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Introduction

A central concept in Field Arithmetic is “pseudo algebraically closed (abbreviated PAC)
field”. If K is a countable Hilbertian field, then K (o) is PAC for almost all o € Gal(K )¢
[FrJ, Thm. 18.6.1]. Moreover, if K is the quotient field of a countable Hilbertian ring
R (e.g. R=17), then K (o) is PAC over R [JaR, Prop. 3.1], hence also over K.

Here K is a fixed separable closure of K and Gal(K) = Gal(K/K) is the absolute
Galois group of K. This group is equipped with a Haar measure and the close “almost
all” means “for all but a set of measure zero”. If & = (01,...,0¢) € Gal(K)®, then
K;(o) denotes the fixed field in K of oq,..., 0.

Recall that a field M is said to be PAC if every nonempty absolutely irreducible
variety V' defined over M has an M-rational point. One says that M is PAC over a
subring R if for every absolutely irreducible variety V' defined over M of dimension r > 0
and every dominating separable rational map ¢: V' — A, there exists an a € V(M)
with ¢(a) € R".

When K is a number field, the stronger property of the fields K (o) (namely, being
PAC over the ring of integers O of K) has far reaching arithmetical consequences (here
K is the algebraic closure of K). For example, O(c) (= the integral closure of O in
K (o)) satisfies Rumely’s local-global principle [JaR2, special case of Cor. 1.9]: If V'
is an absolutely irreducible variety defined over K (o) with V(O) # 0, then V has an
O(o)-rational point. Here K denotes the algebraic closure of K and K (o) is, as before,
the fixed field of o4, ..., 0, in K.

The article [JaR1] gives several distinguished Galois extensions of Q which are
not PAC over any number field and notes that no Galois extension of a number field
K (except K) is known to be PAC over K. This lack of knowledge has come to an
end in [Jar], where Neukirch’s characterization of the p-adically closed fields among all

algebraic extensions of QQ is used in order to prove the following theorem:

THEOREM A: No number field K has a PAC Galois extension M (except K ) such that
M is PAC over K.

The goal of the present note is to generalize Theorem A to arbitrary finitely
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generated fields:

THEOREM B: Let K be a finitely generated field (over its prime field). Then no Galois

extension of K (except K) is pseudo algebraically closed over K.

The proof of Theorem B is based on Lemma 2 of [JaR1] which combines Faltings’
theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic.
The latter theorems are much deeper that the result of Neukirch use in the proof of

Theorem A.



1. Accessible Fields

The proof of Theorem B actually gives a stronger theorem: No accessible extension (see
definition prior to Theorem 4) of a finitely generated field K except K is PAC over K.
Technical tools in the proof are the “field crossing argument” and “ring covers”:

An extension S/R of integral domains with an extension F'/FE of quotient fields
is said to be a cover of rings if S = R[z] and discr(irr(z, F)) € R* [FrJ, Definition
6.1.3]. We say that S/R is a Galois cover of rings if S/R is a cover of rings and F/E
is a Galois extension of fields. Every epimorphism ¢ of R onto a field E extends to
an epimorphism ¢ of S onto a Galois extension F' of F and ¢ induces an isomorphism
of the decomposition group D, = {0 € Gal(F/E)| o(Ker(y)) = Ker(y)} onto
Gal(F/E) [FrJ, Lemma 6.1.4]. In particular, Gal(F/E) = Gal(F/E) if and only if
[F:E)=[F:E].

As in the proof of [FrJ, Lemma 24.1.1], the field crossing argument is the basic

ingredient of the construction included in the proof of the following lemma.

LEMMA 1: Let K be a field, M an extension of K, n a positive integer, N a Galois

extension of M with Galois group A of order at most n, and t an indeterminate. Then

there exist fields D, Fy, F, ' as in diagram (1) such that the following holds:

(a) Fp is regular over K, F' and D are regular over M, and Fis regular over N.

(b) FD=DN = F.

(¢) Fo/K(t), F/M(t), and F/N(t) are Galois extensions with Galois groups isomorphic
to S,,.

(1) Fy F—"—
Sn Sn D/ Sn
yd
K(t) —— M(t) —— N(t)
K M—2 N

Proof: The field K(t) has a Galois extension Fy with Galois group S,, such that Fp is
regular over K [FrJ, Example 16.2.5 and Proposition 16.2.8|. In particular, Fy is linearly
disjoint from N and M over K. Set F = FyoM and F=FN. By [FrJ, Cor. 2.6.8], both
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F/M and /N are regular extensions. Moreover, both F/M(t) and F/N(t) are Galois
extensions with Galois groups isomorphic to S,, and F /F is a Galois extension. We
identify Gal(EF'/F) with A via restriction. Finally, F'/M(t) is a Galois extension and
Gal(F/M(t)) = Gal(F'/F)) x Gal(F/N(t)).

Multiplication from the right embeds A into S,,, where m = |A|. Since m < n,
there exists an embedding o: A — Gal(F/N(t)). Consider the diagonal subgroup
A = {(0,a(0)) € Gal(F/M(t))| o € A} of Gal(F/M(t)). Then A N Gal(F/F) =
ANGal(F/N(t) = 1. By Galois theory, FD = DN(t) = I, so DN = F. Restriction to
N maps Gal(EF'/D) onto Gal(N/M), hence DN N = M. Since F is regular over N, it
follows that D is regular over M. |

The main ingredient in the proof of Lemma 3 is the following result of Faltings’

theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic.

LEMMA 2 ([JaR1, Prop. 5.4]): Let K be an infinite finitely generated field, f € K[T,Y]
an absolutely irreducible polynomial which is separable in Y, g € K[T,Y] an irreducible
polynomial which is separable in Y, and 0 # r € K[T]. Then there exist a purely
inseparable extension K’ of K, a nonconstant rational function q € K'(T), and a finite
subset B of K’ such that f(q(T),Y) is absolutely irreducible, g(q(a),Y) is irreducible
in K'[Y], and r(q(a)) # 0 for each a € K' ™ B.

LEMMA 3: Let K be an infinite finitely generated field, M a separable PAC extension of
K, n a positive integer, and N a Galois extension of M of degree at most n with Galois
group A. Then there exist finite extensions K' C L of K such that with M’ = K'M
and N’ = K'N the following holds:

(a) N’ = LM’ and Gal(N'/M') = A.

(b) L/K' is a Galois extension and Gal(L/K"') = S,.

L N’
s /

K’ M’

K M N




Proof: 'We break the proof into three parts.

PART A: Transcendental extensions. First we apply Lemma 1 to construct Diagram
(1). Then we choose = € Fy integral over K|[t] with Fy = K(t,z) and let g € K[T, X]|
be a monic polynomial in X such that g(¢, X) = irr(z, K(t)). In particular, r1(t) =
discr(g(t, X)) € K]Jt| and r1(t) # 0. Finally we choose z € D integral over M|t]
with D = M(t,2) and let f € K[T,X] be a monic polynomial such that f(¢,X) =
irr(z, M(t)). Then ry(t) = discr(f(¢, X)) € M]Jt] and r2(t) # 0. Since D is regular
over M, the polynomial f(7,X) is absolutely irreducible [FrJ, Cor. 10.2.2(b)]. Let
r(t) = ri(t)ra(t).

Replacing K by a finite extension in M, we may assume that K contains all
of the coefficients of f(¢, X), g(¢t,X), and r(t). Set Ry = K|[t,r(t)"!], R = RoM =
M][t,r(t)71], So = Ro[z], S = SyM = R[x], and V = R|z]. Then Sy/Ro, S/R, and V/R
are ring covers and Fy/K(t), F/M(t), and D/M (t) are the corresponding field covers.

So S
v
/
Ry R
K M N

PART B: Specialization. Lemma 2 gives a finite purely inseparable extension K’ of
K, a nonconstant rational function ¢ € K'(T), and a finite subset B of K’ such that
f(q(T), X) is absolutely irreducible and g(¢g(a), X) is irreducible in K'[X] and r(q(a)) #
0 for each a € K’ ™ B.

We put ’ on rings and fields to denote their composition with K’. For example
M’ = K'M. Since F /K is separable and K'/K is purely inseparable, these exten-
sions are linearly disjoint. In follows that (a), (b), and (c) of Lemma 1 holds for the
tagged rings and fields. In particular, S)/R{ and S’/R' are Galois covers of rings
and Gal(N'/M') = A. By [JaR, Cor. 2.5], M’ is PAC over K’, hence there exists
(a,c¢) € K" x M’ such that a ¢ B and f(b,c¢) = 0 with b = ¢(a). By the choice of B,
g(b, X) is irreducible in K'[X] and r(b) # 0.
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The tag notation also gives R, = K'[t,r(t)"!] and V' = M'[t, z,r(t)"1]. Since V'
is integral over R’ we may extend the specialization (¢, z) — (b, ¢) to an M’-epimorphism
P: V! — M’ satisfying ¢ (R)) = K.

PART C: Finite extensions of K'. Let S’ be the integral closure of R’ in F’. Then
S’ = §'NF'. By [FrJ, Lemma 2.5.10], $' = V' @y N’. Furthermore, D’ is linearly
disjoint from F’ over F’ N D', hence by the same lemma, 5 = S’V".

Sh = R[] S’ S/
V'=R'[Z]
Ry = K'[t,r(t)" Y] —— R = M'[t,r(t)"'] —— R'N’
K’ M’ N’

Setting 1(vn) = ¥ (v)n for each v' € V/ and n € N’ extends 9 to an N’-epimorphism
¢: 8/ — N'. In particular, M’ C 9(S’), hence N’ = ¢(S") = ¢(S'V') = (S \M' =
»(5).
Let L = K'(¢(x)). Then (S)) = ¢ (Ry[z]) = K'(¢(z)) = L. Since ¢(x) is a root
of g(b, X) and g(b, X) is irreducible over K’ we have
[L: K'] = deg(g(b, X)) = deg(g(t, X)) = [Fo : K(t)] = nl.

Hence, Gal(L/K') = Gal(Fy/K(t)) = Sy,. Finally, N' = ¢(S") = ¢ (S{M’) = ¢ (S{) M’
= LM’ as desired. |

We say that a separable algebraic extension M of a field K is accessible if there

exists a sequence of fields
K=KyCK  CKyC---CM

such that K;;1/K; is Galois for each ¢ and |J;-, K; = M. In particular, every Galois
extension of K is accessible. If L/K is a finite Galois extension, then the sequence
Gal(L/LNK;),i=0,1,2,..., of subgroups of Gal(L/K) is finite, so there is a positive

integer m such that
Gal(L/LNM)=Gal(L/LNK,,)<Gal(L/LNK,,—1)<---<Gal(L/LNK;)<Gal(L/K).
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In other words, Gal(L/L N M) is a subnormal subgroup of Gal(L/K).

THEOREM 4: Let K be a finitely generated field, My an accessible extension of K, and
M a separable algebraic extension of M. If M is PAC over K and M # K, then, as a
supernatural number, [M : Mo| =[], p™.

Proof: By [JaR1, Remark 1.2(b)], K is an infinite field. Choose a proper finite Galois
extension N of M with Galois group A and let n > max(5,|A|). Let K’ and L be
fields satisfying Conditions (a) and (b) of Lemma 3. Set M} = K'My, M' = K'M,
Ly = LNMj and Ly = LN M’'. Then M} is an accessible extension of K’, hence
Gal(L/Lg) is a subnormal subgroup of Gal(L/K') = S,,. Since n > 5, the sequence
1< A, <8, is the only composition series of S,, [Hup, p. 173, Thm. 5.1]. Therefore
Gal(L/Lyg) is either 1 or A,, or S,,. By Condition (a) of Lemma 3,

Gal(L/Lo) > Gal(L/L1) & Gal(N'/M') =2 A # 1.

Therefore, A,, < Gal(L/Ly), so 52 divides [L; : Lo] = [L1 M} : My).

L N’
>
A
Ly Ly My —— M’
K’ Lo M|
K My M N

Since n is arbitrary large and LMy C M’, we have [M’ : My] =[], p>. Since K’ is a
finite extension, [M : My] = [[,p*. |

The main result of this note is a special case of Theorem 4:

COROLLARY 5: Let K be a finitely generated field and let N be a PAC extension of K,
N # K. Then N is not an accessible extension of K. In particular N is not Galois

over K.



COROLLARY 6: Let K be an infinite finitely generated field and let e be a positive

integer. Then, for almost all o € Gal(K)¢ the extension K,(o) of K is inaccessible.

Proof: By [JaR1, Prop. 3.1], for almost all o € Gal(K)¢ the field K;(o) is PAC over
K. Hence, by Theorem 4, K, (o) is inaccessible over K. |

CONJECTURE 7: Let K be a finitely generated field and M an algebraic extension of

K. If M is PAC over K, then Gal(M) is finitely generated.
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