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ABSTRACT

Let K be an ample field, G a finite group, and L a finite Galois extension
of K such that Gal(L/K) is isomorphic to a subgroup of G. We prove
that that K (z) has a Galois extension F' which is regular over L such that
Gal(F/K(x)) 2 G and F has a K-place ¢ such that p(z) € K and ¢(F) =
LU {oo}.
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Introduction

Colliot-Thélene [CoT00] uses the technique of Kollar, Miyaoka, and Mori to prove the

following result.

THEOREM A: Let K be an ample field of characteristic 0, x a transcendental element
over K, and G a finite group. Then there is a Galois extension F' of K (x) with Galois

group G, regular over K.

Here K is said to be ample if every absolutely irreducible curve defined over K
with a K-rational simple point has infinitely many K-rational simple points.
In fact, Colliot-Thélene proves a stronger version, still under the assumption that

K is ample and char(K) = 0:

THEOREM B: Given a Galois extension L/K with Galois group I" which is a subgroup
of G, there exist a Galois extension F' of K(z) with Gal(F/K(x)) =2 G and a place ¢
that fixes the elements of K and the residue field extension of F/K (x) under ¢ is L/ K.

Case I' = G of Theorem B means that K has the arithmetic lifting property of
Beckmann and Black [Bla99].

Since the results of Kollar, Miyaoka, and Mori are valid only in characteristic 0,
Colliot-Thélene’s proof works only in this case. Nonetheless, Theorem A holds in ar-
bitrary characteristic ([Har87, Corollary 2.4] for complete fields, [Pop96, Main The-
orem Al; see also [Liu95] and [HaV96]). Theorem B can be deduced for arbitrary
characteristic from Théoreme 1.1 of [MoBO01]. The proof of that paper uses methods of
formal patching.

Here we use algebraic patching to prove Theorem B for arbitrary characteristic.
In fact, the main ingredient of the proof is almost contained in [HaJ98|. Therefore this
note can be considered a sequel to [HaJ98]; a large portion of it recalls the situation
and facts considered there.

The idea (displayed in our Lemma 2.1) to use the embedding problem Gx G — G
in order to obtain the arithmetic lifting property has been used in [Pop99]; we are

grateful to F. Pop for making his note available to us.



1. Embedding problems and decomposition groups

Let K/Kj be a finite Galois extension with Galois group I'. Let = be a transcendental
element over K. Put Ey = Ky(x). Suppose that I' acts (from the right) on a finite
group G; let I' X G be the corresponding semidirect product and 7: I' x G — I the

canonical projection. We call
(1) mI'x G — T = Gal(K/K))

a finite constant split embedding problem. A solution of (1) is a Galois exten-
sion F' of Ey such that K C F, Gal(F/Ey) =T x G, and 7 is the restriction map
resg: Gal(F/Ey) — Gal(K/K)).

In [HaJ98, Theorem 6.4] we reprove the following result of F. Pop [Pop96]:

PROPOSITION 1.1: Let Ky be an ample field. Then each finite constant split embedding
problem (1) has a solution F' such that F' has a K-rational place ¢ such that p(x) €
Ky U{oo} (in particular, F/K is regular).

In this section we show that the proof of Proposition 1.1 in [HaJ98] yields a
stronger assertion.

We denote the residue field of a place ¢ of a field F by F,.

LEMMA 1.2: Let F be a solution of (1). Put Fy = FT. Let ¢: F — Ky U {oo} be
a K-place with p(z) € Ko U {oo}. Assume that ¢ is unramified in F/E, and let D,
be its decomposition group in F/Ey. Then K C F’Lp and the following assertions are
equivalent:

(a) K=F, and T = D;

(b) D, C T

(c) Ko = Fo,w;

(d) K = F, and o(f7) = ¢(f)" for each v € T and f € F with o(f) # oco.

Proof: Since K C F, we have K = Kso C Flp. Since the inertia group of ¢ in F/Ejy is

trivial, we have an isomorphism 6: D, — Gal(F,,/Ky) given by

(2) e(f) =)', yeD,, feF, o(f)+ .
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Hence, |D,| = [F, : Ko] > [K : Ko] = |I'|. This gives (a) < (b).

Since ¢ is unramified over Ey, the decomposition field F'P+ is the largest inter-
mediate field of F'/Ey mapped by ¢ into Ky U {oc}, and hence (b) < (c).

Clearly (d) = (c). If F, = K, then f¥ = o(f7) = ¢o(f)?™) = o) for all f € K
and v € D, (by (2)). Hence, 6(y) = for all v € D,. Applying (2) once more, we have
o(f7) = o(£)°) = @(f) for each f € F with o(f) # oo and v € D,. Consequently,
(a) = (d). i

Remark 1.3: Let Ky be an ample field and F' a solution of (1). Suppose F has a
K-rational place ¢ unramified over Ey such that p(z) € KoU {oco} and I is the decom-
position group of ¢ in F//Ey. Then F' has infinitely many such places.

Indeed, put Fy = F'. Recall that F is regular over Ky. By Lemma 1.2,
(a) the assumption is that there is a Ky-place p: Fy — Ky unramified over Ky(z), and
(b) we have to show that there are infinitely many such places.

But (a) = (b) is a property of an ample field. i

PROPOSITION 1.4: Let Ky be an ample field. Then each finite constant split embedding
problem (1) has a solution F with a K-rational place ¢ of F' unramified over Ey such

that o(z) € Ko U {oco} and I is the decomposition group of ¢ in F/Ej.
Proof: Put E = K(z) = KKo(x).

PART A: Asin the proof of [HaJ98, Theorem 6.4], we first assume that K is complete
with respect to a non-trivial discrete ultrametric absolute value ||, with infinite residue
field and K/ Ky is unramified.

In this case [HaJ98, Proposition 5.2] proves Proposition 1.1. Claim C of that
proof shows that, for every b € Ky with [b| > 1, x — b extends to a K-homomorphism
wp: R — K, where R is the principal ideal ring K{ﬁ | © € I'} and the ¢;’s are properly
chosen elements of K. From there it extends to a K-place ¢p: Q@ — K U {oo} of the
Q = Quot(R). Furthermore, [HaJ98, Lemma 1.3(b)| gives an F-embedding \: F' — Q.
The compositum ¢ = ¢ o A is a K-rational place of F. Excluding finitely many b’s we
may assume that ¢ is unramified over Ey. To verify that ¢ satisfies condition (d) of

Lemma 1.2, we first recall the relevant facts from [HaJ98].
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(a) [HaJ98, Proposition 5.2, Construction B] The group I' = Gal(K/K)) lifts isomor-
phically to Gal(E/Ey). By the choice of the ¢; we have (-2 )7 = —L, for each

r—Cy

~v € I'. It follows that I' continuously acts on R in the following way

(aO_I_ZZam T — ¢ ”) —a0+22am r—c)

el n=1 icl n=1

This action induces an action of I' on Q).
(b) [HaJ98, (7) on p. 334] The above mentioned action of I on @ defines an action of
I' on the Q-algebra

N:Ind?Q:{Zagﬁ\ agEQ}

0eG

in the following way:

<Za99)722a307 ag € Q, yeT.

0ecG 0ecG

Furthermore, the field F' is a subring of N [HaJ98, p. 332] and I' acts on it by
restriction from N [HaJ98, Proof of Proposition 1.5, Part A].
(¢) The embedding \: F' — @ is the restriction to F' of the projection

ZCL@O — aq

from N = Ind¥Q onto Q [HaV96, Proposition 3.4].
(d) The place p: @ — KU{oo} is induced from the evaluation homomorphism ¢: R —
K given by [HaJ98, Remark 3.5]

RS ) PSR D ETIRS 3p SO

i€l n=1 i€l n=1

In order to prove condition (d) of Lemma 1.2 it suffices to show that both A and ¢y, are
I'-equivariant.

Let f =) ycqaaef € FF C N. Then, by (b) and (c),

A(fY) = A(Za'ym) =aj = ()\<Z:(199>>AY = A(f)".

0eG 0eG



Furthermore, let 7 = ag + Y ;c; >ooey ain(:2-)" € R. By (a) and (d),

) =g (a3 + S a2 )") =@+ S el ()"

el n=1 el n=1

= (ao + i am(b%%)”y = ou(r)7.

i€l n=1

Thus ¢y is I'-equivariant.

PART B: Ky is an arbitrary ample field. As in the proof of [HaJ98, Theorem 6.4] let
Ko = Ko((t)) be the field of formal power series in t over Ky. Then K = KKj is an
unramified extension of K, with Galois group I' and infinite residue field.

By Part A, Ko(z) has a Galois extension F' which contains K(z), such that
Gal(F'/Ky(z)) = T x G and the restriction map Gal(F/Ky(z)) — Gal(K/K;) is the
projection 7: I' x G — T'. Furthermore, there is b € K such that the place z — b
of Ko(x) extends to an unramified K-place ¢: ' — K U {oo} and @¢(F") = K,. Put
m = |G|.

Use the Weak Approximation to find y € FT mapped by the m distinct extensions
of z — b to FT into m distinct elements of the separable closure of KO; then FT =
Ko(z,y).

Thus there exist polynomials f € Ky (X,Z],g € K, [X,Y], elements z € F,yeFr,
and elements b, ¢ € K 0, such that the following conditions hold:

(3a) F = Ko(z,2), f(z,Z) = irr(z, Ko(z)); we identify Gal(f(zx,Z), Ko(z)) with

Gal(F/Ko());

(3b) FT' = Koy(z,y), whence F = K(z,y), and g(z,Y) = irr(y, Ko(z)); therefore

g(X,Y) is absolutely irreducible;

(3c) discr(g(b,Y)) # 0 and g(b,c) = 0.

All of these objects depend on only finitely many parameters from K. Hence,
there are uq,...,u, € I%'o such that the following conditions hold:

(4da) F = Ko(u,z,z2) is a Galois over Ky(u,z), the coefficients of f(X, Z) lie in Koy[u],

f(z, Z) = irr(z, Ko(u, z)), and Gal(f(z, Z), Ko(u,z)) = Gal(f(x, Z), Ko(z));

(4b) the coefficients of ¢ lie in K|u]; hence g(z,Y) = irr(y, Ko(u,x)); furthermore,

Ko(u,2,y) = F;



(4c) b,c € Kolu], discr(g(b,Y)) # 0, and g(b,c) = 0.

Since Ky has a K-rational place, namely, z — 0, the field K, and therefore also
Ky(u) are regular extensions of K. Thus, u generates an absolutely irreducible variety
U = Spec(Kp[u]) defined over K. By Bertini-Noether [FrJ05, Proposition 9.4.3], the
variety U has a nonempty Zariski open subset U’ such that for each u' € U’ the K-
specialization u — u’ extends to a K-homomorphism ": K[u,z, z,y] — K[u',z,2',y]
such that the following conditions hold:

(5a) f'(x,z") =0, the discriminant of f’(x,Z) is not zero, and F’' = Ky(u’,x,2) is the
splitting field of f'(x, Z) over Ko(u’, x); in particular F'/Ky(u', ) is Galois;
(5b) ¢'(X,Y) is absolutely irreducible and ¢'(z,y’) = 0; so ¢'(x,Y) = irr(y/, K(u/, x));

furthermore, Ko(u', z,y’) = (F')';

(5¢) V', € Ko[u'] and diser(¢’(V/,Y)) # 0 and ¢’ (v, ) = 0.

By assumption, K is ample, so Ky is existentially closed in K [Pop96, Prop. 1.1].

Since u € U(Kj), there is a u’ € U(K;). Now repeat the end of the proof of [HaJ98,

Lemma 6.2] (from “By (5a), the homomorphism...”) to conclude that F’ is a solution

of (1).

F’ F F
~ ~
(F/)F FF / : F‘F ‘
/K(.r)— —/K(U;CU) —|— K(x)
K : K (u) : k- ‘
Ko(ill)— _KO(Uﬂx)_ _IA(O(:E)
- ~ N
Ko K()(ll) KO

Condition (5¢) ensures that the place x — b’ of Kq(x) is unramified in (F”)', hence
in F’, and extends to a Ky-rational place of (F’)''. This ends the proof by Lemma 1.2.
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2. Lifting property over ample fields

Consider a subgroup I of a finite group G, let I' act on G by the conjugation in G

9 =~""g7.

and consider the semidirect product I" x G. To fix notation, ' x G = {(v,9)| v €T, g €
G} and the multiplication on I' x G is defined by

(71791)(72792) = (7172;9?292)-

Notice the isomorphism I' x G = T" X G given by (v, g) — (7,79) and the epimorphism
p:I'x G — G given by (v,9) — vg. Let N = Ker(p).

LEMMA 2.1: Let Ky be a field, K a Galois extension of Ky with Galois group I', and

& a transcendental element over Ky. Assume that (1) has a solution F with a K-

rational place ¢ of F' unramified over Ko(z) such that ¢(z) € Ko U {oo} and T is the

decomposition group of ¢ in F/Ky(x). Let F = F'N and let ¢ be the restriction of ¢

to F'. Then

(6a) F' is a Galois extension of Ky(z) and Gal(F'/Ky(x)) = G;

(6b) F'/K, is a regular extension;

(6¢) ¢ represents a prime divisor p of F /Ky with decomposition group I' in F/Ky(x)
and residue field K.

Proof: By assumption, F' is a Galois extension of Ko(zx) containing K, with Galois
group T' x G such that the restriction Gal(F'/Ky(z)) — Gal(K/Kj) is the projection
I'xG—T,and F /K is regular. Furthermore, ¢: F — K is a K-place unramified over
Ko(z), with decomposition group A = {(7,1)| v € T} 2 T in F/Ky(z) and residue
field extension K/Kjy. In particular, Fis regular over K.

From the definition of F' we get (6a) and p(A) = I' < G is the decomposition
group of the restriction ¢: F' — K of ¢ to F. Since |A| = [K : Ky, the residue field
of pis K. Since I' x G = NG, the fields F = FN and K(z) = FC are linearly disjoint
over Ko(x). In addition, FK = F and F/K is regular. Therefore, F' is regular over K.
|



Lemma 2.1 together with Proposition 1.4 and Remark 1.3 yield the following

result:

THEOREM 2.2: Let Ky be an ample field, G a finite group, I' a subgroup, K a Galois
extension of Ky with Galois group I', and x a transcendental element over K,. Then
there is a field F' that satisfies (6a), (6b) and

(6d) there are infinitely many prime divisors p of F'/ Ky with decomposition group I' in

F/Ky(x) and residue field K.

Remark 2.3: In case of I' = G, Theorem 2.2 says that an ample field Ky has the
so-called arithmetic lifting property of Beckmann-Black [Bla99]. |

Remark 2.4: 1In the special case where K is a PAC field, it possible to refine Theorem
2.2. In this case if F' is an arbitrary Galois extension of K(z) regular over K and
L/K is a Galois extension with Galois group isomorphic to a subgroup of Gal(F'/K (x)),
there exists a place ¢ of F' such that the residue field extension of F/K(x) under ¢
is L [Deb99, Remark 3.3]. This stronger property of PAC fields does not hold for an
arbitrary ample field K [CoT00, Appendix]. |
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