, but it will not be

a “variety” (cf. Section 14).

Exercise 10.6: Suppose that X =
∪n

i=1 Ui is an open covering of a topological space

X.

(a) Let Z be a subset of X. Prove that if Z ∩ Ui is closed in Ui for i = 1, . . . , n, then

Z is closed.

(b) Prove that if each of the sets Ui is connected and Ui ∩ Uj ̸= ∅ for all i, j, then X

is connected.
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11. Projective prevarieties.

In this section we abbreviate (X0, . . . , Xn) by X. Let P be a homogeneous prime ideal

of K[X] and let X = V (P ) the corresponding irreducible subset of Pn (Section 5). We

want to make X (with the Zariski topology) into a prevariety. We do it by defining a

function field, getting local rings, and intersecting them, just as for affine varieties.

The elements of K[X], even the homogeneous ones, do not give functions on X;

but the ratio of any two having the same degree is a function. Consider the integral

domain R = K[X]/P . For each nonnegative integer d let K[X]d be the additive group

of all forms (i.e., homogeneous polynomials) f ∈ K[X] of degree d (and 0). Then

Rd = {f + P | f ∈ K[X]d}

is also an additive group. If g ∈ K[X]e with e ̸= d and f + P = g + P , then, since P is

homogeneous, f, g ∈ P . Hence Rd ∩ Re = 0. It follows that R =
⊕∞

d=0Rd. Moreover,

RdRe ⊆ Rd+e. Thus R is a graded ring. Let

K(X) =

{
f

g
| f, g ∈ K[X]d for the same d and g ̸= 0

}
.

If a ∈ X and g ∈ Rd, it makes sense to say g(a) ̸= 0, even though g is not

a function on X; for g changes by a nonzero factor as we change the homogeneous

coordinates of a. Hence we can define a subring of K(X):

Oa =

{
f

g
| f, g ∈ Rd for some d and g(a) ̸= 0.

}
The set

ma =

{
f

g
| f, g ∈ Rd for some d, f(a) = 0 and g(a) ̸= 0

}
is clearly an ideal in the ring Oa and any element not in ma is invertable in Oa. Thus

Oa is a local ring.

We now define a sheaf OX on X. For open subset U of X set

OX(U) =
∩
a∈U

Oa.
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We can identify OX with a sheaf of K-valued functions. For suppose a ∈ U

and h ∈ Γ(U,OX). Then h = f/g with f, g ∈ Rd, g(a) ̸= 0, and we define h(a) =

f(a)/g(a). This means of course that we lift f, g to forms f̃ , g̃ of degree d let ã be a

set of homogeneous coordinates of a and take f̃(a)/g̃(a). This value is unchanged if

we take a different set of homogeneous coordinates, or we change f̃ and g̃ by a form in

P ∩K[X]d. Thus h is a well defined function.

We still should check that if h ∈ Γ(U,OX) and h(a) = 0 for all a ∈ U , then h = 0.

But this also comes out of the next step, which consists in checking that (X,OX) is

locally isomorphic to an affine variety. In fact we claim that for each i between 0 and

n, and with Xi = {a ∈ X| ai ̸= 0},

(Xi,OX

∣∣
Xi

)

is an affine variety. We will check this only for i = 0, since the general case goes just

the same.

If a0 = 0 for each a ∈ X, then X0 is empty and there is nothing to prove. So

assume that X0 is nonempty.

Let Y = (Y1, . . . , Yn). To each polynomial f ∈ K[X] we attach the polynomial

f ′ ∈ K[Y], f ′(Y) = f(1, Y1, . . . , Yn). Conversely, for each polynomial g ∈ K[Y] of

degree d we attach the form g∗ ∈ K[X] of degree d:

g∗(X) = Xd
0 g

(X1

X0
, . . . ,

Xn

X0

)
.

The prime ideal P of K[X] corresponds to the prime ideal P ′ = {f ′ ∈ K[Y]| f ∈ P}.

Indeed, let xi = Xi + P , i = 0, . . . , n. Then P ′ is the kernel of the K-epimorphism

K[Y]→ K[x1/x0, . . . , xn/x0] that maps Yi onto xi/x0, i = 1, . . . , n. As the latter ring

is an integral domain P ′ is prime.

Let X ′ = V (P ′) be the corresponding irreducible algebraic subset of An. The

map a 7→ (a1/a0, . . . , an/a0) is a homeomorphism of X0 onto X ′ whose inverse is

(b1, . . . , bn) 7→ 1:b1: · · · :bn.

For forms f, g ∈ K[X]d such that g(x) ̸= 0 and for a ∈ X0 the identity

f(x)

g(x)
=
f(x)/xd0
g(x)/xd0

=
f ′(x′)

g(x′)
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implies that Oa,X = Oa′,X′ . Since the sheaves were defined by intersecting local rings,

the ring of sections over open sets correspond and the claimed isomorphism has been

established.

Definition 11.1: Morphism of prevarieties. Let X and Y be prevarieties. A map

φ: X → Y is a morphism if φ is continuous and, for all open sets V in Y ,

g ∈ Γ(V,OY ) implies g ◦ φ ∈ Γ(φ−1(V ),OX).

Proposition 11.2: Let φ: X → Y be a map of prevarieties. Let {Vi} be a collection

of open affine subsets covering Y . Suppose that {Ui} is an open covering of X such that

(a1) φ(Ui) ⊆ Vi and

(a2) φ∗ maps Γ(Vi,OY ) into Γ(Ui,OX).

Then φ is a morphism.

Proof: We may assume that the Ui are affine; for if U ⊆ Ui is affine, then Γ(Ui,OX) ⊆

Γ(U,OX) and therefore φ∗ maps Γ(Vi,OY ) into Γ(U,OX). So, we may replace Ui by a

collection of affine open sets that cover Ui.

First of all, the restriction φi of φ to a map from Ui to Vi is a morphism. In fact,

the homomorphism

φ∗
i : Γ(Vi,OY )→ Γ(Ui,OX)

is induced by some morphism ψi: Ui → Vi (Proposition 6.6). If x ∈ Ui and πj is the jth

coordinate function of the ambient affine space of Vi, then

πj(φi(x)) = (φ∗
i ◦ πj)(x) = (ψ∗

i ◦ πj)(x) = πj(ψi(x)),

and therefore φi(x) = ψi(x). Hence φi = ψi and φi is a morphism. In particular φi is

continuous and therefore φ itself is continuous.

It remains to check that φ∗ maps sections of OY to sections of OX . But if

V ⊆ Y is open, and g ∈ Γ(V,OY ), then g ∈ Γ(V ∩ Vi,OY ). Hence g ◦ φ = φ∗(g) ∈

Γ(φ−1(V ∩ Vi),OX) ⊆ Γ(φ−1(V )∩Ui,OX). Since OX is a sheaf, g ◦φ actually belongs

to Γ(φ−1(V ),OX).
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11.3: Morphism is a local property. Let φ: X → Y be a map of prevarieties. Suppose

that {Ui}mi=1 is an open covering of X and {Vi}mi=1 is an open covering of Y such that

the restriction of φ to Ui is a morphism into Yi. Prove that φ is a morphism.

Example 11.4: Plane cubic. To illustrate the meaning of our definitions it seems

worthwhile to work out in detail a non-trivial example. Let C be the plane cubic curve

defined in homogeneous coordinates by:

X0X
2
2 = X1(X

2
1 −X2

0 ).

Look first at C0, with affine coordinates X = X1/X0 and Y = X2/X0. The equation

of C0 is:

Y 2 = X(X2 − 1).

For all lines L through the origin we want to interchange the two points in L∩C0 (other

that the origin). Start with a point (a, b) ∈ C0, (a, b) ̸= (0, 0). This is joined to the

origin by the line

X = at Y = bt.

Intersecting this with the cubic, we get the equation

b2t2 = at(a2t2 − 1)

or, using b2 = a(a2 − 1),

at(t− 1)(a2t+ 1) = 0.

Thus the second point of intersection is given by t = −1/a2. In other words, the

morphism on C0 is to be given by:

(1) (a, b) 7→ (−1/a, −b/a2).

These are not polynomials, so at any rate they do not define a map from C0 into itself.

This is as it should be, since we want the origin itself to go to the unique point, 0:0:1,

at infinity on the cubic.
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To describe the subsets on which we will get a morphism, we must throw out the

various “bad” points one at at time. We need names for them:

p0 = 1:0:0 the origin

p∞ = 0:0:1 the only point at infinity with respect to C0

q1 = 1:1:0 a point on the X-axis

q2 = 1:− 1:0 another point on the X-axis

The morphism - call it φ - should coincide with (1) on C − {p0,p∞} (in particular it

should interchange q0 and p∞, and q1 with q2. Define

C0 = C − {p∞}

C2 = C − {p0,q1,q2}

U1 = C − {p0,p∞} ⊆ C0

U2 = C − {p∞,q1,q2} ⊆ C0

U3 = C − {p0,q1,q2} = C2

U = C − {p0,p∞,q1,q2}

Then

(1a) U1, U2, U3 is an open covering of C,

(1b) C0, C2 is an affine open covering of C, and

(1c) if φ is defined set-theoretically as above, then φ(U1) ⊆ C0, φ(U2) ⊆ C2, and

φ(U3) ⊆ C0.

(1d) U1 ∩ U2 = U1 ∩ U3 = U2 ∩ U3 = U .

Hence, by Proposition 11.2, it suffices to check that

φ∗(Γ(C0,OC)) ⊆ Γ(U1,OC) ∩ Γ(U3,OC), and φ
∗(Γ(C2,OC)) ⊆ Γ(U2,OC)

and then it follows that φ is a morphism.

Let x0, x1, x2 be the residue classes of X0, X1, X2, respectively, modulo the prime

ideal of K[X0, X1, X2] generated by X0X
2
2 − X1(X

2
1 − X2

0 ). Then x = x1/x0 and

y = x2/x0 are the coordinate functions for C0. In particular Γ(C0,OC) = K[x, y] and
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K(C) = K(x, y). Also, s = x0/x2 and t = x1/x2 are the coordinate functions for C2.

In particular Γ(C2,OC) = K[s, t]. These coordinates are related by the formulas:

x =
t

s
, y =

1

s
t =

x

y
, s =

1

y
.

The corresponding variables are denoted by the corresponding capitals. The defining

equations for C0 and C2 are then:

C0 : Y 2 = X(X2 − 1) C2 : S = T (T 2 − S2).

As we have already mentioned φ maps U1 into C0 by the formula:

(2) φ(a, b) =
(
− 1

a
,− b

a2
)
, (a, b) ∈ U1

In particular φ(1, 0) = (−1, 0) and φ(−1, 0). So φ interchange q1 and q2, as desired.

As the denominators of the right hand side do not vanish on U1, we have x ◦ φ, y ◦ φ ∈

Γ(U1,OC).

Note that U2 ⊆ C0. So define φ from U2 to C2 by the formula:

(3) φ(a, b) =
( −ab
a2 − 1

,
b

a2 − 1

)
, (a, b) ∈ U2

This means that φ∗(s) = −xy/(x2 − 1) and φ∗(t) = y/(x2 − 1). As a2 − 1 ̸= 0 for

(a, b) ∈ U2, we have φ∗(s), φ∗(t) ∈ Γ(U2,OC), as it should be.

We still have to check that the two definitions agree on U . But if (a, b) ∈

U , then b2 = a(a2 − 1) and therefore s(φ(a, b)) = −a2/b, t(φ(a, b)) = a/b. Hence

t(φ(a, b))/s(φ(a, b)) = −1/a = x(φ(a, b)) and 1/s(φ(a, b)) = −b/a2 = y(φ(a, b)), as it

should be. Also, φ(0, 0) = (0, 0). So φ maps p0 to p∞.

To define φ from U3 to C0 use the (s, t)-coordinates for U3 and the (x, y)-coordinates

for C0:

(4) φ(c, d) = (c2 − d2, c(d2 − c2)− d) (c, d) ∈ U3.

In other words φ∗(x) = s2 − t2 and φ∗(y) = s(t2 − s2)− t ∈ Γ(U3,OC).
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Finally we check that if (c, d) ∈ U , then definition (2) agrees with definition (4).

Indeed, if (a, b) is the point (c, d) in the coordinates (x, y), then c = a/b and d = 1/b.

Using the relation d = c(c2 − d2) we find:

φ(c, d) = (c2 − d2, c(d2 − c2)− d) =
(
− c

d
, − c

d2
)
=

(
− 1

a
, − b

a2
)
= φ(a, b).

As φ(0, 0) = (0, 0), φ maps p∞ to p0. The definition of φ is complete.

Problem 11.5: Veronese map. For a positive integer d let M be the set of all mono-

mials in X0, · · · , Xn of degree d. Prove by induction on n that

|M | =
(
n+ d

n

)
.

For m = |M | − 1 define a map φPn → Pm by

φ(x) = (µ(x))µ∈M .

Prove that φ is an isomorphism of φ onto the subvariety V of Pm defined by all the

equations

YµYµ′ = YνYν′ ,

where µ, µ′, ν, ν′ range over all monomials in M such that µµ′ = νν′.

Problem 11.6: Removing a hypersurface from Pn. Generalize the result by which we

have covered Pn by open affine set as follows: Prove that if h ∈ K[X0, . . . , Xn] is a form

of positive degree, then (Pn)h is an affine variety. Hint: Prove first for hyperplanes.

Then for d = deg(h) study the image of the hypersurface h = 0 under the veronesian

map defined in Problem 11.4.

Problem 11.7: Very few sections. Prove that Γ(P1,OP1) ∼= K. In particular, unlike

for affine varieties, the elements of Γ(P1,OP1) do not separate points.

Problem 11.8: Morphism of P1 to An. Prove that every morphism φ: P1 → An maps

P1 onto a point.
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12. Tensor product of modules.

Let R be a ring (commutative with 1), and let M,N be R-modules. Denote the free

R-module generated by the direct product (of sets) M × N by (M,N). An element

of (M,N) is a formal sum of the form
∑
γm,n(m,n) where γm,n ∈ Z. Let T be the

submodule of (M,N) generated by all elements of the form

(m1 +m2, n)− (m1, n)− (m2, n) m1,m2 ∈M ; n ∈ N

(m,n1 + n2)− (m,n1)− (m,n2) m ∈M ; n1, n2 ∈ N

(γm, n)− (m, γn) r ∈ R; m ∈M ;n ∈ N

γ(m,n)− (γm, n)

The quotient module (M,N)/T is denoted byM⊗RN and is called the tensor product

of M and N over R. The coset of (m,n) module T is denoted by m⊗ n.

The definition implies that the following rules are valid in M ⊗R N :

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2, and

γm⊗ n = m⊗ γn = γ(m⊗ n).

Let π: (M,N)→M ⊗R N be the canonical map, i.e., π(m,n) = m⊗ n. Then

π(m1 +m2, n) = π(m1, n) + π(m2, n)

π(m,n1 + n2) = π(m,n1) + π(m,n2)

π(γm, n) = π(m, γn) = γ π(m,n)

A map of (M,N) into an R-module A satisfying these relations is said to be R-bilinear.

Lemma 12.1 (Universality property): Let A be an R-module and let ψ: M × N → A

be an R-bilinear map. Then there exists a unique homomorphism θ:M ⊗N → A such

that θ ◦ π = ψ.

Proof: The map θ must satisfies θ(m⊗ n) = ψ(m,n).

Corollary 12.2: Let α:M →M ′ and β: N → N ′ be R-homomorphisms. Then there

exists a unique homomorphism

α⊗ β:M ⊗N →M ′ ⊗N ′
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such that (α⊗ β)(m⊗ n) = α(m)⊗ β(n).

If M is also a module with respect to another ring S, then M ⊗R N is not only

an R-module but also an S-module. Consider an element s ∈ S as a homomorphism

of M into M , acting by multiplication from the left. Put 1 for the identity map of N .

Then, Lemma 12.2 gives an R-homomorphism s ⊗ 1: M ⊗R N → M ⊗R N such that

(s ⊗ 1)(m ⊗ n) = sm ⊗ n. We can therefore define s(m ⊗ n) = sm ⊗ n. The same

definition applies if N is an S-module.

If M and N are R-modules, then the map (m,n) → n ⊗ m, induces a natural

homomorphism θ:M ⊗RN → N ⊗RM for which θ(m⊗n) = n⊗m. Similarly we have

an inverse map θ′: N ⊗R M → M ⊗R N for which θ′(n ⊗m) = m ⊗ n. Hence θ is an

isomorphism.

(1) M ⊗R N ∼= N ⊗R M.

Next we have the following natural isomorphism

(2) R⊗R N ∼= N.

In this isomorphism the map R⊗RN → N is determined by γ⊗n 7→ γn and the inverse

map is given by n 7→ 1⊗ n.

If N is also an S-module and P is an S-module, then the map (m ⊗ n) ⊗ p 7→

m⊗ (n⊗ p) induces a natural isomorphism

(3) (M ⊗R N)⊗S P ∼=M ⊗R (N ⊗S P ).

This is the associative law for tensor products.

The tensor product preserves direct sums:

(4) M ⊗R (N1 ⊕N2) ∼= (M ⊗R N1)⊕ (M ⊗R N2).

The map from the left hand side of (4) is defined by m⊗ (n1, n2)→ (m⊗ n1,m⊗ n2).

The inverse map is the direct sum of the mapM⊗RN1 →M⊗R (N1⊕N2) with the map

M ⊗RN2 →M ⊗R (N1⊕N2) given by m⊗n1 → m⊗ (n1, 0) and m⊗n2 7→ m⊗ (0, n2),

respectively.
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Let A
α−→B β−→C −→ 0 be an exact sequence of R-modules. Let M be an R-

module. We claim that the sequence

(5) M ⊗R A
1⊗α−→M ⊗R B

1⊗β−→M ⊗R C −→ 0

is exact. Obviously 1⊗ β is surjective. Thus, in order to prove the exactness of (5) we

have to prove that

M ⊗R C ∼= (M ⊗R B)/(1⊗ α)(M ⊗R A).

First define a map ψ:M ×C → (M ⊗R B)/(1⊗ α)(M ⊗R A) by ψ(m, c) = m⊗ β−1(c)

where β−1(c) is an element of B which is mapped by β on c, and the bar means

reduction modulo (1⊗ α)(M ⊗R A). It is clear that ψ is well defined and that it is an

R-bilinear map. Hence, by Lemma 12.1, it induces a homomorphism ψ̄: M ⊗R C →

(M ⊗R B)/(1 ⊗ α)(M ⊗R A) for which ψ̄(m ⊗ c) = m⊗ β−1(c). On the other hand,

(1⊗ α)(M ⊗R A) ⊆ Ker(1⊗ β). Hence 1⊗ β induces a homomorphism

1⊗ β: (M ⊗R B)/(1⊗ α)(M ⊗R A) −→M ⊗R C.

The map ψ̄ and 1⊗ β are inverse to each other, hence they are isomorphisms.

In general is is not true that if α: A → B is injective, then 1 ⊗ α: M ⊗R A →

M ⊗R B is also injective. For example, multiplication by 2, is an injection Z → 2Z.

But 2Z ⊗ (Z/2Z) = 0, since 2z ⊗ a = z ⊗ 2a = 0 for each z ∈ Z and a ∈ Z/2Z. Hence

Z⊗ Z/2Z→ 2Z⊗ Z/2Z is not an injection.

In the next section we consider a special case, where R is a field, for which left

exactness is preserved.

Exercise 12.3: LetM be an R-module and I and ideal of R. Prove that R/I⊗RM =

M/IM .

43



13. Tensor product of vector spaces.

Amodule over a field is a vector space. Tensor products of vector spaces can be explicitly

described in terms of bases:

Lemma 13.1: Let U and V be vector spaces over a field F with bases {ui}i∈I and

{vj}j∈J , respectively. Then U⊗F V is a vector space over F with base {ui⊗vj}(i,j)∈I×J .

Proof: Let W be the vector space over F with the base {(ui, vj)}i∈I,j∈J . The map

(uj , vj) 7→ ui⊗ vj defines an F -linear map of W into U ⊗F V . If u ∈ U and v ∈ V , then

u =
∑

i∈I aiui and v =
∑

j∈J bjvj where ai ∈ F , almost all ai and almost all bj are 0.

Set u⊗ v 7→
∑

i,j aibj(ui, vj). By Lemma 12.1, this map is a homomorphism of vector

spaces. The equality
∑

i,j aibj ui ⊗ vj = u ⊗ v show that the two maps are inverse to

each other. Hence, they are isomorphisms.

Lemma 13.2: Let U and V be vector spaces over a field F . If {u1, . . . , um} and

{v1, . . . , vn} are linearly independent sets of elements in U and V , respectively, then

{ui ⊗ vj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a linearly independent set of elements in U ⊗F V .

Proof: In fact the sets {ui} and {vj} can be completed to bases of U and V , respectively.

The result follows therefore from Lemma 13.1.

Here is another immediate corollary of Lemma 13.1:

Lemma 13.3: Let U and V be vector spaces over a field F . Then dim(U ⊗F V ) =

dim(U) ·dim(V ) (This formula holds even if the dimensions are not finite, provided that

the appropriate product of cardinal numbers is used.)

Lemma 13.4: Let α: V → W be an injective F -linear map of F -vector spaces V and

W . Let U be another F -vector space. Then the map 1 ⊗ α: U ⊗F V → U ⊗F W is

injective.

Proof: Let {ui}i∈I , {vj}j∈J and {wk}k∈K be bases for U , V and W over F . Then,

according to Lemma 13.1, {ui⊗ vj}i∈I, j∈J and {ui⊗wk}i∈I, k∈K are bases for U ⊗F V

and U ⊗F W respectively. A typical element of U ⊗F V has the form
∑

i,j aijui ⊗ vj
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where aij ∈ F and almost all of them are 0. Suppose that

(1) (1⊗ α)(
∑
i,j

aij ui ⊗ vj) = 0.

We have to shows that aij = 0 for all i, j.

Let cjk ∈ F be such that

(2) α(vj) =
∑
k

cjkwk.

By (1) and (2), ∑
i,k

(
∑
j

aijcjk)ui ⊗ wk = 0

Hence, by Lemma 13.2, ∑
j

aijcjk = 0 for every i, k.

Combine (1) and (3):

α(
∑
j

aijvj) =
∑
k

(
∑
j

aijcjk)wk = 0.

Since α is injective
∑

j aijvj = 0 for all i. Conclude that aij = 0 for all i, j.

Combine Lemma 13.4 with the last result of Section 12:

Proposition 13.5: If

0 −→ V1
α−→V2

β−→V3−→0

is a short exact sequence of F vector spaces and if U is an F -vector space, then the

sequence

0 −→ U ⊗ V1
1⊗α−→ U ⊗F V2

1⊗β−→ U ⊗ V3 −→ 0

is exact.

Let now V be a vector space over a field F and let F ′ be a field extension of F .

Denote the inclusion map of F into F ′ by j. Then, by Lemma 13.5, j ⊗ 1: F ⊗F V →

F ′ ⊗F V is an injective map. Since v 7→ 1⊗ v is an isomorphism of V into F ⊗F V it is

also an embedding of V into F ′⊗F V . We identify V with its image. Note that F ′⊗F V

is also a vector space over the field F ′. It has the following property:
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Lemma 13.6: If v1, . . . , vn are independent elements of V over F , then they are inde-

pendent over F ′.

Proof: Suppose that a′1, . . . , a
′
n are elements of F ′ such that

∑n
j=1 a

′
j ⊗ vj = 0. Let

{x1, . . . , xm} be a base for the F -vector space generated by a′1, . . . , a
′
n. Then a′j =∑m

i=1 ajixi with aji ∈ F . It follows that
∑

i,j ajixi ⊗ vj = 0. But, according to

Corollary 13.2, the set {xi⊗ vj}i,j is linearly independent over F . Hence aji = 0 for all

j and i. Conclude that aj = 0 for all j.

The procedure of going from V to F ′ ⊗F V is called an extension of the field

of coefficients of V . Lemma 13.6 justifies this name.

Next we consider tensor products of algebras. Recall that an algebra over a field

F is an F -vector space A which is also a ring such that

λ(a1a2) = (λa1)a2 = a1(λa2), for λ ∈ F ; a1, a2 ∈ A.

We always assume that F is contained in A.

If B is another algebra over F , then A ⊗F B is an F -vector space. We consider

the homomorphisms

(A⊗F B, A⊗F B)
π−→(A⊗F B)⊗F (A⊗F B)

τ−→(A⊗F A)⊗F (B ⊗F B)
κ−→A⊗F B

where π is the canonical projection:

π(a⊗ b, a′ ⊗ b′) = (a⊗ b)⊗ (a′ ⊗ b′),

τ is the isomorphism

τ
(
(a⊗ b)⊗ (a′ ⊗ b′)

)
= (a⊗ a′)⊗ (b⊗ b′),

and κ is the tensor product of the multiplication maps:

κ
(
(a⊗ a′)⊗ (b⊗ b′)

)
= aa′ ⊗ bb′.

The map

(a⊗ b, a′ ⊗ b′) 7→ aa′ ⊗ bb′

defined in this way is a multiplication in A⊗F B which makes it an F -algebra.

In particular, ifK and L are two field extensions of F , thenK⊗FL is an F -algebra.

In Section ? we will prove the first part of the following result.
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Proposition 13.7: If R and S are integral domains that contain an algebraically closed

field K, then R⊗K S is an integral domain. Moreover, if E, F , and L are the quotient

fields of R, S and R⊗K S, respectively, then dimK(L) = dimK(E) + dimK(F ).

Exercise 13.8: If E and F are algebraic extensions of a field K, then E ⊗K F is a

field.

Exercise 13.9: let U and V be topological spaces. Let R (resp., S) be an algebra

of continued K-valued functions of U (resp. V ). Define a map φ of R ⊗K S into the

K-algebra of all K-valued functions of U × V by φ(
∑
fi ⊗ gj) =

∑
figj , where

(
∑

figj)(x, y) =
∑

fi(x)gj(y).

Prove that φ is well defined and injective.
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14. Products.

We want to define the product X × Y of any two prevarieties X,Y . We will certainly

want to have Am × An ∼= Am+n. But the product of the Zariski topologies in Am

and An does not give the Zariski topology in Am+n. In A1 × A1, for instance, the only

closed sets in the product topology are finite unions of horizontal and vertical lines. The

only reliable way to finish the correct definition is to use the general category-theoretic

definition of product.

Definition 14.1: Let C be a category, X,Y objects in C. An object Z plus a pair

of morphisms (p: Z → X, q: Z → Y ) is a product if it has the following universal

mapping property:

For each pair of morphsims (ρ: W → X, σ: W → Y ) there is a unique morphism

τ :W → Z such that ρ = p ◦ τ and σ = q ◦ τ .

The induced morphism τ in this situation will always be denoted (ρ, σ). We call p

and q the projections of the product onto its factors. Sometimes they will be denoted

by prX and prY , respectively. Clearly a product, if it exists, is unique up to a unique

isomorphism commuting with the projections.

We prove that products exist in the category of prevarieties over K. Note that we

have no choice for the underlying set. For if X × Y is a product of the prevarieties X

and Y , then X × Y as a point set must be the usual product of the point sets X and

Y . To see this, let W be a single point. This is a prevariety (A0, in fact). The maps

of W to any prevariety S clearly correspond to the points of S. Therefore the points of

the product of X and Y bijectively correspond to the points of X × Y .

Proposition 14.2: Let X and Y be affine varieties, with coordinate rings R and S.

Then

(a) There is a product prevariety X × Y .

(b) X × Y is affine with coordinate ring R⊗K S. It can be identified with the ring of

all functions
∑
figi: X × Y → K where fi ∈ R and gi ∈ S.

(c) A basis of the topology is given by the open sets {(x,y)|
∑
fi(x)gi(y) ̸= 0}, with

fi ∈ R and gi ∈ S.
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(d) The local ring O(x,y) is the localization of Ox⊗KOy at the maximal ideal mxOy+

Oxmy.

Proof: Represent X ⊆ Am as V (f1, . . . , fk) with I(X) = ⟨f1, . . . , fk⟩ and Y ⊆ An as

V (g1, . . . , gl) with I(Y ) = ⟨g1, . . . , gl⟩. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Yn).

Then the set X×Y ⊆ Am+n is the locus of zeros of fj(X),gj(Y) in K[X,Y]. Moreover,

(1) K[X,Y]/⟨fi, gj⟩i,j ∼= K[X]/⟨fi⟩i ⊗K K[Y]/⟨gj⟩j = R⊗K S.

Indeed, the map Xi 7→
(
Xi+ ⟨fj⟩

)
⊗1, i = 1, . . . ,m and Yi 7→ 1⊗

(
Yi+ ⟨gj⟩

)
extends to

a K-homomorphism of K[X,Y] into the right hand side of (1). As fj , gj are mapped

into zero, this homomorphism induces one from the left hand side into the right hand

side. The pair of obvious homomorphisms of K[X]/⟨fj⟩ and K[Y]/⟨gj⟩ into the left

hand side of (1) gives a homomorphism of the right hand side into the left hand side

which is inverse to the one that has been defined before. This establishes (1).

By Proposition 13.7, R⊗K S is an integral domain. Hence ⟨fi, gj⟩ is prime, X×Y

is irreducible, and R⊗K S is its coordinate ring.

This gives us an affine variety X × Y . The next step is to prove that it is a

categorical product. We have natural projections p, q: X × Y → X,Y with p(x,y) = x

and q(x,y) = y. Suppose ρ: Z → X and σ: Z → Y are morphisms from a prevariety

Z. There is just one map of points sets τ : Z → X × Y such that ρ = p ◦ τ , σ = q ◦ τ

(since X×Y as a point set is the product of X and Y ). To verify the universal mapping

property we need only check that τ is a morphism.

Since X × Y is affine, it suffices, by Proposition 11.2, to check that

g ∈ Γ(X × Y,OX×Y ) implies g ◦ τ ∈ Γ(Z,OZ).

But Γ(X × Y,OX×Y ) is generated by the images of Γ(X,OX) = R and Γ(Y,OY ) = S.

Since ρ and s are morphisms each element of these images goes by composition with τ

into Γ(Z,OZ). Hence all of Γ(X × Y,X×Y ) goes into Γ(Z,OZ).

We have proved (a) and (b). Statement (c) follows from (b). We prove (d).

Note that O(x,y) is the localization of R⊗KS at the ideal of all functions vanishing

at (x,y). Clearly R⊗KS ⊆ Ox⊗KOy ⊆ Ox,y. We can therefore get O(x,y) by localizing
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Ox ⊗K Oy at the ideal m of all functions in it vanishing at (x,y). We claim that m

is precisely mxOy +Oxmy. Evidently all functions in the latter ideal vanish at (x,y).

Conversely, if h =
∑
fi⊗ gi ∈ m with fi ∈ Ox, gi ∈ Oy and fi(x) = ai, gi(y) = bi, then

h = h− h(x,y) =
∑

fi ⊗ gi −
∑

ai ⊗ bi

=
∑

(fi − ai)⊗ gi +
∑

ai ⊗ (gi − bi) ∈ mxOy +Oxmy.

We can now “glue together” these affine products to obtain:

Theorem 14.3: Every pair X and Y of prevarieties over K has a product.

Proof: We start, of course with the product set, X × Y . For all open affine U ⊆ X,

V ⊆ Y and all finite set of elements fi ∈ Γ(U,OX), gi ∈ Γ(V,OY ) form (U × V )∑ figi .

Take these as a basis of the open sets. They do form a basis. Indeed suppose that

(x,y) ∈ (U × V )∑ figi ∩ (U ′ × V ′)∑ f ′
jg

′
j

where U,U ′ (resp. V, V ′) are affine open sets in X (resp. Y ). Then x ∈ U ∩ U ′ and

y ∈ V ∩ V ′. Hence x has an open affine neigborhood U ′′ ⊆ U ∩ U ′ and y has an affine

open neigborhood V ′′ ⊆ V ∩ V ′. By Proposition 14.2, U ′′ × V ′′ is an affine variety and

(x,y) ∈ (U ′′ × V ′′)∑ fif ′
jgig

′
j
.

If {Ui}i (resp., {Vj}j) is a finite affine open covering of X (resp., Y ), then {Ui ×

Vj}i,j is a finite affine covering of X × Y . Obviously, the intersection of any two sets

in this cover is nonempty. Since, by Proposition 14.2, Ui × Vj is irreducible, hence

connected, X × Y is connected (Exercise 10.6(b)).

Note that on U × V this induces the topology of their product as defined in

Proposition 14.2.

Let F be the quotient field of the integral domain K(X) ×K K(Y ) (Proposition

13.7). By Exercise 13.9, we may consider the elements of K(X)⊗K K(Y ) as K-valued

functions defined at least on open sets of the form U × V , with U open in X and V

open in Y . Namely, if fi ∈ K(X) are defined on U and gi ∈ K(Y ) for i = 1, . . . , n

and if (x,y) ∈ U × V , then
∑
fi ⊗ gi is defined at (x,y) as

∑
fi(x)gi(y). Obviously
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these value is unchanged if (x,y) ∈ U ′ × V ′, fi ∈ Γ(U ′,OX), and gi ∈ Γ(V ′,OY ).

Then the elements of F are K-valued functions defined at least on basic open sets

(U ×V )∑ figi . For x ∈ X, y ∈ Y let O(x,y) ⊆ F be the localization of Ox⊗K Oy at the

ideal m = mxOy +Oxmy. As in the proof of Proposition 14.2, m is the maximal ideal

of all functions in Ox ⊗K Oy which vanish at (x,y).

For each open subset U of X × Y set

Γ(U,OX×Y ) =
∩

(x,y)∈U

O(x,y).

This gives us a sheaf of functions. By Proposition 14.2, it coincides on each U×V (U, V

affine) with the product of the affine varieties. Conclude that X × Y is a prevariety.

Now suppose ρ: Z → X and σ: Z → Y are morphisms from a prevariety Z.

Let τ : Z → X × Y be the unique set theoretical map composing properly with the

projections. We want to check that it is a morphism. For each open affine U in X and

V in Y look at ZU,V = ρ−1(U)∩σ−1(V ). These are open sets covering Z. Since being a

morphism is a local property (Proposition 11.2) it is enough to prove that the restriction

of τ to ZU,V into U × V is a morphism. This follows however from Proposition 14.2.

Remark 14.4: (a) If U is any open subprevariety of X, then U × Y is an open sub-

prevariety of X × Y .

(b) If Z is a closed subprevariety of X, then Z × Y is a closed subprevariety of X × Y .

Indeed, it is enough to prove that (Z ∩ U) × V is a closed subprevariety of U × V for

U, V affine. This follows from the first paragraph of the proof of Proposition 14.2.

Theorem 14.5: The product of two projective varieties is a projective variety.

Proof: Since a closed subvariety of a projective variety is a projective variety, it is

enough to show that Pm × Pn is a projective variety. In fact we embed it as a closed

subvariety of Pmn+n+m.

Take homogeneous coordinates X0, . . . , Xm in Pm, Y0, . . . , Yn in Pn, and Uij (i =

0, . . . ,m, j = 0, . . . , n) in Pmn+m+n. Define

ν: Pm × Pn → Pmn+m+n
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by

ν(x,y) = u, where uij = xiyj for all i, j.

This definition makes sense; first of all some uij is nonzero; and multiplying all xi or all

yj by λ multiplies all uij by λ.

Let Pm
i = (Pm)Xi

, Pn
j = (Pn)Yj

, and Pmn+m+n
ij = (Pmn+m+n)Uij

. Clearly

ν−1(Pmn+m+n
ij ) = Pm

i × Pn
j .

We claim first that ν is injective. Assume that for some λ ̸= 0, xiyj = λx′iy
′
j for

all i and j. Then we want to prove that for some a, b ̸= 0, xi = ax′i and yj = by′j . We

may by symmetry assume x0 ̸= 0, y0 ̸= 0. Then λx′0y
′
0 = x0y0 ̸= 0, so x′0 ̸= 0 and

y′0 ̸= 0. Therefore xi = (λy′0/y0)x
′
i and yj = (λx′0/x0)y

′
j , as desired.

Now we claim that ν is an isomorphism of Pm
i × Pm

j onto a closed subvariety of

Pmn+m+n
ij . We may assume i = 0, j = 0 for simplicity. On Pm

0 we take affine coordinates

Si = Xi/X0, i = 1, . . . ,m. On Pm
0 we take affine coordinates Tj = Yj/Y0, j = 1, . . . ,m.

On Pmn+m+n
0,0 we take affine coordinates Rij = Uij/U0,0, (i, j) ̸= (0, 0).

In these coordinates ν(s, t) = r where

ri,0 = si, r0,j = tj and rij = sitj if i, j ≥ 1.

Hence the image of Pm
0 × Pn

0 is the locus of points satisfying rij = ri,0r0,j for all

i, j ≥ 1. This is certainly closed. Its affine coordinate ring is K[Rij ]ij/⟨Rij−Ri,0R0,j⟩ij ,

which is isomorphic to the polynomial ring K[Ri0, R0j ]ij . Under ν∗, this is mapped

isomorphically onto K[Si, Tj ]ij , which is the affine coordinate ring of Pm
0 × Pn

0 . Indeed,

(Ri0 ◦ ν)(s, t) = Ri0((sitj)ij) = si/s0 = Si(s, t).

So, ν∗(Ri0) = Si and similarly ν∗(R0j) = Tj . Hence, we do have an isomorphism.

Let Z = ν(Pm × Pm). Since Z ∩ Pmn+m+n
ij is closed for all i, j, Z is closed. Also,

ν is a homeomorphism on each of these affines, so it is a homeomorphism globally, and

in particular Z is irreducible. Thus Z is a projective variety. Since ν is an isomorphism

on each affine piece, it is an isomorphism globally. Conclude that Z is isomorphic to

Pm × Pn.
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Exercise 14.6: Prove that Z is the locus of the homogeneous ideal generated by all

polynomials UijUkl−UilUjk. So Z is an intersection of quadrics. In particular P1×P1

is isomorphic to the quadric in P3 defined by U0U1 − U2U3.
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15. Varieties.

If X is a topological space, then X satisfies the Hausdorff axiom if and only if the

diagonal

∆(X) = {(x, x)| x ∈ X}

is a closed subset of X × X in the product topology. The topology of a prevariety X

is usually not Hausdorff, nor is the topology of X ×X the product topology. So ∆(X)

may or may not be closed in X ×X.

Lemma and Definition 15.1: A prevariety X is called a variety if it satisfies the

following equivalent conditions:

(a) For each prevariety Y and for each pair of morphisms φ1, φ2: Y → X the set

{y ∈ Y | φ1(y) = φ2(y)} is closed in Y .

(b) The diagonal ∆(X) of X is closed in X ×X.

Proof: If (a) is true, then ∆(X) = {y ∈ X ×X| pr1(y) = pr2(x)} is closed in X.

Conversely, in the situation of (a) {y ∈ Y | φ1(y) = φ2(y)} = (φ1, φ2)
−1(∆(X)).

Hence, if (b) is true, then this set is closed in Y .

Example 15.2: A1 with a double point. As in the second part of Example 10.5 let

U1, U2 be two copies of A1, way with coordinates x1 and x2, patched to a prevarietyX by

x1 = x2 on the open sets x1 ̸= 0 and x2 ̸= 0. Consider the isomorphisms i1, i2 of A1 with

U1, U2, respectively as embeddings into X. Then {y ∈ A1| i1(y) = i2(y)} = A1 − {0} is

not closed in A1. Hence X is not a variety.

Remark 15.3: (a) A subprevariety of a variety is a variety. A product of two varieties

is a variety.

(b) An affine variety is a variety. In fact, since the global sections on an affine variety

separates points, if X is affine, Y is an arbitrary prevariety, and φ1, φ2: Y → X are

morphisms, then {y| φ1(y) = φ2(y)} is the locus of zeroes of the functions g◦φ1−g◦φ2

for all g ∈ Γ(X,OX) and this set is closed.

(c) If φ1, φ2: Y → X are morphisms of any prevarieties, then Z = {y| φ1(y) = φ2(y)}

is locally closed. In fact for z ∈ Z, let V be an affine open neighborhood of φ1(z). Then
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Yz = φ−1
1 (V ) ∩ φ−1

2 (V ) is an open neighborhood of z and, by (b),

Z ∩ Yz = {z′ ∈ Yz| φ1(z
′) = φ2(z

′)}

is closed in Yz.

(d) The graph of a morphism. If φ: X → Y is a morphism of a prevariety X into a

variety Y , then the graph of φ,

Γφ = {(x, φ(x)) ∈ X × Y | x ∈ X},

is closed in X × Y . Indeed, consider the two morphisms φ ◦ prX , prY : X × Y → Y .

Then, Γφ = {(x,y) ∈ X × Y | φ ◦ prX(x,y) = prY (x,y)}.

Moreover, the restriction of prX to Γφ is an isomorphism onto X whose inverse is

(id, φ).

Here is a useful criterion for a prevariety to be a variety.

Proposition 15.4: Let X be a prevariety. If for each x,x′ ∈ X there is an open affine

set U containing both x and x′, then X is a variety.

Proof: Let φ1, φ2: Y → X be morphisms. We prove that each z that belongs to the

closure of Z = {y ∈ Y | φ1(y) = φ2(y)} belongs to Z.

Indeed, X has an open affine set V that contains both φ1(z) and φ2(z). Then

U = φ−1(V ) ∩ φ−1(V ) is an open neighborhood of z in Y . The restrictions φ′
1 and

φ′
2 of φ1 and φ2 to U are morphisms into the affine variety V . Hence Z ∩ U = {y ∈

U | φ′
1(y) = φ′

2(y)} is closed in U and therefore contains z. Conclude that Z is closed.

Corollary 15.5: Every projective prevariety X is a variety.

Proof: By Remark 15.3(a) it suffices to prove that Pn is a variety. We apply criterion

15.4.

Let x = x0: · · · :xn and x = x′0: · · · :x′n be two points in Pn. Since K is an infinite

field there exist a0, . . . , an ∈ K such that

(a0x0 + · · ·+ anxn)(a0x
′
0 + · · ·+ anx

′
n) ̸= 0.
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Thus the hyperplane h(X) = a0X0 + · · · + anXn = 0 does not contain x,x′. In other

words, x and x′ belong to the open set (Pn)h. Apply now a linear automorphism on Pn

that maps h = 0 onto the hyperplane X0 = 0 to conclude that (Pn)h is isomorphic to

the affine open set Pn
0 . Hence (Pn)h is also affine.

Proposition 15.6: let X be a variety and let U, V be affine open subsets with coor-

dinate rings R,S. Then U ∩ V is an affine open subset with coordinate ring RS (the

compositum being formed in K(X)).

Proof: The set U ×V is open affine in X×X with coordinate ring R⊗K S (Proposition

14.2). Each element of R⊗K S is viewed here as a function (x,y) 7→
∑
fi(x)gi(y) from

U ×V into K, where fi ∈ R and gi ∈ S (Exercise 13.9). The set U ∩V is open in X and

therefore irreducible. Let Z = ∆(X). The diagonal map ∆: X → X ×X maps U ∩ V

isomorphically onto Z ∩ (U × V ). Hence Z ∩ (U × V ) is irreducible. By definition Z is

closed in X×X and therefore Z∩(U×V ) is closed in U×V . It follows that Z∩(U×V )

is an affine variety. Its coordinate ring T is obtained from R⊗K S by restriction of the

elements of R⊗K S to Z ∩ (U ×V ). Hence U ∩V is also an affine variety. Its coordinate

ring is ∆∗(R⊗K S), i.e., RS.

Problem 15.7: Let X ⊆ Pn be a projective variety defined by the homogeneous prime

ideal P ⊆ K[X0, . . . , Xn]. Consider the affine variety

X∗ = {(x0, . . . , xn) ∈ Kn+1| f(x0, . . . , xn) = 0 for all f ∈ P}

defined by P (This is the cone over X). Show that

{(x0, . . . , xn) ∈ X∗| xi ̸= 0} ∼= (A1 − {0})× {x ∈ X| xi ̸= 0}.
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16. Noether’s normalization theorem.

Let R ⊆ S be rings and x ∈ S. We way that x is integral over R if it satisfies an

equation of the form

(1a) xn + an−1x
n−1 + · · ·+ a0 = 0, ai ∈ R, i = 1, . . . , n.

An equivalent condition to (1a) is:

(1b) There exists a finitely generated nonzero R-module M which is contained in S

and contains 1 such that xM ⊆M .

Indeed, suppose that (1b) holds and let v1, . . . , vn be generators of M over R.

Then there exist aij ∈ R such that xvi =
∑n

j=1 aijvj for i = 1, . . . , n. Hence, with I the

unit matrix of order n × n and A = (aij) we have (xI − A)v = 0. Multiple the latter

equation from the left by the adjoint of xI − A to get det(xI − A)vj = 0, j = 1, . . . , n.

Since 1 ∈M , we have det(xI −A) = 0. This gives a monic equation for x as in (1a).

Conversely, if (1a) is satisfied, takeM to be theR-module generated by 1, x, . . . , xn−1.

Problem 16.1: Let R be an integral domain, F a field that contains R, and x an

element of F . Then x is integral over R if and only if φ(x) ̸=∞ for each place φ of F

which is finite on R. Hint: If x−1 is not a unit of R[x−1], then it is contained in a prime

ideal.

Proposition 16.2: If R is an integral domain, F is the quotient field of R, and x is

algebraic over F , then there exists c ̸= 0 in R such that cx is integral over R.

Proof: The element x satisfies an equation over R of degree, say n with highest coeffi-

cient an. Then a
n−1
n x is integral over R.

Let R ⊆ S be rings. We say that S is integral over R if every element of S is

integral over R.

Proposition 16.3: Let R ⊆ S be rings. If S is integral over R and is finitely generated

as an R-algebra (i.e., S = R[x1, . . . , xn]), then S is finitely generated as an R-module.

Proof: Each xi satisfies an integral equation overR of degree, say, ri. Then {xk1
1 x

k2
2 · · ·xkn

n | ki <

ri, i = 1, . . . , n} is a finite set of generators of S as an R-module.
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Proposition 16.4: Suppose that R ⊆ S ⊆ T are rings. If S is integral over R and T

is integral over S, then T is integral over R.

Proof: Each x ∈ T satisfies an equation of the form

xn + bn−1x
n−1 + · · ·+ b0 = 0, bi ∈ S.

By Proposition 16.2, the ring S0 = R[b0, . . . , bn−1] is a finitely generated R-module.

Therefore so is the S0-module M generated by 1, x, . . . , xn−1. As xM ⊆ M , x is

integral over R.

Proposition 16.5 (Noether’s normalization theorem): Let K be an infinite field and

let F = K(x1, . . . , xn) be a finitely generated field extension of K. Then there exist

elements

ti =
n∑

j=1

aijxj , i = 1, . . . , n

in F with aij ∈ K and det(aij) ̸= 0 such that t1, . . . , tr is a transcendence base for

F/K, and the ring K[t] = K[x] is integral over K[t1, . . . , tr].

Proof: If each xi is transcendental over K(x1, . . . , xi−1), take r = n and ti = xi,

i = 1, . . . , n. Otherwise assume that xn is algebraic over K(x1, . . . , xn−1). Take an

irreducible polynomial f ∈ K[X1, . . . , Xn] such that f(x) = 0 in which Xn occurs.

Write f as the sum of its homogeneous parts, f(X) =
∑d

j=0 fj(X), where fd(X) ̸= 0.

Then fd(X1, . . . , Xn−1, 1) ̸= 0. Since K is infinite, there exist c1, . . . , cn−1 in K such

that fd(c1, . . . , cn−1, 1) ̸= 0. Set ti = xi− cixn, i = 1, . . . , n− 1, and tn = xn. We claim

that tn is integral over K[t1, . . . , tn−1]. Hence so are x1, . . . , xn.

Indeed, if fd(X) =
∑

k bkX
k1
1 · · ·Xkn

n , where k1 + · · · + kn = d for each k =

(k1, . . . , kn), then the coefficient of T d
n in the transformed polynomial f(T1+c1Tn, . . . , Tn−1+

cn−1Tn, Tn) = g(T1, . . . , Tn−1, Tn) is∑
bkc

k1
1 · · · c

kn−1

n−1 = fd(c1, . . . , cn−1, 1) ̸= 0

and degTn
(g) = d. Since (t1, . . . tn−1, Tn) is a zero of g(T1, . . . , Tn−1, Tn), tn is integral

over K[t1, . . . , tn−1].
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Now apply induction to K[t1, . . . , tn−1] and use transitivity of integral dependence

(Proposition 16.4) to conclude the proposition.

Remark 16.6: If K is a finite field, then a weaker version of Noether normalization

theorem asserts that F/K has a transcendence base t1, . . . , tr such that K[x] contains

K[t1, . . . , tr] and is integral over it. In this case we can not assure that the ti are linear

combinations in x1, . . . , xn with coefficients in K.

Noether’s normalization theorem has a geometric interpretation.

Definition 16.7: Finite morphisms. Let φ: X → Y be a morphism of affine varieties.

Let R and S be the coordinate rings of X an Y , respectively, and let φ∗: S → R be the

corresponding homomorphism. Then φ is finite if R in integral over φ∗(S).

Note that the restriction of a finite morphism φ: X → Y to a closed subvariety of

X is also finite. The morphism φ in each of Examples 8.6, 8.7, and 8.8 is finite but the

morphism φ′ in Example 8.8 is not. This is because K[T, (T − 1)−1] is not integral over

K[T 2 − 1, T (T 2 − 1)]. Indeed, the K-homomorphism of K[T ] which maps T onto 1 is

finite on the smaller ring but each extension of it to a place maps (T − 1)−1 to infinity.

Proposition 16.8 (Geometric form of Noether’s normalization theorem): Let X be

an affine variety such that tr.degKK(X) = r. Then there exists a finite epimorphism

π: X → Ar.

Lemma 16.9: (a) If a field F is integral over a ring R, then R is also a field.

(b) Let R ⊆ S be rings, m an ideal of R, and n an ideal of S that lies over m. If S is

integral over R and n is maximal, then so is m.

Proof: Statement (b) follows from (a), so we prove (a).

Any nonzero element x of R has an inverse x−1 in F . By assumption x satisfies

an equation

x−n + an−1x
−(n−1) + · · ·+ a0 = 0

with ai ∈ R, i = 0, . . . , n − 1. Therefore x−1 = −an−1 − an−2x − · · · − a0xn−1 ∈ R.

Conclude that R is a field.
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A subset S of a ring A is said to be multiplicative if it contains 1 and is closed

under multiplication. Consider the set of all quotients x/s with x ∈ A and s ∈ S.

Identify x/s with x′/s′ if there exists s′′ ∈ S such that s′′(s′x − sx′) = 0. Then define

addition and multiplication by the usual formulas to obtain a ring

S−1A = {x/s| x ∈ A, s ∈ S}

called the quotient ring of A with respect to S. In particular if A is an integral

domain, then S−1A is an integral domain that contains A with the same quotient field.

In general the map x 7→ x/1 is a homomorphism φ: A→ S−1A which is not necessarily

injective. The map a 7→ S−1a maps ideals of A onto ideals of S−1A. If p is a prime

ideal of A, then S−1p ⊂ S−1A if and only if p ∩ S = ∅. In this case S−1p is a prime

ideal of S−1A and φ−1(S−1p) = p.

Examples of multiplicative sets areA−p, for prime ideal p ofA and {1, f, f2, f3, . . .}

for nonzero f ∈ A. In the first case we have denoted the ring of quotients by Ap and in

the latter case by Af (or also by A[f−1] if A is an integral domain).

If A ⊆ B are rings, B is integral over A, and S is a multiplicative subset of A

(and therefore also of B), then S−1B is integral over S−1A.

Problem 16.10: Let A,B be rings. Find a multiplicative subset S of A×B such that

A ∼= S−1(A×B).

Proposition 16.11 (Going-up theorem of Cohen-Seidenberg): Let R ⊆ S be rings

such that S is integral over R. Suppose that a ⊆ p are ideals of R with p prime. If b is

an ideal of S such that b ∩R = a, then S has a prime ideal q that contains b such that

q ∩R = p.

Proof: Replace R and S by R/a and S/b, respectively, if necessary, to assume that

a, b = 0. Now take a maximal ideal n in Sp. As Sp is integral over Rp, Lemma 17.9

implies that n ∩ Rp is a maximal ideal of Rp. Hence n ∩ Rp = pRp. It follows that

q = n ∩ S is a prime ideal of S that lies over p.

The main properties of finite morphisms are the following:
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Proposition 16.12: Let φ: X → Y be a finite morphism of affine varieties. Then

(a) φ is a closed map, i.e., maps closed sets into closed sets,

(b) for each y ∈ Y , φ−1(y) is a finite set, and

(c) φ is surjective if and only if the corresponding map φ∗ of coordinate rings is

injective.

Proof of (a): Let R (resp., S) be the coordinate ring of X (resp., Y ). Every closed subset

of X has the form V (a), where a is an ideal of R. Let φ∗: S → R be the homomorphism

of rings corresponding to φ. Set b = (φ∗)−1(a). We prove that φ(V (a)) = V (b).

Indeed, let a ∈ V (a) and b = φ(a). If g ∈ b, then g ◦ φ ∈ a. Hence g(b) =

g(φ(a)) = 0. It follows that b ∈ V (b).

Conversely, let b ∈ V (b). The maximal ideal n of all functions of S that vanish at

b contains b. Obviously, φ∗(n) is a maximal ideal of φ∗(S) and n = (φ∗)−1(φ∗(n)). By

the going up theorem R has a maximal ideal m that contains a whose intersection with

φ∗(S) is φ∗(n). Thus (φ∗)−1(m) = n. The point a of X that corresponds to m belongs

to V (a) and φ(a) = b.

Proof of (b): Let x1, . . . , xm be the coordinate functions of X and let y1, . . . , yn be

the coordinate functions of Y . Take polynomials f1, . . . , fn ∈ R that define φ. Then

φ∗(S) = K[f1, . . . , fn] and if φ(a) = b for a ∈ X and b ∈ Y , then bj = fj(a),

j = 1, . . . , n.

The map xi 7→ ai, i = 1, . . . ,m, extends to a K-homomorphism τ : R → K. Its

restriction to φ∗(S) maps fj into fj(a) = bj . By assumption xi satisfies an equation

xki
i + ci,k−1x

ki−1
i + · · ·+ ci,0 = 0

with cij ∈ φ∗(S). Apply τ on this equation to find that ai satisfies a monic equation

over K of the same degree with coefficients which are determinded by b. So, there are

only finitely many possibilities for ai. Conclude that φ−1(b) is finite.

Proof of (c): Suppose first that φ(X) = Y . If g ∈ S and φ∗(g) = 0, then g(φ(a)) = 0

for each a ∈ X. Hence g(b) = 0 for each b ∈ Y . Conclude that g = 0 and φ is injective.
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Conversely, suppose that φ∗ is injective. Then φ∗ is an isomorphism of S onto

φ∗(S). Hence, in the notation of the proof of (b), for each b ∈ Y the K-homomorphism of

S which is defined by y 7→ b defines a homomorphism τ0: φ
∗(S)→ K such that τ0(fj) =

bj . Since R is integral over φ∗(S) this homomorphism extends to a homomorphism

τ : R → K. It maps x to a point a of X such that φ(a) = b. Conclude that φ is

surjective.
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17. The dimension theorem.

The dimension of a variety X is dim(X) = tr.degKK(X).

If U is an open nonempty set in X, then K(U) = K(X) and therefore dim(U) =

dim(X). For example dim(An) = n and dim(Pn) = n.

The dimension of a closed subset A of a variety X is the maximal dimension of

its components.

Lemma 17.1: The following statement on a variety X are equivalent:

(a) dim(X) = 0.

(b) K(X) = K.

(c) X is a point.

Proof of (a) implies (b): K is algebraically closed.

Proof of (b) implies (c): Let U be a nonempty affine subset of X. Then Γ(U,OX) ⊆ K

and therefore Γ(U,OX) does not separate the points of U . So U consists of one point,

say x. If x′ is another point of X, then {x′} is an open set which is disjoint from U .

Since X is irreducible, this cannot happen. Conclude that X = {x}.

Proof of (c) implies (a): Each element of K(X) is a constant.

Example 17.2: Hypersurface. Let f ∈ K[X1, . . . , Xn] be an irreducible polynomial

and let H = V (f) be the hypersurface defined by f in An. The coordinate functions

x1, . . . , xn on H satisfy the equation f(x) = 0 and therefore dimK(x) is at most n −

1. On the other hand, suppose for example, that Xn appears in f . Then x1, . . . , xn

are algebraically independent over K. Otherwise g(x1, . . . , xn−1) = 0 for some g ∈

K[X1, . . . , Xn−1] and therefore f divides g, a contradiction. Conclude that dim(X) =

trans.degKK(x) = n− 1.

Lemma 17.3: Let R be an integral domain containing K with quotient field F . Let p

be a prime of R and denote the quotient field of R/p by F . Then tr.degKF ≥ tr.degKF .

Equality holds if and only if p = 0 or both sides are infinity.

Proof: For each z ∈ R let z̄ = z + p be its residue class modulo p. Suppose that

tr.degKF = r < ∞. Choose a transcendence base x̄1, . . . , x̄r ∈ R/p for F/K. Lift x̄i
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to an element xi of R. If f(x) = 0 for some f ∈ K[X1, . . . , fr], then f(x̄) = 0 and

therefore f = 0. It follows that x1, . . . , xr are algebraically independent over K and

therefore tr.degKF ≥ r.

Now suppose that tr.degKF = r. Then x1, . . . , xr is a trancsendence base for

F/K. We prove that p = 0. Indeed, let z ∈ p. Take an equation

(1) an(x)z
n + · · ·+ a0(x) = 0

with ai ∈ K[X1, . . . , Xr] and with smallest degree n. Reduce it modulo p to get a0(x̄) =

0. Therefore a0(x) = 0 and we can divide (1) by z unless z = 0.

Proposition 17.4: Let Y be a proper closed subvariety of a varietyX. Then dim(Y ) <

dim(X).

Proof: Choose an affine open set U that intersects Y . Let R be the coordinate ring

of U , p the prime ideal corresponding to the closed set U ∩ Y . Then p ̸= 0. If

U ∩ Y = U , then U ⊆ Y . Hence, Y being both closed and dense in X is equal to X.

This contradiction to the assumption implies that U ∩Y ⊂ U and therefore p ̸= 0. Note

that R is finitely generated over K. Hence K(X), which is the quotient field of R, has a

finite transcendence degree over K. Also, K(Y ) is the quotient field of R/p. Conclude

from Lemma 17.3 that dim(Y ) < dim(X).

In the situation of this Proposition codim(Y,X) = dim(X)− dim(Y ) is called the

codimension of Y in X. This is half of what we want so that our definition gives a

good dimension function. The other half is that is does not go down too much.

Theorem 17.4 (The dimension theorem): Let X be a variety, U ⊆ X open, g ∈

Γ(U,OX), Z an irreducible component of H = {x ∈ U | g(x) = 0}. If g ̸= 0, then

dim(Z) = dim(X)− 1.

Proof: In each of the following parts of the proof we reduce the Theorem to a simpler

case. Eventually we reduce it to Example 17.2.

Part A: Reduction to the affine case. Let U0 ⊆ U be an open affine such that

U0 ∩ Z ̸= ∅. Then g does not vanish on U0 (otherwise it would vanish on U). Hence,
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the restriction g0 of g to U0 is a nonzero element of Γ(U0,OU0). Moreover, U0 ∩Z is an

irreducible component of U0 ∩H = {x ∈ U0| g0(x) = 0}. Indeed, if V0 is a closed subset

U0 ∩H that contains U0 ∩ Z, then Z ⊆ V and therefore the closure V of V0 in H is an

irreducible closed subset of H that contains Z. Since Z is an irreducible component of

H, V = Z. Hence V0 = U0 ∩ Z.

Finally observe that as U0∩Z is open in Z and nonempty it has the same dimension

as Z. Also, dim(U0) = dim(X). Hence, replacing X by U0, U by U0, g by g0, H by

U0 ∩H, and Z by U0 ∩ Z, if necessary, we may assume that X = U is affine. Let R be

its coordinate ring.

Part B: Reduction to the case where H is irreducible. Let H = Z ∪ Z1 ∪ · · · ∪ Zk

be the decomposition of H into irreducible components. In particular Z ̸⊆ Z1∪ · · · ∪Zk

(Lemma 4.5). Therefore, there exists h ∈ R which vanish on each Zi but not on Z.

Thus Xh ∩ Zi = ∅ for i = 1, . . . , k but Xh ∩ Z ̸= ∅.

Let g1 be the restriction of g toXh. ThenXh∩H = {x ∈ Xh| g1(x) = 0} = Xh∩Z

is irreducible. So, replacing X by Xh, g by g1, H by Xh∩H, and Z by Hh ∩Z, we may

further assume that H = Z is irreducible.

Part C: Reduction to the case where X = Ar. By Noether’s normalization theorem

K(X)/K has a transcendence base t1, . . . , tr such that R is integral over R0 = K[t].

Let F = K(X), F0 = K(t), and f = NormF/F0
(g). Then f , as a product of conjugates

of g over F0, is integral over R0. Since the latter ring is a unique factorization domain

it is integrally closed. Hence f ∈ R0.

We claim that f ∈ Rg. Indeed, let gk + ak−1g
k−1 + · · · + a0 = 0 be an ir-

reducible equation for g over F0 with ai ∈ R. Then a0 = (−1)kNormF0(g)/F0
g and

akl0 = (−1)klNormF/F0
g = ±f , where l = [F : F0(g)]. As a0 ∈ Rg, we have f ∈ Rg.

Hence,
√
R0f ⊆

√
Rg.

Conversely, if h ∈
√
Rg ∩R0, then h

s ∈ Rg. Taking norms we find that hs[F :F0] ∈

R0f . Whence h ∈
√
R0f . Conclude that

√
Rg ∩R0 =

√
R0f .

But
√
Rg = I(H) is a prime ideal of R. Hence,

√
R0f is a prime ideal of R0.

Thus, H0 = {a ∈ Ar| f(a) = 0} is irreducible.
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In particular R/
√
Rg is the coordinate ring of H and R0/

√
R0f is the coordinate

ring of H0. Since the former ring is integral over the latter, the quotient field of the

former ring is algebraic over the quotient ring of the latter. In particular they have the

same transcendence degree overK. Thus dim(H) = dim(H0). Also, dim(X) = dim(Ar).

So, without loss, we may assume that X = Ar and H = V (f) is irreducible.

Part D: Conclusion of the proof. Although f need not be irreducible it is a power

of an irreducible polynomial f0. Replacing f by f0 does not change H. Hence, we may

assume that f is irreducible. But then it follows form Example 17.2 that dim(H) = r−1.

Conclude that our original Z satisfies dim(Z) = dim(X)− 1.

Exercise 17.6 (Krull’s principal ideal theorem): Let R be finitely generated integral

domain over K with quotient field F , f ∈ R, and p a minimal ideal among the prime

ideals that contain Rf . Denote the quotient field of R/p by F . If f ̸= 0, then

tr.degKF = tr.degKF − 1. Hint: Translate algebraic terms to geometric ones and

use the dimension theorem.
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18. Applications of the dimension theorem.

Let Z be a closed subset of a variety X. Then Z has pure dimension r is each of its

components has dimension r (similarly for pure codimension r).

The conclusion of the dimension theorem may be stated: V (g) has pure codimen-

sion 1, for any non-zero g ∈ Γ(X,OX).

The theorem has an obvious converse: Suppose Z is an irreducible closed subset

of a variety X of codimension 1. Then for each open set U such that Z ∩U ̸= ∅ and for

each nonzero f ∈ Γ(U,OX) vanishing on Z, Z ∩U is a component of V (f). Indeed, let

W be a component of V (f) containing Z ∩ U . Then, by the dimension theorem,

dim(X)− 1 = dim(Z ∩ U) ≤ dim(W ) = dim(X)− 1.

Hence dim(Z∩U) = dim(W ). Since both Z∩U and W are irreducible Proposition 17.4

implies that Z ∩ U =W . Thus Z ∩ U is a component of V (f).

Proposition 18.1: Let Z be a maximal proper closed irreducible subset of a variety

X. Then dim(Z) = dim(X)− 1.

Proof: Choose an open affine subset U ⊆ X that intersects Z. Then U ∩Z is a maximal

proper closed irreducible subset of U . Indeed, if V is a proper closed irreducible subset

of U that contains V , then its closure V in X is closed, irreducible and contains Z.

Also, U ∩ V = V . Hence V ⊂ X and therefore V = Z and V = U ∩ Z.

Take now nonzero f ∈ Γ(U,OX) which vanishes on U ∩ Z. Then U ∩ Z is a

component of V (f) and therefore, by the dimension theorem, dim(Z) = dim(Z ∩ U) =

dim(X)− 1.

Proposition 18.2 (Topological characterization of dimension): Suppose ∅ ⊂ Z0 ⊂

Z1 ⊂ · · · ⊂ Zr = Z is a maximal chain of closed irreducible subsets of X. Then

dim(X) = r.

Proof: Use induction on r and Proposition 18.1.

Proposition 18.3: Let X be a variety and let Z be a component of V (f1, . . . , fr),

where f1, . . . , fr ∈ Γ(X,OX). Then dim(Z) ≥ dim(X)− r.
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Proof: Use induction on r. Note that Z is an irreducible subset of V (f1, . . . , fr−1).

So, it is contained in some component Z ′ of V (f1, . . . , fr−1). By induction, dim(Z ′) ≥

dim(X) − (r − 1). Since Z ⊆ Z ′ ∩ V (fr) ⊆ V (f1, . . . , fr) and Z is a component of

V (f1, . . . , fr), Z is also a component of Z ′ ∩ V (fr). If fr vanishes on Z ′, then Z ⊆

Z ′ ⊆ V (f1, . . . , fr) and therefore Z ′ = Z. In this case dim(Z) = dim(Z ′) > dim(X)− r.

Otherwise, by the dimension theorem, dim(Z) = dim(Z ′)− 1 ≥ dim(X)− r.

Of course, equality need not hold in the above result: e.g, take f1, . . . , fr, r > 1.

Hence, by the dimension theorem, dim(Z) component of V (f).

Lemma 18.4: Let p1, . . . , pm be prime ideals and let a be an ideal of a ring R. If a ̸⊆ pi

for i = 1, . . . ,m, then a ̸⊆ p1 ∪ · · · ∪ pm.

Proof: Omitting those pi which are contained in some other pj , we may suppose that

there are no inclusion relations between the pi’s. We use induction on m.

Since pm is a prime and does not contain a nor pi for i = 1, . . . ,m − 1, it does

not contain ap1 · · · pm−1. Choose x ∈ ap1 · · · pm−1 − pm. By induction hypothesis there

exists an element

s ∈ S = a− (p1 ∪ · · · ∪ pm−1).

If s /∈ pm, we are done. So assume s ∈ pm. But then s + x ∈ a, s + x ∼= s ̸∼= 0 mod pi

for i = 1, . . . ,m− 1, and s+ x ∼= x ̸∼= 0 mod pm. So x+ s ∈ a− (p1 ∪ · · · ∪ pm),

We rephrase the Lemma in geometric terms:

Corollary 18.5: Let X be an affine variety with coordinate ring R. Suppose that

Y1, . . . , Ym ⊆ X are irreducible closed sets and Z ⊆ X is a closed set. If Yi ̸⊆ Z

for i = 1, . . . ,m, then there exists f ∈ R which does not vanish identically on Yi,

i = 1, . . . ,m but does vanish on Z.

Proof: By assumption I(Yi) is a prime ideal of R which does not contain I(Z), i =

1, . . . ,m. Hence, by Lemma 18.4 there exists f ∈ I(Z) which belongs to none of the

I(Yi).

Proposition 18.6: Let X be an affine variety, Z a closed irreducible subset of codi-

mension r. Then there exist f1, . . . , fr in R = Γ(X,OX) such that Z is a component of
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V (f1, . . . , fr) and V (f1, . . . , fr) is of pure codimension r.

Proof: By Proposition 18.2 there exists a chain Z = Zr ⊂ · · · ⊂ Z2 ⊂ Z1 ⊂ X, of

irreducible sets with codim(Zs) = s, s = 1, . . . , r.

If r = 1, take f1 ∈ R, f1 ̸= 0 which vanish on Z1. By the dimension theorem

and its converse each component of V (f1) has codimension 1, and Z1 is a component

of V (f1).

Now say f1, . . . , fr−1 have been chosen such that each of the components, Y1, . . . , Yl,

of V (f1, . . . , fr−1) have codimension r − 1 and Zr−1 is one of them, say, Zr−1 = Y1.

In particular the dimension of Yi is greater than that of Zr and therefore Yi ̸⊆ Zr for

i = 1, . . . , l. By Corollary 18.5, there exists fr ∈ R that vanishes on Xr but not on any

of the Yi’s.

Let Y be a component of V (f1, . . . , fr). From V (f1, . . . , fr) = (Y1 ∩V (fr))∪ · · · ∪

(Yl∩V (fr)) deduce that Y is a component of Yi∩V (fr) for some i between 1 and l. Since

fr is not zero on Yi, we have dim(Y ) = dim(Yi)− 1 and therefore codim(Y ) = r. Also,

Zr ⊆ V (f1, . . . , fr). Since Zs is irreducible it is contained in one of the components of

V (f1, . . . , fr). Both Z and this component have the same dimension. Conclude from

Proposition 17.4 that they coincide.

The Krull dimension of a ring R is the the maximal number r for which R has

an ascending chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pr

(If such a number does not exist, then dim(R) =∞). For example, a field has dimension

0, Z has dimension 1, and K[X1, . . . , Xn] has dimension n.

Recall that in Section 10 we have attached a local ring OZ,X to every irreducible

closed subset Z of every variety.

Proposition 18.7: Let Z be an irreducible closed subset of a variety X. Then the

Krull dimension of Z is codim(Z) = dim(X)− dim(Z).

Proof: Let r = codim(Z). Assume without loss thatX is affine. Let R be the coordinate

ring of X and let p = I(Z) be the prime ideal corresponding to Z. By Proposition 18.2
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each maximal descending chain of irreducible subsets of X ending in Z has length r:

X = Z0 ⊃ Z1 ⊃ · · · ⊃ Zr = Z.

So, for each maximal ascending chain of prime ideals of R ending in p has length r.

Hence, each maximal ascending chain of OZ,X = Rp, is of length r. Conclude that the

Krull dimension of this local ring is r.

Suppose Z ⊆ X is irreducible and of codimension 1. A natural question to ask is

whether, for all z ∈ Z, there is some neighborhood U of z in X and some function f ∈

Γ(U,OX) such that Z ∩U is not just a component of V (f), but actually equal to V (f).

More generally, if Z ⊆ X is a closed subset of pure codimension r, one may ask whether,

for all z ∈ Z, there is a neighborhood U of z and functions f1, . . . , fr ∈ Γ(U,OX) such

that

Z ∩ U = V (f1, . . . , fr).

This is unfortunately not always true even in the special case where Z is irreducible

of codimension 1. A closed set Z with this property is often refereed to as a local

set-theoretic complete intersection, and it has many other special properties.

There is one case where we can say something however:

Proposition 18.8: Let X be an affine variety with coordinate ring R. Suppose that

R is a unique factorization domain (e.g. X = An). Then every closed subset Z ⊆ X of

pure codimension 1 equals V (f) for some f ∈ R.

Proof: Note first that every minimal prime ideal p of R is principal. Indeed, let f ∈ p,

f ̸= 0. Since p is prime it contains one of the irreducible factors p of f . But then Rf ⊆ p

and by minimality p = Rf .

Now let Z = Z1 ∪ · · · ∪Zm be the factorization of Z into irreducible components.

Then I(Z) = I(Z1) ∩ · · · ∩ I(Zm) is the intersection of minimal prime ideals. By the

first paragraph of the proof, there exists fi ∈ R such that I(Zi) = Rfi, i = 1, . . . ,m.

Then I(Z) = Rf , with f = f1 · · · fm and therefore Z = V (f).

Proposition 18.9: dim(X × Y ) = dim(X) + dim(Y ).
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Proof: Replace X and Y by affine open sets, if necessary, to assume that X and Y are

affine with coordinate rings R and S, respectively. The proposition follows then from

Proposition 13.7.
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19. Application of the dimension theorem to projective varieties.

The results and methods of the last two sections all have projective formulations which

give some global as well as some local information:

Theorem 19.1 (The dimension theorem for projective varieties): Let X ⊆ Pn be a

projective variety of positive dimension and let P = I(X) ⊆ K[X0, . . . , Xn] be the

corresponding prime ideal. If f ∈ K[X0, . . . , Xn] is homogeneous and f /∈ P , then

X ∩ V (f) is nonempty and of pure codimension 1.

Proof: The restriction of f to X defines a nonzero element of Γ(X,OX). So, by the

dimension theorem every component of X ∩ V (f) has codimension 1. So, we have only

to prove that X ∩ V (f) is nonempty.

Let X∗ be the cone over X. By Problem 15.7, it has an open subset which is

isomorpic to the direct product of A1 − {0} and an open subset of X. Hence, by

Proposition 18.9, dim(X∗) = dim(X) + 1 ≥ 2.

Let V ∗(f) be the locus of f = 0 in An+1. Since (0, 0, . . . , 0) ∈ X∗ ∩ V ∗(f),

the set X∗ ∩ V ∗(f) is nonempty. By the dimension theorem it has a component of

codimension 1, hence of dimension at least 1. Choose a nonzero point (x0, x1, . . . , xn)

in this component. It gives a point of X ∩ V (f).

Corollary 19.2: Let X ⊆ Pn be a projective variety of positive dimension. If

f1, . . . , fr ∈ K[X0, . . . , Xn] and nonzero homogeneous polynomials, then all compo-

nents of X ∩ V (f1, . . . , fr) have codimension at most r in X. If dim(X) ≥ r, then

X ∩ V (f1, . . . , fr) is nonempty.

Corollary 19.3: A system of homogeneous equations

fi(X0, . . . , Xn) = 0, i = 1, . . . , n,

always has a nontrivial solution in K.

Corollary 19.4: Suppose that Y is a closed subvariety of a variety X ⊆ Pn of codi-

mension r. Then there exist homogeneous nonzero polynomials f1, . . . , fr ∈ K[X0, . . . , Xn]

such that X ∩ V (f1, . . . , fr) is of pure codimension r and has Y as a component.
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If s = dim(X), then there exist homomogeneous nonzero polynomials f1, . . . , fs+1 ∈

K[X0, . . . , Xn] such that X ∩ V (f1, . . . , fs+1) = ∅.

Proof: To prove the first part of the Corollary follow exactly the inductive proof of

Proposition 18.6, using K[X0, . . . , Xn] instead of the affine coordinate ring.

For the second part, we already have f1, . . . , fs such that X ∩ V (f1, . . . , fs) is of

pure dimesnion zero, i.e., is a finite set of points. Then let fs+1 be a homogeneous

polynomial that vanish at none of these points.

An interesting Corollary of these results is the following global theorem:

Proposition 19.5: Let φ: Pm → Pn be a morphism such that W = φ(Pm) is closed

(actually this is always the case as we will see in Section 21). Then either W is a single

point or dim(W ) = m.

Proof: Let r = dim(W ) and assume that 1 ≤ r ≤ m − 1. By Proposition 19.3, there

exist nonzero homogeneous polynomials

f1, . . . , fr+1 ∈ K[X0, . . . , Xn]

such that W ∩ V (f1, . . . , fr+1) = ∅. As r ≥ 1, Corollary 19.2 implies that W ∩ V (fi) ̸=

∅. Hence Zi = φ−1(V (fi)) ̸= ∅. Then Zi is locally defined by the vanishing of one

function (since this is true on sufficiently small affine open subsets of Pm). Hence,

by the dimension theorem, either Zi = Pm or Zi is of pure codimension 1. In latter

case Zi is a component of V (g) for some homogeneous polynomial g ∈ K[X0, . . . , Xm]

(Proposition 19.3), hence Zi = V (gi), for some irreducible factor of g. It follows that

V (g1, . . . , gr+1) = ∅. As r + 1 ≤ m, this contradicts Proposition 19.2. Conclude that

either r = 0 or r = m.
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20. The fibres of a morphism.

Let φ: X → Y be a morphism of varieties. The purpose of this section is to study the

fibres of φ, i.e., those closed subsets of X of the form φ−1(y), y ∈ Y .

We say that a morphism φ: X → Y is dominating if its image is dense in Y , i.e.,

Y = φ(X).

Proposition 20.1: For a morphism φ: X → Y of varieties let Z = φ(X). Then Z

is irreducible, the restricted morphism φ0: X → Z is dominating and φ∗
0 induces a

K-embedding

(1) φ∗
0: K(Z)→ K(X).

In particular dim(Z) ≤ dim(X).

Proof: Suppose Z = W1 ∪ W2, where W1 and W2 are closed subsets. Then X =

φ−1(W1) ∪ φ−1(W2). Since X is irreducible X = φ−1(W1) or X = φ−1(W1). Hence

φ(X) ⊆ W1 or φ(X) ⊆ W2. Since W1 and W2 are closed this implies Z ⊆ W1 or

Z ⊆W2. It follows that either Z =W1 or Z =W2. Conclude that Z is irreducible.

By definition, φ0 is dominating. If U ⊆ Z is open and nonempty, then U ∩φ(X) ̸=

∅ and therefore φ−1(U) is nonempty and open in X. The induced homomorphism φ∗
0

maps Γ(U,OZ) injectively into Γ(φ−1(U),OX) and therefore into K(X). This maps is

compatible with restriction and therefore induces an embedding

φ∗
0: lim−→

Γ(U,OZ)→ K(X)

where U ranges over all open subsets of Z and V ranges over all open subsets of X. As

the direct limit is K(Z), this gives the embedding (1).

This reduces the study of fibres of an arbitrary morphism to the case of dominating

morphisms. Since a finite morphism is a closed map (Proposition 16.12) it is dominating

if and only if it is surjective.

Theorem 20.2: Let φ: X → Y be a dominating morphism of varieties and let r =

dim(X)−dim(Y ). Consider a closed irreducible subsetW of Y and let Z be a component
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of φ−1(W ) that dominates W . Then

dim(Z) ≥ dim(W ) + r,

i.e.,

(2) dim(X)− dim(Z) ≤ dim(Y )− dim(W ).

Proof: Take an affine open subset U of Y that intersects W . Then replace Y by U , X

by φ−1(U), W by W ∩U and Z by Z ∩φ−1(U), if necessary, to assume that Y is affine.

Let s = dim(Y ) − dim(W ). By Proposition 18.6, there are g1, . . . , gs ∈ Γ(Y,OY ) such

that W is a component of V (g1, . . . , gs). Consider fi = φ∗(gi) = gi ◦ φ ∈ Γ(X,OX).

Then Z ⊆ φ−1(W ) ⊆ φ−1(V (g1, . . . , gs)) = V (f1, . . . , fs).

We prove that Z is actually a component of V (f1, . . . , fs). Indeed, take a compo-

nent Z ′ of V (f1, . . . , fs) that contains Z. ThenW = φ(Z) ⊆ φ(Z ′) ⊆ φ(V (f1, . . . , fs)) ⊆

V (g1, . . . , gs) and φ(Z ′) is irreducible (Proposition 20.1). As W is also a component of

V (g1, . . . , gs) we have W = φ(Z ′) ⊇ φ(Z ′). Hence Z ⊆ Z ′ ⊆ φ−1(W ). Since Z is a

component of φ−1(W ) we have Z = Z ′. By Proposition 18.3, dim(Z) ≥ dim(X) − s.

This is inequality (2).

Corollary 20.3: If Z is a component of φ−1(y) for some y ∈ Y , then dim(Z) ≥ r.

The next theorem shows that equality in (2) holds “almost everywhere”.

Theorem 20.4: Let φ: X → Y be a dominating morphism of varieties and let r =

dim(X)− dim(Y ). Then there exists a nonempty open set U ⊆ Y such that

(a) U ⊆ φ(X) and

(b) for each irreducible closed subset W ⊆ Y such that W ∩ U ̸= ∅, and for each

component Z of φ−1(W ) that dominates W

(3) dim(Z) = dim(W ) + r.

Proof: As in Theorem 20.3, we may as well replace Y by a nonempty open affine subset;

therefore, assume that Y is affine. Moreover, we can also reduce the proof to the case
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where X is affine. In fact, cover X by affine open sets Xi and let φi: Xi → Y be the

restriction of φ. Then φ(Xi) ⊆ φ(Xi). Hence, Y = φ(X) = φ(Xi) = φ(Xi) ⊆ Y , and

therefore φ(Xi) = Y , which means that φi is dominating. Let Ui ∩ Y satisfy (a) and

(b) of the theorem for φi. Let U =
∩
Ui. If Z is as above, then for each i Z ∩Xi is a

component of φ−1(W ) ∩ Ui of the same dimension as Z and for at least one i, Z ∩Xi

dominates W . Hence, dim(Z) = dim(Z ∩Xi) ≥ dim(W ) + r. So with this U , (a) and

(b) are correct for φ itself.

Now assume X and Y are affine, and let R and S be their coordinate rings. By

Proposition 20.1, φ∗ embeds E = K(Y ) in F = K(X) and S into R. So, identify E

with φ∗(E) if necessary to assume that E ⊆ F and S ⊆ R. Observe that RE is finitely

generated over E and F is its quotient field. By Noether’s normalization theorem F/E

has a transcendence base t1, . . . , tr such that ti ∈ RE and RE is integral over E[t].

Since E is the quotient field of S and S ⊆ R each element of RE is a product of an

element of R and and an element of E. Replace each ti with the corresponding factor

in R to assume that ti ∈ R, i = 1, . . . , r.

Now consider the two rings S[t] ⊆ R. Each element x of R satisfies a monic

equation with coefficients in E[t]. These coefficients are themselves polynomials in t

with coefficients in E. Write each of the later coefficients as a quotient of two elements of

S. Let g be a common denominator of these coefficients. Then x is integral over S[g−1].

Apply this reasoning to a finite set of generators of R as an S-algebra to assume that

this is the case for all x ∈ R. Thus R[g−1] is integral over S[g−1, t].

Let U = Yg = {y ∈ Y | g(y) ̸= 0}. Then Γ(U,OY ) = S[g−1] and S[g−1, t] is the

coordinate ring of the affine variety U × Ar. Also φ−1(U) = Xg and Γ(φ−1(U), OX ) =

R[g−1]. The following diagram of ring inclusions

R ↪→ R[g−1]y y
S[t] ↪→ S[g−1, t]y y
S ↪→ S[g−1]
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induces a commutative diagram of morphisms of varieties:

φ−1(U) −→ Xyπ
U × AryprU

yφ

U −→ Y,

where the horizontal maps are inclusions, and π is finite and surjective. In particular

U ⊆ φ(X) which is (a).

To show (b), let W be an irreducible closed subset that intersects U , and let Z be

a component of φ−1(W ) that dominates W . By Theorem 20.2, dim(Z) ≥ dim(W ) + r.

So, we have to prove the other inequality.

As φ(Z) = W , we have φ(Z) ∩ U ̸= ∅ and hence Z0 = Z ∩ φ−1(U) ̸= ∅. Let

W0 =W∩U . Then φ(Z0) ⊆W0, hence π(Z0) ⊆W0×Ar and therefore π(Z0) ⊆W0×Ar.

Also, the restriction π′: Z0 → π(Z0) of π to Z0 is still finite and dominating. Hence it

induces an inclusion of K(π(Z0)) in K(Z0) such that the latter field is algebraic over

the former one. It follows that

dim(Z) = dim(Z0) = dim(π(Z0)) ≤ dim(W0 × Ar) = dim(W ) + r.

This concludes the proof of the theorem.

Remark 20.5: There is a stronger version of Theorem 20.4 in which the condition on

Z in (b) to diminate W is relaxed to Z ∩ φ−1(U) ̸= ∅. In this version U should be

chosen to be normal, i.e., the local ring of each point of U must be integrally closed.

Then S[g−1, t] is an integrally closed domain and the ring extension R/S[g−1, t] satisfies

the, so called, “going down theorem”. It follows that Z ∩ φ−1(U) dominates W ∩ U if

the former set is nonempty. Then one proceeds as before.

Corollary 20.6: Let φ: X → Y be a dominating morphism of varieties and let

r = dim(X)−dim(Y ). Then there exists a nonempty open set U ⊆ Y such that φ−1(y)

is nonempty and each component of this set has dimension r.

Theorems 20.2 and 20.4 give a good qualitative picture of the structure of a

morphism. We can work this out a bit by some simple inductions.
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Definition 20.7: Constructible sets. Let X be a variety. A subset A of X is con-

structible if it is a finite union of locally closed subsets of X:

A =
m∪
i=1

(Ui ∩ Ci), Ui open, Ci closed.

Use the distributive law to find U ′
j open and C ′

j closed such that

A =
∩
j

(U ′
i ∪ C ′

j).

Hence X − A is constructible. Also, the union and intersection of finitely many con-

structible sets are constructible.

Thus the family of constructible subsets of X form a Boolean algebra. In fact,

they are the smallest Boolean algebra containing all open sets.

Exercise 20.8: Prove that the constructible set
(
A2 − V (Y )

)
∪ {(0, 0)} is not locally

closed.

Corollary 20.9 (Chevalley): Let φ: X → Y be a morphism of varieties. Then the

image of φ is a constructible set in Y . More generally, φ maps constructible sets in X

to constructible sets in Y .

Proof: The second statement follows immediately from the first. To prove the first, use

induction on dim(Y ). There are two cases.

If φ is not dominating, let Z = φ(X). Then φ(X) ⊆ Z and dim(Z) < dim(Y ).

By induction hypotheses, φ(X) is constructible in Z and therefore also in Y .

If φ is dominating Y has a nonempty open subset U that contains φ(X). Let

Y −U =W1∪· · ·∪Wm be the decomposition of Y −U into irreducible components. For

each i let Zi1, . . . , Zi,ki be the components of φ−1(Zi). Then φ(X) = U ∪ (φ(X)−U) =

U∪(φ(φ−1(Y −U))) = U∪(φ(φ−1(Z1∪· · ·∪Zk))) = U∪(φ(
∪

ij Zij))) = U∪
∪

ij φ(Zij).

For each i and j let φij : Zij → Wi be the restriction of φ. Since dim(Wi) < dim(Y )

induction shows that φ(Zij) is constructible in Y . Hence, so is φ(X).

Corollary 20.10 (Upper simicontinuity of dimension): Let φ: X → Y be a morphism

of varieties. For each x ∈ X let

e(x) = {max(dim(Z))| Z is a component of φ−1(φ(x)) containing x}.
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Then e is upper semicontinuous, i.e., for all integers

Sn(φ) = {x ∈ X| e(x) ≥ n}

= {x ∈ X|φ−1(φ(x)) has a component Z containing x of dimension ≥ n}

is closed

Proof: Again, make an induction on dim(Y ) and so assume that φ is dominating. Let

r = dim(X) − dim(Y ). Choose, by Corollary 20.6, a nonempty open subset U of Y

which is contained in φ(X) such that if x ∈ X and φ(x) ∈ U , then the dimension of

each component of φ−1(φ(x)) is r.

First of all, if n ≤ r, then, by Corollary 20.3, for each x ∈ X the dimension of

each component of φ−1(φ(x)) is at least n. So, Sn(φ) = X is closed.

Secondly, if n > r, then, by the choice of U , Sn(φ) ⊆ X−φ−1(U). LetW1, . . . ,Wm

be the components of Y −U . For each i let Zi1, . . . , Zi,ki be the components of φ−1(Wi),

and let φij : Zij →Wi be the restriction of φ to Zij . Since dim(Wi) < dim(Y ) the set

Sn(φij) = {x ∈ Zij | φ−1(φ(x))∩Zij has a component of dimension ≥ n that contains x}

is closed. To conclude the proof it suffice therefore to prove that

Sn(φ) =
∪
ij

Sn(φij).

Obviously, the right hand side is contained in the left hand side. So let x ∈ Sn(φ). Then

φ−1(φ(x)) has a component Z that contains x of dimension at least n. We claim that

φ(Z) ⊆ Y −U . Indeed, if z ∈ Z and φ(z) ∈ U , then φ(z) = φ(x) and Z is a component

of φ−1(φ(z)), and therefore r < n ≤ dim(Z) = r, a contradiction. Hence,

Z ⊆ φ−1(φ(Z)) ⊆ φ−1(Y − U) = φ−1(W1) ∪ · · · ∪ φ−1(Wm) =
∪
Zij .

As Z is irreducible there are i, j such that Z ⊆ Zij . Let Z ′′ be a component of

φ−1(φ(x)) ∩ Zij that contains Z. This component contains x and of dimension at

least n. Conclude that x ∈ Sn(φij).
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Definition 20.11: Birational equivalence. A morphism φ: X → Y of varieties is

birational if it is dominating and the induced map

φ∗: K(Y )→ K(X)

is an isomorphism.

Theorem 20.12: Let φ: X → Y be a birational morphism of varieties. Then Y has a

nonempty open subset U such that φ restricts to an isomorphism from φ−1(U) to U .

Proof: We first reduce the Theorem to the case where both X and Y are affine.

Choose by Theorem 20.4 an open subset V of Y which is contained in φ(X). It

is the union of affine open sets. So assume that V is affine. Now replace X by φ−1(V )

and Y by V , if necessary, to assume that Y is affine with coordinate ring, say, S.

Next let U ⊆ X be an open affine set with coordinate ring R. The dimension

of X − U is less than dim(X). Hence, the dimension of W = φ(X − U) is less than

dim(Y ) (which is equal to dim(X)). In particular W ⊂ Y . Choose nonzero g ∈ S that

vanish on W . Then φ−1(Yg) ⊆ U . Indeed, if x ∈ φ−1(Yg), then g(φ(x)) ̸= 0. Hence

φ(x) /∈W , therefore φ(x) /∈ φ(X −U). Conclude that x ∈ U . In fact, for f = g ◦φ ∈ R

we have φ−1(Yg) = Uf . So, replace X by Uf and Y by Yg to assume that both X and

Y are affine.

In this case φ∗: S → R is an embedding (since φ∗: K(Y ) → K(X) is) which

we identify with inclusion. Let x1, . . . , xn be a set of generators of R over K. Write

xi = yi/h with y1, . . . , yn, h ∈ S. Then S[h−1] = R[h−1]. Therefore φ: Xh → Yh is an

isomorphism.

Exercise 20.13: Two varieties X and Y are said to be birationally equivalent

if K(X) = K(Y ). Use the primitive element theorem to prove that every variety is

birationally equivalent to a hypersurface in some affine space Ar.

The theory developed in this section cries out for examples. Theorem 20.4 and its

corollaries are illustrated in the following:

Example 20.14: Consider the morphism φ: A2 → A2 defined by φ(x, y) = (xy, y).
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(a) The image of φ is U ∩ {(0, 0)} where U = (A2)y = A2 −{(x, 0)| x ∈ A1}. This set

is not locally closed (Exercise 20.8). It is an affine variety with coordinate ring

K[X,Y, Y −1].

(b) The map φ is birational. Its restriction to U is an isomorphism onto U whose

inverse φ′: U → U is defined by φ′(u, v) = (uv−1, v). In particular for each point

(x, y) ∈ U , the fibre φ−1(φ(x, y)) consists of one point.

(c) On the other hand for each x ∈ A1 the fibre φ−1(φ(x, 0)) = φ−1(0, 0) is the whole

line of points (x′, 0).

(d) Thus, in the notation of 20.10, S0(φ) = A2, S1(φ) = {(x, 0)| x ∈ A1}, and

S2(φ) = ∅.

Example 20.15: To illustrate Theorem 20.12, reconsider the finite birational morphism

φ: A1 → C

defined in Example 8.7 by φ(t) = (t2, t3) where C is the plane X3 = Y 2. The open

subset U = C − {(0, 0)} = CT 2 of C is the an affine variety with coordinate ring

K[T 2, T 3, T−2]. Also, φ−1(U) = A1 − {0} is an affine variety with coordinate ring

K[T, T−1]. As the two ring coincide the restriction of φ to φ−1(U) is an isomorphism

onto U whose inverse is given by φ(x, y) = y/x. The restriction of φ to this open subset

is an isomorphism onto U

Next reconsider the finite birational morphism

φ: A1 → D

defined in Example 8.8 by φ(t) = (t2 − 1, t(t2 − 1)). Here D is the elliptic curve

Y 2 = X2(X + 1) with coordinate ring K[x, y] = K[X,Y ]/⟨Y 2 −X2(X + 1)⟩. Consider

the open subset Dx = D−{(0, 0)} of D. We have φ−1(Dx) = A1−{1,−1} and φ maps

A1 − {1,−1} bijectively onto Dx. To prove that the restriction of φ to A−1 − {1,−1}

is an isomorphism define a morphism ψ from Dx to A1 −{1,−1} by ψ(x, y) = yx−1. It

is the inverse morphism to the restriction of φ to A1 − {1,−1}.
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21. Complete varieties.

An affine variety can be embedded as an open dense set in a projective variety by a

birational morphism. Can a projective variety be embedded birationally in anything

even bigger? The answer is no; there is a type of variety, called “complete”, which in

our algebraic theory plays the same role as compact Hausdorff spaces do in the theory

of topological spaces. Namely, if a subset X of a Hausdorff topological space Y is a

compact, then X is closed in Y and therefore if it X is dense in Y , then X = Y . Thus

complete varieties are “maximal” and projective varieties turn out to be complete.

Definition 21.1: A variety X is Complete if for each variety Y , the projection mor-

phism

prY : X × Y → Y

is a closed map.

The analogous property in the category of separable topological spaces character-

izes compact spaces X.

Indeed, suppose that X is a compact, Y is arbitrary, and Z is a closed subset of

X × Y . Let π = prY . Suppose that y ∈ π(Z). Then y is the limit of a sequence {yi}

of elements of π(Z). For each i there exist xi ∈ X such that (xi, yi) ∈ Z. Replace {xi}

by a subsequence, if necessary, to assume that it converges to an element x of X. Then

lim
i→∞

(xi, yi) = (x, y). Since Z is closed (x, y) ∈ Z and therefore y ∈ π(Z). Conclude

that π(Z) is closed.

Conversely, suppose that a separable topological space X satisfies the above condi-

tion. To prove that X is compact we have to show that every sequence {xn} of elements

of X contains a converging subsequence. To this end, let Y be the topological space

{1, 2, 3, . . . ,∞}, whose open sets are either finite subsets of N or cofinite sets that con-

tain ∞. Denote the closure of {(xn, n)| n ∈ N} by Z. By assumption π(Z) is closed in

Y . Since π(Z) contains N it contains∞. Thus, there exists x ∈ X such that (x,∞) ∈ Z.

It follows that {xn} has a subsequence {xni} such that {(xni , ni)} converges to (x,∞).

Conclude that {xni} converges to x.

The definition of complete variety is very nice from a category-theoretic point of
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view. It gives the elementary properties of completeness very easily:

Proposition 21.2: (a) Let φ: X → Y be a morphism of varieties with X complete.

Then φ(X) is closed in Y and is complete.

(b) If X and Y are complete, then X × Y is complete.

(c) If X is complete and Y ⊆ X is a closed subvariety, then Y is complete.

(d) An affine variety X is complete only if dim(X) = 0, i.e., X consists of a a single

point.

Proof of (a): As Y is a variety, the graph of φ is a closed subset of X × Y (Remark

15.3(d)). Since φ(X) is the projection of the graph on Y it is closed.

Let now Z be a variety andW a closed subset of φ(X)×Z. To show that prZ(W )

is closed decompose prZ : X × Z → Z as prZ ◦ ψ, where ψ = (φ, idZ): X × Z → Y × Z.

Then V = ψ−1(W ) is a closed subset of X×Z and prZ(W ) = prZ(V ) is therefore closed

in Z.

Proof of (b): Let Z be an arbitrary variety and let W be closed subset of X × Y × Z.

Then the projection of W onto Z is the projection onto Z of the projection onto Y ×Z

of W . Conclude that all these projections are closed sets.

Proof of (c): Clear.

Proof of (d): Suppose that X = V (f1, . . . , fm) ⊆ An is an affine variety of pos-

itive dimension defined by fi ∈ K[X1, . . . , Xn]. For each i let gi(X0, . . . , Xn) =

X
deg(fi)
0 fi(X1/X0, . . . , Xn/X0). Then X = V (g1, . . . , gm) ⊆ Pn. We claim that X0 /∈

⟨g1, . . . , gm⟩. Otherwise there exist polynomials hi such that X0 = h1g1 + . . .+ hmgm.

Substitute X0 = 1 to obtain 1 = h′1f1 + . . . + h′mfm for some polynomials h′i in

K[X1, . . . , Xm]. Hence X is empty, a contradiction.

It follows that X ̸⊆ V (X0). As dim(X) > 0, the dimension theorem for projective

varieties implies that V (X0) ∩X is nonempty. This means that the image of X in Pn

under the embedding An → Pn is not closed. Conclude from (a) that X is not complete.
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Lemma 21.3 (Nakayama’s Lemma): Let R be a ring andM a finitely generated module.

Suppose that a is an ideal of R such that aM = M . Then there is f ∈ 1 + a which

annihilates M .

Proof: Let m1, . . . ,mn be generators of M over R. By assumption

mi =
n∑

j=1

aijmj

for suitable aij ∈ a. Denote the n × n unit matrix by I and let A = (aij). Then

(I − A)m = 0. Multiply this equation from the left by the adjoint matrix of (I − A)

to find that det(I − A)mj = 0 for each j. Thus f = det(I − A) annihilates M and

f − 1 ∈ a.

Exercise 21.4: Let R be a local ring with a maximal ideal m. Suppose that M is a

finitely generated R-modul. Prove that if mM = M , then M = 0. Prove that if M0 is

a submodule of M such that M =M0 +mM , then M =M0.

Theorem 21.5: Pn is complete.

Proof (Grothendieck): We have to prove that for each variety the projection prY : Pn×

Y → Y is a closed map. Let {Yi} be an affine open covering of Y . If we prove that the

restriction of prY to each Pn×Yi is closed, then prY will be closed. So, we may assume

that Y is affine with coordinate ring R. We break the rest of the proof into parts.

Part A: A graded ring. The variety Pn × Y is covered by the open affine sets

Ui = {(x,y) ∈ Pn × Y | xi ̸= 0} whose coordinate rings are R[X0/Xi, . . . , Xn/Xi].

Consider the graded ring S = R[X0, . . . , Xn]. For each k let Sk be the set of all

homogeneous polynomials in S of degree k. Let

Ak = {f ∈ Sk| f(X/Xi) ∈ I(Z ∩ Ui), i = 0, . . . , n}.

As S is Noetherian, Ak ⊆ Sk are finitely generated R-module. Moreover

AkSl ⊆ Ak+l and SkSl ⊆ Sk+l.
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Claim 1: For each i and each g ∈ I(Z ∩Ui) there is r0 such that for all r ≥ r0 we have

Xr
i g ∈ Ar.

Indeed, if r is large enough, f = Xr
i g is a homogeneous polynomial in R of degree

r. To check that f ∈ Ar let j be an integer between 1 and n. Then f(X/Xj) vanishes

on Z ∩ Ui ∩ Uj . and therefore on Z ∩ Uj (since the former set is dense in the latter).

Thus f ∈ Ar.

Part B: Y − prY (Z) is an open set. Let y ∈ Y − prY (Z). We have to show that y

has an open neighborhood which is contained in Y − prY (Z).

Indeed, let m = {g ∈ R| g(y) = 0} be the maximal ideal of R corresponding to y.

Then, for each i, Z ∩ Ui and (Pn)Xi × {y} are closed and disjoint subsets of Ui. By

Hilbert’s Nullstellensatz

I(Z ∩ Ui) +mR[X/Xi] = R[X/Xi].

In particular there exist ai ∈ I(Z ∩ Ui), mij ∈ m, and gij ∈ R[X/Xi] such that

1 = ai +
∑
j

mijgij .

If we multiply this equation through by Xr
i for big r and use the Claim we get

Xr
i = a′i +

∑
j

mijg
′
ij

where a′i ∈ Ar and gij ∈ Sr. In fact choose r large enough such that this works for all i

simultanouesly. In other words Xr
i ∈ Ar +mSr for i = 0, . . . , n.

Claim 2: For q = r(n+ 1) we have Sq = Aq +mSq.

Indeed, if µ = Xr0
0 X

r1
1 · · ·Xri

n is a monomial of degree q, then there exist i such

that ri ≥ r. Hence Xri
i ∈ Ari and therefore µ ∈ Aq +mSq, by (1).

By Nakayama’s Lemma, applied to the R-module Sq/Rq there exists h ∈ 1+m (in

particular h(y) ̸= 0) such that hSq ⊆ Aq. Hence, for each i, h ·X1
i ∈ Aq, which implies

h ∈ I(Z ∩ Ui) (recall that h ∈ R). If y′ ∈ prY (Z) there exists (x′,y′) ∈ Z. Choose i

such that (x′,y′) ∈ Z ∩ Ui. Then h vanish at this point, i.e., h(y′) = 0. So, Yh is an

open neighborhood of y which is contained in Y − prY (Z).
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Conclude that prY (Z) is closed and therefore Pn is complete.

Corollary 21.6: Every projective variety is complete.

Here is another Corollary of the completeness of Pn.

Theorem 21.7 (The main theorem of elimination theory): Given r polynomials with

coefficients in K:
f1(X0, · · · , Xn;Y1, . . . , Ym)

· · · · · · · ·

fr(X1, . . . , xn;Y1, . . . , ym),

all of which are homogeneous in the variables X0, . . . , Xn there is a second set of poly-

nomials with coefficients in K:
g1(Y1, . . . , Ym)

· · · · ·

gs(Y1, . . . , Ym)

such that for all a ∈ Am, gj(a) = 0 for j = 1, . . . , s if and only if there is a nonzero

b ∈ An+1 such that fi(b;a) = 0 for i = 1, . . . , r.

Proof: The equations f1 = · · · = fr = 0 define a closed subset Z of Pn × Am. By

Theorem 21.5, the projection of Z on Am is a closed set which may be defined by

equations g1 = · · · = gs = 0.

Exercise 21.8: If Z is a closed subset of Pn×Am, then Z is the zero set of polynomials

f(X,Y) which are homogeneous in X = (X0, . . . , Xn) and where Y = (Y1, . . . , Ym).
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22. Chow’s Lemma.

For some years people were not sure whether or not all complete varieties might not

actually be projective varieties. In this section we will see that even if a complete variety

is not projective, it can still be dominated by a projective variety with the same function

field. Thus the problem is a “birational” one, i.e., concerned with the comparison of

the collection of all varieties with a common function field.

Lemma 22.1: Let S and T be varieties, with isomorphic open subsets VS ⊆ S, VT ⊆ T .

For simplicity identify V = VS with VT and look at the diagonal morphism ∆: V →

V × V . If V is the closure of ∆(V ) in S × T , then

V ∩ (S × V ) = ∆(V ) = V ∩ (V × T ).

Proof: Note that V ∩ (V × T ) is the closure of ∆(V ) in V × T . On the other hand,

∆(V ) is the graph of the inclusion morphism V → T , which is closed by Remark 15.3(d).

Conclude that ∆(V ) coincides with V ∩ (V × T ). By symmetry, ∆(V ) = V ∩ (S × V ).

Theorem 22.2 (Chow’s Lemma): Let X be a complete variety. Then there is a pro-

jective variety Y of Pn and a birational epimorphism π: Y → X.

Proof: Break the proof into several parts.

Part A: Construction of Y . Cover X by open affine subsets Ui with coordinate

rings Ri, i = 1, . . . ,m, Embed all the Ui’s as closed subvarieties of An for some n and

let V = U1 ∩ · · · ∩ Um. With respect to the composite inclusion

Ui ⊆ An ⊆ Pn

Ui is a locally closed subvariety of Pn. Let U i be its closure in Pn. Then U1× · · · ×Um

is isomorphic to a closed subvariety of Pq for some q (Theorem 14.5).

Consider the map

α: V → U1 × · · · × Un

defined by α(v) = (v, . . . ,v). It is an isomorphism of V onto a locally closed subset

V0 = {(v, . . . ,v)| v ∈ V } (V0 is a closed subset of the open subset U1×· · ·×Un.) Denote
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the closure of V0 in U1×· · ·×Un by Y . Then Y is a closed subvariety of Pq and so it is

a projective variety. In particular Y is complete. Also K(X) ∼=K K(V ) ∼=K K(V0) ∼=K

K(Y ). We will construct an epimorphism π: Y → X.

Part B: Construction of π. Let δ: V → X × Y be the morphism defined by δ(v) =

(v, α(v)). Then δ maps V isomorphically onto its image V ′ = {(v,v, . . . ,v)| v ∈ V }.

Denote the closure of V ′ in X × Y by Ỹ .

Let β be the restriction of prX to Ỹ . It maps V ′ isomorphically onto V . As both

X and Y are complete, so is X × Y . Hence β(Ỹ ) is closed in X and contains the dense

subset V . Conclude that β(Ỹ ) = X.

Similarly let γ be the restriction of prY to Ỹ . Again, it maps V ′ isomorphically

onto V0 and therefore Ỹ onto Y .

X
prX←− X × Y prY−→ Y∥∥∥ ∣∣∣ ∥∥∥

X
β←− Ỹ

γ−→ Y∣∣∣ ∣∣∣ ∣∣∣
V ←− V ′ −→ V0

If we prove that γ is an isomorphism, then π = β ◦γ−1: Y → X will be the desired

birational epimorphism.

Part C: γ is an isomorphism. Let i be an integer between 1 and m. Denote the

projection of X × U1 × · · · × Um onto X × U i by ρi. It maps V ′ isomorphically onto

Vi = {(v,v)| v ∈ V }. Since Ỹ is the closure of V ′ and ρi(Ỹ ) is closed, ρi(Ỹ ) is the

closure of Vi in X ×U i. Also, the diagonal map, U i → X ×U i maps Ui isomorphically

onto U ′
i = {(u,u)| u ∈ Ui} and V onto Vi. In particular Vi ⊆ U ′

i ⊆ ρi(Ỹ ) and so ρi(Ỹ )
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is the closure of U ′
i in X × U i.

X × U1 × · · · × Um
ρi−→ X × U i∣∣∣

X × Y∣∣∣̃
Y

ρi−−−−−−→ ρi(Ỹ )∣∣∣
U ′
i∣∣∣

V ′ −−−−−−→ Vi

Apply Lemma 22.1 on X, U i and Ui instead of S, T , and V , respectively:

ρi(Ỹ ) ∩ (X × Ui) = U ′
i = ρi(Ỹ ) ∩ (Ui × U i).

Hence
Ỹi = Ỹ ∩ (X × U1 × · · · × Ui × · · · × Um)

= {(ui,u1, . . . ,um) ∈ Ỹ | ui ∈ Ui and uj ∈ U j for j ̸= i}

= Ỹ ∩ (Ui × U1 × · · · × Um).

Let

Yi = Y ∩ (U1 × · · · × Ui × · · · × Um).

From the third form of Ỹi it follows that {Ỹi} is an open covering of Ỹ . From the first

form it follows that Ỹi = γ−1(Yi). Hence {Yi} is an open covering of Y . So define a

morphism σi: Yi → Ỹi by

σi(u1, . . . , um) = (ui, u1, . . . , um).

Then σi is the inverse of the restriction of γ to Ỹi:

γ(σi(u1, . . . , um)) = γ(ui, u1, . . . , um) = (u1, . . . , um)

σi(γ(ui, u1, . . . , um)) = σi(u1, . . . , um) = σi(ui, u1, . . . , um)
.

Note that for all i, j the restrictions of σi and σj to Yi ∩ Yj coincide. Conclude

that γ is an isomorphism (Problem 11.3).
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Corollary 22.3: Let X be a complete variety. Then for every valuation ring R of

K(X) whose quotient field is K(X) there exists a point x ∈ X such that Ox ⊆ R.

Proof: Suppose first that X is projective. Then X is the zero set in Pn of some homo-

geneous ideal I of K[X0, . . . , Xn]. Let xi = Xi + I, i = 0, . . . , n be the “homogeneous

coordinates” of X. Then K(X) = K(x/xi) for each i such that xi ̸= 0. Denote the

place that corresponds to R by φ. By Exercise 1.2 there is i such that bj = φ(xj/xi)

is finite for j = 0, . . . , n. By Hilbert’s Nullstellensatz there exists a K-homomorphism

ψ: K[b]→ K. Then a = ψ(b) is a point of X. If g ∈ K[X0, . . . , Xn] and g(a) ̸= 0, then

φ(g(x/xi) = g(b) ̸= 0. Hence g(x/xi)
−1 ∈ R. Conclude that Oa ⊆ R.

WhenX is an arbitrary complete variety there is a birational epimorphism π: Y →

X from a projective variety. In particular π defines an K-isomorphism of K(X) and

K(Y ). Identifying the two fields we find that R is a valuation ring of K(Y ) whose

quotient ring is K(Y ). By the first paragraph, Y has a point y such that Oy,Y ⊆ R.

Let x = π(y). Since π is surjective π induces an embedding of the local ring Ox,X into

Oy,Y .
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23. Complex varieties.

Suppose that our algebraically closed ground field K is given a topology making it into

a topological field. The most interesting case of this is when K = C, the complex

numbers. Another case is when K is the algebraic closure of Qp, the field of p-adic

numbers. However, we can make at least the first definition in complete generality.

Namely, we show that when K is a topological field, there is a unique way to endow all

varieties X over K with a new topology, which we will call the strong topology, such

that the following properties hold:

(1a) The strong topology is stronger than the Zariski-topology, i.e., a closed (resp.,

open) subset X ⊆ X is strongly closed (resp., strongly open).

(1b) All morphisms are strongly continuous.

(1c) If Z ⊆ X is a locally closed subvariety, then the strong topology on Z is the one

induced by the strong topology on X.

(1d) The strong topology on X × Y is the product of the strong topologies on X and

on Y .

(1e) The strong topology on A1 is exactly the given topology on K.

The uniqueness of the strong topology is obvious. To prove the existence of the

strong topology, equip first An with the product topology ofKn and induce this topology

on each locally closed subset of An. If φ: (V,OV ) → (V ′,O′
V ) is a morphism of the

structure sheaves of irreducible algebraic sets V ⊆ An and V ′ ⊆ An′
, then φ is defined

by polynomials and therefore induces a strongly continuous map from V to V ′. In

particular, if (X,OX) is an affine variety, then the strong topology induced on it by an

embedding into an affine space is independent of that embedding. Also, since Zariski-

open subsets of An are defined by polynomials inequalities each of them is strongly

open. If X ⊆ Am and Y ⊆ An are closed irreducible sets, then the topology induced on

X × Y by that of Am+n is the product topology.

For an arbitrary variety X choose an open finite affine covering {Xi}. Then define

a subset U ⊆ X to be strongly open if U ∩Xi is open in Xi for each i. This definition

is independent of the covering. The union of arbitrary strongly open sets and the

intersection of finitely strongly open sets is again a strongly open set. So are X and the
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empty set. Conclude that the collection of strongly open sets indeed gives a topology

on X.

If U ⊆ X is Zariski-open, then U ∩Xi is Zariski-open and therefore also strongly

open in Xi. Hence U is strongly open. In particular, this implies that the strong

topology on X does not depend on the open affine covering {Xi}. As morphisms

between varieties are locally defined on affine pieces, they are strongly continuous.

Finally, if X and Y are varieties with finite open affine covers {Xi} and {Yj}, then

{Xi×Yj} is a finite open affine covering of X ×Y . The topology of each Xi×Yj is the

product topology. Hence, so is the topology of X × Y .

Note that every variety X is a Hausdorff space in its strong topology. In fact, if

∆: X → X×X is the diagonal map, then ∆(X) is Zariski-closed and therefore strongly

closed in X × X. Since X × X has the product strong topology by (1d), this means

exactly that X is a Hausdorff space.

From now on suppose that K = C with its usual topology. The first nontrivial

comparison theorem relating the two topologies states that the strong topology is not

“too strong”.

Theorem 23.1: Let X be a variety, and U a nonempty open subvariety. Then U is

strongly dense in X.

Proof (Stolzenberg): Let {Xi} be an affine cover of X. Then the strong closure of U

is the union of the strong cover of U ∩Xi. So, we may assume that X is affine. Break

the rest of the proof into three parts.

Part A: Comparison with Ar. Let r = dim(X). By the geometric form of Noether’s

normalization theorem (Proposition 16.9), there exists a finite epimorphism

π: X → Ar.

Let Z = X − U . Then π(Z) is a Zariski closed subset of Ar (Proposition 16.12). Since

all components of Z have dimension < r, so do all components of π(Z) (Proposition

20.1). Hence π(Z) is even a proper closed subset of Ar. In particular, there is a nonzero

polynomial g ∈ K[Y1, . . . , Yr] such that π(Z) ⊆ V (g).
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Now choose a point x ∈ Z. Our goal is to prove that x is a limit of a sequence of

points of U . Let us first represent y = π(x) as a limit of points y ∈ Ar − V (g).

To do this, choose any point y1 ∈ Ar such that g(y1) ̸= 0, and let (in vector

notation)

h(T ) = g((1− T )y + Ty1).

Then h ̸= 0, since h(1) ̸= 0. Hence, the polynomial h has only finitely many zeros,

and we can choose a sequence of numbers ti ∈ C such that ti → 0 strongly, and

h(ti) ̸= 0. Then let yi = (1− ti)y + tiy1, i = 2, 3, . . .. Obviously yi → y strongly, and

g(yi) = h(ti) ̸= 0.

The problem now is to lift each yi to a point xi ∈ X such that xi → x strongly.

Since yi /∈ π(Z), all the points xi must be in U . Hence, it will follow that x is in the

strong closure of U .

Part B: A hypersurface in Ar+1. As π is a finite morphism π−1(y) = {x,x(2), . . . ,x(m)}

is a finite set. Choose q ∈ K[X] such that q(x) = 0 but q(x(j)) ̸= 0, j = 2, . . . ,m. Ab-

breviate (Y1, . . . , Yr) by Y. The element q is integral over K[Y]. Let

f(Y, Z) = Zd + a1(Y)Zd−1 + . . .+ ad(Y), a1, . . . , ad ∈ K[Y]

be the irreducible polynomial of q over K(Y). Thus f(Y, q) = 0. Hence ad(y) =

f(y, q(x)) = 0. It follows that ad(yi)→ 0 strongly as i→∞. On the other hand ad(yi)

is a the product of the roots of the equation f(yi, Z) = 0. Hence, we may choose for

each i a root zi of this equation such that zi → 0 strongly. Thus

(1) lim
i→∞

(yi, zi) = (y, 0), strongly, and f(yi, zi) = 0, i = 1, 2, 3, . . .

Part C: Lifting (yi, zi) to xi ∈ X. Now view X as an irreducible algebraic subset

of some An and let h1, . . . , hn be the coordinate functions on X. Thus hi(x
′) = x′

i is

the ith coordinate of x′ ∈ X, i = 1, . . . , n. Then K[h1, . . . , hn] is the coordinate ring

of X and K[Y, q] is the coordinate ring of V (f) (= the hypersurface in Ar+1 defined

by f). The inclusion of coordinate rings K[Y] ⊆ K[Y, q] ⊆ K[h1, . . . , hn] induces finite

morphisms

X
π1−→ V (f)

π2−→ Ar
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such that π2 ◦ π1 = π. Thus, π1(x
′) = (y′, q(x′)) with y′ = π(x′) for each x′ ∈ X.

In particular, as π1 is surjective (Proposition 16.12(c)) and (yj , zj) ∈ V (f), there

are xj ∈ X such that π1(xj) = (yj , zj) zj = q(xj), and therefore π(xj) = yj . So, all we

have to do is to prove that xj strongly converges to x.

Indeed, each hi satisfies a monic equation

(2) hki + bi1h
k−1
i + · · ·+ bik = 0

with coefficients bij ∈ K[Y]. Since the sequence {(yj , zj)}∞j=1 strongly converges it is

bounded. If the sequence {xj} were not bounded, then we may apply (2) on xj and

multiply it by x−k
ji :

1 + bi1(yj)x
−1
ji + · · ·+ bik(yj)x

−k
ji = 0.

Then let j ranges on an appropriate sequence of positive integers we obtain a contra-

diction 1 = 0. Conclude that {xj} is a bounded sequence.

If xj does not strongly converge to x, then there exist ε > 0 such that |xj−x| > ε

for infinitely many j. From the boundness it follows that {xj} has a subsequence {xj(l)}

that converges to x′ ∈ X, x′ ̸= x. Apply π to find that yj(l) converges to π(x
′). On the

other hand limyj(l) = y. Hence x′ = x(i) for some i between 2 and m. It follows that

lim
l→∞

zj(l) = lim
l→∞

q(xj(l)) = q(x(i)) ̸= 0.

This contradiction to (1) proves that limxj = x, and the proof is complete.

Corollary 23.2: If Z ⊆ X is a constructible subset of a variety, then the Zariski

closure and the strong closure of Z are the same. In particular, if Z is constructible and

strongly closed, then Z is Zariski-closed.

The main result of this section is:

Theorem 23.3: Let X be a variety over C. Then X is complete if and only if X is

compact in its strong topology.

Proof: Suppose first that X is strongly compact. Let Y be another variety and let

Z ⊆ X × Y be a closed subvariety. Since X is compact and Hausdorff, prY is a closed
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map in its strong topology (Section 21). Hence prY (Z) is strongly closed. Since it is

also Zariski constructible (by Chevalley’s theorem, Corollary 20.8), is is Zariski closed

(Corollary 23.2).

Conversely, we must show that complete varieties are strongly compact. First of

all, note that Pn(C) is a strongly continuous image of the n-dimensional sphere

Sn = {(z0, z1, . . . , zn) ∈ Cn+1|
n∑

i=0

|zi|2 = 1}.

by the map (z0, z1, . . . , zn) 7→ z0:z1: · · · :zn. Indeed, if z = z0:z1: · · · :zn is an arbitrary

point of Pn, then

|z| =

√√√√ n∑
i=0

|zi|2 ̸= 0

and z is the image of the following point of Sn: (z0/|z|−1, z1/|z|−1, . . . , zn/|z|−1). Since

Sn is compact and Pn is Hausdorff, Pn is compact. It follows that every projective

variety is strongly compact.

An arbitrary complete variety X is by Chow’s Lemma (Theorem 22.2) an image

of a projective variety. Conclude that X is strongly compact.
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24. Linear disjointness of fields.

Let E and F be two field extensions of a field K and suppose that both are contained

in a field Ω. We denote the subring of Ω generated by all the elements xy, with x ∈ E

and y ∈ F by E[F ] and also by F [E]. This ring is obviously a K-algebra. Consider the

K-linear map

α: E ⊗K F → E[F ]

defined by α: x⊗ y 7→ xy. This map is surjective. We say that E and F are linearly

disjoint over K if α is an isomorphism.

Lemma 24.1: A necessary and sufficient condition that E and F are linearly disjoint

over K is that every finites set of elements of F which is linearly independent over K

remains linearly independent over E.

Proof: The necessity follows from Lemma 13.6. We therefore prove the sufficiency. Let

{yj}j∈J be a base for F over K. Then it is a base for E[F ] over E. Also, according

to Lemma 13.6 {1⊗ yj}j∈J is a base for E ⊗K F over E. Hence α is an isomorphism.

Suppose that E is the quotient field of a ring R. Then, to prove that E and F

are linearly disjoint over K it suffices to show that every K-linearly independent set of

elements of R is still linearly independent over F . Using this remark we prove:

Lemma 24.2 (Tower Lemma): Let K,E, F, L be fields such that K ⊆ L ⊆ E and

K ⊆ F . Then E and F are linearly disjoint over K if and only if L,F are linearly

disjoint over K and E,LF are linearly disjoint over L.

E EF

L LF

K F

Proof: Suppose first that L,F are linearly disjoint overK and E,LF are linearly disjoint

over L. Use the associativity of tensor products:

E ⊗K F ∼= (E ⊗L L)⊗K F ∼= E ⊗L (L⊗K F ) ∼= E ⊗L L[F ] ∼= E[L[F ]] = E[F ].
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Hence E,F are linearly disjoint over K.

Conversely, suppose that E,F are linearly disjoint over K. By Lemma 24.1, L,F

are linearly disjoint over K. Hence

E ⊗L L[F ] ∼= E ⊗L L⊗K F ∼= E ⊗K F ∼= E[F ].

But the quotient field of E[F ] is EF . Hence E,LF are linearly disjoint over E.

Remark 24.3: (a) If E,F are linearly disjoint over K, then E ⊗K F = E[F ] and

thus E ⊗K F is an integral domain. If F is an algebraic extension of K, then

E[F ] = EF is a field and hence E ⊗K F is a field which is algebraic over E. If in

addition [F : K] <∞, then

(1) [F : K] = [EF : E].

It is clear that (1) also suffices for E,F to be linearly disjoint over K.

(b) If E has also a finite degree overK, then this implies that E,F are linearly disjoint

over K if and only if

[EF : K] = [E : K][F : K].

(c) Again, if E,F are arbitrary field extensions of K which are linearly disjoint over

K, then E ∩ F = K. Hence, if in addition F is Galois over K, then the natural

restriction embedding of G(EF/E) into G(F/K) is an isomorphism. Conversely,

if F/K is a finite Galois extension, then E ∩ F = K implies that G(EF/E) ∼=

G(F/K), hence [EF : E] = [F : K], and therefore K,L are linearly disjoint over

K. A fortiori, this is also true for arbitrary Galois extension F/K.

(d) Note also that if E/K is a separable algebraic extension and F/K is a purely

inseparable extension, then E,F are linearly disjoint over K.
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25. Algebraic independence.

Let E,F be extensions of a fieldK. We say that E is free from F over K if every finite

set of elements of E which is algebraically independent over K remains algebraically

independent over E.

The relation thus defined is symmetric. Indeed suppose that E is free from F

over K. Let y1, . . . , yn be elements of F which are algebraically independent over K.

Assume that they become dependent over E. Then there exists f ∈ E[Y1, . . . , Yn],

f ̸= 0, such that f(y1, . . . , yn) = 0. Find a finitely generated extension E0 of K

which contains the coefficients of f . Let r = dimK(E0). Then dimK(y)(E0(y)) = r.

Hence dimK(E0(y) = dimK(K(y)) + dimK(y)(E0(y) = n + r. On the other hand

dimK(E0(y)) = dimK(E0) + dim(E0(y)) < r + n, a contradiction. Conclude that F is

also free over K from E.

We therefore say, in this case, that E,F are free over K.

Lemma 25.1: If E and F are linearly disjoint over K, then they are also free over K.

Proof: Let x1, . . . , xn be elements of E algebraically independent over K. Assume

they become algebraically dependent over L. We get a relation yiMx(x) = 0 between

monomials Mi(x) with coefficients in F . But the Mi(x) are linearly independent over

K, since x1, . . . , xn are algebraically independent over K. Hence the Mi(x) are also

linearly independent over F , which is a contradiction.

On the other hand, if E is algebraic over K, then it is always the case that E,F

are free over K. This shows that the property of linear disjointness is stronger than

that of being free.

Lemma 25.2: Let F be an extension of K. Let u1, . . . , ur be algebraically independent

elements over a field F . Then K(u), F are linearly disjoint over K.

Proof: It suffices to prove that the elements of a basis for the ring K[u] over K remain

linearly independent over F . In fact the monomials M(u) for a basis for K[u] over

K. They must remain linearly independent over F , because as we have seen, a linear

relation between the M(u) gives an algebraic relation between the ui’s. This proves the

lemma.
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As for linear disjointness we have a tower lemma for freeness:

Lemma 25.3: Let L,F be extensions of a field K and let E be an extension of L. Then

E,F are free over K if and only if L,F are free over K and E,LF are free over L.

Proof: Suppose first that E,F are free over L. Obviously L,F are free over K. We

prove that E,LF are free over L.

Without loss assume that L is finitely generated over K. In particular dimK L =

r < ∞. Hence dimF LF = r. Now let x1, . . . , xn be elements of E, algebraically

independent over L. Then dimK LF (x) = dimK L(x) = r+n. Hence dimLF (LF (x)) =

r. Conclude that E,LF are free over L.

Conversely, suppose that E,F are free over K and E,LF are free over L. Let

x1, . . . , xn be elements of F , algebraically independent over K. Then they are alge-

braically independent over L and therefore also over E. Conclude that E,F are free

over K.
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26. Separable extensions.

Let F = K(x) be a finitely generated extension of a field K. We say that F/K is

separably generated if it has a transcendence base t1, . . . , tr such that F is separably

algebraic over K(t). Such a transcendence base is said to be a separating transcen-

dence base for F over K.

We always denote by p the characteristic if it is not 0. The field obtained from

K by adjoining all the pmth roots of all the elements of K is denoted by K1/pm

. The

compositum of all such fields for m = 1, 2, . . . is denoted by K1/p∞
.

Lemma - Definition 26.1: The following conditions on a field extension F/K are

equivalent:

(a) F is linearly disjoint from K1/p∞
.

(b) F is linearly disjoint from K1/p.

(c) Every subfield of F containing K and finitely generated over K is separably gen-

erated.

If F/K satisfifs these condition, we say that it is a separable extension.

Proof: It is obvious that (a) implies (b). In order to prove that (b) implies (c), we may

clearly assume that F is finitely generated over K, say F = K(x1, . . . , xn). Let the

transcendence degree of this extension be r. If r− n, the proof is complete. Otherwise,

say x1, . . . , xr is a transcendence base. Then xr+1 is algebraic over K(x1, . . . , xr). Let

f(X1, . . . , Xr+1) be a polynomial of lowest degree such that f(x1, . . . , xr+1) = 0. Then

f is irreducible. We contend that not all Xi (i = 1, . . . , r + 1) appear to the pth

power throughout. If they did, we could write f(X) =
∑
ciMi(X)p where Mi(X) are

monomials in X1, . . . , Xr+1 and ci ∈ K. This would imply that the Mi(x) are linearly

dependent over K1/p (taking the pth root of the equation
∑
ciMi(x)

p = 0). However,

the Mi(x) are linearly independent over K (otherwise we would get an equation for

x1, . . . , xr+1 of lower degree) and we thus get a contradiction to the linear disjointness

of K(x) and K1/p. Say X1 does not appear to the pth power throughout, but actually

appears in f(X). We know that f(X) is irreducible equation for x1 overK(x2, . . . , xr+1).

Since X1 does not appear to the pth power throughout, this equation is separable
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equation for x1 over K(x2, . . . , xr+1), in other words, x1 is separable algebraic over

K(x2, . . . , xr+1). From this it follows that it is separable algebraic over K(x2, . . . , xn).

If x2, . . . , xn is a transcendence base, the proof is complete. If not, say that x2

is separable over K(x3, . . . , xn). Then K(x) is separable over K(x3, . . . , xn). Proceed-

ing inductively, we see that the procedure can be continued until we get down to a

transcendence base. This prove that (b) implies (c). It also prove that a separating

transcendence base for K(x) over K can be selected from the given set of generators

x1, . . . , xn.

To prove that (c) implies (a) we may assume that F is finitely generated over K.

Let u be a separating transcendence base for F/K. Then F is separably algebraic over

K(u). By Lemma 25.2, K(u) and L = K1/p∞
are linearly disjoint. Then L(u) is purely

inseparable over K(u), and hence is linearly disjoint from F over K(u). Conclude from

the tower lemma that F,L is linearly disjoint over K, thereby proving our theorem.

Note that the definition of “separable” is compatible with the use of the word for

algebraic extensions. The first condition of the lemma is known as MacLane’s criterion.

It has the following immediate corollaries.

Corollary 26.2: If F/K is a separable extension and E is a subfield of F containing

K, then E is separable over K.

Corollary 26.3: Let E be a separable extension of K and F a separable extension

of E. Then F is a separable extension of K.

Corollary 26.4: If K is perfect, every extension of K is separable.

Proof: In this case K = K1/p.

Corollary 26.5: Let E be a separable extension of K which is free from an extension

F of K. Then EF is a separable extension of F .

Proof: An element of EF has an expression in terms of a finite number of elements of

E and F . Hence any finitely generated subfield of EF containing F is contained in a
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composite field E0F , where E0 is a subfield of E which is finitely generated over K. By

Corollary 26.2, we may therefore assume that E is finitely generated over K.

Let t be a separating transcendence base of E/K. So E is separable algebraic over

K(t). Hence EF is separably algebraic over F (t). As F (t)/F is a purely transcendental

extension, it is separable. Hence, EF is separable over F (Lemma 26.3).

Corollary 26.6: Let E and F be separable extensions of K, free from each other

over K. Then EF is separable over K.

Proof: Combine Corollaries 26.5 and 26.3.

Corollary 26.7: Let E,F be linearly disjoint extensions of a field K. Then E/K is

separable if and only if EF/F is separable.

Proof: If E is not separable over K, it is not linearly disjoint from K1/p over K, and

hence, a fortiori, it is not linearly disjoint from K1/pF over K. By the tower lemma,

this implies that EF is not linearly disjoint from K1/pF over F and hence that EF is

not separable over F .

The converse is a special case of Corollary 26.5, taking into account that linearly

disjoint fields are free.
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27. Regular extensions.

Lemma 27.1: Suppose that a field K is algebraically closed in an extension F . If a

is algebraic over K, then K(a) and F are linearly disjoint over K and [K(a) : K] =

[F (a) : F ].

Proof: Let f(X) = irr(a,K). The coefficients of each monic factor of f(X) are polyno-

mials in the roots of f(X) with coefficients in K. As K is algebraically closed in F this

implies that f(X) remains irreducible over F . Conclude that [F (a) : F ] = [K(a) : K]

and therefore F,K(a) are linearly disjoint over K.

Lemma – Definition 27.2: The following two conditions on a field extension F/K

are equivalent:

(a) K is algebraically closed in F and F/K is separable.

(b) K is linearly disjoint from F over K̃.

If this conditions are satisfied, then F/K is said to be regular.

Proof: If condition (b) holds, then F is linearly disjoint from K1/p over K. Hence F/K

is separable (Lemma 26.1). Obviously K is algebraically closed in F . Thus condition

(a) is satisfied.

To prove (b) from (a) we may assume without loss that F is finitely generated

over K. It suffices to prove that F is linearly disjoint from an arbitrary finite algebraic

extension L of K.

If L is separable algebraic over K, then it can be generated by one element, and

we can apply Lemma 27.1.

More generally, Let E be the maximal separable subfield of L containing K. Using

the tower lemma we see that it suffices to prove that EF,L are linearly disjoint over E.

Let t be a separating transcendence base for F/K. Then F/K(t) is separably algebraic.

Furthermore, t is also a separating transcendence base for EF/E and EF/E(t) is

separably algebraic. Thus EF is separable over E, and by definition it is linearly

disjoint from L over E because L is purely inseparable over E. This proves the lemma.
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Corollary 27.3: Let F be a regular extension of K and let E be a subfield of F that

contains K. Then E is regular over K.

Corollary 27.4: If E is a regular extension of K and F is a regular extension of E,

then F is a regular extension of K.

Proof: Apply the tower lemma.

Corollary 27.5: If K is algebraically closed, then every extension of K is regular.

Lemma 27.6: Let F/K be a regular extension. Let x be an element which is either

algebraic over K, or transcendental over F . Then F is linearly disjoint from K(x) over

K and F (x) is a regular extension of K(x).

Proof: Suppose first that x is algebraic over K. As F is linearly disjoint from K̃ over

K, the tower lemma asserts that F is linearly disjoint from K(x) over K and F (x) is

linearly disjoint from K̃ over K(x). Hence F (x) is a regular extension of K(x).

So assume that x is transcendental over F . By Lemma 25.2, K(x) is linearly

disjoint from F overK. Furthermore, by Corollary 26.5, F (x)/K(x) is separable. Hence,

in order to prove the second statement it suffices to prove that K(x) is algebraically

closed in F (x). Let y1 ∈ F (x) and suppose that y is algebraic over K(x). Write

y1 = f1/g1, where f1, g1 are elements of F [x] which are relatively prime. Let c (resp., d)

the leading coefficient of f1 (resp., g1). Put y = y1d/c, f = f1/c, and g = g1/d. Then

f and g are monic, and y = f/g satisfies and equation

an(x)(f/g)
n + an−1(x)(f/g)

n−1 + · · ·+ a0(x) = 0

with ai(x) ∈ K[x] and a0(x), an(x) ̸= 0. Multiply this equation by gn to conclude that

f(x)|a0(x) and g(x)|an(x). It follows that all the roots of f(x) and g(x) belong to K̃.

Since f and g are monic, also their coefficients belong to K̃. As K is algebraically closed

in F , this implies that f, g ∈ K[x].

It follows that u = d/c is an element of F which is algebraic over K(x). Thus u

satisfies an equation

bm(x)um + bm−1(x)u
m−1 + · · ·+ b0(x) = 0
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with bi(x) ∈ K[x] and b0(x) ̸= 0. Divide the coefficients by there greatest common

divisor in F [x] to assume that x does not divide all of them. Then substitute x = 0

in it to conlcude that b is algebraic over K. Thus b ∈ K and therefore y1 ∈ K(x), as

desired.

Proposition 27.7: Let F/K be a regular extension. If L/K is an extension which is

free from F/K, then L,F is linearly disjoint over K and LF/L is regular.

Proof: We can assume that L is finitely generated over K. Then we can describe L

as L = K(t1, . . . , tr, x1, . . . , xm) where t1, . . . , tr is a transcendence base for L/K and

x1, . . . , xm are algebraic over K(t). Then we use Lemma 27.6 to prove the lemma in

r +m steps.

Corollary 27.8: Let E,F be two regular extensions of a field K, free from each other

over K. Then EF is a regular extension of K.

Lemma 27.9: Let Ω be an algebraically closed field which has an infinite transcendence

degree over a field K. Let R = K[x1, . . . , xn] be an integral domain. Suppose that F is

a finitely generated extension of K which is contained in Ω. Then R is K-isomorphic

to a subring R′ of Ω whose quotient field E′ is free from F over K.

Proof: Denote the quotient field of R by E. Suppose without loss that x1, . . . , xr is a

transcendence base for E/K. Choose elements x′1, . . . , x
′
r ∈ Ω which are algebraically in-

dependent over F . The algebraic closure Ω0 of K(x′1, . . . , x
′
r) is free from F over K. As-

sume by induction that we have already constructed an embedding φ of K[x1, . . . , xn−1]

into Ω0 such that φ(xi) = x′i for i = 1, . . . , r. Put φ(xi) = x′i also for i = r+1, . . . , n−1.

Note that xn is algebraic over K[x1, . . . , xn−1]. Let therefore f ∈ K[x1, . . . , xn−1, Xn]

be an irreducible polynomial over K(x1, . . . , xn−1) such that f(x1, . . . , xn) = 0. Then

f(x′1, . . . , x
′
n−1, Xn) is irreducible over K(x′1, . . . , x

′
n−1). Take a root x′n of this polyno-

mial in Ω0. We may extend φ to a K-embedding of R onto K[x1, . . . , xn] that maps xn

onto x′n. The field K(x′1, . . . , x
′
n) is obviously free from F over K.

We are now in a position to prove Proposition 13.7:
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Proposition 27.10: If R and S are integral domains that contain an algebraically

closed field K, then R ⊗K S is an integral domain. Moreover, if E,F , and L are the

quotient fields of R, S, and R⊗K S, respectively, then dimK(L) = dimK(E)+dimK(F ).

Proof: Suppose without loss that R = K[x1, . . . , xm] and S = K[y1, . . . , yn] are finitely

generated over K. Let Ω be an algebraically closed field of infinite transcendence degree

over F . By Lemma 27.9, there exists a K-isomorphism θ of R onto a subring R′ of Ω

whose quotient field E′ is free from F over K. As K is algebraically closed E′, F are

regular extensions of K (Lemma 27.5). Hence by Lemma 27.7, they are linearly disjoint

overK. It follows that the composed map R⊗KS → R′⊗KS → R[S] is an isomorphism.

Since R′[S] is a subring of Ω, it is an integral domain. Hence, so is R⊗K S.

Also, L ∼=K E′F . Conclude that dimK(L) = dimK(E) + dimK(F ′) = dimK(E) +

dimK(F ), as asserted.
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28. K-algebraic sets.

We consider in this section a field K and a field extension Ω of K which is algebraically

closed and of infinite transcendence degree over K, which we call a universal domain.

Among the algebraic sets defined over Ω we consider now only those which are defined by

polynomials with coefficients in K and call them K-algebraic sets. Thus a K-algebraic

set is a subset V of Ωn for which there exists a subset a of K[X1, . . . , Xn] such that

V = V (a) = {x ∈ Ωn| f(x) = 0 for each f ∈ a}. Obviously V (a) does not change if we

replace a by the ideal of K[X1, . . . , Xn] generated by a.

To each subset A of Ωn we associate the ideal I(V ) = {f ∈ K[X1, . . . , Xn]| f(x) =

0 for each x ∈ A} ofK[X1, . . . , Xn]. The correspondence between ideals andK-algebraic

sets satisfies Lemma 3.1, provided we replace Kn by Ωn.

The weak Nullstellensatz does not hold any more. For example X2 + Y 2 + Z2

does not have a Q-rational zero. However, Corollary 3.1, slightly modified, is still true:

Lemma 28.1: If f1, . . . , fm ∈ K[X] have no common zero in Ω, then there exist

g1 . . . , gm ∈ K[X] such that g1f1 + . . .+ gmfm = 1.

Proof: By Corollary 3.3 there exist g1, . . . , gm ∈ Ω[X] such that
∑
gifi = 1. Take a

base {wα}α∈A for the K-linear space Ω which contains 1. Then gi =
∑

α∈A giαwα with

giα ∈ K[X]. Conclude from
∑

α∈A

(∑m
i=1 giαfi

)
wα = 1 that

∑m
i=1 gi1fi = 1. This

proves our assertion.

Now we may repeat the proof of the strong Nullstellensatz except that we have to

use an Ω-rational zero instead of K-rational zero. We obtain a statement on the radical

of an ideal in K[X]:

Proposition 28.2 (Strong Nullstellensatz): Let a be an ideal of K[X]. If a polynomial

f ∈ K[X] vanishes on V (a), then f ∈
√
a.

In particular, it follows for a prime ideal p of K[X] that I(V (p)) = p.

Now we may consider the K-topology on Ωn whose open sets are the complements

of the K-algebraic sets. It is weaker than the Zariski topology. By Hilbert’s basis

theorem Ωn is Noetherian under the K-topology. In particular, every K-algebraic set
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has a unique presentation as a union of K-irreducible algebraic sets, none of them is

contained in the other. If V is a K-irreducible algebraic set, then I(V ) is a prime ideal

of K[X]. Conversely, if p is a prime ideal, then V (p) is K-irreducible.

The new aspect we obtain by distinguishing between K and Ω is the possibility

to recognize the dimension of the points of V over K and especially the existence of

generic points:

Let p be a prime ideal of K[X] and V = V (p) the corresponding K-irreducible

algebraic set. Denote the residue class of Xi modulo p by xi. Then K[x] = K[X]/p

is an integral domain. By Lemma 27.9 we may identify K[x] with a subring of Ω. As

f(x) = 0 for each f ∈ p, x is a point of V which we call generic. It is characterized by

the following Lemma which is a straight forward application of the second isomorphism

theorem for rings:

Lemma 28.3: Let x′ ∈ Ωn. Then x′ ∈ V if and only if for each f ∈ K[X], f(x) implies

f(x′) = 0.

The existence of a generic point characterizes an irreducible K-algebraic set:

Lemma 28.4: Let A be a K-algebraic set. Then A is irreducible if and only if it has a

generic point.

Proof: We have only to prove that the condition is sufficient. Indeed, let x be a generic

point of A. Suppose that A = V (a) ∪ V (b), where a and b are ideals of K[X]. Then x

belongs, say to V (a). If x′ is an arbitrary point in A, then f(x) = 0 and hence f(x′) = 0

for each f ∈ a. Hence A = V (a). So, A is irreducible.

Consider two points x,x′ in Ωn. We say that x′ is a specialization of x (over K,

if the reference to K is not obvious) and we write x→ x′ if f(x) = 0 implies f(x′) = 0

for each f ∈ K[X]. Note that the condition is equivalent to the map x→ x′ extends to

a K-homomorphism K[x]→ K[x′].

In particular if x is a generic point of a K-irreducible algebraic set V , then x→ x′

for every x′ ∈ V .

In the following reinterpretation of Lemma 17.3 we use dimK(x) to denote the

transcendence degree of K(x) over K.
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Lemma 28.5: Let x′ be a specialization of x over K. Then dimK(x′) ≤ dimK(x) and

equality holds if and only if x′ → x.

Thus, if x is a generic point of a K-irreducible algebraic set V , then it has the

maximal dimension over K among all the points of V . The field K(x) is the function

field of V over K. If x′ is another generic point of V , then K[x] ∼=K K[x′] and

K(x) ∼=K K(x′). So, the function field of K is unique up to K-isomorphism. So is its

transcendence degree over K, which is by definition, the dimension of V .
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29. Absolutely irreducible varieties.

We examine in this section what happens to a K-irreducible sets when K grows up

to its algebraic closure. We continue to keep K and Ω and consider only intermediate

fields L such that Ω is a universal domain over L..

Lemma 29.1: Let x be a point in Ωn, and L be an extension of K. Consider the prime

ideals p = {f ∈ K[X]| f(x) = 0} and P = {f ∈ L[X]| f(x) = 0} determined by x in

K[X] and L[X], respectively. Then P = pL[X] if and only if K(x) and L are linearly

disjoint over K.

Proof: Suppose that K(x) and L are linearly disjoint over K. Let f ∈ P. Write

f(X) =
∑
ajfj(X) with each fj in K[X] and aj in L are linearly independent over K.

Now, f(x) = 0 implies
∑
ajfj(x) = 0 and by linear disjointness, fj(x) = 0 for all j.

Hence each fj(X) is in P. It is also in K[X]. Conclude that P = pL[X].

Conversely, suppose that P = pL[X]. LetM1(X), . . . ,Mr(X) a finite set of mono-

mials in X such that M1(x), . . . ,Mr(x) are linearly independent over K. It suffices to

prove that theMj(x) remain linearly independent over L, since the set of all monomials

generates the vector space K[x] over K.

Assume we had a linear relation
∑
ajMj(x) = 0 with aj ∈ L and aj ̸= 0. Then∑

ajMj(X) ∈ P and we can write

(1)

r∑
j=1

ajMj(X) =

s∑
i=1

bifi(X)

where fi(X) ∈ P∩K[X] are linearly independent overK and bi ∈ L. SinceM1, . . . ,Mr, f1, . . . , fs

are formal polynomials, they must be linearly dependent over K (Lemma 25.2). Thus

there exists zj , yi ∈ K, not all 0 such that∑
zjMj(X) +

∑
yifi(X) = 0.

Hence
∑
zjMj(x) = 0 and therefore zj = 0 for all j. It follows that

∑
yifi(X) = 0 and

therefore yi = 0 for all i. This contradiction proves the lemma.

If V is a K-irreducible algebraic set and L is an extension of K, then V is also

an L-algebraic set. But it may decompose over L. The following Proposition gives

conditions for this not to happen.
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Proposition 29.2: Let p be a prime ideal in K[X]. Put V = V (p) for the correspond-

ing K-irreducible algebraic set, and let x be a generic point of V over K. Then the

following statements are equivalent:

(a) K(x)/K is a regular extension.

(b) pL[X] is a prime ideal in L[X] for every extension L of K.

(c) L⊗K K[x] is an integral domain for every extension L of K.

(d) V is irreducible over L and IL(V ) = pL[X] for every extension L of K.

(e) pK̃[X] is a prime ideal in K̃[X].

(f) K̃ ⊗K K[x] is an integral domain.

(g) V is irreducible over K̃ and IK̃(V ) = pK̃[X].

(h) V is irreducible over K̃ and K̃ ⊗K K[x] is a reduced ring (i.e. it contains no

nilpotent elements).

If these statements hold we say that V is absolutely irreducible and defined over

K.

Proof of (a) implies (b): Let L be an extension of K. Change the generic point x of V

over K such that L will be free from K(x) over K (Lemma 27.9). Then, according to

Lemma 27.9, L,K(x) are linearly disjoint over K. By Lemma 29.3, L[X]p is the prime

ideal determined by x in L[X].

Proof of (b) is equivalent to (c): Tensor the short exact sequence

0→ p→ K[X]→ K[x]→ 0

with L to obtain the short exact sequence

0→ L⊗K p→ L⊗K K[X]→ L⊗K K[x]→ 0

(Proposition 13.5). Note that since X1, . . . , Xn are algebraically independent over L,

we have by Lemma 25.2, that L,K(X) are linearly disjoint over L. Hence, the natural

map L⊗K K(X)→ L[K(X)] is an isomorphism. This isomorphism maps L⊗K p onto

L[X]p and L⊗K K[X] onto L[X]. Thus

0→ L[X]p→ L[X]→ L⊗K K[x]→ 0
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is a short exact sequence. Conclude that L[X]p is a prime ideal of L[X] if and only if

L⊗K K[x] is an integral domain, as contended.

Proof of (b) is equivalent to (d): Clear.

Proof of (b) implies (e): Clear.

Proof of (e) is equivalent to (f): It is a special case of the equivalence between (b) and

(c).

Proof of (e) is equivalent to (g): It is a special case of the equivalence between (b) and

(d).

Proof of (e) implies (a): As V = V (K̃[X]p) and K̃[X]p is a prime ideal of K̃[X], V is

K̃-irreducible. Let x′ be a generic point of V over K̃. Then x′ is a specialization of x

over K and therefore dimK x′ ≤ dimK x (Lemma 28.5). Also x is a specialization of

x′ over K̃ and therefore dimK̃ x ≤ dimK̃ x′. It follows that dimK̃ x = dimK̃ x′. Hence,

by Lemma 28.5, x′ is also a specialization of x over K̃. This gives an isomorphism

K̃[x] ∼=K̃ K̃[x′]. Hence K̃[X]p is the prime ideal defined by x over K̃. By Lemma 29.1,

K(x) is linearly disjoint from K̃ over K. This means that K(x) is a regular extension

of K, as contended.

Proof of (h) is equivalent to (g): If (g) holds, then also (f) holds. Thus, K̃ ⊗K K[x] is

an integral domain, hence it is also reduced.

Conversely, suppose (h) holds but IK̃(V ) ̸= pK̃[X]. By [Lang, Introduction to

Algebraic Geometry, p. 74, C6], K has a purely inseparable extension such that IK̃(V )

has a set of generators g1, . . . , gs ∈ L[X]. One of them, say g1 does not belong to

K̃ ·IK [X]. It follows from the short exact sequence 0→ K̃ ·IK(V )→ K̃[X]→ K̃[x]→ 0

that g1(x) /∈ K̃[x]. On the other hand, there exists a power q of char(K) such that

g1(X)1 ∈ IK(V ), hence g1(x)
q = 0. Consequently, K̃[x] is not reduced, in contrast to

our assumption.

Example 29.3: A K-irreducible variety under a purely inseparable extension. Suppose

that p is a prime ideal of K[X] and V = V (p). Let L be an extension of K over which
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V remains irreducible. As V = V (pL[X]), Hilbert’s Nullstellensatz implies that the

radical
√

pL[X] is prime. However, pL[X] need not be prime.

For example, suppose that char(K) = p and K = K0(t) with t transcendental

over K0. Put τ =
√
t. Then Xp − t is irreducible over K and V = V (Xp − t) = {τ}

is absolutely irreducible. However over L = K(τ) we have a decomposition Xp − t =

(X − τ)p. So, V is not defined over K but rather over L.

29 August, 2012

101


