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Abstract

The Kuykian conjecture for a Hilbertian field K says that if A/K is an
abelian variety, then every intermediate field of K(Ator)/K is Hilbertian.
We prove the Kuykian conjecture in the following cases: (a) K is finitely
generated (over its prime field). (b) K = Fs[σσσ] for almost all σσσ ∈ Gal(K)e,
where F is a finitely generated field. (c) K = Fins, where F is the quotient
field of a complete local domain of dimension at least 2.

1 Introduction

The inverse problem of Galois theory asks whether every finite group G occurs
as the Galois group Gal(f(X),Q) of a polynomial f ∈ Q[X]. The most effec-
tive tool to solve the problem, at least for a large family of finite groups, is
Hilbert’s Irreducibility Theorem: For every polynomial h ∈ Q[T,X] which is
separable in X there exist infinitely many a ∈ Q such that Gal(h(a,X),Q) ∼=
Gal(h(T,X),Q(T )). Fields that satisfy Hilbert’s Irreducibility Theorem are
called Hilbertian fields.

A theorem of Kuyk from 1970 asserts that every abelian extension of a Hilbertian
field is Hilbertian [2, Thm. 16.11.3]. In analogy to that theorem, the article [6]
makes the following conjecture:

Kuykian Conjecture Let K be a Hilbertian field and A/K an abelian variety.
Then every intermediate field M of K(Ator)/K is Hilbertian.

The Kuykian Conjecture is proved in the special case where K is a number field
[6, Theorem 10]. The proof makes use of Haran’s diamond theorem, of the fact
that each closed subgroup of GLn(Zp) is finitely generated, and of the following
theorem of Serre: If A is an abelian variety over a number field K, then there is a
finite extension K ′/K such that (K ′(A[l∞]))l prime is a linearly disjoint sequence
of extensions of K ′. The analogous statement is false for a finitely generated
ground fieldK of positive characteristic, because already adjoining roots of unity
of prime orders violates the linear disjointness. We don’t know if Serre’s theorem
is true when K is an arbitrary finitely generated extension of Q, except when A
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is an elliptic curve. (In the case of an elliptic curve A/K with transcendental j-
invariant it is known classically that Gal(K(A[n])/K) ∼= GL(2,Z/nZ) for each
positive integer n which is coprime to a fixed positive integer n0.) However,
applying different methods, we establish the following result in the function
field case.

Main Theorem Let K be a finitely generated infinite field and A/K an abelian
variety. Then every intermediate field M of K(Ator)/K is Hilbertian.

Following the Main Theorem, we call a fieldK Kuykian if for each abelian variety
A/K, every intermediate field M of K(Ator)/K is Hilbertian. Thus, by the
Main Theorem, every finitely generated infinite field is Kuykian. Considering
the zero abelian variety, we find that every Kuykian field is Hilbertian. The
Kuykian Conjecture is equivalent to the converse of this statement, namely
“every Hilbertian field is Kuykian”.

In the last section we give a variety of examples of non finitely generated Kuykian
fields. In particular, we prove that if K is a countable Kuykian field, then for
almost all σσσ ∈ Gal(K)e (in the sense of the Haar measure), the field Ks[σσσ] (see
Section 4 for a definition) is Kuykian. We also prove that if K is the quotient
field of a complete local domain of dimension at least 2, then the maximal purely
inseparable extension Kins of K is Kuykian.

2 Notation

We use the following variant of Hilbert’s Irreducibility Theorem to define Hilber-
tian fields: A field K is Hilbertian if for every irreducible polynomial h ∈
K[T,X] which is separable in X there exists a ∈ K such that h(a,X) is irre-
ducible in K[X] [2, Proposition 13.2.2].

Every number field and every finitely generated transcendental extension of an
arbitrary field is Hilbertian [2, Theorem 13.4.2]. Moreover, every finite extension
of a Hilbertian field and every purely inseparable extension of a Hilbertian field
is Hilbertian [2, Proposition 12.3.3].

An algebraic field extension N/K is said to be small if for each d there are only
finitely many intermediate fields L of N/K with [L : K] = d.

We denote the algebraic closure of a field K by K̃, the separable closure of K
in K̃ by Ks, and let Gal(K) = Gal(Ks/K) be the absolute Galois group of K.
That group is equipped with a unique normalized Haar measure.

For an abelian variety A over a field K we denote the set of n-torsion points
of A(K̃) by A[n], and for a prime number p let A[p∞] =

⋃
k∈NA[pk] , Ator =⋃

n∈NA[n], and Tp(A) = lim←−k∈NA[pk]. If U ⊆ A(K̃) is a set of geometric points

of A, then K(U) denotes the compositum of the residue fields K(x), x ∈ U .

If L is an extension of a field K and V is a K-variety, we write VL for V ×Spec(K)

2



Spec(L).

3 Function Fields of One Variable

The field K appearing in the Main Theorem is either a number field or an
algebraic function field of one variable over a finitely generated field. The former
case is handled in [6]. The latter case is generalized below to include function
fields of one variable over an arbitrary field.

Proposition 3.1 Let F be an algebraically closed field and K/F a function field
of one variable. Let A/K be an abelian variety and K(Ator)0 = Ks ∩K(Ator).
Then Gal(K(Ator)0/K) is a finitely generated profinite group.

Proof. Let Γ be the unique smooth projective F -curve with function field K.
By the semistable reduction theorem [4, Théorème IX.3.6, p. 351], there is a
finite Galois extension K ′/K such that AK′ has semistable reduction at all
points of the normalization Γ′ of Γ in K ′. Moreover, AK′ has good reduction
outside a finite subset S ⊂ Γ′ [8, Remark 20.9, p. 148]. Then for every prime
number l 6= p := char(K), the Galois extension K ′(A[l∞])/K ′ is unramified
outside S by the criterion of Néron-Ogg-Shafarevich (see [10, Theorem 1]). Also,
K ′(A[l∞])/K ′ is tamely ramified at each point of Γ′.

It suffices to prove the latter statement for p 6= 0. Let P be a point of Γ′, v the
corresponding normalized discrete valuation of K ′/F and (L,w) the henseliza-
tion of (K ′, v). Since w/v is unramified, it suffices to prove that w is tamely
ramified in L(A[l∞])/L. Since F is algebraically closed, Gal(L) is the inertia
group of the unique extension of w to Ls. By [4, Corollaire IX.3.5.2, p. 350],
the maximal pro-p-subgroup of Gal(L) acts trivially on Tl(AL). Hence, the re-
striction of that group to L(A[l∞]) is trivial, so L(A[l∞])/L is tamely ramified.

It follows for N =
∏

l 6=char(K)K(A[l∞]) and N ′ = NK ′ that N ′/K ′ is tamely

ramified at each point of Γ′ and unramified outside S. Thus, N ′ is contained
in the maximal Galois extension K ′

S,tr of K ′ which is tamely ramified at each

point of Γ′ and unramified outside S. But Gal(K ′
S,tr/K

′) is finitely generated1,
[3, Corollaire XIII.2.12]. Hence the quotient Gal(N ′/K ′) of Gal(K ′

S,tr/K
′) is

also finitely generated. It follows that Gal(N/N ∩ K ′) ∼= Gal(N ′/K ′) is also
finitely generated. Since K ′/K is a finite extension, Gal(N/N ∩K ′) is an open
subgroup of Gal(N/K). Therefore, Gal(N/K) is finitely generated.

If char(K) = 0, then N = K(Ator) = K(Ator)0, hence the claim is proved.
Therefore, assume that char(K) = p > 0 and let Np = Ks ∩K(A[p∞]). Then
the action of Gal(Np/K) on A[p∞] identifies Gal(Np/K) with a closed sub-
group of Aut(Tp(A)) in a natural way. Since Tp(A) = Zn

p for some integer
0 ≤ n ≤ dim(A), see [9, p. 179], Gal(Np/K) is isomorphic to a closed subgroup
of GLn(Zp). Therefore, by [6, Lemma 5], every closed subgroup of Gal(Np/K)
is finitely generated.

1It can be generated by |S| + 2genus(Γ′) elements.
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Finally observe that K(Ator) = K(A[p∞])N , so K(Ator)/NpN is purely insep-
arable, hence NpN = Ks ∩ K(Ator) = K(Ator)0. Since Gal(K(Ator)0/N) ∼=
Gal(Np/Np ∩ N) is a closed subgroup of Gal(Np/K), it is finitely generated.
Since also Gal(N/K) is finitely generated by the first paragraph of the proof,
and the class of finitely generated profinite groups is closed under group exten-
sions, Gal(K(Ator)0/K) is finitely generated. �

Remark 3.2 It follows from [6, Lemma 4] that in the setup of Proposition 3.1
every intermediate field M of K(Ator)0/K is Hilbertian.

Lemma 3.3 Let K be a Hilbertian field and N/K a small algebraic extension.
Then N is Hilbertian.

Proof. Since a purely inseparable extension of a Hilbertian field is Hilbertian,
it suffices to prove that N ∩Ks is Hilbertian. We may thus assume that N/K
is separable.

Let f ∈ N [T,X] be an irreducible polynomial which is separable in X. Replac-
ing K by a finite extension in N , if necessary, we may assume that f ∈ K[T,X].
Let m = degX(f) and let M be the compositum of all intermediate fields of
N/K of degree at most m! over K. Then M/K is a finite separable extension.
By [2, Corollary 12.2.3], there exists a ∈ K such that f(a,X) is irreducible over
M . We claim that f(a,X) is even irreducible in N [X].

Otherwise f(a,X) = g(X)h(X) with 1 ≤ deg(g),deg(h) ≤ m and g, h ∈ N [X]
monic. Let L be the splitting field of f(a,X) over K. Then [L : K] ≤ m!
and the coefficients of g and h lie in L. Hence g, h ∈ (L ∩ N)[X] ⊆ M [X] - a
contradiction. �

For a field extension M/K we denote the set of all intermediate fields L with
[L : K] = d by Sd(M/K).

Lemma 3.4 Let K be a field and let N/K and M/K be linearly disjoint alge-
braic extensions. If MN/N is small, then M/K is small.

Proof. If M ′ is an intermediate field of M/K with [M ′ : K] = d, then [M ′N :
N ] = d because of the linear disjointness. Moreover, the map

Sd(M/K)→ Sd(MN/N), M ′ 7→M ′N

is injective. In fact, if M1,M2 ∈ Sd(M/K) and M1N = M2N , then [M1M2 :
K] = [(M1M2)N : N ] = [M1N : N ] = d, hence M1 = M2. �

Remark 3.5 Let L/K be a finite purely inseparable extension such that L is
Hilbertian. Then K is Hilbertian. Indeed, assuming char(K) > 0, there exists a
power q of char(K) such that Lq ⊆ K. Then Lq ∼= L is Hilbertian and K is a
purely inseparable extension of Lq. Hence, K is Hilbertian.
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Now we can treat the case of an arbitrary algebraic function field.

Proposition 3.6 Let K/F be a finitely generated extension of fields with
tr.deg(K/F ) = 1. Then K is Kuykian.

Proof. We consider an abelian variety A/K and an intermediate field M of
K(Ator)/K and prove that M is Hilbertian.

First we prove the claim under the assumption that K/F is separable. Let
K(Ator)0 = K(Ator) ∩Ks and M0 = M ∩Ks = M ∩K(Ator)0. Then M/M0 is
a purely inseparable extension. If we prove that M0 is Hilbertian, it will follow
that M is Hilbertian. Replacing M by M0, if necessary, we may assume that
M/K is separable.

Let F ′ be the algebraic closure of F in M . Then KF ′ is a finitely generated
transcendental extension of F ′, hence KF ′ is Hilbertian [2, Theorem 13.4.2].

K(Ator)0 K(Ator)0F̃

M MF̃

K KF ′ KF̃

F F ′ F̃

Moreover, M/KF ′ is separable, hence M/F ′ is separable. By definition, F ′ is
algebraically closed in M , so M/F ′ is regular. Since F ′ ⊆ KF ′ ⊆M and KF ′ ·
F̃ = KF̃ , [2, Lemma 2.5.3] implies that M and KF̃ are linearly disjoint over
KF ′. Hence, by Lemma 3.3 and Lemma 3.4 it suffices to show that MF̃/KF̃ is
small. Indeed, MF̃ is an intermediate field of K(Ator)0F̃ /KF̃ . By Proposition
3.1, K(Ator)0F̃ /KF̃ is a Galois extension with a finitely generated Galois group,
hence MF̃/KF̃ is small as desired.

In the general case F has a finite purely inseparable extension F1 such that
K1 = KF1 is a separable extension of F1. By the separable case M1 = MK1

is Hilbertian. In addition, M1 is a finite purely inseparable extension of M .
Hence, by Remark 3.5, M is Hilbertian. �

Remark 3.7 A field K is said to be fully Hilbertian if for every absolutely
irreducible polynomial f ∈ K[T,X] which is separable in X there exist card(K)
many a ∈ K and ba a root of f(a,X) such that f(a,X) is irreducible in K[X]
and the K(ba) are linearly disjoint over K. Using results of [1], we could adjust
the proof of Proposition 3.6 to prove, in the notation used there, that M is not
only Hilbertian but even fully Hilbertian. However, since our Main Theorem
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deals with finitely generated, hence countable fields, and for countable fields the
notions Hilbertian and fully Hilbertian coincide, we refrain from doing so.

Everything is now set to prove our Main Theorem.

Theorem 3.8 Every infinite finitely generated field K is Kuykian.

Proof. The case where K is a number field is covered by [6, Theorem 10]. In
all other cases K is finitely generated and transcendental over its prime field,
hence over some subfield F with tr.deg(K/F ) = 1. Thus, K is Kuykian by
Proposition 3.6. �

4 Non finitely generated Hilbertian fields

By Theorem 3.8, every infinite finitely generated field is Kuykian. By Proposi-
tion 3.6, every finitely generated transcendental extension of an arbitrary field
is Kuykian. In this section we supply more evidence to the Kuykian Conjecture
by giving a variety of examples of non finitely generated Hilbertian fields that
are Kuykian.

Let N/K be a field extension and A/N an abelian variety. We say that A
descends to K if there exists an abelian variety B/K such that BN

∼= A. In this
case, A(N ′) = B(N ′) for every extension N ′ of N , and by abuse of language we
will treat A as an abelian variety over K.

Lemma 4.1 Every finite extension L of a Kuykian field K is Kuykian.

Proof. Let B/L be an abelian variety and M an extension of L in L(Btor). We
have to prove that M is Hilbertian. It suffices to prove this statement under
the assumption that L/K is separable or purely inseparable.

Case A: L/K is separable. Applying restriction of scalars to B yields an abelian
variety A = resL/KB over K and an epimorphism λ : AL → B, see [11, Section
1.3] or [7, §1]. If we let C be an abelian subvariety of AL such that λ|C : C → B
is an isogeny, [8, Proposition 12.1], we see that λ(Ator) ⊇ λ(Ctor) = Btor.
Consequently, L(Btor) ⊆ L(Ator).

Let L0 = K(Ator) ∩ L. Then K(Ator) and L are linearly disjoint over L0 and
K(Ator)L = L(Ator). Hence, M0 = K(Ator) ∩M satisfies M0L = M . By our
assumption on K, M0 is Hilbertian. Also, M/M0 is finite, hence M is Hilbertian.

Case B: L/K is purely inseparable. Assuming char(K) > 0, there exists a
power q of char(K) such that Lq ⊆ K. Then the q-Frobenius on L transforms
B/L onto an abelian variety A/Lq that satisfies Lq ⊆ Mq ⊆ Lq(Ator). Hence,
K ⊆ MqK ⊆ K(Ator). By our assumption on K, MqK is Hilbertian. Since
M/MqK is purely inseparable, M is also Hilbertian. �
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Lemma 4.2 If K is a Kuykian field and A/K is an abelian variety, then
K(Ator) is also Kuykian.

Proof. Let N = K(Ator) and let B/N be an abelian variety. Then N/K
has a finite subextension K ′/K such that B descends to K ′. It follows that
N(Btor) = K ′((AK′ ×B)tor). By Lemma 4.1, K ′ is Kuykian. Therefore, every
intermediate field of N(Btor)/N is Hilbertian. �

Lemma 4.3 Let K be a field and let L1, L2 be algebraic extensions of K. Then
L1L2 ∩Ks = (L1 ∩Ks)(L2 ∩Ks).

Proof. Our statement follows from the observation that (L1 ∩Ks)(L2 ∩Ks)/K
is a separable extension and L1L2/(L1 ∩Ks)(L2 ∩Ks) is a purely inseparable
extension. �

Proposition 4.4 Let L1, L2 be normal algebraic extensions of a Hilbertian field
K and let M be a separable extension of K in L1L2. Suppose M 6⊆ L1 and
M 6⊆ L2. Then M is Hilbertian.

Proof. We set L = L1L2, L0 = L ∩Ks, L1,0 = L1 ∩Ks, and L2,0 = L2 ∩Ks.
Then L1,0 and L2,0 are Galois extensions of K. By Lemma 4.3, L1,0L2,0 = L0.
In addition, M is contained in L0 but neither in L1,0 nor in L2,0. Hence, by
Haran’s diamond theorem [2, Theorem 3.8.3], M is Hilbertian. �

Proposition 4.5 Let N be a normal algebraic extension of a Kuykian field K
and suppose that N is Hilbertian. Then N is Kuykian.

Proof. Let A/N an abelian variety and M an intermediate field of N(Ator)/N .
Then K has a finite extension K ′ such that A descends to K ′. By Lemma 4.1,
K ′ is Kuykian. Hence, we may assume that K ′ = K.

Let M0 = M ∩ Ks. If M0 ⊆ N , then M0 = N and M0 is Hilbertian. If
M0 ⊆ K(Ator), thenM0 is Hilbertian, becauseK is Kuykian. Finally, ifM0 6⊆ N
and M0 6⊆ K(Ator), then M0 is Hilbertian, by Proposition 4.4.

Finally, M/M0 is a purely inseparable extension, so M is Hilbertian. �

Remark 4.6 Let K be a number field or a finitely generated transcendental
extension of an arbitrary field. By Proposition 3.6 and Theorem 3.8, K is
Kuykian. Hence, by Proposition 4.5, every Galois extension N of K with N
Hilbertian, is Kuykian. By the result of Kuyk mentioned in the introduction,
every abelian extension of K is Hilbertian. Hence, it is also Kuykian. In par-
ticular, Qab, the maximal abelian Galois extension of Q, is a Kuykian field.

If K is a field and σσσ = (σ1, . . . , σe) ∈ Gal(K)e, then Ks[σσσ] denotes the maximal
Galois extension of K in the fixed field

Ks(σσσ) = {x ∈ Ks : σi(x) = x, i = 1, . . . , e}.
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Corollary 4.7 Let K be a countable Kuykian field and e ≥ 1. Then Ks[σσσ] is
Kuykian for almost all σσσ ∈ Gal(K)e (in the sense of the Haar measure).

Proof. Since K is Kuykian, it is Hilbertian. Hence Ks[σσσ] is Hilbertian for almost
all σσσ ∈ Gal(K)e by [5, Theorem 2.7]. Moreover, by definition, Ks[σσσ] is a Galois
extension of K. Hence, by Proposition 4.5, Ks[σσσ] is also Kuykian. �

We denote the maximal purely inseparable extension of a field K by Kins.

Proposition 4.8 Let K be the quotient field of a complete local domain R of
dimension at least 2. Then the field Kins is Kuykian.

Proof. By [1, Theorem 1.7], Kins is fully Hilbertian. Let A/Kins be an Abelian
variety and let M an intermediate field of Kins(Ator)/Kins. Then Kins(Ator)
is obtained from Kins by adjoining the countably many points of Ator. Hence,
Kins has only countably many finite extensions in Kins(Ator). Therefore, Kins

has at most countably many finite extensions in M .

Let m be the maximal ideal of R. Our assumption on R to be complete means in
particular that (R,m) is Hausdorff. In particular m2 6= m. We choose t ∈ mrm2.
Then the power series

∑∞
i=0 εit

i with εi ∈ {0, 1} converge to distinct elements
of R. Thus, card(Kins) ≥ card(R) ≥ 2ℵ0 > ℵ0. Hence, by [1, Theorem 4.6(c)],
M is Hilbertian. It follows that Kins is Kuykian. �

Example 4.9 Each of the rings K0[[X1, . . . , Xn]] with K0 an arbitrary field and
n ≥ 2 satisfies the assumption of Proposition 4.8, hence K0((X1, . . . , Xn))ins is
Kuykian.

Remark 4.10 The conclusion of Proposition 4.8 is somewhat annoying. We
would rather claim that K itself is Kuykian rather than Kins. This would follow
if we knew that a field M is Hilbertian once Mins is Hilbertian.
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