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Introduction

Karrass and Solitar prove that if M is a finitely generated subgroup of a free abstract
group F' and M contains a nontrivial normal subgroup of F', then the index of M is
finite [KaS] (see also [Imr, Sec. 6 for a graph theoretic approach] or [Gru]). In particular,
if the rank of F' is infinite, then F' does not have a subgroup of that type. Our goal is
to prove an analog of the Karrass-Solitar theorem for free profinite groups of rank at

least 2:

MAIN THEOREM: Let F' be a free profinite group of rank > 2 and let M be a finitely
generated closed subgroup of infinite index. Then M contains no closed nontrivial

normal subgroup of F.

Note that the main theorem fails if rank(F') = 1, since in this case each closed
subgroup is procyclic and normal. When rank(F') = oo, our theorem is an immediate
consequence of Haran’s Diamond theorem: If M, My are closed normal subgroups and
M is a closed subgroup of F' which contains My N My but neither My nor My, then M
is profinite free of the same rank as F' [FrJ, Thm. 25.4.3]. Indeed let F' and M be as
in the main theorem. Assume M contains a nontrivial closed normal subgroup N of F.
Then, F' has an open normal subgroup F{; which does not contain N. Set My = FoN M.
By the Diamond theorem, My is profinite free of infinite rank. On the other hand, as
an open subgroup of M, Mj is finitely generated. We deduce from this contradiction
that no group NV as above exists.

We do not know whether the Diamond theorem holds for free profinite groups
of finite rank [FrJ, Problem 25.4.9], so we can not use it to prove our main theorem.
Instead we supply a direct proof to the main theorem for finite rank by using a theorem
of Nielsen-Schreier combined with a trick of Lubotzky-v.d.Dries. Having done that, we
reduce the case of an infinite rank to the case of a finite rank. In this way we supply a
complete proof of the main theorem without using the Diamond theorem.

The proof of the main theorem improves a result of Lubotzky-Melnikov-v.d.Dries:
If F' is a free profinite group of a finite rank e > 2, M is a closed subgroup of F' of

infinite index, NN is a nontrivial closed normal subgroup of F' contained in M, and M
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is an open subgroup of M which does not contains N, then M, is isomorphic to the free
profinite group F, of rank Ro. The Lubotzky-Melnikov-v.d.Dries theorem handles only
the case where M = N, that is, it demands that M is normal in F' [FrJ, Prop. 24.10.3].

Our main theorem has a field theoretic application: Let K be an e-free PAC field,
M an infinite separable algebraic extension, and M, a proper finite Galois extension
of M not contained in the Galois closure of M /K. Then M, is Hilbertian. This is
an analog of a theorem of Weissauer [FrJ, Thm. 13.9.1], where K is assumed to be
Hilbertian rather than PAC and e-free.

The author is indebted to Alexander Lubotzky for an improvement of an earlier

version of the paper. Thanks also to Dan Haran and Lior Bary for useful comments.



1. The Trick of Lubotzky-v.d.Dries

Let F' be a free profinite group of finite rank e > 2 and N a closed normal subgroup
of F' of infinite index. If rank(F/N) < rank(F'), then, by Nielsen-Schreier, rank(E) —
rank(E/N) tends to infinity with (F' : E), where E ranges over all open subgroups of F
containing N. Every finite embedding problem for /N can be lifted to a finite embedding
problem of an open subgroup F of F' containing N and having a large index. Since F
is free, one can solve the embedding problem for F in such a way that it will give a
solution to the embedding problem of N. Applying a well known result of Iwasawa,
this implies that N is isomorphic to the free profinite group F, of countable rank [FrJ,
Prop. 24.10.3].

We call this reasoning the trick of Lubotzky-v.d.Dries. In what follows we
generalize it.

Throughout the note we freely use the following theorem of Nielsen-Schreier: Ev-
ery open subgroup E of F is free and rank(F) = 1 + (F : E)(rank(F) — 1) [FrJ,
Prop. 17.6.2]. Moreover, if H is an open subgroup of a finitely generated profinite
group G, then rank(H) < 1+ (G : H)(rank(G) — 1) [FrJ, Cor. 17.6.3]. We denote the
free profinite group of rank e by E,.

LEMMA 1.1: Let F be a profinite group, H an open subgroup, M a closed subgroup of
H, and My an open normal subgroup of M. Then F' has open subgroups Eg < E such
that E()M:ESH aHdEoﬂMZMo.

Proof: By [FrJ, Lemma 1.2.5(a)], H has an open normal subgroup Hj satisfying Hy N
M S M(). Set Eo = H()M() and F = H()M

Hy Ey E H F
HoynM My M
Then EoﬂM:Mo and EQ<]E. |

LEMMA 1.2: Let e > 2 be an integer, F' = Fe, M a closed subgroup of F' of infinite

index, and N a closed normal subgroup of F' contained in M. Suppose
(1) rank(F/N) < e.
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Then M = F,.

Proof: By Iwasawa, it suffices to prove that each finite embedding problem for M is

solvable [FrJ, Cor. 24.8.3]. Let therefore

(2) M

)

1 C B A 1

be a finite embedding problem for M. Thus, ¢ and « are epimorphisms and B is a finite
group. Moreover, My = Ker(p) is an open normal subgroup of M. Since (F' : M) = oo,
F has an open subgroup Fj containing M such that (F : Fy) > rank(C) + |A|. By
Lemma 1.1, F} has open subgroups Ey < E satistying EgM = E and Ey N M = M.

Ey E F F
My M
Ny N

By the choice of Fi,
(3) (F : E) > rank(C) + |A|.

Extend ¢ to an epimorphism ¢: E — A by defining @(egy) = ¢(y) for all eg € Ej
and y € M. In particular, Ker(¢) = Ey. By (1), (3), and Nielsen-Schreier,

rank(E/N) <1+ (F: E)(rank(F/N)—-1) <1+ (F:E)(e—1-1)
(4) =14+ (F:E)e—1)—(F:E)=rank(F)— (F: FE)
< rank(E) — rank(C) — |A|.

Note that
N/No = MoN/My < M/My = A,

so rank(N/Ny) < |A|. Since, rank(E/Ny) < rank(N/Ngy) +rank(E/N), (4) implies that
(5) rank(C') + rank(E/Ny) < rank(FE).
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Let k£ = rank(C) and m = rank(F). By (5), rank(E/Ny) < m — k. Choose generators
Tkt1y---,Tm for E/Ng and set z; = 1 for ¢ = 1,...,k. Then Z;,...,Z,, generate
E/Ny. A lemma of Gaschiitz gives generators z1,...,z,, of E with Z; = z;Ny for
i=1,...,m [FrJ, Lemma 17.7.2]. By [FrJ, Lemma 17.4.6(b)], 1, ..., 2, form a basis of
E. Choose generators by, . .., b of C' and elements b1, ..., b, € B with a(b;) = ¢(z;),
t1=k+1,...,m. Then by,...,b,, generate B. If 1 < ¢ <k, then x; Ng = z; = 1. Hence,
x; € Ng < Ep, so ¢(x;) = 1 = a(b;). It follows that the map z; — b;, i = 1,...,m,
extends to an epimorphism 4: £ — B with a0y = ¢.

Finally, set v = 4|ps. Then aoy = ¢ and aoy(M) = (M) = A. Moreover, for
1 <i <k we have z; € Ny < M. Hence, C = (by,...,bx) = (y(z1),...,v(xx)) < y(M).

Therefore, v(M) = B. In other words, v is a solution of embedding problem (2). |

PROPOSITION 1.3: Let F = F, with e > 2 an integer, M a closed subgroup of infinite

index, N a closed normal subgroup of F' contained in M, and My an open subgroup of

M which does not contain N. Then My = Fw.

Proof: First of all we replace M by MyN, if necessary, to assume M = MyN. Next we
choose an open subgroup F of F' with FyN M = M [FrJ, Lemma 1.2.5(a)]. By Nielsen-
Schreier, Fy < F' are free of degree at least 2. Replace F' by (Fy, M), if necessary, to
assume that (Fy, M) = F and Fy < F. Then, Ny = My N N is a closed subgroup of F,
satisfying Fy " N = Ny and FyN = F.

Fy—F
"
T

By Nielsen-Schreier, rank(Fy/Ny) = rank(F/N) < rank(F) < rank(Fp). It follows from
Lemma 1.2 (with Fy replacing F) that M, = F,. i

By Proposition 1.3, every finite group is a quotient of My. On the other hand, if
we assume in Proposition 1.3 that rank(F') = oo, then by Haran’s Diamond theorem

Y

for groups, My = F [FrJ, Thm. 25.4.3]. In particular, each finite group is a quotient
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of My. It turns out that the condition on the quotients of M suffices to prove the
analog of Karrass-Solitar theorem for profinite groups. We show here how to reduce the
condition on the quotients of My from infinite ranks to finite ranks, thus circumventing

the Diamond theorem:

LEMMA 1.4: Let F be a free profinite group of rank at least 2, M a closed subgroup of
F of infinite index, N a closed normal subgroup of F' contained in M, and M, an open

subgroup of M which does not contain N. Then every finite group is a quotient of M.

Proof: Let G be a finite group and set m = max(2,rank(G)). By Proposition 1.3, it
suffices to prove the lemma in the case where rank(F') = oco. Let X be a basis of F
in the sense of [FrJ, Def. 17.4.5]. For each finite subset Y of X with |Y| > m let Fy
be the free profinite group with basis Y, ¢y: F — Fy the epimorphism defined by
vy(z) =zifxeY and py(z) =1if v € XNY. Set My = oy (M), Ny = ¢y (N),
and Moy = py(Mp). Then My is a closed subgroup of Fy, Ny is a closed normal
subgroup of Fy, and My y is an open subgroup of Fy. Unfortunately, we may have
Ny < My y. In order to overcome this difficulty, recall that X converges to 1. Thus
X N\ Fj is a finite set for each open subgroup Fy of F'. Therefore, the intersection of all
kernels Ker(py ), where Y ranges over all finite subsets of X with |Y| > m is trivial.
By assumption, there is a z € N\ M,. By the preceding paragraph, M, =
Ny MoKer(py) [FrJ, Lemma 1.2.2(b)], so there is a finite subset Y of X with ¢y (z) €
Ny ~ My y and |Y| > m. If My is open in Fy, then, by Nielsen-Schreier, My y is free
of rank at least |Y|, so G is a quotient of My y. If (Fy : My) = oo, then Moy = F,
(Proposition 1.3), so G is a quotient of My y. In both cases, G is a quotient of My, as

claimed. [ |

A theorem of Weissauer says that if M is a separable algebraic extension of a
Hilbertian field K and M’ is a finite separable extension of M not contained in the
Galois closure of M /K, then M’ is Hilbertian [FrJ, Thm. 13.9.1]. A theorem of Roquette
allows us to transfer Proposition 1.3 to an analog of Weissauer’s theorem in which K is
not Hilbertian but rather PAC and e-free. Here we say that a field K is PAC if every

absolutely irreducible variety over K has a K-rational point. The field K is e-free, if
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its absolute Galois group, Gal(K), is isomorphic to E,.

THEOREM 1.5: Let e > 2 be an integer, K an e-free PAC field, M an infinite separable
algebraic extension of K, and M’ a finite extension of M not contained in the Galois

closure of M/K. Then M’ is PAC, Gal(M') = F,,, and M is Hilbertian.

Proof: By Ax-Roquette, M’ is PAC [FrJ, Cor. 11.2.5]. By Proposition 1.3, Gal(M') =
F,,. Hence, by Roquette, M’ is Hilbertian [FrJ, Cor. 27.3.3]. |

A similar reasoning yields the translation of Lemma 1.2 to field theory:

THEOREM 1.6: Let e > 2 be an integer, K an e-free PAC field, M an infinite separable
algebraic extension of K, and N a Galois extension of K containing M. Suppose

rank(Gal(N/K)) < rank(Gal(K)). Then M is PAC, Gal(M) = F,,, and M is Hilbertian.



2. Melnikov Formation

A family C of finite groups is called a Melnikov formation if it is closed under taking
quotients, normal subgroups, and extensions. Each element of C is a C-group. Pro-
jective limits of C-groups are pro-C groups. See [FrJ, Sections 17.3 and 17.4] for a
discussion of Melnikov formations and free pro-C groups.

When we speak about a free pro-C group of rank m for a Melnikov formation C,

we tacitly assume that C has a nontrivial group of rank at most m [FrJ, Remark 17.4.7].

PROPOSITION 2.1: Let C be a Melnikov formation, F' a free pro-C group of rank at
least 2, M a closed subgroup of F' of infinite index, N a closed normal subgroup of F'
contained in M, and My an open subgroup of M which does not contain N. Then each
C-group is a quotient of My. If in addition My is pro-C, then My is isomorphic to the
free pro-C group E, (C) of countable rank.

Proof: Let F be the free profinite group with rank(F) = rank(F). Denote the inter-
section of all open normal subgroups L of F with F /L € C by K. By [FrJ, Lemma
17.4.10], there is an epimorphism ¢: F — F with K = Ker(p). Set M = ¢~ 1(M),
My = ¢~ (My), and N = ¢~ *(N). Then My is an open subgroup of M and N is a

closed normal subgroup of F which is not contained in Mo.

F
|

=
=

e

|

Let G be a C-group. By Proposition 1.3, M, has an open normal subgroup M, with
Mo/Ml ~ (. Then K/Ml ﬂf( = lef/Ml QMQ/Ml, SO K/Ml ﬂf{ e C. By [FI‘J,
Lemma 17.4.10], My N K = K, so K < M, and My/o(M;) = My/M; = G. Thus, G is

a quotient of My, as claimed.



Now suppose M is pro-C. Then M, / K = M, is also pro-C. The argument of
the preceding paragraph shows that if M, is an open normal subgroup of M, with
Mo / M, € C, then K < M. Thus, K is the intersection of all open normal subgroups
of My satisfying My/M; € C. Tt follows from [FrJ, Lemma 17.4.10] that My = My/K =
E,(C). |

LEMMA 2.2: Let C be a Melnikov formation containing nontrivial groups. Then, for

each positive integer m there is a C-group G with rank(G) > m.

Proof: Since C is closed under taking quotients, C contains a simple group S, hence
S™ € C for each positive integer n. If S = Z/pZ for some prime number p, then
rank(S") = dimg,(Z/pZ)" = n and we are done. Assume S is nonabelian and there

exists an integer e with rank(S™) < e for all n. Then S™ is a quotient of F, for each n. On

the other hand, n is bounded by K;éé))" , where D.(S) is the set of all (z1,...,z.) € S¢
with (z1,...,2.) = S [FrJ, Lemma 26.1.2]. It follows from this contradiction that
rank(S™) is not bounded. i

The results achieved so far give a pro-C analog of the Karrass-Solitar theorem:

THEOREM 2.3: Let C be a Melnikov formation of finite groups, F' a free pro-C group
of rank at least 2, M a closed subgroup of F' of infinite index containing a nontrivial

closed normal subgroup N of F'. Then M is not finitely generated.

Proof: The group F' has an open normal subgroup Fy which does not contain N.
Thus, My = Fy N M is an open normal subgroup of M which does not contain N. By
Proposition 2.1, every C-group is a quotient of My. Hence, by Lemma 2.2, My is not

finitely generated. Consequently, M is not finitely generated. |
Proposition 2.1 has many more consequences:

Remark 2.4: Let C, F', M, My, and N be as in Theorem 2.3. By that theorem, every
C-group is a quotient of My. Therefore, not only M is finitely generated but M is not
a small group [FrJ, Sec. 16.10]. Moreover, M is not a pro-B group for any Melnikov

formation B properly contained in C. In particular, if C contains finite non-abelian
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groups, then M is not pro-solvable, so M is non-abelian. If C contains non-p-groups,
then M is not pro-p.

We could also deduce those consequences from [FrJ, Prop. 24.10.4 and Thm.
25.4.7]. The advantage of the present approach is that in the infinite case we are
applying only simple means based on the Lubotzky-v.d.Dries trick and do not use the

Diamond theorem. [ |
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