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Introduction

A central concept in Field Arithmetic is “pseudo algebraically closed (abbreviated PAC)

field”. IfK is a countable Hilbertian field, thenKs(σ) is PAC for almost all σ ∈ Gal(K)e

[FrJ, Thm. 18.6.1]. Moreover, if K is the quotient field of a countable Hilbertian ring

R (e.g. R = Z), then Ks(σ) is PAC over R [JaR, Prop. 3.1], hence also over K.

HereKs is a fixed separable closure ofK and Gal(K) = Gal(Ks/K) is the absolute

Galois group of K. This group is equipped with a Haar measure and the close “almost

all” means “for all but a set of measure zero”. If σ = (σ1, . . . , σe) ∈ Gal(K)e, then

Ks(σ) denotes the fixed field in Ks of σ1, . . . , σe.

Recall that a field M is said to be PAC if every nonempty absolutely irreducible

variety V defined over M has an M -rational point. One says that M is PAC over a

subring R if for every absolutely irreducible variety V defined over M of dimension r ≥ 0

and every dominating separable rational map ϕ: V → Ar
M there exists an a ∈ V (M)

with ϕ(a) ∈ Rr.

When K is a number field, the stronger property of the fields K̃(σ) (namely, being

PAC over the ring of integers O of K) has far reaching arithmetical consequences (here

K̃ is the algebraic closure of K). For example, Õ(σ) (= the integral closure of O in

K̃(σ)) satisfies Rumely’s local-global principle [JaR2, special case of Cor. 1.9]: If V

is an absolutely irreducible variety defined over K̃(σ) with V (Õ) 6= ∅, then V has an

Õ(σ)-rational point. Here K̃ denotes the algebraic closure of K and K̃(σ) is, as before,

the fixed field of σ1, . . . , σe in K̃.

The article [JaR1] gives several distinguished Galois extensions of Q which are

not PAC over any number field and notes that no Galois extension of a number field

K (except K̃) is known to be PAC over K. This lack of knowledge has come to an

end in [Jar], where Neukirch’s characterization of the p-adically closed fields among all

algebraic extensions of Q is used in order to prove the following theorem:

Theorem A: No number field K has a PAC Galois extension M (except K̃) such that

M is PAC over K.

The goal of the present note is to generalize Theorem A to arbitrary finitely
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generated fields:

Theorem B: Let K be a finitely generated field (over its prime field). Then no Galois

extension of K (except Ks) is pseudo algebraically closed over K.

The proof of Theorem B is based on Lemma 2 of [JaR1] which combines Faltings’

theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic.

The latter theorems are much deeper that the result of Neukirch use in the proof of

Theorem A.
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1. Accessible Fields

The proof of Theorem B actually gives a stronger theorem: No accessible extension (see

definition prior to Theorem 4) of a finitely generated field K except Ks is PAC over K.

Technical tools in the proof are the “field crossing argument” and “ring covers”:

An extension S/R of integral domains with an extension F/E of quotient fields

is said to be a cover of rings if S = R[z] and discr(irr(z,E)) ∈ R× [FrJ, Definition

6.1.3]. We say that S/R is a Galois cover of rings if S/R is a cover of rings and F/E

is a Galois extension of fields. Every epimorphism ϕ0 of R onto a field Ē extends to

an epimorphism ϕ of S onto a Galois extension F̄ of Ē and ϕ induces an isomorphism

of the decomposition group Dϕ = {σ ∈ Gal(F/E) | σ(Ker(ϕ)) = Ker(ϕ)} onto

Gal(F̄ /Ē) [FrJ, Lemma 6.1.4]. In particular, Gal(F/E) ∼= Gal(F̄ /Ē) if and only if

[F : E] = [F̄ : Ē].

As in the proof of [FrJ, Lemma 24.1.1], the field crossing argument is the basic

ingredient of the construction included in the proof of the following lemma.

Lemma 1: Let K be a field, M an extension of K, n a positive integer, N a Galois

extension of M with Galois group A of order at most n, and t an indeterminate. Then

there exist fields D,F0, F, F̂ as in diagram (1) such that the following holds:

(a) F0 is regular over K, F and D are regular over M , and F̂ is regular over N .

(b) FD = DN = F̂ .

(c) F0/K(t), F/M(t), and F̂ /N(t) are Galois extensions with Galois groups isomorphic

to Sn.

(1) F0

Sn

F
A

Sn

F̂

SnD
xxxx

xxx
x

K(t) M(t) N(t)

K M
A

N

Proof: The field K(t) has a Galois extension F0 with Galois group Sn such that F0 is

regular over K [FrJ, Example 16.2.5 and Proposition 16.2.8]. In particular, F0 is linearly

disjoint from N and M over K. Set F = F0M and F̂ = FN . By [FrJ, Cor. 2.6.8], both
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F/M and F̂ /N are regular extensions. Moreover, both F/M(t) and F̂ /N(t) are Galois

extensions with Galois groups isomorphic to Sn and F̂ /F is a Galois extension. We

identify Gal(F̂ /F ) with A via restriction. Finally, F̂ /M(t) is a Galois extension and

Gal(F̂ /M(t)) = Gal(F̂ /F ))×Gal(F̂ /N(t)).

Multiplication from the right embeds A into Sm, where m = |A|. Since m ≤ n,

there exists an embedding α: A → Gal(F̂ /N(t)). Consider the diagonal subgroup

∆ = {(σ, α(σ)) ∈ Gal(F̂ /M(t)) | σ ∈ A} of Gal(F̂ /M(t)). Then ∆ ∩ Gal(F̂ /F ) =

∆∩Gal(F̂ /N(t) = 1. By Galois theory, FD = DN(t) = F̂ , so DN = F̂ . Restriction to

N maps Gal(F̂ /D) onto Gal(N/M), hence D ∩N = M . Since F̂ is regular over N , it

follows that D is regular over M .

The main ingredient in the proof of Lemma 3 is the following result of Faltings’

theorem in characteristic 0 and the Grauert-Manin theorem in positive characteristic.

Lemma 2 ([JaR1, Prop. 5.4]): Let K be an infinite finitely generated field, f ∈ K[T, Y ]

an absolutely irreducible polynomial which is separable in Y , g ∈ K[T, Y ] an irreducible

polynomial which is separable in Y , and 0 6= r ∈ K[T ]. Then there exist a purely

inseparable extension K ′ of K, a nonconstant rational function q ∈ K ′(T ), and a finite

subset B of K ′ such that f(q(T ), Y ) is absolutely irreducible, g(q(a), Y ) is irreducible

in K ′[Y ], and r(q(a)) 6= 0 for each a ∈ K ′rB.

Lemma 3: Let K be an infinite finitely generated field, M a separable PAC extension of

K, n a positive integer, and N a Galois extension of M of degree at most n with Galois

group A. Then there exist finite extensions K ′ ⊆ L of K such that with M ′ = K ′M

and N ′ = K ′N the following holds:

(a) N ′ = LM ′ and Gal(N ′/M ′) ∼= A.

(b) L/K ′ is a Galois extension and Gal(L/K ′) ∼= Sn.

L

Sn

N ′

A

{{
{{

{{
{{

K ′ M ′

K M N
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Proof: We break the proof into three parts.

Part A: Transcendental extensions. First we apply Lemma 1 to construct Diagram

(1). Then we choose x ∈ F0 integral over K[t] with F0 = K(t, x) and let g ∈ K[T,X]

be a monic polynomial in X such that g(t,X) = irr(x,K(t)). In particular, r1(t) =

discr(g(t,X)) ∈ K[t] and r1(t) 6= 0. Finally we choose z ∈ D integral over M [t]

with D = M(t, z) and let f ∈ K[T,X] be a monic polynomial such that f(t,X) =

irr(z,M(t)). Then r2(t) = discr(f(t,X)) ∈ M [t] and r2(t) 6= 0. Since D is regular

over M , the polynomial f(T,X) is absolutely irreducible [FrJ, Cor. 10.2.2(b)]. Let

r(t) = r1(t)r2(t).

Replacing K by a finite extension in M , we may assume that K contains all

of the coefficients of f(t,X), g(t,X), and r(t). Set R0 = K[t, r(t)−1], R = R0M =

M [t, r(t)−1], S0 = R0[x], S = S0M = R[x], and V = R[z]. Then S0/R0, S/R, and V/R

are ring covers and F0/K(t), F/M(t), and D/M(t) are the corresponding field covers.

S0 S

V

}}}
}

R0 R

K M N

Part B: Specialization. Lemma 2 gives a finite purely inseparable extension K ′ of

K, a nonconstant rational function q ∈ K ′(T ), and a finite subset B of K ′ such that

f(q(T ), X) is absolutely irreducible and g(q(a), X) is irreducible in K ′[X] and r(q(a)) 6=

0 for each a ∈ K ′rB.

We put ′ on rings and fields to denote their composition with K ′. For example

M ′ = K ′M . Since F̂ /K is separable and K ′/K is purely inseparable, these exten-

sions are linearly disjoint. In follows that (a), (b), and (c) of Lemma 1 holds for the

tagged rings and fields. In particular, S′0/R
′
0 and S′/R′ are Galois covers of rings

and Gal(N ′/M ′) ∼= A. By [JaR, Cor. 2.5], M ′ is PAC over K ′, hence there exists

(a, c) ∈ K ′ ×M ′ such that a /∈ B and f(b, c) = 0 with b = q(a). By the choice of B,

g(b,X) is irreducible in K ′[X] and r(b) 6= 0.
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The tag notation also gives R′0 = K ′[t, r(t)−1] and V ′ = M ′[t, z, r(t)−1]. Since V ′

is integral over R′ we may extend the specialization (t, z) → (b, c) to an M ′-epimorphism

ψ: V ′ →M ′ satisfying ψ(R′0) = K ′.

Part C: Finite extensions of K ′. Let Ŝ′ be the integral closure of R′ in F̂ ′. Then

S′ = Ŝ′ ∩ F ′. By [FrJ, Lemma 2.5.10], Ŝ′ = V ′ ⊗M ′ N ′. Furthermore, D′ is linearly

disjoint from F ′ over F ′ ∩D′, hence by the same lemma, Ŝ′ = S′V ′.

S′0 = R′0[x] S′ Ŝ′

V ′=R′[z]
oooooo

oooo

R′0 = K ′[t, r(t)−1] R′ = M ′[t, r(t)−1] R′N ′

K ′ M ′ N ′

Setting ψ(vn) = ψ(v)n for each v′ ∈ V ′ and n ∈ N ′ extends ψ to an N ′-epimorphism

ψ: Ŝ′ → N ′. In particular, M ′ ⊆ ψ(S′), hence N ′ = ψ(Ŝ′) = ψ(S′V ′) = ψ(S′)M ′ =

ψ(S′).

Let L = K ′(ψ(x)). Then ψ(S′0) = ψ(R′0[x]) = K ′(ψ(x)) = L. Since ψ(x) is a root

of g(b,X) and g(b,X) is irreducible over K ′, we have

[L : K ′] = deg(g(b,X)) = deg(g(t,X)) = [F0 : K(t)] = n!.

Hence, Gal(L/K ′) ∼= Gal(F0/K(t)) ∼= Sn. Finally, N ′ = ψ(S′) = ψ(S′0M
′) = ψ(S′0)M

′

= LM ′, as desired.

We say that a separable algebraic extension M of a field K is accessible if there

exists a sequence of fields

K = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆M

such that Ki+1/Ki is Galois for each i and
⋃∞

i=0Ki = M . In particular, every Galois

extension of K is accessible. If L/K is a finite Galois extension, then the sequence

Gal(L/L ∩Ki), i = 0, 1, 2, . . ., of subgroups of Gal(L/K) is finite, so there is a positive

integer m such that

Gal(L/L∩M) = Gal(L/L∩Km) /Gal(L/L∩Km−1) / · · · /Gal(L/L∩K1) /Gal(L/K).
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In other words, Gal(L/L ∩M) is a subnormal subgroup of Gal(L/K).

Theorem 4: Let K be a finitely generated field, M0 an accessible extension of K, and

M a separable algebraic extension of M . If M is PAC over K and M 6= Ks, then, as a

supernatural number, [M : M0] =
∏

p p
∞.

Proof: By [JaR1, Remark 1.2(b)], K is an infinite field. Choose a proper finite Galois

extension N of M with Galois group A and let n ≥ max(5, |A|). Let K ′ and L be

fields satisfying Conditions (a) and (b) of Lemma 3. Set M ′
0 = K ′M0, M ′ = K ′M ,

L0 = L ∩M ′
0, and L1 = L ∩M ′. Then M ′

0 is an accessible extension of K ′, hence

Gal(L/L0) is a subnormal subgroup of Gal(L/K ′) ∼= Sn. Since n ≥ 5, the sequence

1 / An / Sn is the only composition series of Sn [Hup, p. 173, Thm. 5.1]. Therefore

Gal(L/L0) is either 1 or An or Sn. By Condition (a) of Lemma 3,

Gal(L/L0) ≥ Gal(L/L1) ∼= Gal(N ′/M ′) ∼= A 6= 1.

Therefore, An ≤ Gal(L/L0), so (n−1)!
2 divides [L1 : L0] = [L1M

′
0 : M ′

0].

L

A

N ′

A

||
||

||
||

L1 L1M
′
0 M ′

K ′ L0 M ′
0

K M0 M N

Since n is arbitrary large and L1M
′
0 ⊆ M ′, we have [M ′ : M ′

0] =
∏

p p
∞. Since K ′ is a

finite extension, [M : M0] =
∏

p p
∞.

The main result of this note is a special case of Theorem 4:

Corollary 5: Let K be a finitely generated field and let N be a PAC extension of K,

N 6= Ks. Then N is not an accessible extension of K. In particular N is not Galois

over K.
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Corollary 6: Let K be an infinite finitely generated field and let e be a positive

integer. Then, for almost all σ ∈ Gal(K)e the extension Ks(σ) of K is inaccessible.

Proof: By [JaR1, Prop. 3.1], for almost all σ ∈ Gal(K)e the field Ks(σ) is PAC over

K. Hence, by Theorem 4, Ks(σ) is inaccessible over K.

Conjecture 7: Let K be a finitely generated field and M an algebraic extension of

K. If M is PAC over K, then Gal(M) is finitely generated.
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