
21 July 2009

Diamonds in Torsion of Abelian Varieties∗

by

Moshe Jarden, Tel Aviv University

A well known theorem of Kuyk says that every Abelian extension of a Hilbertian field K

is Hilbertian [FrJ08, Thm. 16.11.3]. In particular, if Kcycl denotes the field obtained from

K by adjoining all roots of unity, then every extension M of K in Kcycl is Abelian, hence

Hilbertian. One may view the roots of unity as the torsion points of the multiplicative

group K̃× (where K̃ is the algebraic closure of K). We conjecture that the theorem

holds if one replaces the multiplicative group of the field by an Abelian variety.

Conjecture 1: Let K be a Hilbertian field, A an Abelian variety defined over K, and

M an extension of K in K(Ator). Then M is Hilbertian.

We prove the conjecture in the case where K is a number field. Most of the

proof works for an arbitrary Hilbertian field. The assumption that K is a number field

appears only toward the end, when a result of Serre (Proposition 2) is used.

Before going into details, we give a sketch of the proof. First we note that for

each l0 the field K(Ator) is a composition of two Galois extensions N1 =
∏

l≤l0
K(Al∞)

and N2 =
∏

l>l0
K(Al∞) of K. Here we use An for the points of A that vanish by

multiplication by n and let Al∞ =
⋃∞

i=1 Ali for prime numbers l. We also set Ator =⋃
l Al∞ .

The group Gal(N1/K) is isomorphic to a closed subgroup of
∏

l≤l0
GL2 dim(A)(Zl)

(Proof of Lemma 6), hence Gal(N1/K) is finitely generated. So, if M ≤ N1, then

Lemma 4 (a classical hilbertianity criterion from [FrJ08]) implies that M is Hilbertian.

Thus, we may assume that M 6⊆ N1 for each l0. Since every finite extension of

a Hilbertian field is Hilbertian, we may also assume that [M : K] = ∞. By Serre’s

result, K has a finite Galois extension L such that the fields L(Al∞), with l ranging

over all prime numbers, are linearly dijoint over L. Lemma 9 then yields an l0 such that

* Research supported by the Minkowski Center for Geometry at Tel Aviv University, es-
tablished by the Minerva Foundation, by an ISF grant, and by the European Community
Marie Curie Research Training Network GTEM.

1



M 6⊆ N2 =
∏

l>l0
K(Al∞). Since M ⊆ K(Ator) = N1N2, Haran’s diamond theorem

implies that M is Hilbertian.

The proof itself relies on three results:

Proposition 2 ([Ser86, Thm. 1]): Let A be an Abelian variety defined over a number

field K. Then K has a finite Galois extension L such that the fields L(Al∞), with l

ranging over all prime numbers, are linearly disjoint over L.

Proposition 3 (Haran’s diamond theorem for Hilbertian fields [FrJ08, Thm. 13.8.3]):

Let K be a Hilbertian field, N1, N2 Galois extensions of K, and M an extension of K

in N1N2. Suppose M 6⊆ Ni for i = 1, 2. Then M is Hilbertian.

The third result says that each closed subgroup of GL(n, Zl) is finitely generated

(Proof of Lemma 5).

We start the proof by recalling that a profinite group G is said to be small if for

every positive integer n there are only finitely many open subgroups of G of index at

most n. In particular, every finitely generated profinite group is small [FrJ08, Lemma

16.10.2].

Proposition 16.11.1 of [FrJ08] states that each Galois extension N of a Hilbertian

field K with a small Galois group Gal(N/K) is Hilbertian. A verbatim repetition of the

proof of that Proposition yields the following result.

Lemma 4: Let K be a Hilbertian field, N a Galois extension of K, and M an extension

of K in N . Suppose Gal(N/K) small. Then M/K is a Hilbertian extension, that is,

every separable Hilbert subset H of Mr contains a separable Hilbert subset of Kr. In

particular, M is Hilbertian.

Lemma 5: Let n be a positive integer, l1, . . . , lm prime numbers, and H a closed sub-

group of
∏m

i=1 GL(n, Zli). Then H is finitely generated (as a profinite group).

Proof: We set Gi = GL(n, Zli) and let Ni = {g ∈ Gi | g ≡ 1 mod li} if li 6= 2 and

Ni = {g ∈ Gi | g ≡ 1 mod 4} if li = 2. Then Ni is an open normal subgroup of Gi,

Moreover Ni is a pro-li group [FrJ08, Lemma 22.14.2] and every closed subgroup of Ni is

finitely generated (the number of generators is even bounded) [FrJ08, Lemma 22.14.4].
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We set G =
∏m

i=1 Gi and N =
∏m

i=1 Ni and observe that N is open in G. Hence,

N ∩H is an open subgroup of H. If we prove that N ∩H is finitely generated, we may

conclude that H is finitely generated. Thus, we may assume that H ≤ N . Since Ni is

an li-Sylow subgroup of N , Hi = Ni ∩H is an li-Sylow subgroup of H. Moreover, Hi

is normal in H and l1, . . . , lm are the only prime numbers that divide the order of H.

Hence, H =
∏m

i=1 Hi. Since each Hi is finitely generated, so is H, as claimed.

In the sequel we use l as a variable over the prime numbers.

Lemma 6: Let K be a Hilbertian field, A an Abelian variety over K, and M an extension

of K in
∏

l≤l0
K(Al∞) for some l0. Then M is Hilbertian.

Proof: Let N =
∏

l≤l0
K(Al∞). Recall that for each l ≤ l0 and every i ≥ 1 we have

Ali
∼= (Z/liZ)d, for some 0 ≤ d ≤ 2 dim(A) independent of i [Mum74, 64]. Choosing

compatible bases for the Ali over Fl, the action of Gal(N/K) on Ali defines a ho-

momorphism Gal(N/K) → GL(2 dim(A), Z/liZ). Letting i tend to ∞ and using the

compatibility of the bases, we get a homomorphism Gal(N/K) → GL(2 dim(A), Zl).

Hence, Gal(N/K) is isomorphic to a closed subgroup of
∏

l≤l0
GL(2 dim(A), Zl). By

Lemma 5, Gal(N/K) is finitely generated. Hence, by Lemma 4, M is Hilbertian.

Lemma 7: Let K be a Hilbertian field, A an Abelian variety over K, and M an extension

of K in K(Ator). Suppose [M : K] <∞ or

(1) there is an l0 such that M 6⊆
∏

l>l0
K(Al∞).

Then M is Hilbertian.

Proof: If [M : K] <∞, then M is Hilbertian, by [FrJ08, Thm. 13.4.2]. Otherwise, (1)

holds. If M ⊆
∏

l≤l0
K(Al∞), then by Lemma 6, M is Hilbertian.

If M 6⊆
∏

l≤l0
K(Al∞), then we observe that both fields

∏
l≤l0

K(Al∞) and∏
l>l0

K(Al∞) are Galois extensions of K that do not contain M whose compositum is

K(Ator). By Proposition 3, M is a Hilbertian field.

We verify Condition (1) when K is a number field.
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Lemma 8: Let K1, K2, K3, . . . a sequence of extensions of a field K. Let L be a finite

extension of K and let M an infinite extension of K. Suppose K1L, K2L, K3L, . . . are

linearly disjoint over L. Then there exists a positive integer n such that M 6⊆
∏∞

i=n+1 Ki.

Proof: By assumption, ML/L is a proper extension. If ML 6⊆
∏∞

i=1 KiL, we are done.

Otherwise ML ⊆
∏∞

i=1 KiL and there exists x ∈ ML r L. Let n be a positive integer

such that x ∈
∏n

i=1 KiL. Since the fields KiL are linearly disjoint over L, also
∏n

i=1 KiL

and
∏∞

i=n+1 KiL are linearly disjoint over L. Hence, x /∈
∏∞

i=n+1 KiL, consequently

ML 6⊆
∏∞

i=n+1 KiL.

Lemma 9: Let K be a number field, A an Abelian variety defined over K, and M an

infinite algebraic extension of K. Then there exists l0 such that M 6⊆
∏

l>l0
K(Al∞).

Proof: By Proposition 2, K has a finite extension L such that the extensions L(Al∞)

of L, where l ranges over all prime numbers, are linearly disjoint. Hence, by Lemma 8,

there exists l0 such that M 6⊆
∏

l>l0
K(Al∞).

It is well known that number fields are Hilbertian [FrJ08, Thm. 13.4.2]. Combining

Lemma 7 and Lemma 9, we get the main result of this note:

Theorem 10: Let K be a number field, A an Abelian variety defined over K, and M

an extension of K in K(Ator). Then M is Hilbertian.

Remark 11: One may be tempted to generalize both Kuyk’s result and Conjecture 1

to a conjecture about an arbitrary algebraic group G defined over a Hilbertian field K:

every extension M of K in K(Gtor) is Hilbertian. Unfortunately, this conjecture fails

already for GL2. Indeed, for each x ∈ K̃×, the matrix
(

0
x−1

x
0

)
has order 2. Thus,

adjoining the entries of all elements of GL2(K̃) of finite order gives the field K̃ which is

not Hilbertian.

The original proof of Kuyk uses wreath products. This ingredient appears also in

the proof of Haran’s result. Indeed, Kuyk’s result follows from that of Haran, using an

additional easy argument. Our result uses the full strength of Haran’s diamond theorem

combined with Serre’s result.
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