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Introduction

Karrass and Solitar prove that if M is a finitely generated subgroup of a free abstract

group F and M contains a nontrivial normal subgroup of F , then the index of M is

finite [KaS] (see also [Imr, Sec. 6 for a graph theoretic approach] or [Gru]). In particular,

if the rank of F is infinite, then F does not have a subgroup of that type. Our goal is

to prove an analog of the Karrass-Solitar theorem for free profinite groups of rank at

least 2:

Main theorem: Let F be a free profinite group of rank ≥ 2 and let M be a finitely

generated closed subgroup of infinite index. Then M contains no closed nontrivial

normal subgroup of F .

Note that the main theorem fails if rank(F ) = 1, since in this case each closed

subgroup is procyclic and normal. When rank(F ) = ∞, our theorem is an immediate

consequence of Haran’s Diamond theorem: If M1,M2 are closed normal subgroups and

M is a closed subgroup of F which contains M1 ∩M2 but neither M1 nor M2, then M

is profinite free of the same rank as F [FrJ, Thm. 25.4.3]. Indeed let F and M be as

in the main theorem. Assume M contains a nontrivial closed normal subgroup N of F .

Then, F has an open normal subgroup F0 which does not contain N . Set M0 = F0∩M .

By the Diamond theorem, M0 is profinite free of infinite rank. On the other hand, as

an open subgroup of M , M0 is finitely generated. We deduce from this contradiction

that no group N as above exists.

We do not know whether the Diamond theorem holds for free profinite groups

of finite rank [FrJ, Problem 25.4.9], so we can not use it to prove our main theorem.

Instead we supply a direct proof to the main theorem for finite rank by using a theorem

of Nielsen-Schreier combined with a trick of Lubotzky-v.d.Dries. Having done that, we

reduce the case of an infinite rank to the case of a finite rank. In this way we supply a

complete proof of the main theorem without using the Diamond theorem.

The proof of the main theorem improves a result of Lubotzky-Melnikov-v.d.Dries:

If F is a free profinite group of a finite rank e ≥ 2, M is a closed subgroup of F of

infinite index, N is a nontrivial closed normal subgroup of F contained in M , and M0
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is an open subgroup of M which does not contains N , then M0 is isomorphic to the free

profinite group F̂ω of rank ℵ0. The Lubotzky-Melnikov-v.d.Dries theorem handles only

the case where M = N , that is, it demands that M is normal in F [FrJ, Prop. 24.10.3].

Our main theorem has a field theoretic application: Let K be an e-free PAC field,

M an infinite separable algebraic extension, and M0 a proper finite Galois extension

of M not contained in the Galois closure of M/K. Then M0 is Hilbertian. This is

an analog of a theorem of Weissauer [FrJ, Thm. 13.9.1], where K is assumed to be

Hilbertian rather than PAC and e-free.

The author is indebted to Alexander Lubotzky for an improvement of an earlier

version of the paper. Thanks also to Dan Haran and Lior Bary for useful comments.
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1. The Trick of Lubotzky-v.d.Dries

Let F be a free profinite group of finite rank e ≥ 2 and N a closed normal subgroup

of F of infinite index. If rank(F/N) < rank(F ), then, by Nielsen-Schreier, rank(E) −

rank(E/N) tends to infinity with (F : E), where E ranges over all open subgroups of F

containing N . Every finite embedding problem for N can be lifted to a finite embedding

problem of an open subgroup E of F containing N and having a large index. Since E

is free, one can solve the embedding problem for E in such a way that it will give a

solution to the embedding problem of N . Applying a well known result of Iwasawa,

this implies that N is isomorphic to the free profinite group F̂ω of countable rank [FrJ,

Prop. 24.10.3].

We call this reasoning the trick of Lubotzky-v.d.Dries. In what follows we

generalize it.

Throughout the note we freely use the following theorem of Nielsen-Schreier: Ev-

ery open subgroup E of F is free and rank(E) = 1 + (F : E)(rank(F ) − 1) [FrJ,

Prop. 17.6.2]. Moreover, if H is an open subgroup of a finitely generated profinite

group G, then rank(H) ≤ 1 + (G : H)(rank(G) − 1) [FrJ, Cor. 17.6.3]. We denote the

free profinite group of rank e by F̂e.

Lemma 1.1: Let F be a profinite group, H an open subgroup, M a closed subgroup of

H, and M0 an open normal subgroup of M . Then F has open subgroups E0 / E such

that E0M = E ≤ H and E0 ∩M = M0.

Proof: By [FrJ, Lemma 1.2.5(a)], H has an open normal subgroup H0 satisfying H0 ∩

M ≤ M0. Set E0 = H0M0 and E = H0M .

H0 E0 E H F

H0 ∩M M0 M

Then E0 ∩M = M0 and E0 / E.

Lemma 1.2: Let e ≥ 2 be an integer, F = F̂e, M a closed subgroup of F of infinite

index, and N a closed normal subgroup of F contained in M . Suppose

(1) rank(F/N) < e.
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Then M ∼= F̂ω.

Proof: By Iwasawa, it suffices to prove that each finite embedding problem for M is

solvable [FrJ, Cor. 24.8.3]. Let therefore

(2) M

ϕ

��
1 // C // B

α // A // 1

be a finite embedding problem for M . Thus, ϕ and α are epimorphisms and B is a finite

group. Moreover, M0 = Ker(ϕ) is an open normal subgroup of M . Since (F : M) = ∞,

F has an open subgroup F1 containing M such that (F : F1) ≥ rank(C) + |A|. By

Lemma 1.1, F1 has open subgroups E0 / E satisfying E0M = E and E0 ∩M = M0.

E0 E F1 F

M0 M

N0 N

By the choice of F1,

(3) (F : E) ≥ rank(C) + |A|.

Extend ϕ to an epimorphism ϕ̃: E → A by defining ϕ̃(e0y) = ϕ(y) for all e0 ∈ E0

and y ∈ M . In particular, Ker(ϕ̃) = E0. By (1), (3), and Nielsen-Schreier,

(4)

rank(E/N) ≤ 1 + (F : E)(rank(F/N)− 1) ≤ 1 + (F : E)(e− 1− 1)

= 1 + (F : E)(e− 1)− (F : E) = rank(E)− (F : E)

≤ rank(E)− rank(C)− |A|.

Note that

N/N0
∼= M0N/M0 ≤ M/M0

∼= A,

so rank(N/N0) ≤ |A|. Since, rank(E/N0) ≤ rank(N/N0)+ rank(E/N), (4) implies that

(5) rank(C) + rank(E/N0) ≤ rank(E).
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Let k = rank(C) and m = rank(E). By (5), rank(E/N0) ≤ m − k. Choose generators

x̄k+1, . . . , x̄m for E/N0 and set x̄i = 1 for i = 1, . . . , k. Then x̄1, . . . , x̄m generate

E/N0. A lemma of Gaschütz gives generators x1, . . . , xm of E with x̄i = xiN0 for

i = 1, . . . ,m [FrJ, Lemma 17.7.2]. By [FrJ, Lemma 17.4.6(b)], x1, . . . , xm form a basis of

E. Choose generators b1, . . . , bk of C and elements bk+1, . . . , bm ∈ B with α(bi) = ϕ̃(xi),

i = k +1, . . . ,m. Then b1, . . . , bm generate B. If 1 ≤ i ≤ k, then xiN0 = x̄i = 1. Hence,

xi ∈ N0 ≤ E0, so ϕ̃(xi) = 1 = α(bi). It follows that the map xi 7→ bi, i = 1, . . . ,m,

extends to an epimorphism γ̃: E → B with α ◦ γ̃ = ϕ̃.

Finally, set γ = γ̃|M . Then α ◦ γ = ϕ and α ◦ γ(M) = ϕ(M) = A. Moreover, for

1 ≤ i ≤ k we have xi ∈ N0 ≤ M . Hence, C = 〈b1, . . . , bk〉 = 〈γ(x1), . . . , γ(xk)〉 ≤ γ(M).

Therefore, γ(M) = B. In other words, γ is a solution of embedding problem (2).

Proposition 1.3: Let F = F̂e with e ≥ 2 an integer, M a closed subgroup of infinite

index, N a closed normal subgroup of F contained in M , and M0 an open subgroup of

M which does not contain N . Then M0
∼= F̂ω.

Proof: First of all we replace M by M0N , if necessary, to assume M = M0N . Next we

choose an open subgroup F0 of F with F0∩M = M0 [FrJ, Lemma 1.2.5(a)]. By Nielsen-

Schreier, F0 < F are free of degree at least 2. Replace F by 〈F0,M〉, if necessary, to

assume that 〈F0,M〉 = F and F0 < F . Then, N0 = M0 ∩N is a closed subgroup of F ,

satisfying F0 ∩N = N0 and F0N = F .

F0 F

M0 M

N0 N

By Nielsen-Schreier, rank(F0/N0) = rank(F/N) ≤ rank(F ) < rank(F0). It follows from

Lemma 1.2 (with F0 replacing F ) that M0
∼= F̂ω.

By Proposition 1.3, every finite group is a quotient of M0. On the other hand, if

we assume in Proposition 1.3 that rank(F ) = ∞, then by Haran’s Diamond theorem

for groups, M0
∼= F [FrJ, Thm. 25.4.3]. In particular, each finite group is a quotient
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of M0. It turns out that the condition on the quotients of M0 suffices to prove the

analog of Karrass-Solitar theorem for profinite groups. We show here how to reduce the

condition on the quotients of M0 from infinite ranks to finite ranks, thus circumventing

the Diamond theorem:

Lemma 1.4: Let F be a free profinite group of rank at least 2, M a closed subgroup of

F of infinite index, N a closed normal subgroup of F contained in M , and M0 an open

subgroup of M which does not contain N . Then every finite group is a quotient of M0.

Proof: Let G be a finite group and set m = max(2, rank(G)). By Proposition 1.3, it

suffices to prove the lemma in the case where rank(F ) = ∞. Let X be a basis of F

in the sense of [FrJ, Def. 17.4.5]. For each finite subset Y of X with |Y | ≥ m let F̂Y

be the free profinite group with basis Y , ϕY : F → F̂Y the epimorphism defined by

ϕY (x) = x if x ∈ Y and ϕY (x) = 1 if x ∈ X r Y . Set MY = ϕY (M), NY = ϕY (N),

and M0,Y = ϕY (M0). Then MY is a closed subgroup of F̂Y , NY is a closed normal

subgroup of F̂Y , and M0,Y is an open subgroup of F̂Y . Unfortunately, we may have

NY ≤ M0,Y . In order to overcome this difficulty, recall that X converges to 1. Thus

X r F0 is a finite set for each open subgroup F0 of F . Therefore, the intersection of all

kernels Ker(ϕY ), where Y ranges over all finite subsets of X with |Y | ≥ m is trivial.

By assumption, there is a z ∈ N r M0. By the preceding paragraph, M0 =⋂
Y M0Ker(ϕY ) [FrJ, Lemma 1.2.2(b)], so there is a finite subset Y of X with ϕY (z) ∈

NY r M0,Y and |Y | ≥ m. If MY is open in F̂Y , then, by Nielsen-Schreier, M0,Y is free

of rank at least |Y |, so G is a quotient of M0,Y . If (F̂Y : MY ) = ∞, then M0,Y
∼= F̂ω

(Proposition 1.3), so G is a quotient of M0,Y . In both cases, G is a quotient of M0, as

claimed.

A theorem of Weissauer says that if M is a separable algebraic extension of a

Hilbertian field K and M ′ is a finite separable extension of M not contained in the

Galois closure of M/K, then M ′ is Hilbertian [FrJ, Thm. 13.9.1]. A theorem of Roquette

allows us to transfer Proposition 1.3 to an analog of Weissauer’s theorem in which K is

not Hilbertian but rather PAC and e-free. Here we say that a field K is PAC if every

absolutely irreducible variety over K has a K-rational point. The field K is e-free, if
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its absolute Galois group, Gal(K), is isomorphic to F̂e.

Theorem 1.5: Let e ≥ 2 be an integer, K an e-free PAC field, M an infinite separable

algebraic extension of K, and M ′ a finite extension of M not contained in the Galois

closure of M/K. Then M ′ is PAC, Gal(M ′) ∼= F̂ω, and M is Hilbertian.

Proof: By Ax-Roquette, M ′ is PAC [FrJ, Cor. 11.2.5]. By Proposition 1.3, Gal(M ′) ∼=

F̂ω. Hence, by Roquette, M ′ is Hilbertian [FrJ, Cor. 27.3.3].

A similar reasoning yields the translation of Lemma 1.2 to field theory:

Theorem 1.6: Let e ≥ 2 be an integer, K an e-free PAC field, M an infinite separable

algebraic extension of K, and N a Galois extension of K containing M . Suppose

rank(Gal(N/K)) < rank(Gal(K)). Then M is PAC, Gal(M) ∼= F̂ω, and M is Hilbertian.
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2. Melnikov Formation

A family C of finite groups is called a Melnikov formation if it is closed under taking

quotients, normal subgroups, and extensions. Each element of C is a C-group. Pro-

jective limits of C-groups are pro-C groups. See [FrJ, Sections 17.3 and 17.4] for a

discussion of Melnikov formations and free pro-C groups.

When we speak about a free pro-C group of rank m for a Melnikov formation C,

we tacitly assume that C has a nontrivial group of rank at most m [FrJ, Remark 17.4.7].

Proposition 2.1: Let C be a Melnikov formation, F a free pro-C group of rank at

least 2, M a closed subgroup of F of infinite index, N a closed normal subgroup of F

contained in M , and M0 an open subgroup of M which does not contain N . Then each

C-group is a quotient of M0. If in addition M0 is pro-C, then M0 is isomorphic to the

free pro-C group F̂ω(C) of countable rank.

Proof: Let F̂ be the free profinite group with rank(F̂ ) = rank(F ). Denote the inter-

section of all open normal subgroups L of F̂ with F̂ /L ∈ C by K̂. By [FrJ, Lemma

17.4.10], there is an epimorphism ϕ: F̂ → F with K̂ = Ker(ϕ). Set M̂ = ϕ−1(M),

M̂0 = ϕ−1(M0), and N̂ = ϕ−1(N). Then M̂0 is an open subgroup of M̂ and N̂ is a

closed normal subgroup of F̂ which is not contained in M̂0.

F̂
ϕ // F

M̂

||
|

// M

||
||

M̂0
// M0

N̂

||
||

// N

||
||

|

K̂ // 1

Let G be a C-group. By Proposition 1.3, M̂0 has an open normal subgroup M̂1 with

M̂0/M̂1
∼= G. Then K̂/M̂1 ∩ K̂ ∼= M̂1K̂/M̂1 / M̂0/M̂1, so K̂/M̂1 ∩ K̂ ∈ C. By [FrJ,

Lemma 17.4.10], M̂1 ∩ K̂ = K̂, so K̂ ≤ M̂1 and M0/ϕ(M̂1) ∼= M̂0/M̂1
∼= G. Thus, G is

a quotient of M0, as claimed.
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Now suppose M0 is pro-C. Then M̂0/K̂ ∼= M0 is also pro-C. The argument of

the preceding paragraph shows that if M̂1 is an open normal subgroup of M̂0 with

M̂0/M̂1 ∈ C, then K̂ ≤ M̂1. Thus, K̂ is the intersection of all open normal subgroups

of M̂0 satisfying M̂0/M̂1 ∈ C. It follows from [FrJ, Lemma 17.4.10] that M0
∼= M̂0/K̂ ∼=

F̂ω(C).

Lemma 2.2: Let C be a Melnikov formation containing nontrivial groups. Then, for

each positive integer m there is a C-group G with rank(G) ≥ m.

Proof: Since C is closed under taking quotients, C contains a simple group S, hence

Sn ∈ C for each positive integer n. If S ∼= Z/pZ for some prime number p, then

rank(Sn) = dimFp(Z/pZ)n = n and we are done. Assume S is nonabelian and there

exists an integer e with rank(Sn) ≤ e for all n. Then Sn is a quotient of F̂e for each n. On

the other hand, n is bounded by |De(S)|
|Aut(S)| , where De(S) is the set of all (x1, . . . , xe) ∈ Se

with 〈x1, . . . , xe〉 = S [FrJ, Lemma 26.1.2]. It follows from this contradiction that

rank(Sn) is not bounded.

The results achieved so far give a pro-C analog of the Karrass-Solitar theorem:

Theorem 2.3: Let C be a Melnikov formation of finite groups, F a free pro-C group

of rank at least 2, M a closed subgroup of F of infinite index containing a nontrivial

closed normal subgroup N of F . Then M is not finitely generated.

Proof: The group F has an open normal subgroup F0 which does not contain N .

Thus, M0 = F0 ∩M is an open normal subgroup of M which does not contain N . By

Proposition 2.1, every C-group is a quotient of M0. Hence, by Lemma 2.2, M0 is not

finitely generated. Consequently, M is not finitely generated.

Proposition 2.1 has many more consequences:

Remark 2.4: Let C, F , M , M0, and N be as in Theorem 2.3. By that theorem, every

C-group is a quotient of M0. Therefore, not only M is finitely generated but M is not

a small group [FrJ, Sec. 16.10]. Moreover, M is not a pro-B group for any Melnikov

formation B properly contained in C. In particular, if C contains finite non-abelian
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groups, then M is not pro-solvable, so M is non-abelian. If C contains non-p-groups,

then M is not pro-p.

We could also deduce those consequences from [FrJ, Prop. 24.10.4 and Thm.

25.4.7]. The advantage of the present approach is that in the infinite case we are

applying only simple means based on the Lubotzky-v.d.Dries trick and do not use the

Diamond theorem.
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