ON THE NUMBER OF ELLIPTIC CURVES WITH CM OVER LARGE ALGEBRAIC FIELDS*

by

Gerhard Frey

Institute for Experimental Mathematics, Essen University Ellernstrasse 29, D-45326 Germany e-mail: frey@exp-math.uni-essen.de

and

MOSHE JARDEN^{**} School of Mathematics, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel e-mail: jarden@post.tau.ac.il

> MR Classification: 12E30 Directory: \Jarden\Diary\CM 19 July, 2005

^{*} Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

^{**} This note was partially written while the second author was a guest of the IWR Research Group Algorithmic Algebra of Heidelberg University.

Introduction

The goal of this note is to report on a new phenomena in the theory of large fields.

As usual, we denote the absolute Galois group of \mathbb{Q} by $\operatorname{Gal}(\mathbb{Q})$ and equip each of the cartesian powers $\operatorname{Gal}(\mathbb{Q})^e$ by the normalized Haar measure μ . Let $\tilde{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} . For each $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e)$ let $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ be the fixed field in $\tilde{\mathbb{Q}}$ of $\sigma_1, \ldots, \sigma_e$. The behavior of the fields $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ becomes regular if we remove sets of measure zero. This is exemplified by the following fundamental result:

THEOREM A ([FrJ, Thms. 18.5.6 and 18.6.1]): The following statements hold for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

- (a) The absolute Galois group of $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ is isomorphic to the free profinite group \hat{F}_e on e generators.
- (b) The field Q(σ) is PAC, that is, each absolutely irreducible variety V defined over Q̃(σ) has a Q̃(σ)-rational point.

Likewise, the following holds for Abelian varieties:

THEOREM B ([FyJ]): Let A be an abelian variety over \mathbb{Q} . Then for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$ the rank of $A(\tilde{\mathbb{Q}}(\sigma))$ is infinite.

Note that the fields $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ become smaller as e increases. Thus, it is expected that in general less arithmetical objects will be defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ as e increases. Here are two typical examples:

THEOREM C ([JaJ, Main Theorem(a)]): Let A be an Abelian variety and l a prime number. Then for each $e \ge 1$ and for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ the set $\bigcup_{i=1}^{\infty} A_{l^i}(\tilde{\mathbb{Q}}(\boldsymbol{\sigma}))$ is finite (while $\bigcup_{i=1}^{\infty} A_{l^i}(\tilde{\mathbb{Q}})$ is infinite, which is the case if e = 0).

Here $A_n(L) = \{ \mathbf{p} \in A(L) \mid n\mathbf{p} = 0 \}$ for each positive integer n and each field extension L of K.

THEOREM D: [Jar, Thms. 8.1 and 8.2] The following holds for almost all σ ∈ Gal(Q)^e:
(a) If e = 1, then Q
(σ) contains infinitely many roots of unity.
(b) If e ≥ 2, then Q
(σ) contains only finitely many roots of unity.

THEOREM E: Let E be an elliptic curve over \mathbb{Q} . Then the following holds for almost all $\sigma \in \operatorname{Gal}(\mathbb{Q})^e$:

- (a) If e = 1, then $E_{tor}(\tilde{\mathbb{Q}}(\boldsymbol{\sigma}))$ is infinite.
- (b) If $e \geq 2$, then $E_{tor}(\tilde{\mathbb{Q}}(\boldsymbol{\sigma}))$ is finite.

The arithmetical reason that lies behind the distinction between the cases e = 1and $e \ge 2$ in Theorems D and E is that the series $\sum \frac{1}{l^e}$, with *l* ranges over all prime numbers, diverges for e = 1 and converges for $e \ge 2$.

In general, we call a nonnegative integer e_0 a **cut** for the large fields over \mathbb{Q} if there exists an infinite set P of arithmetical or geometrical objects defined over $\tilde{\mathbb{Q}}$ such that for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ infinitely many objects of P are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ if $e < e_0$ and only finitely many objects of P are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ if $e \ge e_0$.

Theorem C implies that 1 is a cut for the large fields over \mathbb{Q} , while Theorems D and E imply that 2 is a cut for the large fields over \mathbb{Q} .

For a long time 1 and 2 were the only known cuts for large fields over \mathbb{Q} . The goal of the present note is to prove that also 3 and 4 are cuts for large fields over \mathbb{Q} . The relevant properties of fields were hidden in the theory of elliptic curves with complex multiplication:

THEOREM F: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

- (a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ such that $\operatorname{End}(E) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.
- (b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ such that $\operatorname{End}(E) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.

THEOREM G: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

- (a) If $e \leq 3$, then there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.
- (b) If $e \ge 4$, then there are only finitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.

The proofs of Theorems F and G use the standard properties of the j-function of elliptic curves with CM as in [Shi] and [Lan] and information about the growth of the

class number of imaginary quadratic fields:

THEOREM H: For each prime number p let h(p) be the class number of $\mathbb{Q}(\sqrt{-p})$. Then $\sum \frac{1}{h(p)^2} = \infty$, where p ranges on all prime numbers which are congruent to 3 modulo 4.

The authors are indebted to Ram Murty for kindly supplying the proof of Theorem H.

Finally, we rephrase Theorem F for a family of large fields which are considerably smaller than the fields $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$. For each $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$ we denote the maximal Galois extension of \mathbb{Q} which is contained in $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ by $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$. Then the following holds:

THEOREM I: The following holds for almost all $\sigma \in \operatorname{Gal}(\mathbb{Q})^e$:

- (a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$.
- (b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$.

1. On the growth of the class number of imaginary quadratic fields

For each prime number p let h(p) be the class number of $K_p = \mathbb{Q}(\sqrt{-p})$. By a theorem of Siegel, $\log h(p) \sim \log \sqrt{p}$ [Lan, p. 96]. Thus, there exists $\varepsilon(p)$ which tends to 0 as $p \to \infty$ such that $\log h(p) = (1 + \varepsilon(p)) \log \sqrt{p}$. It follows that

(1)
$$\sum_{p} \frac{1}{h(p)^2} = \sum \frac{1}{p^{1+\varepsilon(p)}}.$$

One knows that $\sum \frac{1}{p}$ diverges. Unfortunately, without any additional information about $\varepsilon(p)$ one can not draw from (1) that its left hand side diverges. Still, the sum does diverge, as we prove below:

PROPOSITION 1.1 (Murty): With the notation above,

(2)
$$\sum_{p\equiv 3 \mod 4} \frac{1}{h(p)^2} = \infty,$$

Proof: Lemma 1.2 below reduces (2) to the proof of the existence of a constant c > 0 such that

(3)
$$\sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{p} \sim \frac{c\sqrt{x}}{\log x}.$$

In order to prove (3) suppose $p \equiv 3 \mod 4$ is a prime number and let χ_p be the quadratic character of K_p . Thus, $\chi_p(n) = (-1)^{\frac{n-1}{2}} \left(\frac{n}{p}\right)$ if $p \nmid n$ [BoS, Chap. 3, §8.2]. Let l be a prime number satisfying $l \nmid 2p$. Then l decomposes in K_p into two distinct primes if $\chi_p(l) = 1$ and l remains prime in K_p if $\chi_p(l) = -1$ [BoS, Chap. 3, §8.2, Thm. 2]. Let $L(s, \chi_p) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ be the corresponding L-series. By the Dirichlet class number formula [BoS, Chap. 5, §4.1], h(p) is a multiple of $\sqrt{p}L(1, \chi_p)$ by a constant. Hence, (3) is equivalent to the existence of c > 0 such that

(4)
$$\sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{L(1,\chi_p)}{\sqrt{p}} \sim \frac{c\sqrt{x}}{\log x}$$

Statement (4) is essentially proved in [FoM, pp. 91–93].

The rest of this section proves the equivalence of (2) and (3).

For each set P of prime numbers let $\pi(P, x)$ be the number of $p \in P$ with $p \leq x$. In particular, if P is the set of all prime numbers, then $\pi(P, x) = \pi(x)$. If P is the set of all prime numbers $p \equiv a \mod n$, we write $\pi_{a,n}(x)$ for $\pi(P, x)$. By the prime number theorem for arithmetical progressions [LaO, Thms. 1.3 and 1.4 applied to the case of $L = \mathbb{Q}(\zeta_n)$],

(5)
$$\pi(x) = \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right) \quad \text{and} \quad \pi_{a,n}(x) = \frac{1}{\varphi(n)} \cdot \frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right),$$

where $\varphi(n)$ is Euler's totient function.

LEMMA 1.2: For each prime number p let h(p) be a positive real number. Suppose that there exists c > 0 such that

(6)
$$\sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{p} \sim \frac{c\sqrt{x}}{\log x}$$

Then (2) is true.

Proof: Apply summation by parts:

$$\sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{\sqrt{p}} = \sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{p} \cdot \sqrt{p}$$
$$= \sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{p} \cdot \sqrt{x} - \frac{1}{2} \int_2^x \sum_{\substack{p \le t \\ p \equiv 3 \mod 4}} \frac{h(p)}{p} \cdot \frac{1}{\sqrt{t}} dt$$
$$\sim c \frac{\sqrt{x}}{\log x} \cdot \sqrt{x} - \frac{c}{2} \int_2^x \frac{\sqrt{t}}{\log t} \cdot \frac{1}{\sqrt{t}} dt \qquad \text{by (6)}$$
$$= c \frac{x}{\log x} - \frac{c}{2} \int_2^x \frac{dt}{\log t} \sim \frac{c}{2} \frac{x}{\log x}.$$

The latter approximation is a consequence of the formula $\int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x}$ [Gol, pp. 254–255, Remark (2)]. Hence, by (5) there exists x_0 such that

$$c\pi_{3,4}(x) \ge \frac{1}{2} \sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{\sqrt{p}}$$

and $\pi_{3,4}(x) \geq \frac{1}{3}\pi(x)$ for all $x \geq x_0$. Let $P = \{p \equiv 3 \mod 4 \mid h(p) > 6c\sqrt{p}\}$ and let $P' = \{p \equiv 3 \mod 4 \mid h(p) \leq 6c\sqrt{p}\}$. Then, for all $x \geq x_0$

$$\pi_{3,4}(x) \ge \frac{1}{2c} \sum_{\substack{p \le x \\ p \equiv 3 \mod 4}} \frac{h(p)}{\sqrt{p}} \ge \frac{1}{2c} \sum_{\substack{p \le x \\ p \in P}} \frac{h(p)}{\sqrt{p}} \ge 3\pi(P, x).$$

It follows from $\pi_{3,4}(x) = \pi(P, x) + \pi(P', x)$ that $\pi(P', x) \ge \frac{2}{3}\pi_{3,4}(x) \ge \frac{2}{9}\pi(x)$ for all $x \ge x_0$. It follows from Lemma 1.3 below that

$$\sum_{p \equiv 3 \mod 4} \frac{1}{h(p)^2} \ge \sum_{p \in P'} \frac{1}{h(p)^2} \ge \frac{1}{36c^2} \sum_{p \in P'} \frac{1}{p} = \infty,$$

as contended.

LEMMA 1.3: Let Q be a set of prime numbers, $0 < b \leq 1$, and $x_0 > 0$ such that $\pi(Q, x) \geq b\pi(x)$ for all $x \geq x_0$. Then $\sum_{p \in Q} \frac{1}{p} = \infty$.

Proof: We reduce the statement to the well known fact that $\sum \frac{1}{p} = \infty$ [LeV, p. 100, Thm. 6-13]. To this end make b smaller and add all prime numbers $p \leq x_0$ to Q if necessary, in order to assume that $x_0 = 1$. Then write the set of all prime numbers as an ascending sequence, $p_1 < p_2 < p_3 < \cdots$ and define

$$\chi(n) = \begin{cases} 1 & p_n \in Q \\ 0 & p_n \notin Q \end{cases}$$

Then $s(n) = \sum_{i=1}^{n} \chi(i) = \pi(Q, p_n) \ge b\pi(p_n) = bn$. Therefore, with s(0) = 0, we have

$$\sum_{i=1}^{n} \frac{1}{p_i} = \sum_{i=1}^{n} \frac{\chi(i)}{p_i} = \sum_{i=1}^{n} \frac{s(i) - s(i-1)}{p_i} = \sum_{i=1}^{n} \frac{s(i)}{p_i} - \sum_{i=1}^{n} \frac{s(i-1)}{p_i}$$
$$= \sum_{i=1}^{n} \frac{s(i)}{p_i} - \sum_{i=1}^{n-1} \frac{s(i)}{p_{i+1}} = \frac{s(n)}{p_n} + \sum_{i=1}^{n-1} s(i) \left(\frac{1}{p_i} - \frac{1}{p_{i+1}}\right)$$
$$\ge \frac{bn}{p_n} + b \sum_{i=1}^{n-1} i \left(\frac{1}{p_i} - \frac{1}{p_{i+1}}\right) = \frac{bn}{p_n} + b \sum_{i=1}^{n-1} \frac{i}{p_i} - b \sum_{i=1}^{n-1} \frac{i}{p_{i+1}}$$
$$= b \sum_{i=1}^{n} \frac{i}{p_i} - b \sum_{i=1}^{n} \frac{i-1}{p_i} = b \sum_{i=1}^{n} \frac{1}{p_i} \to \infty \quad \text{as } n \to \infty$$

as contended.

2. On the number of elliptic curves with CM over large algebraic fields

Consider a positive integer e and choose σ in $\operatorname{Gal}(\mathbb{Q})^e$ at random. We would like to know whether there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM which are defined over $\tilde{\mathbb{Q}}(\sigma)$. We would also like to know whether there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) which are defined over $\tilde{\mathbb{Q}}(\sigma)$ and such that all \mathbb{C} -endomorphisms of E are defined over $\tilde{\mathbb{Q}}(\sigma)$. Since $\tilde{\mathbb{Q}}(\sigma)$ becomes smaller as e increases, we expect to find for each of those questions an e_0 such that the answer to the question is affirmative if and only if $e \leq e_0$. Indeed, we prove that $e_0 = 3$ for the former question and $e_0 = 2$ for the latter.

These results reflect the distribution of the modular *j*-function at singular values, that is complex values which correspond to elliptic curves with CM. To be more precise consider an imaginary quadratic field K, an order O of K, and a proper O-ideal \mathfrak{a} . Then \mathfrak{a} is a 2-dimensional lattice which is O-invertible [Lan, p. 91]. Let z_1, z_2 be a basis of \mathfrak{a} and put $z = z_1/z_2$. Then $j(\mathfrak{a}) = j(z)$ is the absolute invariant of an elliptic curve E with the analytic presentation \mathbb{C}/\mathfrak{a} and such that $\operatorname{End}(E) \cong O$. Moreover, E can be chosen to be defined by a Weierstrass equation over $\mathbb{Q}(j(\mathfrak{a}))$. The basic properties of $j(\mathfrak{a})$ are intimately connected to class field theory:

PROPOSITION 2.1 ([Shi, p. 123, Thm. 5.7]): Let K be an imaginary quadratic field, O an order of K, and \mathfrak{a} a proper O-ideal. Then:

- (a) K(j(a))/K is a Galois extension and Gal(K(j(a))/K) is isomorphic to the group of all classes of proper O-ideals through the correspondence σ → b such that j(a)^σ = j(b⁻¹a).
- (b) $[K(j(\mathfrak{a})):K] = [\mathbb{Q}(j(\mathfrak{a})):\mathbb{Q}].$
- (c) If $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are representatives of the classes of proper O-ideals, then the values $j(\mathfrak{a}_1), \ldots, j(\mathfrak{a}_n)$ form a complete set of conjugates of $j(\mathfrak{a})$ over \mathbb{Q} , and over K.
- (d) If O is the ring of integers of K (hence, a is a fractional ideal of O in K), then K(j(a)) is the maximal unramified abelian extension of K, and for each fractional ideal b of K we have j(a)^σ = j(b⁻¹a) where σ = (K(j(a))/K / b) is the Artin symbol.

COROLLARY 2.2: Fix an embedding of \mathbb{Q} in \mathbb{C} . Then, with the notation of Proposition

2.1, we have:

- (a) $K(j(\mathfrak{a}))$ is the Galois closure of $\mathbb{Q}(j(\mathfrak{a}))$ over \mathbb{Q} .
- (b) $[K(j(\mathfrak{a})) : \mathbb{Q}(j(\mathfrak{a}))] = 2.$
- (c) $K(j(\mathfrak{a}))/K$ is an abelian extension.
- (d) If τ is a conjugate of the restriction to $K(j(\mathfrak{a}))$ of the complex conjugation, then $\tau^{-1}\alpha\tau = \alpha^{-1}$ for each $\alpha \in \operatorname{Gal}(K(j(\mathfrak{a}))/K)$.

Proof: Statement (d) follows from [Lan, p. 134, Remark 2]. Statement (c) is a consequence of Proposition 2.1(a). Statements (a) and (b) follow from Proposition 2.1(b,c) and from (d). ■

Denote the set of all squarefree positive integers by D. For each $d \in D$ let $K_d = \mathbb{Q}(\sqrt{-d})$. Denote the ring of integers and the class number of K_d , respectively, by O_d and h(d). Choose a nonzero ideal \mathfrak{a}_d of O_d and let $L_d = K_d(j(\mathfrak{a}_d))$. By Proposition 2.1(a), $h(d) = [L_d : K_d]$. Choose also an elliptic curve $E^{(d)}$ with $j(\mathfrak{a}_d)$ as its absolute invariant which is defined over $\mathbb{Q}(j(\mathfrak{a}_d))$ [Lan, p. 300, Thm. 2].

LEMMA 2.3: Let Λ be the set of all prime $l \equiv 3 \mod 4$. Then, the fields L_l , with $l \in \Lambda$, are linearly disjoint over \mathbb{Q} .

Proof: Consider a finite set Λ_0 of Λ and an element $l' \in \Lambda \setminus \Lambda_0$. Let $L = \prod_{l \in \Lambda_0} L_l$. By Corollary 2.2(a), each L_l is Galois over \mathbb{Q} . Hence, it suffices to prove that $L \cap L_{l'} = \mathbb{Q}$. Since, by a theorem of Minkowski, each proper extension of \mathbb{Q} is ramified [Jan, p. 57, Cor. 11.11] it suffices to prove that no prime number p is ramified in $L \cap L_{l'}$.

Indeed, for each $l \in \Lambda$ we have $-l \equiv 1 \mod 4$. Hence, the discriminant of K_l/\mathbb{Q} is -l [BoS, §2.7, p. 132, Thm. 1], so the only prime number which ramifies in K_l is l. Since L_l/K_l is unramified (Proposition 2.1(d)), the only prime number which ramifies in L_l is l. In particular, l' is unramified in each L_l with $l \in \Lambda_0$. Hence, l' is unramified in L, so l' is unramified in $L \cap L_{l'}$. If $p \neq l'$, then p is unramified in $L_{l'}$, so p is also unramified in $L \cap L_{l'}$. Consequently, $L \cap L_{l'} = \mathbb{Q}$, as asserted.

The orders of K_d have the form $O_{d,c} = \mathbb{Z} + cO_d$, where c ranges over all positive integers. For each $d \in D$ and $c \in \mathbb{N}$ choose a proper $O_{d,c}$ -ideal $\mathfrak{a}_{d,c}$ and let $L_{d,c} =$ $K_d(j(\mathfrak{a}_{d,c}))$. By Proposition 2.1(c), $h(d,c) = [L_{d,c}:K_d]$ is the class number of $O_{d,c}$. It is related to h(d) by the following formula [Lan, p. 95]:

(1)
$$h(d,c) = h(d) \frac{\psi(d,c)}{(O_d^{\times}:O_{d,c}^{\times})}$$

where

(2)
$$\psi(d,c) = c \prod_{p|c} \left(1 - \left(\frac{K_d}{p}\right) \frac{1}{p} \right)$$

and $\left(\frac{K_d}{p}\right)$ is 1 if p decomposes in K_d , -1 if p remains irreducible in K_d , and 0 if p ramifies in K_d .

LEMMA 2.4: Let L be a finite Galois extension of \mathbb{Q} . Then there are only finitely many elliptic curves E with CM (up to \mathbb{C} -isomorphism) which are defined over L and satisfy $\operatorname{End}(E) \subseteq L$.

Proof: Let *E* be an elliptic curve over *L* with CM such that $\operatorname{End}(E) \subseteq L$. Then $\operatorname{End}(E) \otimes \mathbb{Q} = K_d$ for some $d \in D$ [Shi, p. 103, Prop. 4.5]. Moreover, $\operatorname{End}(E)$ is an order of O_d and there is a unique $c \in \mathbb{N}$ with $\operatorname{End}(E) = O_{d,c}$ [Shi, p. 105, Prop. 4.1]. In addition, $E \cong \mathbb{C}/\mathfrak{a}$ for some proper $O_{d,c}$ -ideal \mathfrak{a} [Shi, p. 104, Prop. 4.8]. In particular $j(\mathfrak{a})$ is the absolute invariant of *E*, so $K_d(j(\mathfrak{a})) \subseteq L$. By the comments preceding the lemma, $[K_d(j(\mathfrak{a})) : \mathbb{Q}] = 2h(d, c)$ and h(d, c) tends to infinity if *d* or *c* tend to infinity. Indeed, by the estimates quoted in the proof of the next lemma, $\log h(d) \sim \log d^{\frac{1}{2}}$ and $\psi(d, c) \geq \frac{ac}{\log \log c}$ for some a > 0. Thus, there are only finitely many possibilities for (d, c). For each pair $(d, c) \in D \times \mathbb{N}$ there are only finitely many possibilities (up to \mathbb{C} -isomorphism) for *E*. They correspond to the number h(d, c) of classes of proper $O_{d,c}$ -ideals [Shi, p. 105, Prop. 4.10]. Consequently, there are only finitely many \mathbb{C} isomorphism classes of elliptic curves *E* with CM such that $j(E) \in L$ and $\operatorname{End}(E) \subseteq L$.

LEMMA 2.5: Let D be the set of all squarefree positive integers. Then

(3)
$$\sum_{d\in D}\sum_{c=1}^{\infty}\frac{1}{h(d,c)^3}<\infty.$$

Proof: By (1), it suffices to prove that

(4)
$$\sum_{d \in D} \frac{1}{h(d)^3} \sum_{c=1}^{\infty} \frac{(O_d^{\times} : O_{d,c}^{\times})^3}{\psi(d,c)^3} < \infty$$

There are at most 6 units in O_d [BoS, §2.7.3]. Hence, the numerator in the inner sum of the right hand side of (4) is bounded. Next consider the Euler totient function: $\varphi(c) = c \prod_{p|c} \left(1 - \frac{1}{p}\right)$. It has an estimate from below: $\varphi(c) > \frac{ac}{\log \log c}$ for some positive constant *a* [Lev, p. 114, Thm. 6-26]. For each *p*, $1 - \left(\frac{K_d}{p}\right) \frac{1}{p} \ge 1 - \frac{1}{p}$. Hence, $\psi(d, c) \ge \varphi(c)$, so

(5)
$$\sum_{c=1}^{\infty} \frac{1}{\psi(d,c)^3} \le \sum_{c=1}^{\infty} \frac{1}{\varphi(c)^3} \le \frac{1}{a^3} \sum_{c=1}^{\infty} \frac{(\log \log c)^3}{c^3} < \infty$$

Finally, by a theorem of Siegel, $\log h(d) \sim \log d^{1/2}$ [Lan, p. 96]. This means that for each $d \in D$ there exists $\varepsilon(d) > 0$ such that $h(d) = d^{\varepsilon(d)/2}$ and $\varepsilon(d) \to 1$ as $d \to \infty$. In particular, $\varepsilon(d) > \frac{3}{4}$ for all d sufficiently large. Hence, $\frac{3 \cdot \varepsilon(d)}{2} > \frac{9}{8}$ for almost all dsufficiently large, so there exists b > 0 such that

(6)
$$\sum_{d \in D} \frac{1}{h(d)^3} = \sum_{d \in D} \frac{1}{d^{3 \cdot \varepsilon(d)/2}} \le \sum_{d=1}^{\infty} \frac{b}{d^{9/8}} < \infty.$$

We conclude from (5) and (6) that (4) holds.

The main tool from probability theory we use is the Borel-Cantelli Lemma. We formulate its Galois theoretic version as appears in [FrJ, Theorem 18.5.3]:

LEMMA 2.6: Let L_1, L_2, L_3, \ldots be finite separable extensions of a field K. For each $i \ge 1$ let \bar{A}_i be a set of left cosets of $\operatorname{Gal}(L_i)^e$ in $\operatorname{Gal}(K)^e$ and

$$A_i = \{ \boldsymbol{\sigma} \in \operatorname{Gal}(K)^e \mid \boldsymbol{\sigma} \operatorname{Gal}(L_i)^e \in \bar{A}_i \}.$$

Let A be the set of all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ which belong to infinitely many A_i 's.

- (a) If $\sum_{i=1}^{\infty} \frac{|\bar{A}_i|}{[L_i:K]^e} < \infty$, then $\mu(A) = 0$.
- (b) Suppose L_1, L_2, L_3, \ldots are linearly disjoint over K and $\sum_{i=1}^{\infty} \frac{|\bar{A}_i|}{[L_i:K]^e} = \infty$, then $\mu(A) = 1$.

THEOREM 2.7: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

- (a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ such that $\operatorname{End}(E) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.
- (b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ such that $\operatorname{End}(E) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.

Proof of (a): Let Λ be the set of all prime numbers $l \equiv 3 \mod 4$. For each l we have $[L_l : K_l] = h(l)$ and $[L_l : \mathbb{Q}_l] = 2h(l)$. In addition, $E^{(l)}$ is defined over $\mathbb{Q}(j(\mathfrak{a}_l))$ and $\operatorname{End}(E^{(l)}) = O_l$. Hence, if $\boldsymbol{\sigma} \in \operatorname{Gal}(L_l)$, then $E^{(l)}$ is defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ and $\operatorname{End}(E^{(l)}) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$. By Proposition 1.1,

$$\sum_{l\in\Lambda} \frac{1}{[L_l:\mathbb{Q}]^e} = \frac{1}{2^e} \sum_{l\in\Lambda} \frac{1}{h(l)^e} \ge \frac{1}{2^2} \sum_{l\in\Lambda} \frac{1}{h(l)^2} = \infty.$$

By Lemma 2.3, the fields L_l , $l \in \Lambda$, are linearly disjoint. In particular $j(\mathfrak{a}_l) \neq j(\mathfrak{a}_{l'})$, so $E^{(l)} \ncong E^{(l)}$ if $l \neq l'$. It follows from Borel-Cantelli [FrJ, Lemma 18.5.3(b)] that for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$ there are infinitely many primes l such that $E^{(l)}$ is defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ and $\operatorname{End}(E^{(l)}) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$, as desired.

Proof of (b): Let $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$. If an elliptic curve E with CM is defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ and End(E) $\subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$, then there exist $d \in D$ and a positive integer c such that $L_{d,c} \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$. By Lemma 2.4, for each d and c there are only finitely many E's (up to a \mathbb{C} -isomorphism) which are defined together with their endomorphisms over $L_{d,c}$. Thus, if there are infinitely many elliptic curves with CM which are defined together with their endomorphisms over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$, then $\boldsymbol{\sigma}$ belongs to infinitely many sets $\operatorname{Gal}(L_{d,c})^e$. Since $[L_{d,c} :$ $\mathbb{Q}] = 2h(d,c)$, Lemma 2.5 implies that $\sum_{d \in D} \sum_{c=1}^{\infty} \frac{1}{[L_{d,c}:\mathbb{Q}]^e} \leq \sum_{d \in D} \sum_{e=1}^{\infty} \frac{1}{h(d,c)^3} < \infty$. Hence, by Borel-Cantelli [FrJ, Lemma 18.5.3.(a)], the measure of those $\boldsymbol{\sigma}$'s is 0.

If an elliptic curve E with CM is defined over a field K and if $\operatorname{End}(E) \subseteq K$, then, by Proposition 2.1, all conjugates of j_E are in $K(j_E)$. Therefore, for $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$, if we drop the condition that the endomorphisms of the elliptic curves are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$, then the probability that there are infinitely many elliptic curves with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ increases. This is reflected in the following result: THEOREM 2.8: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

- (a) If $e \leq 3$, then there are infinitely many elliptic curves E (up to isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.
- (b) If $e \ge 4$, then there are only finitely many elliptic curves E (up to isomorphism) with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.

Proof of (a): As in the proof of Theorem 2.7 let Λ be the set of primes $l \equiv 3 \mod 4$. Consider $l \in \Lambda$ and let K_l , O_l , L_l , \mathfrak{a}_l , $E^{(l)}$, and h(l) be as above. Let τ be a generator of $\operatorname{Gal}(L_l/\mathbb{Q}(j(\mathfrak{a}_l)))$. If $\alpha \in \operatorname{Gal}(L_l/K_l)$, then τ^{α} generates $\operatorname{Gal}(L_l/\mathbb{Q}(j(\mathfrak{a}_l))^{\alpha})$ and $(E^{(l)})^{\alpha}$ is an elliptic curve with CM which is defined over $\mathbb{Q}(j(\mathfrak{a}_l))^{\alpha}$. Thus, if $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$ and $\operatorname{res}_{L_l}\sigma_i \in \langle \tau^{\alpha} \rangle^e$, then $(E^{(l)})^{\alpha}$ is defined over $\mathbb{Q}(\boldsymbol{\sigma})$.

CLAIM: $\#\{\tau^{\alpha} \mid \alpha \in \operatorname{Gal}(L_l/K_l)\} = h(l).$

Indeed, embed L_l in \mathbb{C} and let ρ be the restriction of the complex conjugation to L_l . Since K_l is an imaginary quadratic field, $\operatorname{res}_{K_l}\rho \neq 1$, so $\rho^2 = 1$ and $\rho \neq 1$. Since $l \equiv 3 \mod 4$, h(l) is odd [BoS, p. 346, Thm. 4]. Thus, $\rho \in \operatorname{Gal}(L_l/\mathbb{Q}) \setminus \operatorname{Gal}(L_l/K_l)$. Now assume $\rho^{\alpha} = \rho$ for some $\alpha \in \operatorname{Gal}(L_l/K_l)$. By Corollary 2.2(d), $\rho \alpha \rho = \alpha^{-1}$, hence $1 = \rho^2 = \alpha^{-1}\rho\alpha\rho = \alpha^{-2}$, which implies $\alpha = 1$ (because h(l) is odd). It follows that the map $\alpha \mapsto \rho^{\alpha}$ from $\operatorname{Gal}(L_l/K_l)$ into $\operatorname{Gal}(L_l/\mathbb{Q}) \setminus \operatorname{Gal}(L_l/K_l)$ is injective. Since both sets have the same cardinality, the map is bijective. In particular, τ is conjugate to ρ by an element of $\operatorname{Gal}(L_l/K_l)$. Consequently, $\#\{\tau^{\alpha} \mid \alpha \in \operatorname{Gal}(L_l/K_l)\} = \#\{\rho^{\alpha} \mid \alpha \in \operatorname{Gal}(L_l/K_l)\} = [L_l : K_l] = h(l)$.

Let $\bar{A}_l = \bigcup_{\alpha \in \operatorname{Gal}(L_l/K_l)} \{1, \tau^{\alpha}\}^e$. Each of the sets $\{1, \tau^{\alpha}\}^e$ has 2^e elements and the intersection of every two of them contains only one element (by the Claim). Thus, $|\bar{A}_l| = h(l) \cdot 2^e - (h(l) - 1)$. Let $A_l = \{\boldsymbol{\sigma} \in \operatorname{Gal}(\tilde{\mathbb{Q}})^e \mid \operatorname{res}_{L_l} \boldsymbol{\sigma} \in \bar{A}_l\}$. Then, $\mu(A_l) = \frac{h(l) \cdot 2^e - (h(l) - 1)}{(2h(l))^e}$. Since $e \leq 3$, Proposition 1.1 implies that

$$\sum_{l \in \Lambda} \mu(A_l) = \sum_{l \in \Lambda} \frac{h(l) \cdot 2^e - (h(l) - 1)}{(2h(l))^e} \ge \frac{2^e - 1}{2^e} \sum_{l \in \Lambda} \frac{1}{h(l)^2} = \infty.$$

By Lemma 2.3, the fields L_l , $l \in \Lambda$ are linearly disjoint. It follows from Borel-Cantelli that for almost all $\boldsymbol{\sigma} \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many elliptic curves with CM which are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$. Proof of (b): Let d range over D and let c range over all positive integers. For each d and c let

$$A(d,c) = \bigcup_{\alpha \in \operatorname{Gal}(L_{d,c}/K_d)} \operatorname{Gal}(\mathbb{Q}(j(\mathfrak{a}_{d,c})^{\alpha}))^e.$$

By Proposition 2.1(b),

$$\mu(A(d,c)) \le [L_{d,c}:K_d] \left(\frac{1}{[\mathbb{Q}(j(\mathfrak{a}_{d,c})):\mathbb{Q}]}\right)^e = \frac{1}{h(d,c)^{e-1}}.$$

If for $\boldsymbol{\sigma} \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many elliptic curves with CM which are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$, then $\boldsymbol{\sigma}$ belongs to infinitely many of the sets A(d, c) (as argued in the proof of Lemma 2.4). Since $e \geq 4$, we have by Lemma 2.5 that

$$\mu \Big(\bigcup_{d,c} A(d,c)\Big) \le \sum_{d,c} \frac{1}{h(d,c)^{e-1}} \le \sum_{d,c} \frac{1}{h(d,c)^3} < \infty.$$

We conclude from Borel-Cantelli that almost no $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$ belongs to infinitely many sets A(d, c). Thus, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$, there are only finitely many elliptic curves with CM (up to a \mathbb{C} -isomorphism) which are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$.

COROLLARY 2.9: The following holds for almost all $\sigma \in \text{Gal}(\mathbb{Q})^e$:

- (a) If $e \leq 2$, then there are infinitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$.
- (b) If $e \geq 3$, then there are only finitely many elliptic curves E (up to \mathbb{C} -isomorphism) with CM over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$.

Proof: First suppose $e \leq 2$. By Theorem 2.7(a), for almost all $\boldsymbol{\sigma} \in \text{Gal}(\mathbb{Q})^e$ there are infinitely many elliptic curves E with CM over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ such that $\text{End}(E) \subseteq \tilde{\mathbb{Q}}(\boldsymbol{\sigma})$. For all such $\boldsymbol{\sigma}$ and E let K_E be the quotient field of End(E). Then $K_E(j_E)$ is a Galois extension of \mathbb{Q} which is contained in $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$. Hence, $K_E(j_E) \subseteq \tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$. It follows that an isomorphic copy of E (over \mathbb{C}) is defined over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$.

Now suppose $e \geq 3$. For each $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$ let $\mathcal{E}(\boldsymbol{\sigma})$ be the set of all elliptic curves E (up to \mathbb{C} -isomorphism) which are defined over $\tilde{\mathbb{Q}}(\boldsymbol{\sigma})$ such that $\operatorname{End}(E) \subseteq \tilde{Q}(\boldsymbol{\sigma})$. Let S be the set of all $\boldsymbol{\sigma} \in \operatorname{Gal}(\mathbb{Q})^e$ such that $\mathcal{E}(\boldsymbol{\sigma})$ is a finite set. By Theorem 2.7(b), $\mu(S) = 1$.

Consider $\boldsymbol{\sigma} \in S$ and let E be an elliptic curve with CM over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$. Then $j_E \in \tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$. Hence, the Galois closure of $\mathbb{Q}(j_E)/\mathbb{Q}$ is contained in $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$. By Corollary 2.2(a), the latter contains $\operatorname{End}(E)$. Hence, $E \in \mathcal{E}(\boldsymbol{\sigma})$. Consequently, there are only finitely many elliptic curves (up to \mathbb{C} -isomorphism with CM over $\tilde{\mathbb{Q}}[\boldsymbol{\sigma}]$.

References

- [BoS] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
- [FoM] E. Fouvry and M. R. Murty, On the distribution of supersingular primes, Canadian Journal of Mathematics 48 (1996), 81–104.
- [FrJ] M. D. Fried and M. Jarden, Field Arithmetic, 2nd Edition, revised and enlarged by Moshe Jarden, Springer, 2005.
- [FyJ] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields, Proceedings of the London Mathematical Society 28 (1974), 112– 128.
- [Gol] L. J. Goldstein, Analytic Number Theory, Prentice-Hall, Englewood Cliffs, 1971.
- [JaJ] M. Jacobson and M. Jarden, Finiteness theorems for torsion of abelian varieties over large algebraic fields, Acta Arithmetica 98 (2001), 15–31.
- [Jan] G.J. Janusz, Algebraic Number Fields, Academic Press, New York, 1973.
- [Jar] M. Jarden, Roots of unity over large algebraic fields, Mathematische Annalen 213 (1975), 109–127.
- [Lan] S. Lang, Elliptic Functions, Addison-Wesley, Reading, 1973.
- [LaO] J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in Algebraic Number Fields, Proceedings of a symposium organised by the London Mathematical Society and held in Durham University 1975, edited by A. Fröhlich, Academic Press 1997, pp. 409–464.
- [LeV] W. J. LeVeque, Topic in Number Theory I, Addison-Wesley, Reading, 1958.
- [Shi] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten Publishers and Princeton University Press, 1971.

9 February, 2007