A KARRASS-SOLITAR THEOREM FOR PROFINITE GROUPS*

by

Moshe Jarden

School of Mathematics, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel e-mail: jarden@post.tau.ac.il

> MR Classification: 12E30 Directory: \Jarden\Works\Paper81 7 May, 2005

^{*} Research supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation.

Introduction

Karrass and Solitar prove that if M is a finitely generated subgroup of a free abstract group F and M contains a nontrivial normal subgroup of F, then the index of M is finite [KaS] (see also [Imr, Sec. 6 for a graph theoretic approach] or [Gru]). In particular, if the rank of F is infinite, then F does not have a subgroup of that type. Our goal is to prove an analog of the Karrass-Solitar theorem for free profinite groups of rank at least 2:

MAIN THEOREM: Let F be a free profinite group of rank ≥ 2 and let M be a finitely generated closed subgroup of infinite index. Then M contains no closed nontrivial normal subgroup of F.

Note that the main theorem fails if $\operatorname{rank}(F) = 1$, since in this case each closed subgroup is procyclic and normal. When $\operatorname{rank}(F) = \infty$, our theorem is an immediate consequence of Haran's Diamond theorem: If M_1, M_2 are closed normal subgroups and M is a closed subgroup of F which contains $M_1 \cap M_2$ but neither M_1 nor M_2 , then Mis profinite free of the same rank as F [FrJ, Thm. 25.4.3]. Indeed let F and M be as in the main theorem. Assume M contains a nontrivial closed normal subgroup N of F. Then, F has an open normal subgroup F_0 which does not contain N. Set $M_0 = F_0 \cap M$. By the Diamond theorem, M_0 is profinite free of infinite rank. On the other hand, as an open subgroup of M, M_0 is finitely generated. We deduce from this contradiction that no group N as above exists.

We do not know whether the Diamond theorem holds for free profinite groups of finite rank [FrJ, Problem 25.4.9], so we can not use it to prove our main theorem. Instead we supply a direct proof to the main theorem for finite rank by using a theorem of Nielsen-Schreier combined with a trick of Lubotzky-v.d.Dries. Having done that, we reduce the case of an infinite rank to the case of a finite rank. In this way we supply a complete proof of the main theorem without using the Diamond theorem.

The proof of the main theorem improves a result of Lubotzky-Melnikov-v.d.Dries: If F is a free profinite group of a finite rank $e \ge 2$, M is a closed subgroup of F of infinite index, N is a nontrivial closed normal subgroup of F contained in M, and M_0 is an open subgroup of M which does not contains N, then M_0 is isomorphic to the free profinite group \hat{F}_{ω} of rank \aleph_0 . The Lubotzky-Melnikov-v.d.Dries theorem handles only the case where M = N, that is, it demands that M is normal in F [FrJ, Prop. 24.10.3].

Our main theorem has a field theoretic application: Let K be an e-free PAC field, M an infinite separable algebraic extension, and M_0 a proper finite Galois extension of M not contained in the Galois closure of M/K. Then M_0 is Hilbertian. This is an analog of a theorem of Weissauer [FrJ, Thm. 13.9.1], where K is assumed to be Hilbertian rather than PAC and e-free.

The author is indebted to Alexander Lubotzky for an improvement of an earlier version of the paper. Thanks also to Dan Haran and Lior Bary for useful comments.

1. The Trick of Lubotzky-v.d.Dries

Let F be a free profinite group of finite rank $e \ge 2$ and N a closed normal subgroup of F of infinite index. If rank $(F/N) < \operatorname{rank}(F)$, then, by Nielsen-Schreier, rank(E) – rank(E/N) tends to infinity with (F : E), where E ranges over all open subgroups of Fcontaining N. Every finite embedding problem for N can be lifted to a finite embedding problem of an open subgroup E of F containing N and having a large index. Since Eis free, one can solve the embedding problem for E in such a way that it will give a solution to the embedding problem of N. Applying a well known result of Iwasawa, this implies that N is isomorphic to the free profinite group \hat{F}_{ω} of countable rank [FrJ, Prop. 24.10.3].

We call this reasoning the **trick of Lubotzky-v.d.Dries**. In what follows we generalize it.

Throughout the note we freely use the following theorem of Nielsen-Schreier: Every open subgroup E of F is free and $\operatorname{rank}(E) = 1 + (F : E)(\operatorname{rank}(F) - 1)$ [FrJ, Prop. 17.6.2]. Moreover, if H is an open subgroup of a finitely generated profinite group G, then $\operatorname{rank}(H) \leq 1 + (G : H)(\operatorname{rank}(G) - 1)$ [FrJ, Cor. 17.6.3]. We denote the free profinite group of rank e by \hat{F}_e .

LEMMA 1.1: Let F be a profinite group, H an open subgroup, M a closed subgroup of H, and M_0 an open normal subgroup of M. Then F has open subgroups $E_0 \triangleleft E$ such that $E_0M = E \leq H$ and $E_0 \cap M = M_0$.

Proof: By [FrJ, Lemma 1.2.5(a)], H has an open normal subgroup H_0 satisfying $H_0 \cap M \leq M_0$. Set $E_0 = H_0 M_0$ and $E = H_0 M$.

Then $E_0 \cap M = M_0$ and $E_0 \triangleleft E$.

LEMMA 1.2: Let $e \ge 2$ be an integer, $F = \hat{F}_e$, M a closed subgroup of F of infinite index, and N a closed normal subgroup of F contained in M. Suppose

(1)
$$\operatorname{rank}(F/N) < e.$$

Then $M \cong \hat{F}_{\omega}$.

Proof: By Iwasawa, it suffices to prove that each finite embedding problem for M is solvable [FrJ, Cor. 24.8.3]. Let therefore

be a finite embedding problem for M. Thus, φ and α are epimorphisms and B is a finite group. Moreover, $M_0 = \text{Ker}(\varphi)$ is an open normal subgroup of M. Since $(F : M) = \infty$, F has an open subgroup F_1 containing M such that $(F : F_1) \ge \text{rank}(C) + |A|$. By Lemma 1.1, F_1 has open subgroups $E_0 \triangleleft E$ satisfying $E_0M = E$ and $E_0 \cap M = M_0$.

By the choice of F_1 ,

(3) $(F:E) \ge \operatorname{rank}(C) + |A|.$

Extend φ to an epimorphism $\tilde{\varphi}: E \to A$ by defining $\tilde{\varphi}(e_0 y) = \varphi(y)$ for all $e_0 \in E_0$ and $y \in M$. In particular, $\operatorname{Ker}(\tilde{\varphi}) = E_0$. By (1), (3), and Nielsen-Schreier,

(4)

$$\operatorname{rank}(E/N) \leq 1 + (F:E)(\operatorname{rank}(F/N) - 1) \leq 1 + (F:E)(e - 1 - 1)$$

$$= 1 + (F:E)(e - 1) - (F:E) = \operatorname{rank}(E) - (F:E)$$

$$\leq \operatorname{rank}(E) - \operatorname{rank}(C) - |A|.$$

Note that

$$N/N_0 \cong M_0 N/M_0 \le M/M_0 \cong A,$$

so $\operatorname{rank}(N/N_0) \leq |A|$. Since, $\operatorname{rank}(E/N_0) \leq \operatorname{rank}(N/N_0) + \operatorname{rank}(E/N)$, (4) implies that

(5)
$$\operatorname{rank}(C) + \operatorname{rank}(E/N_0) \le \operatorname{rank}(E).$$

Let $k = \operatorname{rank}(C)$ and $m = \operatorname{rank}(E)$. By (5), $\operatorname{rank}(E/N_0) \leq m - k$. Choose generators $\bar{x}_{k+1}, \ldots, \bar{x}_m$ for E/N_0 and set $\bar{x}_i = 1$ for $i = 1, \ldots, k$. Then $\bar{x}_1, \ldots, \bar{x}_m$ generate E/N_0 . A lemma of Gaschütz gives generators x_1, \ldots, x_m of E with $\bar{x}_i = x_i N_0$ for $i = 1, \ldots, m$ [FrJ, Lemma 17.7.2]. By [FrJ, Lemma 17.4.6(b)], x_1, \ldots, x_m form a basis of E. Choose generators b_1, \ldots, b_k of C and elements $b_{k+1}, \ldots, b_m \in B$ with $\alpha(b_i) = \tilde{\varphi}(x_i)$, $i = k+1, \ldots, m$. Then b_1, \ldots, b_m generate B. If $1 \leq i \leq k$, then $x_i N_0 = \bar{x}_i = 1$. Hence, $x_i \in N_0 \leq E_0$, so $\tilde{\varphi}(x_i) = 1 = \alpha(b_i)$. It follows that the map $x_i \mapsto b_i$, $i = 1, \ldots, m$, extends to an epimorphism $\tilde{\gamma}: E \to B$ with $\alpha \circ \tilde{\gamma} = \tilde{\varphi}$.

Finally, set $\gamma = \tilde{\gamma}|_M$. Then $\alpha \circ \gamma = \varphi$ and $\alpha \circ \gamma(M) = \varphi(M) = A$. Moreover, for $1 \leq i \leq k$ we have $x_i \in N_0 \leq M$. Hence, $C = \langle b_1, \ldots, b_k \rangle = \langle \gamma(x_1), \ldots, \gamma(x_k) \rangle \leq \gamma(M)$. Therefore, $\gamma(M) = B$. In other words, γ is a solution of embedding problem (2).

PROPOSITION 1.3: Let $F = \hat{F}_e$ with $e \ge 2$ an integer, M a closed subgroup of infinite index, N a closed normal subgroup of F contained in M, and M_0 an open subgroup of M which does not contain N. Then $M_0 \cong \hat{F}_{\omega}$.

Proof: First of all we replace M by M_0N , if necessary, to assume $M = M_0N$. Next we choose an open subgroup F_0 of F with $F_0 \cap M = M_0$ [FrJ, Lemma 1.2.5(a)]. By Nielsen-Schreier, $F_0 < F$ are free of degree at least 2. Replace F by $\langle F_0, M \rangle$, if necessary, to assume that $\langle F_0, M \rangle = F$ and $F_0 < F$. Then, $N_0 = M_0 \cap N$ is a closed subgroup of F, satisfying $F_0 \cap N = N_0$ and $F_0N = F$.

By Nielsen-Schreier, $\operatorname{rank}(F_0/N_0) = \operatorname{rank}(F/N) \leq \operatorname{rank}(F) < \operatorname{rank}(F_0)$. It follows from Lemma 1.2 (with F_0 replacing F) that $M_0 \cong \hat{F}_{\omega}$.

By Proposition 1.3, every finite group is a quotient of M_0 . On the other hand, if we assume in Proposition 1.3 that $\operatorname{rank}(F) = \infty$, then by Haran's Diamond theorem for groups, $M_0 \cong F$ [FrJ, Thm. 25.4.3]. In particular, each finite group is a quotient of M_0 . It turns out that the condition on the quotients of M_0 suffices to prove the analog of Karrass-Solitar theorem for profinite groups. We show here how to reduce the condition on the quotients of M_0 from infinite ranks to finite ranks, thus circumventing the Diamond theorem:

LEMMA 1.4: Let F be a free profinite group of rank at least 2, M a closed subgroup of F of infinite index, N a closed normal subgroup of F contained in M, and M_0 an open subgroup of M which does not contain N. Then every finite group is a quotient of M_0 .

Proof: Let G be a finite group and set $m = \max(2, \operatorname{rank}(G))$. By Proposition 1.3, it suffices to prove the lemma in the case where $\operatorname{rank}(F) = \infty$. Let X be a basis of F in the sense of [FrJ, Def. 17.4.5]. For each finite subset Y of X with $|Y| \ge m$ let \hat{F}_Y be the free profinite group with basis Y, $\varphi_Y \colon F \to \hat{F}_Y$ the epimorphism defined by $\varphi_Y(x) = x$ if $x \in Y$ and $\varphi_Y(x) = 1$ if $x \in X \setminus Y$. Set $M_Y = \varphi_Y(M)$, $N_Y = \varphi_Y(N)$, and $M_{0,Y} = \varphi_Y(M_0)$. Then M_Y is a closed subgroup of \hat{F}_Y , N_Y is a closed normal subgroup of \hat{F}_Y , and $M_{0,Y}$ is an open subgroup of \hat{F}_Y . Unfortunately, we may have $N_Y \le M_{0,Y}$. In order to overcome this difficulty, recall that X converges to 1. Thus $X \setminus F_0$ is a finite set for each open subgroup F_0 of F. Therefore, the intersection of all kernels $\operatorname{Ker}(\varphi_Y)$, where Y ranges over all finite subsets of X with $|Y| \ge m$ is trivial.

By assumption, there is a $z \in N \setminus M_0$. By the preceding paragraph, $M_0 = \bigcap_Y M_0 \operatorname{Ker}(\varphi_Y)$ [FrJ, Lemma 1.2.2(b)], so there is a finite subset Y of X with $\varphi_Y(z) \in N_Y \setminus M_{0,Y}$ and $|Y| \ge m$. If M_Y is open in \hat{F}_Y , then, by Nielsen-Schreier, $M_{0,Y}$ is free of rank at least |Y|, so G is a quotient of $M_{0,Y}$. If $(\hat{F}_Y : M_Y) = \infty$, then $M_{0,Y} \cong \hat{F}_\omega$ (Proposition 1.3), so G is a quotient of $M_{0,Y}$. In both cases, G is a quotient of M_0 , as claimed.

A theorem of Weissauer says that if M is a separable algebraic extension of a Hilbertian field K and M' is a finite separable extension of M not contained in the Galois closure of M/K, then M' is Hilbertian [FrJ, Thm. 13.9.1]. A theorem of Roquette allows us to transfer Proposition 1.3 to an analog of Weissauer's theorem in which K is not Hilbertian but rather PAC and *e*-free. Here we say that a field K is **PAC** if every absolutely irreducible variety over K has a K-rational point. The field K is *e*-free, if its absolute Galois group, $\operatorname{Gal}(K)$, is isomorphic to \hat{F}_e .

THEOREM 1.5: Let $e \ge 2$ be an integer, K an e-free PAC field, M an infinite separable algebraic extension of K, and M' a finite extension of M not contained in the Galois closure of M/K. Then M' is PAC, $\operatorname{Gal}(M') \cong \hat{F}_{\omega}$, and M is Hilbertian.

Proof: By Ax-Roquette, M' is PAC [FrJ, Cor. 11.2.5]. By Proposition 1.3, Gal $(M') \cong \hat{F}_{\omega}$. Hence, by Roquette, M' is Hilbertian [FrJ, Cor. 27.3.3]. ■

A similar reasoning yields the translation of Lemma 1.2 to field theory:

THEOREM 1.6: Let $e \ge 2$ be an integer, K an e-free PAC field, M an infinite separable algebraic extension of K, and N a Galois extension of K containing M. Suppose rank(Gal(N/K)) < rank(Gal(K)). Then M is PAC, Gal(M) $\cong \hat{F}_{\omega}$, and M is Hilbertian.

2. Melnikov Formation

A family C of finite groups is called a **Melnikov formation** if it is closed under taking quotients, normal subgroups, and extensions. Each element of C is a C-group. Projective limits of C-groups are **pro-**C groups. See [FrJ, Sections 17.3 and 17.4] for a discussion of Melnikov formations and free pro-C groups.

When we speak about a free pro-C group of rank m for a Melnikov formation C, we tacitly assume that C has a nontrivial group of rank at most m [FrJ, Remark 17.4.7].

PROPOSITION 2.1: Let C be a Melnikov formation, F a free pro-C group of rank at least 2, M a closed subgroup of F of infinite index, N a closed normal subgroup of Fcontained in M, and M_0 an open subgroup of M which does not contain N. Then each C-group is a quotient of M_0 . If in addition M_0 is pro-C, then M_0 is isomorphic to the free pro-C group $\hat{F}_{\omega}(C)$ of countable rank.

Proof: Let \hat{F} be the free profinite group with $\operatorname{rank}(\hat{F}) = \operatorname{rank}(F)$. Denote the intersection of all open normal subgroups L of \hat{F} with $\hat{F}/L \in \mathcal{C}$ by \hat{K} . By [FrJ, Lemma 17.4.10], there is an epimorphism $\varphi: \hat{F} \to F$ with $\hat{K} = \operatorname{Ker}(\varphi)$. Set $\hat{M} = \varphi^{-1}(M)$, $\hat{M}_0 = \varphi^{-1}(M_0)$, and $\hat{N} = \varphi^{-1}(N)$. Then \hat{M}_0 is an open subgroup of \hat{M} and \hat{N} is a closed normal subgroup of \hat{F} which is not contained in \hat{M}_0 .

Let G be a C-group. By Proposition 1.3, \hat{M}_0 has an open normal subgroup \hat{M}_1 with $\hat{M}_0/\hat{M}_1 \cong G$. Then $\hat{K}/\hat{M}_1 \cap \hat{K} \cong \hat{M}_1\hat{K}/\hat{M}_1 \triangleleft \hat{M}_0/\hat{M}_1$, so $\hat{K}/\hat{M}_1 \cap \hat{K} \in C$. By [FrJ, Lemma 17.4.10], $\hat{M}_1 \cap \hat{K} = \hat{K}$, so $\hat{K} \leq \hat{M}_1$ and $M_0/\varphi(\hat{M}_1) \cong \hat{M}_0/\hat{M}_1 \cong G$. Thus, G is a quotient of M_0 , as claimed.

Now suppose M_0 is pro- \mathcal{C} . Then $\hat{M}_0/\hat{K} \cong M_0$ is also pro- \mathcal{C} . The argument of the preceding paragraph shows that if \hat{M}_1 is an open normal subgroup of \hat{M}_0 with $\hat{M}_0/\hat{M}_1 \in \mathcal{C}$, then $\hat{K} \leq \hat{M}_1$. Thus, \hat{K} is the intersection of all open normal subgroups of \hat{M}_0 satisfying $\hat{M}_0/\hat{M}_1 \in \mathcal{C}$. It follows from [FrJ, Lemma 17.4.10] that $M_0 \cong \hat{M}_0/\hat{K} \cong$ $\hat{F}_{\omega}(\mathcal{C})$.

LEMMA 2.2: Let C be a Melnikov formation containing nontrivial groups. Then, for each positive integer m there is a C-group G with rank $(G) \ge m$.

Proof: Since C is closed under taking quotients, C contains a simple group S, hence $S^n \in C$ for each positive integer n. If $S \cong \mathbb{Z}/p\mathbb{Z}$ for some prime number p, then $\operatorname{rank}(S^n) = \dim_{\mathbb{F}_p}(\mathbb{Z}/p\mathbb{Z})^n = n$ and we are done. Assume S is nonabelian and there exists an integer e with $\operatorname{rank}(S^n) \leq e$ for all n. Then S^n is a quotient of \hat{F}_e for each n. On the other hand, n is bounded by $\frac{|D_e(S)|}{|\operatorname{Aut}(S)|}$, where $D_e(S)$ is the set of all $(x_1, \ldots, x_e) \in S^e$ with $\langle x_1, \ldots, x_e \rangle = S$ [FrJ, Lemma 26.1.2]. It follows from this contradiction that $\operatorname{rank}(S^n)$ is not bounded.

The results achieved so far give a pro- \mathcal{C} analog of the Karrass-Solitar theorem:

THEOREM 2.3: Let C be a Melnikov formation of finite groups, F a free pro-C group of rank at least 2, M a closed subgroup of F of infinite index containing a nontrivial closed normal subgroup N of F. Then M is not finitely generated.

Proof: The group F has an open normal subgroup F_0 which does not contain N. Thus, $M_0 = F_0 \cap M$ is an open normal subgroup of M which does not contain N. By Proposition 2.1, every C-group is a quotient of M_0 . Hence, by Lemma 2.2, M_0 is not finitely generated. Consequently, M is not finitely generated.

Proposition 2.1 has many more consequences:

Remark 2.4: Let \mathcal{C} , F, M, M_0 , and N be as in Theorem 2.3. By that theorem, every \mathcal{C} -group is a quotient of M_0 . Therefore, not only M is finitely generated but M is not a small group [FrJ, Sec. 16.10]. Moreover, M is not a pro- \mathcal{B} group for any Melnikov formation \mathcal{B} properly contained in \mathcal{C} . In particular, if \mathcal{C} contains finite non-abelian

groups, then M is not pro-solvable, so M is non-abelian. If C contains non-p-groups, then M is not pro-p.

We could also deduce those consequences from [FrJ, Prop. 24.10.4 and Thm. 25.4.7]. The advantage of the present approach is that in the infinite case we are applying only simple means based on the Lubotzky-v.d.Dries trick and do not use the Diamond theorem.

References

- [FrJ] M. D. Fried and M. Jarden, Field Arithmetic, Second Edition, revised and enlarged by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2004.
- [Gru] K. Gruenberg, Finiteness theorems for Fuchsian and Kleinian groups. Discrete groups and automorphic functions, Proc. Conf., Cambridge, 1975, 199–257. Academic Press, London, 1977.
- [Imr] W. Imrich, Subgroups theorems and graphs, Combinatorial Mathematics V, 1–27, Lecuture Notes in Mathematics 622, Springer, Berlin, 1977.
- [KaS] A. Karrass and D. Solitar, Note on a theorem of Schreier, Proceedings of the American Mathematical Society 8 (1957), 696–697.

9 February, 2007