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Introduction

The goal of this note is to report on a new phenomena in the theory of large fields.

As usual, we denote the absolute Galois group of Q by Gal(Q) and equip each of

the cartesian powers Gal(Q)e by the normalized Haar measure µ. Let Q̃ be the algebraic

closure of Q. For each σ = (σ1, . . . , σe) let Q̃(σ) be the fixed field in Q̃ of σ1, . . . , σe.

The behavior of the fields Q̃(σ) becomes regular if we remove sets of measure zero. This

is exemplified by the following fundamental result:

Theorem A ([FrJ, Thms. 18.5.6 and 18.6.1]): The following statements hold for almost

all σ ∈ Gal(Q)e:

(a) The absolute Galois group of Q̃(σ) is isomorphic to the free profinite group F̂e on

e generators.

(b) The field Q̃(σ) is PAC, that is, each absolutely irreducible variety V defined over

Q̃(σ) has a Q̃(σ)-rational point.

Likewise, the following holds for Abelian varieties:

Theorem B ([FyJ]): Let A be an abelian variety over Q. Then for almost all σ ∈

Gal(Q)e the rank of A(Q̃(σ)) is infinite.

Note that the fields Q̃(σ) become smaller as e increases. Thus, it is expected that

in general less arithmetical objects will be defined over Q̃(σ) as e increases. Here are

two typical examples:

Theorem C ([JaJ, Main Theorem(a)]): Let A be an Abelian variety and l a prime

number. Then for each e ≥ 1 and for almost all σ ∈ Gal(K)e the set
⋃∞

i=1Ali(Q̃(σ)) is

finite (while
⋃∞

i=1Ali(Q̃) is infinite, which is the case if e = 0).

Here An(L) = {p ∈ A(L) | np = 0} for each positive integer n and each field

extension L of K.

Theorem D: [Jar, Thms. 8.1 and 8.2] The following holds for almost all σ ∈ Gal(Q)e:

(a) If e = 1, then Q̃(σ) contains infinitely many roots of unity.

(b) If e ≥ 2, then Q̃(σ) contains only finitely many roots of unity.
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Theorem E: Let E be an elliptic curve over Q. Then the following holds for almost

all σ ∈ Gal(Q)e:

(a) If e = 1, then Etor(Q̃(σ)) is infinite.

(b) If e ≥ 2, then Etor(Q̃(σ)) is finite.

The arithmetical reason that lies behind the distinction between the cases e = 1

and e ≥ 2 in Theorems D and E is that the series
∑

1
le , with l ranges over all prime

numbers, diverges for e = 1 and converges for e ≥ 2.

In general, we call a nonnegative integer e0 a cut for the large fields over Q if

there exists an infinite set P of arithmetical or geometrical objects defined over Q̃ such

that for almost all σ ∈ Gal(K)e infinitely many objects of P are defined over Q̃(σ) if

e < e0 and only finitely many objects of P are defined over Q̃(σ) if e ≥ e0.

Theorem C implies that 1 is a cut for the large fields over Q, while Theorems D

and E imply that 2 is a cut for the large fields over Q.

For a long time 1 and 2 were the only known cuts for large fields over Q. The goal

of the present note is to prove that also 3 and 4 are cuts for large fields over Q. The

relevant properties of fields were hidden in the theory of elliptic curves with complex

multiplication:

Theorem F: The following holds for almost all σ ∈ Gal(Q)e:

(a) If e ≤ 2, then there are infinitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃(σ) such that End(E) ⊆ Q̃(σ).

(b) If e ≥ 3, then there are only finitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃(σ) such that End(E) ⊆ Q̃(σ).

Theorem G: The following holds for almost all σ ∈ Gal(Q)e:

(a) If e ≤ 3, then there are infinitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃(σ).

(b) If e ≥ 4, then there are only finitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃(σ).

The proofs of Theorems F and G use the standard properties of the j-function of

elliptic curves with CM as in [Shi] and [Lan] and information about the growth of the
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class number of imaginary quadratic fields:

Theorem H: For each prime number p let h(p) be the class number of Q(
√
−p). Then∑

1
h(p)2 = ∞, where p ranges on all prime numbers which are congruent to 3 modulo 4.

The authors are indebted to Ram Murty for kindly supplying the proof of Theorem

H.

Finally, we rephrase Theorem F for a family of large fields which are considerably

smaller than the fields Q̃(σ). For each σ ∈ Gal(Q)e we denote the maximal Galois

extension of Q which is contained in Q̃(σ) by Q̃[σ]. Then the following holds:

Theorem I: The following holds for almost all σ ∈ Gal(Q)e:

(a) If e ≤ 2, then there are infinitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃[σ].

(b) If e ≥ 3, then there are only finitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃[σ].
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1. On the growth of the class number of imaginary quadratic fields

For each prime number p let h(p) be the class number of Kp = Q(
√
−p). By a theorem

of Siegel, log h(p) ∼ log
√
p [Lan, p. 96]. Thus, there exists ε(p) which tends to 0 as

p→∞ such that log h(p) = (1 + ε(p)) log
√
p. It follows that

(1)
∑

p

1
h(p)2

=
∑ 1

p1+ε(p)
.

One knows that
∑

1
p diverges. Unfortunately, without any additional information about

ε(p) one can not draw from (1) that its left hand side diverges. Still, the sum does

diverge, as we prove below:

Proposition 1.1 (Murty): With the notation above,

(2)
∑

p≡3 mod 4

1
h(p)2

= ∞,

Proof: Lemma 1.2 below reduces (2) to the proof of the existence of a constant c > 0

such that

(3)
∑
p≤x

p≡3 mod 4

h(p)
p

∼ c
√
x

log x
.

In order to prove (3) suppose p ≡ 3 mod 4 is a prime number and let χp be the quadratic

character of Kp. Thus, χp(n) = (−1)
n−1

2
(
n
p

)
if p - n [BoS, Chap. 3, §8.2]. Let l be a

prime number satisfying l - 2p. Then l decomposes in Kp into two distinct primes if

χp(l) = 1 and l remains prime in Kp if χp(l) = −1 [BoS, Chap. 3, §8.2, Thm. 2]. Let

L(s, χp) =
∑∞

n=1
χ(n)
ns be the corresponding L-series. By the Dirichlet class number

formula [BoS, Chap. 5, §4.1], h(p) is a multiple of
√
pL(1, χp) by a constant. Hence, (3)

is equivalent to the existence of c > 0 such that

(4)
∑
p≤x

p≡3 mod 4

L(1, χp)√
p

∼ c
√
x

log x

Statement (4) is essentially proved in [FoM, pp. 91–93].

The rest of this section proves the equivalence of (2) and (3).
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For each set P of prime numbers let π(P, x) be the number of p ∈ P with p ≤ x.

In particular, if P is the set of all prime numbers, then π(P, x) = π(x). If P is the set

of all prime numbers p ≡ a mod n, we write πa,n(x) for π(P, x). By the prime number

theorem for arithmetical progressions [LaO, Thms. 1.3 and 1.4 applied to the case of

L = Q(ζn)],

(5) π(x) =
x

log x
+O

( x

log2 x

)
and πa,n(x) =

1
ϕ(n)

· x

log x
+O

( x

log2 x

)
,

where ϕ(n) is Euler’s totient function.

Lemma 1.2: For each prime number p let h(p) be a positive real number. Suppose that

there exists c > 0 such that

(6)
∑
p≤x

p≡3 mod 4

h(p)
p

∼ c
√
x

log x

Then (2) is true.

Proof: Apply summation by parts:∑
p≤x

p≡3 mod 4

h(p)
√
p

=
∑
p≤x

p≡3 mod 4

h(p)
p

· √p

=
∑
p≤x

p≡3 mod 4

h(p)
p

·
√
x− 1

2

∫ x

2

∑
p≤t

p≡3 mod 4

h(p)
p

· 1√
t
dt

∼ c

√
x

log x
·
√
x− c

2

∫ x

2

√
t

log t
· 1√

t
dt by (6)

= c
x

log x
− c

2

∫ x

2

dt

log t
∼ c

2
x

log x
.

The latter approximation is a consequence of the formula
∫ x

2
dt

log t ∼
x

log x [Gol, pp. 254–

255, Remark (2)]. Hence, by (5) there exists x0 such that

cπ3,4(x) ≥
1
2

∑
p≤x

p≡3 mod 4

h(p)
√
p

and π3,4(x) ≥ 1
3π(x) for all x ≥ x0. Let P = {p ≡ 3 mod 4 | h(p) > 6c

√
p} and let

P ′ = {p ≡ 3 mod 4 | h(p) ≤ 6c
√
p}. Then, for all x ≥ x0

π3,4(x) ≥
1
2c

∑
p≤x

p≡3 mod 4

h(p)
√
p
≥ 1

2c

∑
p≤x
p∈P

h(p)
√
p
≥ 3π(P, x).
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It follows from π3,4(x) = π(P, x) + π(P ′, x) that π(P ′, x) ≥ 2
3π3,4(x) ≥ 2

9π(x) for all

x ≥ x0. It follows from Lemma 1.3 below that

∑
p≡3 mod 4

1
h(p)2

≥
∑
p∈P ′

1
h(p)2

≥ 1
36c2

∑
p∈P ′

1
p

= ∞,

as contended.

Lemma 1.3: Let Q be a set of prime numbers, 0 < b ≤ 1, and x0 > 0 such that

π(Q, x) ≥ bπ(x) for all x ≥ x0. Then
∑

p∈Q
1
p = ∞.

Proof: We reduce the statement to the well known fact that
∑

1
p = ∞ [LeV, p. 100,

Thm. 6-13]. To this end make b smaller and add all prime numbers p ≤ x0 to Q if

necessary, in order to assume that x0 = 1. Then write the set of all prime numbers as

an ascending sequence, p1 < p2 < p3 < · · · and define

χ(n) =
{

1 pn ∈ Q
0 pn /∈ Q

Then s(n) =
∑n

i=1 χ(i) = π(Q, pn) ≥ bπ(pn) = bn. Therefore, with s(0) = 0, we have

n∑
i=1

pi∈Q

1
pi

=
n∑

i=1

χ(i)
pi

=
n∑

i=1

s(i)− s(i− 1)
pi

=
n∑

i=1

s(i)
pi

−
n∑

i=1

s(i− 1)
pi

=
n∑

i=1

s(i)
pi

−
n−1∑
i=1

s(i)
pi+1

=
s(n)
pn

+
n−1∑
i=1

s(i)
( 1
pi
− 1
pi+1

)

≥ bn

pn
+ b

n−1∑
i=1

i
( 1
pi
− 1
pi+1

)
=
bn

pn
+ b

n−1∑
i=1

i

pi
− b

n−1∑
i=1

i

pi+1

= b
n∑

i=1

i

pi
− b

n∑
i=1

i− 1
pi

= b
n∑

i=1

1
pi
→∞ as n→∞

as contended.
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2. On the number of elliptic curves with CM over large algebraic fields

Consider a positive integer e and choose σ in Gal(Q)e at random. We would like to

know whether there are infinitely many elliptic curves E (up to C-isomorphism) with

CM which are defined over Q̃(σ). We would also like to know whether there are infinitely

many elliptic curves E (up to C-isomorphism) which are defined over Q̃(σ) and such

that all C-endomorphisms of E are defined over Q̃(σ). Since Q̃(σ) becomes smaller as

e increases, we expect to find for each of those questions an e0 such that the answer to

the question is affirmative if and only if e ≤ e0. Indeed, we prove that e0 = 3 for the

former question and e0 = 2 for the latter.

These results reflect the distribution of the modular j-function at singular val-

ues, that is complex values which correspond to elliptic curves with CM. To be more

precise consider an imaginary quadratic field K, an order O of K, and a proper O-ideal

a. Then a is a 2-dimensional lattice which is O-invertible [Lan, p. 91]. Let z1, z2 be a

basis of a and put z = z1/z2. Then j(a) = j(z) is the absolute invariant of an elliptic

curve E with the analytic presentation C/a and such that End(E) ∼= O. Moreover, E

can be chosen to be defined by a Weierstrass equation over Q(j(a)). The basic properties

of j(a) are intimately connected to class field theory:

Proposition 2.1 ([Shi, p. 123, Thm. 5.7]): Let K be an imaginary quadratic field, O

an order of K, and a a proper O-ideal. Then:

(a) K(j(a))/K is a Galois extension and Gal(K(j(a))/K) is isomorphic to the group of

all classes of proper O-ideals through the correspondence σ 7→ b such that j(a)σ =

j(b−1a).

(b) [K(j(a)) : K] = [Q(j(a)) : Q].

(c) If a1, . . . , an are representatives of the classes of proper O-ideals, then the values

j(a1), . . . , j(an) form a complete set of conjugates of j(a) over Q, and over K.

(d) If O is the ring of integers of K (hence, a is a fractional ideal of O in K), then

K(j(a)) is the maximal unramified abelian extension of K, and for each fractional

ideal b of K we have j(a)σ = j(b−1a) where σ =
(K(j(a))/K

b

)
is the Artin symbol.

Corollary 2.2: Fix an embedding of Q̃ in C. Then, with the notation of Proposition
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2.1, we have:

(a) K(j(a)) is the Galois closure of Q(j(a)) over Q.

(b) [K(j(a)) : Q(j(a))] = 2.

(c) K(j(a))/K is an abelian extension.

(d) If τ is a conjugate of the restriction to K(j(a)) of the complex conjugation, then

τ−1ατ = α−1 for each α ∈ Gal(K(j(a))/K).

Proof: Statement (d) follows from [Lan, p. 134, Remark 2]. Statement (c) is a conse-

quence of Proposition 2.1(a). Statements (a) and (b) follow from Proposition 2.1(b,c)

and from (d).

Denote the set of all squarefree positive integers by D. For each d ∈ D let

Kd = Q(
√
−d). Denote the ring of integers and the class number of Kd, respectively, by

Od and h(d). Choose a nonzero ideal ad of Od and let Ld = Kd(j(ad)). By Proposition

2.1(a), h(d) = [Ld : Kd]. Choose also an elliptic curve E(d) with j(ad) as its absolute

invariant which is defined over Q(j(ad)) [Lan, p. 300, Thm. 2].

Lemma 2.3: Let Λ be the set of all prime l ≡ 3 mod 4. Then, the fields Ll, with l ∈ Λ,

are linearly disjoint over Q.

Proof: Consider a finite set Λ0 of Λ and an element l′ ∈ Λ r Λ0. Let L =
∏

l∈Λ0
Ll. By

Corollary 2.2(a), each Ll is Galois over Q. Hence, it suffices to prove that L ∩ Ll′ = Q.

Since, by a theorem of Minkowski, each proper extension of Q is ramified [Jan, p. 57,

Cor. 11.11] it suffices to prove that no prime number p is ramified in L ∩ Ll′ .

Indeed, for each l ∈ Λ we have −l ≡ 1 mod 4. Hence, the discriminant of Kl/Q

is −l [BoS, §2.7, p. 132, Thm. 1], so the only prime number which ramifies in Kl is l.

Since Ll/Kl is unramified (Proposition 2.1(d)), the only prime number which ramifies

in Ll is l. In particular, l′ is unramified in each Ll with l ∈ Λ0. Hence, l′ is unramified

in L, so l′ is unramified in L ∩ Ll′ . If p 6= l′, then p is unramified in Ll′ , so p is also

unramified in L ∩ Ll′ . Consequently, L ∩ Ll′ = Q, as asserted.

The orders of Kd have the form Od,c = Z + cOd, where c ranges over all positive

integers. For each d ∈ D and c ∈ N choose a proper Od,c-ideal ad,c and let Ld,c =
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Kd(j(ad,c)). By Proposition 2.1(c), h(d, c) = [Ld,c : Kd] is the class number of Od,c. It

is related to h(d) by the following formula [Lan, p. 95]:

(1) h(d, c) = h(d)
ψ(d, c)

(O×
d : O×

d,c)
,

where

(2) ψ(d, c) = c
∏
p|c

(
1−

(
Kd

p

)
1
p

)
,

and
(
Kd

p

)
is 1 if p decomposes in Kd, −1 if p remains irreducible in Kd, and 0 if p

ramifies in Kd.

Lemma 2.4: Let L be a finite Galois extension of Q. Then there are only finitely many

elliptic curves E with CM (up to C-isomorphism) which are defined over L and satisfy

End(E) ⊆ L.

Proof: Let E be an elliptic curve over L with CM such that End(E) ⊆ L. Then

End(E) ⊗ Q = Kd for some d ∈ D [Shi, p. 103, Prop. 4.5]. Moreover, End(E) is an

order of Od and there is a unique c ∈ N with End(E) = Od,c [Shi, p. 105, Prop. 4.1]. In

addition, E ∼= C/a for some proper Od,c-ideal a [Shi, p. 104, Prop. 4.8]. In particular

j(a) is the absolute invariant of E, so Kd(j(a)) ⊆ L. By the comments preceding the

lemma, [Kd(j(a)) : Q] = 2h(d, c) and h(d, c) tends to infinity if d or c tend to infinity.

Indeed, by the estimates quoted in the proof of the next lemma, log h(d) ∼ log d
1
2

and ψ(d, c) ≥ ac
log log c for some a > 0. Thus, there are only finitely many possibilities

for (d, c). For each pair (d, c) ∈ D × N there are only finitely many possibilities (up

to C-isomorphism) for E. They correspond to the number h(d, c) of classes of proper

Od,c-ideals [Shi, p. 105, Prop. 4.10]. Consequently, there are only finitely many C-

isomorphism classes of elliptic curves E with CM such that j(E) ∈ L and End(E) ⊆ L.

Lemma 2.5: Let D be the set of all squarefree positive integers. Then

(3)
∑
d∈D

∞∑
c=1

1
h(d, c)3

<∞.
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Proof: By (1), it suffices to prove that

(4)
∑
d∈D

1
h(d)3

∞∑
c=1

(O×
d : O×

d,c)
3

ψ(d, c)3
<∞.

There are at most 6 units in Od [BoS, §2.7.3]. Hence, the numerator in the

inner sum of the right hand side of (4) is bounded. Next consider the Euler totient

function: ϕ(c) = c
∏

p|c
(
1− 1

p

)
. It has an estimate from below: ϕ(c) > ac

log log c for some

positive constant a [Lev, p. 114, Thm. 6-26]. For each p, 1 −
(
Kd

p

)
1
p ≥ 1 − 1

p . Hence,

ψ(d, c) ≥ ϕ(c), so

(5)
∞∑

c=1

1
ψ(d, c)3

≤
∞∑

c=1

1
ϕ(c)3

≤ 1
a3

∞∑
c=1

(log log c)3

c3
<∞.

Finally, by a theorem of Siegel, log h(d) ∼ log d1/2 [Lan, p. 96]. This means that

for each d ∈ D there exists ε(d) > 0 such that h(d) = dε(d)/2 and ε(d) → 1 as d → ∞.

In particular, ε(d) > 3
4 for all d sufficiently large. Hence, 3·ε(d)

2 > 9
8 for almost all d

sufficiently large, so there exists b > 0 such that

(6)
∑
d∈D

1
h(d)3

=
∑
d∈D

1
d3·ε(d)/2

≤
∞∑

d=1

b

d9/8
<∞.

We conclude from (5) and (6) that (4) holds.

The main tool from probability theory we use is the Borel-Cantelli Lemma. We

formulate its Galois theoretic version as appears in [FrJ, Theorem 18.5.3]:

Lemma 2.6: Let L1, L2, L3, . . . be finite separable extensions of a field K. For each

i ≥ 1 let Āi be a set of left cosets of Gal(Li)e in Gal(K)e and

Ai = {σ ∈ Gal(K)e | σGal(Li)e ∈ Āi}.

Let A be the set of all σ ∈ Gal(K)e which belong to infinitely many Ai’s.

(a) If
∑∞

i=1
|Āi|

[Li:K]e <∞, then µ(A) = 0.

(b) Suppose L1, L2, L3, . . . are linearly disjoint over K and
∑∞

i=1
|Āi|

[Li:K]e = ∞, then

µ(A) = 1.
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Theorem 2.7: The following holds for almost all σ ∈ Gal(Q)e:

(a) If e ≤ 2, then there are infinitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃(σ) such that End(E) ⊆ Q̃(σ).

(b) If e ≥ 3, then there are only finitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃(σ) such that End(E) ⊆ Q̃(σ).

Proof of (a): Let Λ be the set of all prime numbers l ≡ 3 mod 4. For each l we have

[Ll : Kl] = h(l) and [Ll : Ql] = 2h(l). In addition, E(l) is defined over Q(j(al))

and End(E(l)) = Ol. Hence, if σ ∈ Gal(Ll), then E(l) is defined over Q̃(σ) and

End(E(l)) ⊆ Q̃(σ). By Proposition 1.1,

∑
l∈Λ

1
[Ll : Q]e

=
1
2e

∑
l∈Λ

1
h(l)e

≥ 1
22

∑
l∈Λ

1
h(l)2

= ∞.

By Lemma 2.3, the fields Ll, l ∈ Λ, are linearly disjoint. In particular j(al) 6=

j(al′), so E(l) 6∼= E(l) if l 6= l′. It follows from Borel-Cantelli [FrJ, Lemma 18.5.3(b)] that

for almost all σ ∈ Gal(Q)e there are infinitely many primes l such that E(l) is defined

over Q̃(σ) and End(E(l)) ⊆ Q̃(σ), as desired.

Proof of (b): Let σ ∈ Gal(Q)e. If an elliptic curve E with CM is defined over Q̃(σ) and

End(E) ⊆ Q̃(σ), then there exist d ∈ D and a positive integer c such that Ld,c ⊆ Q̃(σ).

By Lemma 2.4, for each d and c there are only finitely many E′s (up to a C-isomorphism)

which are defined together with their endomorphisms over Ld,c. Thus, if there are in-

finitely many elliptic curves with CM which are defined together with their endomor-

phisms over Q̃(σ), then σ belongs to infinitely many sets Gal(Ld,c)e. Since [Ld,c :

Q] = 2h(d, c), Lemma 2.5 implies that
∑

d∈D

∑∞
c=1

1
[Ld,c:Q]e ≤

∑
d∈D

∑∞
e=1

1
h(d,c)3 <∞.

Hence, by Borel-Cantelli [FrJ, Lemma 18.5.3.(a)], the measure of those σ’s is 0.

If an elliptic curve E with CM is defined over a field K and if End(E) ⊆ K, then,

by Proposition 2.1, all conjugates of jE are in K(jE). Therefore, for σ ∈ Gal(Q)e, if we

drop the condition that the endomorphisms of the elliptic curves are defined over Q̃(σ),

then the probability that there are infinitely many elliptic curves with CM over Q̃(σ)

increases. This is reflected in the following result:

11



Theorem 2.8: The following holds for almost all σ ∈ Gal(Q)e:

(a) If e ≤ 3, then there are infinitely many elliptic curves E (up to isomorphism) with

CM over Q̃(σ).

(b) If e ≥ 4, then there are only finitely many elliptic curves E (up to isomorphism)

with CM over Q̃(σ).

Proof of (a): As in the proof of Theorem 2.7 let Λ be the set of primes l ≡ 3 mod 4.

Consider l ∈ Λ and let Kl, Ol, Ll, al, E(l), and h(l) be as above. Let τ be a generator of

Gal(Ll/Q(j(al)). If α ∈ Gal(Ll/Kl), then τα generates Gal(Ll/Q(j(al))α) and (E(l))α

is an elliptic curve with CM which is defined over Q(j(al))α. Thus, if σ ∈ Gal(Q)e and

resLl
σi ∈ 〈τα〉e, then (E(l))α is defined over Q̃(σ).

Claim: #{τα | α ∈ Gal(Ll/Kl)} = h(l).

Indeed, embed Ll in C and let ρ be the restriction of the complex conjugation to

Ll. Since Kl is an imaginary quadratic field, resKl
ρ 6= 1, so ρ2 = 1 and ρ 6= 1. Since

l ≡ 3 mod 4, h(l) is odd [BoS, p. 346, Thm. 4]. Thus, ρ ∈ Gal(Ll/Q) r Gal(Ll/Kl).

Now assume ρα = ρ for some α ∈ Gal(Ll/Kl). By Corollary 2.2(d), ραρ = α−1, hence

1 = ρ2 = α−1ραρ = α−2, which implies α = 1 (because h(l) is odd). It follows that

the map α 7→ ρα from Gal(Ll/Kl) into Gal(Ll/Q) r Gal(Ll/Kl) is injective. Since both

sets have the same cardinality, the map is bijective. In particular, τ is conjugate to ρ

by an element of Gal(Ll/Kl). Consequently, #{τα | α ∈ Gal(Ll/Kl)} = #{ρα | α ∈

Gal(Ll/Kl)} = [Ll : Kl] = h(l).

Let Āl =
⋃

α∈Gal(Ll/Kl)
{1, τα}e. Each of the sets {1, τα}e has 2e elements and

the intersection of every two of them contains only one element (by the Claim). Thus,

|Āl| = h(l) · 2e − (h(l) − 1). Let Al = {σ ∈ Gal(Q̃)e | resLl
σ ∈ Āl}. Then, µ(Al) =

h(l)·2e−(h(l)−1)
(2h(l))e . Since e ≤ 3, Proposition 1.1 implies that

∑
l∈Λ

µ(Al) =
∑
l∈Λ

h(l) · 2e − (h(l)− 1)
(2h(l))e

≥ 2e − 1
2e

∑
l∈Λ

1
h(l)2

= ∞.

By Lemma 2.3, the fields Ll, l ∈ Λ are linearly disjoint. It follows from Borel-Cantelli

that for almost all σ ∈ Gal(Q)e there are infinitely many elliptic curves with CM which

are defined over Q̃(σ).
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Proof of (b): Let d range over D and let c range over all positive integers. For each d

and c let

A(d, c) =
⋃

α∈Gal(Ld,c/Kd)

Gal(Q(j(ad,c)α))e.

By Proposition 2.1(b),

µ(A(d, c)) ≤ [Ld,c : Kd]
(

1
[Q(j(ad,c)) : Q]

)e

=
1

h(d, c)e−1
.

If for σ ∈ Gal(Q)e there are infinitely many elliptic curves with CM which are defined

over Q̃(σ), then σ belongs to infinitely many of the sets A(d, c) (as argued in the proof

of Lemma 2.4). Since e ≥ 4, we have by Lemma 2.5 that

µ
( ⋃

d,c

A(d, c)
)
≤

∑
d,c

1
h(d, c)e−1

≤
∑
d,c

1
h(d, c)3

<∞.

We conclude from Borel-Cantelli that almost no σ ∈ Gal(Q)e belongs to infinitely many

sets A(d, c). Thus, for almost all σ ∈ Gal(Q)e, there are only finitely many elliptic curves

with CM (up to a C-isomorphism) which are defined over Q̃(σ).

Corollary 2.9: The following holds for almost all σ ∈ Gal(Q)e:

(a) If e ≤ 2, then there are infinitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃[σ].

(b) If e ≥ 3, then there are only finitely many elliptic curves E (up to C-isomorphism)

with CM over Q̃[σ].

Proof: First suppose e ≤ 2. By Theorem 2.7(a), for almost all σ ∈ Gal(Q)e there are

infinitely many elliptic curves E with CM over Q̃(σ) such that End(E) ⊆ Q̃(σ). For

all such σ and E let KE be the quotient field of End(E). Then KE(jE) is a Galois

extension of Q which is contained in Q̃(σ). Hence, KE(jE) ⊆ Q̃[σ]. It follows that an

isomorphic copy of E (over C) is defined over Q̃[σ].

Now suppose e ≥ 3. For each σ ∈ Gal(Q)e let E(σ) be the set of all elliptic curves

E (up to C-isomorphism) which are defined over Q̃(σ) such that End(E) ⊆ Q̃(σ). Let

S be the set of all σ ∈ Gal(Q)e such that E(σ) is a finite set. By Theorem 2.7(b),

µ(S) = 1.

13



Consider σ ∈ S and let E be an elliptic curve with CM over Q̃[σ]. Then jE ∈ Q̃[σ].

Hence, the Galois closure of Q(jE)/Q is contained in Q̃[σ]. By Corollary 2.2(a), the

latter contains End(E). Hence, E ∈ E(σ). Consequently, there are only finitely many

elliptic curves (up to C-isomorphism with CM over Q̃[σ].
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