PAC FIELDS OVER FINITELY GENERATED FIELDS*

by

LIOR BARY-SOROKER AND MOSHE JARDEN

School of Mathematics, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel barylior@post.tau.ac.il and jarden@post.tau.ac.il

> MR Classification: 12E30 Directory: \Jarden\Diary\BSJ 10 June, 2006

^{*} Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

Introduction

A central concept in Field Arithmetic is "pseudo algebraically closed (abbreviated **PAC**) field". If K is a countable Hilbertian field, then $K_s(\boldsymbol{\sigma})$ is PAC for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ [FrJ, Thm. 18.6.1]. Moreover, if K is the quotient field of a countable Hilbertian ring R (e.g. $R = \mathbb{Z}$), then $K_s(\boldsymbol{\sigma})$ is PAC over R [JaR, Prop. 3.1], hence also over K.

Here K_s is a fixed separable closure of K and $\operatorname{Gal}(K) = \operatorname{Gal}(K_s/K)$ is the absolute Galois group of K. This group is equipped with a Haar measure and the close "almost all" means "for all but a set of measure zero". If $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e) \in \operatorname{Gal}(K)^e$, then $K_s(\boldsymbol{\sigma})$ denotes the fixed field in K_s of $\sigma_1, \ldots, \sigma_e$.

Recall that a field M is said to be **PAC** if every nonempty absolutely irreducible variety V defined over M has an M-rational point. One says that M is **PAC over** a subring R if for every absolutely irreducible variety V defined over M of dimension $r \ge 0$ and every dominating separable rational map $\varphi: V \to \mathbb{A}_M^r$ there exists an $\mathbf{a} \in V(M)$ with $\varphi(\mathbf{a}) \in \mathbb{R}^r$.

When K is a number field, the stronger property of the fields $\tilde{K}(\boldsymbol{\sigma})$ (namely, being PAC over the ring of integers O of K) has far reaching arithmetical consequences (here \tilde{K} is the algebraic closure of K). For example, $\tilde{O}(\boldsymbol{\sigma})$ (= the integral closure of O in $\tilde{K}(\boldsymbol{\sigma})$) satisfies Rumely's local-global principle [JaR2, special case of Cor. 1.9]: If V is an absolutely irreducible variety defined over $\tilde{K}(\boldsymbol{\sigma})$ with $V(\tilde{O}) \neq \emptyset$, then V has an $\tilde{O}(\boldsymbol{\sigma})$ -rational point. Here \tilde{K} denotes the algebraic closure of K and $\tilde{K}(\boldsymbol{\sigma})$ is, as before, the fixed field of $\sigma_1, \ldots, \sigma_e$ in \tilde{K} .

The article [JaR1] gives several distinguished Galois extensions of \mathbb{Q} which are not PAC over any number field and notes that no Galois extension of a number field K (except \tilde{K}) is known to be PAC over K. This lack of knowledge has come to an end in [Jar], where Neukirch's characterization of the *p*-adically closed fields among all algebraic extensions of \mathbb{Q} is used in order to prove the following theorem:

THEOREM A: No number field K has a PAC Galois extension M (except \tilde{K}) such that M is PAC over K.

The goal of the present note is to generalize Theorem A to arbitrary finitely

generated fields:

THEOREM B: Let K be a finitely generated field (over its prime field). Then no Galois extension of K (except K_s) is pseudo algebraically closed over K.

The proof of Theorem B is based on Lemma 2 of [JaR1] which combines Faltings' theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic. The latter theorems are much deeper that the result of Neukirch use in the proof of Theorem A.

1. Accessible Fields

The proof of Theorem B actually gives a stronger theorem: No accessible extension (see definition prior to Theorem 4) of a finitely generated field K except K_s is PAC over K. Technical tools in the proof are the "field crossing argument" and "ring covers":

An extension S/R of integral domains with an extension F/E of quotient fields is said to be a **cover of rings** if S = R[z] and discr(irr(z, E)) $\in R^{\times}$ [FrJ, Definition 6.1.3]. We say that S/R is a **Galois cover of rings** if S/R is a cover of rings and F/Eis a Galois extension of fields. Every epimorphism φ_0 of R onto a field \overline{E} extends to an epimorphism φ of S onto a Galois extension \overline{F} of \overline{E} and φ induces an isomorphism of the **decomposition group** $D_{\varphi} = \{\sigma \in \text{Gal}(F/E) \mid \sigma(\text{Ker}(\varphi)) = \text{Ker}(\varphi)\}$ onto $\text{Gal}(\overline{F}/\overline{E})$ [FrJ, Lemma 6.1.4]. In particular, $\text{Gal}(F/E) \cong \text{Gal}(\overline{F}/\overline{E})$ if and only if $[F:E] = [\overline{F}:\overline{E}].$

As in the proof of [FrJ, Lemma 24.1.1], the field crossing argument is the basic ingredient of the construction included in the proof of the following lemma.

LEMMA 1: Let K be a field, M an extension of K, n a positive integer, N a Galois extension of M with Galois group A of order at most n, and t an indeterminate. Then there exist fields D, F_0, F, \hat{F} as in diagram (1) such that the following holds:

- (a) F_0 is regular over K, F and D are regular over M, and \hat{F} is regular over N.
- (b) $FD = DN = \hat{F}$.
- (c) $F_0/K(t)$, F/M(t), and $\hat{F}/N(t)$ are Galois extensions with Galois groups isomorphic to S_n .

Proof: The field K(t) has a Galois extension F_0 with Galois group S_n such that F_0 is regular over K [FrJ, Example 16.2.5 and Proposition 16.2.8]. In particular, F_0 is linearly disjoint from N and M over K. Set $F = F_0 M$ and $\hat{F} = FN$. By [FrJ, Cor. 2.6.8], both

F/M and \hat{F}/N are regular extensions. Moreover, both F/M(t) and $\hat{F}/N(t)$ are Galois extensions with Galois groups isomorphic to S_n and \hat{F}/F is a Galois extension. We identify $\operatorname{Gal}(\hat{F}/F)$ with A via restriction. Finally, $\hat{F}/M(t)$ is a Galois extension and $\operatorname{Gal}(\hat{F}/M(t)) = \operatorname{Gal}(\hat{F}/F) \times \operatorname{Gal}(\hat{F}/N(t))$.

Multiplication from the right embeds A into S_m , where m = |A|. Since $m \leq n$, there exists an embedding $\alpha: A \to \operatorname{Gal}(\hat{F}/N(t))$. Consider the diagonal subgroup $\Delta = \{(\sigma, \alpha(\sigma)) \in \operatorname{Gal}(\hat{F}/M(t)) \mid \sigma \in A\}$ of $\operatorname{Gal}(\hat{F}/M(t))$. Then $\Delta \cap \operatorname{Gal}(\hat{F}/F) =$ $\Delta \cap \operatorname{Gal}(\hat{F}/N(t) = 1$. By Galois theory, $FD = DN(t) = \hat{F}$, so $DN = \hat{F}$. Restriction to N maps $\operatorname{Gal}(\hat{F}/D)$ onto $\operatorname{Gal}(N/M)$, hence $D \cap N = M$. Since \hat{F} is regular over N, it follows that D is regular over M.

The main ingredient in the proof of Lemma 3 is the following result of Faltings' theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic.

LEMMA 2 ([JaR1, Prop. 5.4]): Let K be an infinite finitely generated field, $f \in K[T, Y]$ an absolutely irreducible polynomial which is separable in $Y, g \in K[T, Y]$ an irreducible polynomial which is separable in Y, and $0 \neq r \in K[T]$. Then there exist a purely inseparable extension K' of K, a nonconstant rational function $q \in K'(T)$, and a finite subset B of K' such that f(q(T), Y) is absolutely irreducible, g(q(a), Y) is irreducible in K'[Y], and $r(q(a)) \neq 0$ for each $a \in K' \setminus B$.

LEMMA 3: Let K be an infinite finitely generated field, M a separable PAC extension of K, n a positive integer, and N a Galois extension of M of degree at most n with Galois group A. Then there exist finite extensions $K' \subseteq L$ of K such that with M' = K'M and N' = K'N the following holds:

(a) N' = LM' and $\operatorname{Gal}(N'/M') \cong A$.

(b) L/K' is a Galois extension and $\operatorname{Gal}(L/K') \cong S_n$.

Proof: We break the proof into three parts.

PART A: Transcendental extensions. First we apply Lemma 1 to construct Diagram (1). Then we choose $x \in F_0$ integral over K[t] with $F_0 = K(t,x)$ and let $g \in K[T,X]$ be a monic polynomial in X such that g(t,X) = irr(x,K(t)). In particular, $r_1(t) = discr(g(t,X)) \in K[t]$ and $r_1(t) \neq 0$. Finally we choose $z \in D$ integral over M[t]with D = M(t,z) and let $f \in K[T,X]$ be a monic polynomial such that f(t,X) = irr(z,M(t)). Then $r_2(t) = discr(f(t,X)) \in M[t]$ and $r_2(t) \neq 0$. Since D is regular over M, the polynomial f(T,X) is absolutely irreducible [FrJ, Cor. 10.2.2(b)]. Let $r(t) = r_1(t)r_2(t)$.

Replacing K by a finite extension in M, we may assume that K contains all of the coefficients of f(t, X), g(t, X), and r(t). Set $R_0 = K[t, r(t)^{-1}]$, $R = R_0 M = M[t, r(t)^{-1}]$, $S_0 = R_0[x]$, $S = S_0 M = R[x]$, and V = R[z]. Then S_0/R_0 , S/R, and V/Rare ring covers and $F_0/K(t)$, F/M(t), and D/M(t) are the corresponding field covers.

PART B: Specialization. Lemma 2 gives a finite purely inseparable extension K' of K, a nonconstant rational function $q \in K'(T)$, and a finite subset B of K' such that f(q(T), X) is absolutely irreducible and g(q(a), X) is irreducible in K'[X] and $r(q(a)) \neq 0$ for each $a \in K' \searrow B$.

We put ' on rings and fields to denote their composition with K'. For example M' = K'M. Since \hat{F}/K is separable and K'/K is purely inseparable, these extensions are linearly disjoint. In follows that (a), (b), and (c) of Lemma 1 holds for the tagged rings and fields. In particular, S'_0/R'_0 and S'/R' are Galois covers of rings and Gal $(N'/M') \cong A$. By [JaR, Cor. 2.5], M' is PAC over K', hence there exists $(a,c) \in K' \times M'$ such that $a \notin B$ and f(b,c) = 0 with b = q(a). By the choice of B, g(b,X) is irreducible in K'[X] and $r(b) \neq 0$.

The tag notation also gives $R'_0 = K'[t, r(t)^{-1}]$ and $V' = M'[t, z, r(t)^{-1}]$. Since V' is integral over R' we may extend the specialization $(t, z) \to (b, c)$ to an M'-epimorphism $\psi: V' \to M'$ satisfying $\psi(R'_0) = K'$.

PART C: Finite extensions of K'. Let \hat{S}' be the integral closure of R' in \hat{F}' . Then $S' = \hat{S}' \cap F'$. By [FrJ, Lemma 2.5.10], $\hat{S}' = V' \otimes_{M'} N'$. Furthermore, D' is linearly disjoint from F' over $F' \cap D'$, hence by the same lemma, $\hat{S}' = S'V'$.

Setting $\psi(vn) = \psi(v)n$ for each $v' \in V'$ and $n \in N'$ extends ψ to an N'-epimorphism $\psi: \hat{S}' \to N'$. In particular, $M' \subseteq \psi(S')$, hence $N' = \psi(\hat{S}') = \psi(S'V') = \psi(S')M' = \psi(S')$.

Let $L = K'(\psi(x))$. Then $\psi(S'_0) = \psi(R'_0[x]) = K'(\psi(x)) = L$. Since $\psi(x)$ is a root of g(b, X) and g(b, X) is irreducible over K', we have

$$[L:K'] = \deg(g(b,X)) = \deg(g(t,X)) = [F_0:K(t)] = n!.$$

Hence, $\operatorname{Gal}(L/K') \cong \operatorname{Gal}(F_0/K(t)) \cong S_n$. Finally, $N' = \psi(S') = \psi(S'_0M') = \psi(S'_0)M' = LM'$, as desired.

We say that a separable algebraic extension M of a field K is **accessible** if there exists a sequence of fields

$$K = K_0 \subseteq K_1 \subseteq K_2 \subseteq \cdots \subseteq M$$

such that K_{i+1}/K_i is Galois for each i and $\bigcup_{i=0}^{\infty} K_i = M$. In particular, every Galois extension of K is accessible. If L/K is a finite Galois extension, then the sequence $\operatorname{Gal}(L/L \cap K_i), i = 0, 1, 2, \ldots$, of subgroups of $\operatorname{Gal}(L/K)$ is finite, so there is a positive integer m such that

$$\operatorname{Gal}(L/L \cap M) = \operatorname{Gal}(L/L \cap K_m) \triangleleft \operatorname{Gal}(L/L \cap K_{m-1}) \triangleleft \cdots \triangleleft \operatorname{Gal}(L/L \cap K_1) \triangleleft \operatorname{Gal}(L/K).$$

In other words, $\operatorname{Gal}(L/L \cap M)$ is a subnormal subgroup of $\operatorname{Gal}(L/K)$.

THEOREM 4: Let K be a finitely generated field, M_0 an accessible extension of K, and M a separable algebraic extension of M. If M is PAC over K and $M \neq K_s$, then, as a supernatural number, $[M : M_0] = \prod_p p^{\infty}$.

Proof: By [JaR1, Remark 1.2(b)], K is an infinite field. Choose a proper finite Galois extension N of M with Galois group A and let $n \ge \max(5, |A|)$. Let K' and L be fields satisfying Conditions (a) and (b) of Lemma 3. Set $M'_0 = K'M_0$, M' = K'M, $L_0 = L \cap M'_0$, and $L_1 = L \cap M'$. Then M'_0 is an accessible extension of K', hence $\operatorname{Gal}(L/L_0)$ is a subnormal subgroup of $\operatorname{Gal}(L/K') \cong S_n$. Since $n \ge 5$, the sequence $1 \triangleleft A_n \triangleleft S_n$ is the only composition series of S_n [Hup, p. 173, Thm. 5.1]. Therefore $\operatorname{Gal}(L/L_0)$ is either 1 or A_n or S_n . By Condition (a) of Lemma 3,

$$\operatorname{Gal}(L/L_0) \ge \operatorname{Gal}(L/L_1) \cong \operatorname{Gal}(N'/M') \cong A \neq 1.$$

Therefore, $A_n \leq \text{Gal}(L/L_0)$, so $\frac{(n-1)!}{2}$ divides $[L_1:L_0] = [L_1M'_0:M'_0]$.

Since *n* is arbitrary large and $L_1M'_0 \subseteq M'$, we have $[M':M'_0] = \prod_p p^{\infty}$. Since *K'* is a finite extension, $[M:M_0] = \prod_p p^{\infty}$.

The main result of this note is a special case of Theorem 4:

COROLLARY 5: Let K be a finitely generated field and let N be a PAC extension of K, $N \neq K_s$. Then N is not an accessible extension of K. In particular N is not Galois over K. COROLLARY 6: Let K be an infinite finitely generated field and let e be a positive integer. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the extension $K_s(\boldsymbol{\sigma})$ of K is inaccessible.

Proof: By [JaR1, Prop. 3.1], for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ the field $K_s(\boldsymbol{\sigma})$ is PAC over K. Hence, by Theorem 4, $K_s(\boldsymbol{\sigma})$ is inaccessible over K.

CONJECTURE 7: Let K be a finitely generated field and M an algebraic extension of K. If M is PAC over K, then Gal(M) is finitely generated.

References

- [FrJ] M. D. Fried and M. Jarden, Field Arithmetic, Second Edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2005.
- [Hup] B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin, 1967.
- [JaR1] M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, Israel Journal of Mathematics 86 (1994), 25–59.
- [JaR2] M. Jarden and A. Razon, Rumely's local global principle for algebraic PSC fields over rings, Transactions of AMS 350 (1998), 55-85.
- [Jar] M. Jarden, PAC fields over number fields, Journal de Theorie des Nombres de Bordeaux