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Introduction

We address one of the major problems of Galois theory: the characterization of absolute
Galois groups among all profinite groups. Specifically, we consider a profinite group G
equipped with a subset G of subgroups each of which is isomorphic to an absolute
Galois group. The problem is to characterize those pairs for which G is isomorphic to
an absolute Galois group Gal(K) of a field K that satisfies a local-global principle for
points on smooth varieties with respect to the fixed fields of the groups in G.

In [HJPa] we extend the pairs (G,G) to, so called, group structures of a general
nature. We prove that a proper profinite group structure G is projective if and only
if G is the absolute Galois group structure of a proper field-valuation structure with
block approximation.

The introduction to [HJPa] contains an extensive historical background to the
subject.

In this work we apply the general setup of [HJPa] to a classical situation. Let F
be a finite set of classical local fields of characteristic 0. Thus, each F ∈ F is either the
field R of real numbers or a finite extension of the field Qp of p-adic numbers for some
prime number p. We assume F is closed under Galois isomorphism: if F and F′
are finite extensions of Qp, F ∈ F , and Gal(F′) ∼= Gal(F), then F′ ∈ F .

Main Theorem: Let F be a finite set of classical local fields of characteristic 0 which is
closed under Galois isomorphism and let G be a profinite group. Then G is isomorphic
to the absolute Galois group of a PFC field K if and only if G is F-projective and
Subgr(G,Gal(F)) is strictly closed in Subgr(G) for each F ∈ F .

The notions appearing in the Main Theorem: For each F ∈ F let AlgExt(K,F) be the
set of all algebraic extensions F of K (within a fixed algebraic closure K̃ of K) which are
elementarily equivalent to F. We say that K is PFC (pseudo-F-closed) if it satisfies
the following local-global principle: Let V be a smooth absolutely irreducible variety
over K. Suppose V (F ) 6= ∅ for each F ∈

⋃
F∈F AlgExt(K,F). Then V (K) 6= ∅.

The notation Subgr(G) stands for the space of all closed subgroups of G. Subgr(G)
is the inverse limit of the discrete finite spaces Subgr(G/N), where N ranges over all
open normal subgroups of G. Thus, Subgr(G) is a profinite space. We refer to its
topology as strict and write Subgr(G,Gal(F)) = {Γ ∈ Subgr(G) | Γ ∼= Gal(F)}.

Finally, G is F-projective if it satisfies the following local-global principle: Let
α: B → A be an epimorphism of finite groups and ϕ: G→ A a homomorphism. Suppose
for each F ∈ F and each Γ ∈ Subgr(G,Gal(F)) there is a homomorphism γΓ: Γ → B
satisfying α ◦ γΓ = ϕ|Γ. Then there is a homomorphism γ: G → B with α ◦ γ = ϕ.

The Main Theorem generalizes several known special cases:
1. First suppose F is the empty set. Then a PFC field is a PAC field [FrJ,

Chap. 10] and an F-projective group is a projective group. The Main Theorem is due
in this case to Lubotzky-v.d.Dries [FrJ, Cor. 20.16] and Ax [FrJ, Thm. 10.17].

2. If F = {R}, then a PFC field is a PRC field and an F-projective group is a
real projective group G such that the set of all involutions of G is closed. See [HaJ1,
p. 450, Thm.] for the Main Theorem in this case.
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3. If F = {Qp}, then a PFC field is a PpC field and an F-projective group is a
p-adically projective G such that the set of all subgroups of G which are isomorphic to
Gal(Qp) is strictly closed in Subgr(G). See [HaJ2, p. 148, Thm.] for the Main Theorem
in this case.

4. The general case is announced in [Pop2]. Unfortunately, the proofs of [Pop2]
are extremely sketchy and difficult to read. The current work is based on ideas of [Pop2]
and applies results of [HJPa].

5. Koengismann [Koe2] proves the Main Theorem in case that AlgExt(K,F) is
finite. Ershov ([Er1], [Er2]) proves that Gal(K) is F-projective (in a stronger sense)
when (K,F) is a multi-valued PFC field satisfying certain conditions.

None of those papers goes as far as we do in this work and equips K in the
Main Theorem with a set of valuations satisfying the “block approximation theorem”.
We refer the reader to Section 10, in particular to Theorem 10.3, for the exact result.
Here it suffices to say that each minimal F ∈ AlgExt(K,F) is the Henselian closure of
K at a valuation vF and the family {vF | F ∈ AlgExt(K,F)} satisfies a very strong
independence-density property.

In the rest of the introduction we describe the structure of the proof of the Main
Theorem and its stronger versions (Theorems 9.4 and 10.3) which we actually prove.

Denote the set of all separable algebraic extensions of a field K (within a fixed
separable closure Ks of K) by AlgExt(K). The map F 7→ Gal(F ) is a bijection of
AlgExt(K) onto Subgr(Gal(K)). It transfers the strict topology of Subgr(Gal(K)) to
the strict topology of AlgExt(K). We prove that AlgExt(K,F) is strictly closed in
AlgExt(K) for each F ∈ F . In particular, this holds if K is PFC. In this case the
existence of points on smooth varieties over K translates into F-projectivity.

Conversely, let G be a profinite group. Suppose G is F-projective and
Subgr(G,Gal(F)) is strictly closed in Subgr(G) for each F ∈ F . Put C = {Gal(F) | F ∈
F}. Let G = Subgr(G, C) be the set of all H ∈ Subgr(G) which are isomorphic to some
Γ in C. Denote the set of all maximal elements in G by Gmax. For each Γ ∈ C we
construct a finite quotient Γ̄ such that the set {Γ̄ | Γ ∈ C} is a “system of big quotients”
of C in a sense made precise in Section 6. We use it to prove that G is “strongly G-
projective” (Proposition 6.5). Thus, every G-embedding problem for G which is locally
solvable is globally solvable (Section 6). In particular, there is a homomorphism κ of
G into the free product B∗ =

∏
∗ Γ∈C Γ which maps each H ∈ G isomorphically into a

conjugate of some Γ ∈ C. By a theorem of Geyer we may identify B∗ with the absolute
Galois group of an algebraic extension K0 of Q. Denote the fixed field of κ(G) in Q̃
by K1. By Proposition 6.5, G = (G,Gmax) is a “proper projective group structure”
(Section 5). Let Gal(K1) = (Gal(K1),Subgr(Gal(K1, C)). Then κ extends to a Galois
cover κ: G → Gal(K1) of group structures (Proof of Theorem 10.3). By the main
result of [HJPa], there is a field K and an isomorphism ϕ: G → Gal(K) such that
res ◦ ϕ = κ. Moreover, every F ∈ AlgExt(K,F) is either real closed or elementarily
equivalent to some F ∈ F . In particular, F has a “P-adic valuation” vF . The system
of fields F ∈ AlgExt(K,F) and valuations vF satisfies a strong version of the weak ap-
proximation theorem which we call the “block approximation theorem”. In particular,
K is PFC (Theorem 10.3).
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1. The Étale and the Strict Topologies of Subgr(G)

Let G be a profinite group. Denote the collection of all closed (resp. open, open normal)
subgroups of G by Subgr(G) (resp. Open(G), OpenNormal(G)). We introduce two
topologies on Subgr(G) and relate them to each other.

For each H,N ∈ Open(G) with N / G let

V(H,N) = {A ∈ Subgr(G) | AN = HN}.

The collection of all V(H,N) is a basis for a topology on Subgr(G) which we call the
strict topology. When G is finite, the strict topology is the discrete topology. In
general, Subgr(G) ∼= lim←−Subgr(G/N) with N ranging over all open normal subgroups

of G. Thus, Subgr(G) is a profinite space under the strict topology. We use the adverb
“strictly” as a replacement for “in the strict topology”. For example, for a subset G
of Subgr(G) we say G is strictly open (resp. closed, compact, Hausdorff) if it is
open (resp. closed, compact, Hausdorff) in the strict topology. Likewise, for a function
f from a topological space X into Subgr(G), we say f is strictly continuous if f is
continuous when Subgr(G) is equipped with the strict topology. We denote the strict
closure of a subset G of Subgr(G) by StrictClosure(G).

If U1, . . . , Um ∈ Open(G), then U =
⋂m

i=1 Ui is open and Subgr(U) is⋂m
i=1 Subgr(Ui). Therefore {Subgr(U) | U ∈ Open(G)} is a basis for a topology on

Subgr(G) which we call the étale topology. As above, for a subset G of Subgr(G) we
say G is étale open (closed, compact, Hausdorff, etc) if G is open (closed, compact,
Hausdorff, etc) in the étale topology. Likewise, for a function f from a topological space
X into Subgr(G) we say f is étale continuous if f is continuous when Subgr(G) is
equipped with the étale topology. Note that the étale topology of Subgr(G) is weaker
than the strict topology. Thus, every étale open subset of Subgr(G) is also strictly open
[HJPa, Remark 1.2].

The envelope of a subset G of Subgr(G) is the set of all H0 ∈ Subgr(G) which
are contained in some H ∈ G. We denote it by Env(G) and use it to relate the strict
topology and the étale topology of Subgr(G) to each other:

Lemma 1.1: A subset G of Subgr(G) is étale compact if and only if Env(G) is strictly
closed.

Proof: Suppose first Env(G) is strictly closed, hence strictly compact. Let Ui, i ∈ I,
be open subgroups of G with G ⊆

⋃
i∈I Subgr(Ui). Then Env(G) ⊆

⋃
i∈I Subgr(Ui).

Since each of the sets Subgr(Ui) is strictly open, I has a finite subset I0 with Env(G) ⊆⋃
i∈I0

Subgr(Ui). Thus, G ⊆
⋃

i∈I0
Subgr(Ui). Therefore, G is étale compact.

Conversely, suppose G is étale compact. Consider A ∈ Subgr(G) r Env(G) and
H ∈ G. Then A 6≤ H. Hence, there is NH ∈ OpenNormal(G) with A 6≤ HNH . Thus, A
is not in the étale open neighborhood Subgr(HNH) of H.

The collection of all Subgr(HNH) covers G. Since G is étale compact, there
are H1, . . . ,Hn ∈ G and N1, . . . , Nn ∈ OpenNormal(G) with G ⊆

⋃n
i=1 Subgr(HiNi)

and A /∈
⋃n

i=1 Subgr(HiNi). In addition,
⋃n

i=1 Subgr(HiNi) is strictly closed. Hence,
StrictClosure(G) ⊆

⋃n
i=1 Subgr(HiNi). Thus, A belongs to the strictly open set
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Subgr(G) r ⋃n
i=1 Subgr(HiNi) which is disjoint from Env(G). Therefore, A is not in

StrictClosure(Env(G)). It follows that Env(G) is strictly closed.

Corollary 1.2: Let G be an étale compact subset of Subgr(G). Then StrictClosure(G)
is contained in Env(G).

For a profinite group G, a closed subgroup H, and a subset G of Subgr(G) let
GH = {Γh | Γ ∈ G, h ∈ H}. Put Con(G) = Env(GG) = Env(G)G.

Lemma 1.3: Let G be an étale compact subset of Subgr(G). Then each of the sets GG,
Env(G), and Con(G) is étale compact.

Proof: The set GG is the image of the compact space G×G under the étale continuous
map (Γ, g) 7→ Γg. Hence, GG is étale compact.

By Lemma 1.1, Env(G) is strictly closed, hence étale compact [HJPa, Remark 1.2].
Therefore, by the first paragraph, Con(G) = Env(G)G is étale compact.

Lemma 1.4: Let H be a closed subgroup of G. Then ÉtaleClosure({H}) = {B ∈
Subgr(G) | H ≤ B}.

Proof: First suppose B ∈ ÉtaleClosure({H}). Then H belongs to each étale open
neighborhood of B. In other words, if U ∈ Open(G) and B ≤ U , then H ≤ U . Hence,
H ≤ B.

Conversely, suppose H ≤ B. Then, H belongs to each basic étale open neighbor-
hood Subgr(U) of B. Therefore, B ∈ ÉtaleClosure({H}).

Lemma 1.5: Let ϕ: G → H be an epimorphism of profinite groups and G0 a closed
subgroup of G. The set {B ∈ Subgr(G) | ϕ(G0) ≤ ϕ(B)} is étale closed.

Proof: By [HJPa, Remark 1.1(b)], the map ϕ: Subgr(G)→ Subgr(H) induced by ϕ is
étale continuous. By Lemma 1.4, the set {C ∈ Subgr(H) | ϕ(G0) ≤ C} is étale closed.
Its inverse image in Subgr(G) is {B ∈ Subgr(G) | ϕ(G0) ≤ ϕ(B)}, so it is étale closed.

Lemma 1.6: Let G be an étale compact subset of Subgr(G). Then each A ∈ G is
contained in a maximal element of G.

Proof: By Zorn’s lemma, it suffices to prove that each ascending chain G0 in G is
bounded by an element of G. Consider B1, · · · , Bn ∈ G0. Then the Bi are comparable.
AssumeB1 ≤ B2 ≤ . . . ≤ Bn. By Lemma 1.4, Bn ∈

⋂m
i=1 ÉtaleClosure({Bi}). Thus, G∩⋂n

i=1 ÉtaleClosure({Bi}) 6= ∅. Since G is étale compact, G ∩
⋂

B∈G0
ÉtaleClosure({B})

is nonempty. Each element of the latter set is a bound of G0.

If a subset G of Subgr(G) contains groups A and B with A < B, then G is not étale
Hausdorff. Thus, removing all nonmaximal elements from G is the only way to make G
étale Hausdorff while preserving the essential information stored in G. We denote the
set of all maximal elements of G by Gmax.
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Lemma 1.7: Let G be an étale compact subset of Subgr(G). Then Gmax is étale com-
pact.

Proof: By Lemma 1.6, Env(G) = Env(Gmax). Hence, by Lemma 1.1, Gmax is étale
compact.

2. Relatively Projective Groups

Pairs (G,G) consisting of a profinite group and a subset G of Subgr(G) which satisfy a
local global principle for finite embedding problems naturally arise from pairs (K,X )
consisting of a field K and a set X of separable algebraic extensions of K which satisfy
a local global principle for points on absolutely irreducible varieties (Section 3). We
prove in Proposition 3.1 that G is “G-projective” in a sense we now explain:

Let G be a profinite group and G a subset of Subgr(G). An embedding problem
for G is a pair

(1) (ϕ: G→ A, α: B → A),

where ϕ is a homomorphism and α is an epimorphism of profinite groups. The embed-
ding problem is finite if A and B are finite. We call (1) a G-embedding problem if
it is locally solvable; that is
(2) for each Γ ∈ G there exists a homomorphism γΓ: Γ→ B with α ◦ γΓ = ϕ|Γ.

We say (1) is a rigid G-embedding problem if
(3) for each Γ ∈ G there is B0 ∈ Subgr(B) such that α: B0 → ϕ(Γ) is an isomorphism.

A solution of (1) is a homomorphism γ: G → B with γ ◦ α = ϕ. We say G
is G-projective if every finite G-embedding problem for G is solvable. Our definition
generalizes the definition of a “projective group”. Indeed, “G is ∅-projective” means “G
is projective”. We refer to G as relatively projective if G is G-projective for a subset
G of Subgr(G).

If G ⊆ G′ ⊆ Subgr(G) and G is G-projective, then G is G′-projective. Moreover,
if G is étale compact, then by Lemma 1.6, each group in G is contained in a group of
Gmax. Hence, under the assumption that G is étale compact, G is G-projective if and
only if G is Gmax-projective. Hence, G is G-projective if and only if G is GG-projective.

Suppose (1) is a rigid G-embedding problem and Γ and B0 are as in (3). Put
A0 = ϕ(Γ) and γΓ = (α|A0)

−1 ◦ ϕ|Γ. Then γΓ: Γ → B is a homomorphism satisfying
α ◦ γΓ = ϕ|Γ. Thus, every rigid G-embedding problem is a G-embedding problem. The
next lemma establishes a sort of converse to this statement:

Lemma 2.1: Let G be a profinite group and G an étale compact subset of Subgr(G).
Let (1) be a finite G-embedding problem for G. Then:
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(a) There exists a commutative diagram

G

ϕ̂

��
ϕ

��

B̂
α̂ //

β

��

Â

ϕ̄

��
B

α // A

in which ϕ̂ is an epimorphism and (ϕ̂: G → Â, α̂: B̂ → Â) is a finite rigid G-
embedding problem.

(b) If every finite rigid G-embedding problem (1) for G in which ϕ is an epimorphism
is solvable, then G is G-projective.

Proof of (a): Consider Γ ∈ G. Choose a homomorphism γΓ with α ◦ γΓ = ϕ|Γ. Then
Ker(γΓ) is an open subgroup of Γ. ChooseNΓ ∈ OpenNormal(G) withNΓ ≤ Ker(ϕ) and
Γ ∩NΓ ≤ Ker(γΓ). Then Subgr(ΓNΓ) is an étale open neighborhood of Γ in Subgr(G)
and γΓ extends to a homomorphism γ′Γ: ΓNΓ → B with kernel Ker(γΓ)NΓ.

Since G is étale compact, there are Γ1, . . . ,Γm ∈ G with G ⊆
⋃m

i=1 Subgr(ΓiNΓi).
Then N =

⋂m
i=1NΓi

∈ OpenNormal(G) and N ≤ Ker(ϕ). Let Â = G/N , ϕ̂: G → Â

the quotient map, and ϕ̄: Â→ A the map induced by ϕ. Then ϕ = ϕ̄◦ ϕ̂. Now consider
the fiber product B̂ = B ×A Â with the projection maps α̂: B̂ → Â and β: B̂ → B on
the coordinates. Since α is surjective, so is α̂.

For each i put Ni = NΓi and γi = γ′Γi
: ΓiNi → B. Then there is a homomorphism

γ̂i: ΓiNi → B̂ satisfying α̂ ◦ γ̂i = ϕ̂|ΓiNi
and β ◦ γ̂i = γi [FrJ, Prop. 20.6]. Put

B̂i = γ̂i(ΓiNi).

Claim: α̂: B̂i → ϕ̂(ΓiNi) is an isomorphism. It suffices to prove that α̂ is injective
on B̂i. Indeed, consider b ∈ B̂i with α̂(b) = 1. Choose g ∈ ΓiNi with γ̂i(g) = b. Then
ϕ̂(g) = α̂(γ̂i(g))) = 1, so g ∈ N ≤ Ni. Thus, β(b) = γi(g) = 1. Therefore, b = 1, as
desired.

Now consider Γ ∈ G. Choose i with Γ ≤ ΓiNi. Then ϕ̂(Γ) ≤ ϕ̂(ΓiNi). By the
Claim, α̂ maps α̂−1(ϕ̂(Γ))∩B̂i isomorphically onto ϕ̂(Γ). Hence, (ϕ̂: G→ Â, α̂: B̂ → Â)
is a finite G-embedding problem for G satisfying the rigidity condition.

Proof of (b): Consider a finite G-embedding problem (1) for G. Let (ϕ̂: G→ Â, α̂: B̂ →
Â) be the embedding problem given by (a). By assumption, it has a solution γ̂. Then
γ = β ◦ γ̂ solves (1).

3. Pseudo Closed Fields

Let K be a field and X a subset of the set SepAlgExt(K) of all separable algebraic
extensions of K. By an absolutely irreducible variety over K we mean a nonempty
geometrical integral scheme of finite type over K. We say K is pseudo-X -closed
(abbreviated PXC) if it satisfies the following condition:
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(1) Every smooth absolutely irreducible variety over K, with an F -rational point for
each F ∈ X , has a K-rational point.

If V is an arbitrary absolutely irreducible variety over K, then the Zariski open
subset Vsimp of all simple points of V is also an absolutely irreducible variety over K.
Hence, (1) is equivalent to the following condition:
(2) Every absolutely irreducible variety over K, with a simple F -rational point for each

F ∈ X , has a K-rational point.
Note that K is P∅C if and only if K is PAC [FrJ, Chap. 10].

Under a mild topological assumption on X , the PXC property ofK results in a rel-
ative projectivity of Gal(K). The topology in question is the étale topology of the space
SepAlgExt(K). This space stands in a bijective correspondence with Subgr(Gal(K)).
Thus, SepAlgExt(K) inherits the étale topology from that of Subgr(Gal(K)). Basic
étale open subsets of SepAlgExt(K) are SepAlgExt(L) with L/K finite and separable.

If X ⊆ X ′ ⊆ SepAlgExt(K) and K is PXC, then K is PX ′C. Denote the set of
all minimal fields in X by Xmin. If X is étale compact, then by Lemma 1.6, each field
in X contains a minimal field in X . Hence, K is PXC if and only if K is PXminC.

Proposition 3.1: Let K be a field and X a subset of SepAlgExt(K). Put G =
{Gal(K ′) | K ′ ∈ X}. Suppose X is étale compact and K is PXC. Then Gal(K) is
G-projective.

Proof: By Lemma 1.3, GG is étale compact. If we prove that Gal(K) is GG-projective,
it will follow that Gal(K) is G-projective. We may therefore assume, G is Gal(K)-
invariant.

By Lemma 2.1, it suffices to solve every finite rigid G-embedding problem

(3) (ϕ: Gal(K)→ A, α: B → A)

where ϕ is an epimorphism.
Let L be the fixed field of Ker(ϕ) in Ks. Then identify A with Gal(L/K) and

ϕ with resKs/L. Next use [HJPa, Lemma 6.2] to construct a finitely generated regular
extension E ofK and a finite Galois extension F of E containing L with these properties:
(4a) B = Gal(F/E) and α is the restriction map resF/L: Gal(F/E)→ Gal(L/K).
(4b) Let L0 be a field between K and L and F0 a field between E and F which contains

L0. Suppose resF/L: Gal(F/F0) → Gal(L/L0) is an isomorphism. Then F0 is a
purely transcendental extension of L0.

Since E/K is finitely generated and regular, one may view E as the function field of an
absolutely irreducible smooth affine variety V over K [FrJ, Cor. 9.23].

Now let {Li | i ∈ I} = {K ′ ∩ L | K ′ ∈ X}. By rigidity, choose for each i ∈ I a
field Fi between E and F containing Li such that resF/L: Gal(F/Fi)→ Gal(L/Li) is an
isomorphism. By (4b), Fi is a purely transcendental extension of Li. Hence, V (Li) 6= ∅.
Therefore, V (K ′) 6= ∅ for each K ′ ∈ X . Since K is PXC, V has a K-rational point,
which by assumption is simple. By [JaR, Cor. A2], E has a valuation which is trivial
on K and with K as its residue field. [HJPa, Lemma 7.4] gives an algebraic extension
E′ of E such that resE′

s/Ks
: Gal(E′) → Gal(K) is an isomorphism. Denote its inverse

by γ′. Then γ = resE′
s/F ◦ γ′ solves (3).
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Again, let K be a field and X a subset of SepAlgExt(K). For each algebraic
extension L of K let XL = {K ′L | K ′ ∈ X}. If [L : K] < ∞, then L is PXLC [Jar1,
Lemma 7.2]. The same result holds for arbitrary L if X is strictly closed [Jar1, Lemma
7.4]. Here we prove that L is PXLC under the weaker condition that X is étale compact.

Proposition 3.2 (Extension theorem): Let K be a field, X an étale compact subset
of SepAlgExt(K), and L a separable algebraic extension of K. Suppose K is PXC.
Then XL is étale compact and L is PXLC.

Proof: The mapK ′ 7→ K ′L from X to XL is étale continuous. Since X is étale compact,
so is XL.

Next let V be a smooth absolutely irreducible variety over L with V (K ′L) 6= ∅
for each K ′ ∈ X . Choose a finite subextension K1 of L/K over which V is already
defined. Denote the set of all finite subextensions of L/K1 by E . For each E ∈ E let
TE = {K ′ ∈ X | V (K ′E) 6= ∅}.

Claim: TE is étale open in X . Indeed, let K ′ ∈ TE . Then V (K ′E) 6= ∅. Hence,
K ′/K has a finite subextension K ′

0/K with V (K ′
0E) 6= ∅. The open neighborhood

X ∩ SepAlgExt(K ′
0) of K ′ in X is contained in TE . Therefore, TE is open in X .

Since L =
⋃

E∈E E, we have
⋃

E∈E TE = X . Since X is étale compact, E has a
finite subset E0 with

⋃
E∈E0

TE = X . Let F be the union of all E ∈ E0. Then TE ⊆ TF

for each E ∈ E0, so X = TF . Thus, V (K ′F ) 6= ∅ for each K ′ ∈ X . By [Jar1, Lemma
7.4] F is PXF C. Hence, V (F ) 6= ∅, so V (L) 6= ∅. Consequently, L is PXLC.

4. Strongly Projective Groups

Consider a profinite group G and a subset G of Subgr(G). Suppose G is G-projective.
If G is empty, then G is projective, so every embedding problem for G is solvable [FrJ,
Lemma 20.4]. Unfortunately, we are able to solve an arbitrary G-embedding problem
in the general case only if we impose a strong condition on the global solution of each
finite embedding problem: The solution has to map every local group Γ ∈ G into a
subset of Subgr(B), given in advance, which is closed under conjugations and taking
subgroups. In addition, we have to assume that every Γ ∈ G is maximal in G and
1 /∈ ÉtaleClosure(G). Section 5 shows that when these conditions are fulfilled, G,G
naturally give rise to a proper projective group structure G = (G,X,Gx)x∈X in the
sense of [HJPa, Section 4]. By [HJPa, Prop. 4.2], every embedding problem for G is
solvable.

Consider again a profinite group G and a subset G of Subgr(G). A G-embedding
problem for G with local data is a triple

(1) (ϕ: G→ A, α: B → A, B)

where A and B are profinite groups, B is a strictly closed subset of Subgr(B) which is
closed under conjugations and taking closed subgroups, ϕ is a homomorphism, and α
is an epimorphism. In addition, we assume α is B-rigid. That is:
(2) ϕ(G) ⊆ α(B) and α is injective on each B0 ∈ B.
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Call (1) finite if B is finite.
Occasionally we construct B as above in the following way. Let B0 be a subset of

Subgr(B). Then B = Con(B0) is the set of all subgroup of B which are contained in Bb
0

for some B0 ∈ B0 and b ∈ B. By Lemma 1.1, B is strictly compact (hence closed) if B0

is étale compact. In particular, this is the case if B0 is finite.
A solution of (1) is a homomorphism γ: G→ B with γ(G) ⊆ B. Call G strongly

G-projective if every finite G-embedding problem (1) for G with local data has a
solution. If in addition G is étale compact, then G is G-projective.

Indeed, let (ϕ: G → A, α: B → A) be a rigid G-embedding problem in the sense
of Section 2, (3). For each Γ ∈ G choose BΓ ∈ Subgr(B) such that α: BΓ → ϕ(Γ) is an
isomorphism. Let B = Con(BΓ | Γ ∈ G). Then (1) is a G-embedding problem for G with
local data and α is B-rigid. By assumption, there exists a homomorphism γ: G → B
with α ◦ γ = ϕ. By Lemma 2.1(b), G is G-projective. Moreover, by Lemmas 1.6 and
1.7, G is étale compact and G is strongly Gmax-projective.

Example 4.1: Free product of finitely many profinite groups. Consider a free prod-
uct G =

∏
∗ n

i=1Gi of finitely many profinite groups. Put G = {G1, . . . , Gn} and
B = Con(G1, . . . , Gn). Then G is strongly G-projective.

Indeed, let (1) be a finite embedding problem for G with local data. Then ϕ maps
each Gi onto a subgroup Ai of A and there is Bi ∈ B which α maps isomorphically onto
Ai. Then γi = (α|Bi

)−1 ◦ (ϕ|Gi
) is an epimorphism of Gi onto Bi. Extend γ1, . . . , γn to

a homomorphism γ: G→ B. Then γ solves embedding problem (1).

Remark 4.2: Suppose G is étale compact and G is a strongly G-projective group. An
obvious modification of Lemma 2.1 proves (1) is solvable even if α is not necessarily
rigid but satisfies the weaker condition instead:
(3) For each Γ ∈ G there is B0 ∈ B and a homomorphism γ0: Γ→ B0 with α◦γ0 = ϕ|Γ.
However, we do not use (3) in the definition of strong projectivity because all embedding
problems which we use in this work satisfy the condition “α is B-rigid”.

Lemma 4.3: Let G be a strongly G-projective group with G ⊆ Subgr(G). Then every
embedding problem with local data (1) such that A is finite and rank(B) ≤ ℵ0 is
solvable.

Proof: Put N0 = Ker(α) and identify A with B/N0 and α with the quotient map
B → B/N0. Choose a descending sequence Ni ∈ OpenNormal(B) with Ni ≤ Ker(α),
i = 1, 2, 3, . . ., and

⋂n
i=1Ni = 1. For j ≥ i let αji: B/Nj → B/Ni and βi: B → B/Ni be

the quotient maps. For each i, B/Ni = βi(B) is closed under conjugation and taking
subgroups. The map α is injective on each B0 ∈ B, so αi+1,i is injective on B0/Ni+1.
Therefore, we may inductively construct a sequence of homomorphisms γi: G → B/Ni

satisfying: γ0 = ϕ, γi(G) ⊆ B/Ni, and αi+1,i ◦ γi+1 = γi, i = 1, 2, 3, . . . .
The γi’s define a homomorphism γ: G→ B with βi ◦ γ = γi, i = 0, 1, 2, . . . . Since

B is strictly closed, B = lim←−B/Ni. Hence, γ(G) ⊆ B. Therefore, γ is a solution of (1).

Free products of finitely many profinite groups have some nice properties:
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Lemma 4.4 ([HeR, Prop. 2 and Thm. B’]): Let G =
∏
∗ i∈I Gi be the free profinite

product of finitely many profinite groups Gi. Then Gg
i ∩ Gj 6= 1 implies i = j and

g ∈ Gi.

Lemma 4.4 carries over to strongly G-projective groups:

Proposition 4.5: Let G be a profinite group and G an étale compact subset of
Subgr(G) which is closed under conjugation. Suppose G is strongly G-projective. Then:
(a) Γ1 ∩ Γ2 = 1 for all distinct Γ1,Γ2 ∈ Gmax.
(b) NG(Γ) = Γ for each nontrivial Γ ∈ Gmax.

Proof: Consider an epimorphism ϕ: G → A with A finite. Write ϕ(G) = {Ai | i ∈ I}
with I finite. For each i ∈ I choose an isomorphic copy Bi of Ai. Choose a large positive
integer e and put B = F̂e ∗

∏
∗ i∈I Bi. Then there is an epimorphism α: B → A which

maps Bi isomorphically onto Ai. Let B = Con(B1, . . . , Bn). Then, (1) is a G-embedding
problem for G with local data. By Lemma 4.3, there is a homomorphism γ: G → B
with α ◦ γ = ϕ and γ(G) ⊆ B.

Proof of (a): Assume Γ1 ∩ Γ2 6= 1. Choose N0 ∈ OpenNormal(G) with Γ1N0 6= Γ2N0.
Consider N ∈ OpenNormal(G) with N ≤ N0. Put A = G/N and let ϕ: G → G/N be
the quotient map. Then let B, Bi, B, α, and γ be as above. In particular, γ(Γi) ∈ B,
i = 1, 2. Hence, there are j, k ∈ I and bj , bk ∈ B with γ(Γ1) ≤ B

bj

j and γ(Γ2) ≤
Bbk

k . Also, α
(
γ(Γ1) ∩ γ(Γ2)

)
⊆ ϕ(Γ1) ∩ ϕ(Γ2) 6= 1, hence γ(Γ1) ∩ γ(Γ2) 6= 1, so

B
bj

j ∩ B
bk

k 6= 1. By Lemma 4.4, Bbj

j = Bbk

k . Consider ΓN ∈ G with ϕ(ΓN ) = α(Bbj

j ).
Then, ϕ(Γi) ≤ ϕ(ΓN ), i = 1, 2. It follows that the set GN = {Γ ∈ G | ϕ(Γ1), ϕ(Γ2) ≤
ϕ(Γ)} is nonempty. By Lemma 1.5, GN is étale closed. If N1, . . . , Nm are open normal
subgroups of G and N =

⋂m
j=1Nj , then GN ⊆

⋂m
j=1 GNj

. Hence, since G is weakly
compact,

⋂
N∈OpenNormal(G) GN 6= ∅. Each Γ in this intersection belongs to G and

satisfies Γ1 ∩Γ2 ≤ Γ. Since Γ1 and Γ2 are maximal in G, Γ1 = Γ = Γ2, in contradiction
to assumption.

Proof of (b): Let g ∈ G with Γg = Γ. Choose N0 ∈ OpenNormal(G) with Γ 6≤ N0.
Consider N ∈ OpenNormal(G) with N ≤ N0. Put A = G/N and let ϕ: G → G/N be
the quotient epimorphism. Then let B, Bi, B, and α be as in the first paragraph of the
proof. In particular, there is i ∈ I and b ∈ B with γ(Γ) ≤ Bb

i . Also, γ(Γ)γ(g) = γ(Γ)
and γ(Γ) 6= 1 so Bb

i ∩ B
bγ(g)
i 6= 1. By Lemma 4.4, γ(g) ∈ Bb

i . Choose ΓN ∈ G with
ϕ(ΓN ) = α(Bb

i ). Then ϕ(Γ) ≤ ϕ(ΓN ) and ϕ(g) ∈ ϕ(ΓN ).
Again, by Lemma 1.5, the nonempty set

G′N = {Γ′ ∈ G | ϕ(Γ) ≤ ϕ(Γ′), ϕ(g) ∈ ϕ(Γ′)}

is étale closed. Since G is étale compact, there is Γ′ which belongs to all G′N . It satisfies
Γ ≤ Γ′ and g ∈ Γ′. Since Γ is maximal in G, we have Γ = Γ′. Therefore, g ∈ Γ.

Lemma 4.6: Let G be a profinite group and G an étale compact subset of Subgr(G)
which is closed under conjugation. Suppose 1 /∈ StrictClosure(G) and G is strongly
G-projective. Then:
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(a) G is strongly Gmax-projective.
(b) Gmax is étale compact Hausdorff.
(c) NG(Γ) = Γ for each Γ ∈ Gmax.

Proof of (a): By Lemma 1.7, Gmax is étale compact. Suppose (1) is a finite Gmax-
embedding problem with local data for G. In particular, ϕ(Gmax) ⊆ α(B) and α is
injective on each B0 ∈ B. We prove (1) is a G-embedding problem with local data for
G. To this end let Γ0 ∈ G. By Lemma 1.6, Γ0 is contained in some Γ ∈ Gmax. Choose
B1 ∈ B with α(B1) = ϕ(Γ). Let B0 = B1 ∩ α−1(ϕ(Γ0)). Then B0 ∈ B, and α maps B0

isomorphically onto ϕ(Γ0), as needed.
SinceG is strongly G-projective, there is a homomorphism γ: G→ B with α◦γ = ϕ

and γ(G) ⊆ B, so γ(Gmax) ⊆ B. Thus, G is strongly Gmax-projective.

Proof of (b): By (a) and Proposition 4.5(a), Γ1 ∩Γ2 = 1 for all distinct Γ1,Γ2 ∈ Gmax.
Hence, by [HJPa, Cor. 1.4], Gmax is étale Hausdorff.

Proof of (c): By assumption, each Γ ∈ Gmax is nontrivial. Hence, by Proposition
4.5(b), NG(Γ) = Γ.

Our next goal is to prove under the assumptions of Lemma 4.6 that Gmax is a
profinite space in the étale topology. By definition, a profinite space X is an inverse
limit of discrete finite spaces. In particular, X has a basis consisting of open-closed sets.
Conversely, every compact Hausdorff space which has a basis consisting of open-closed
sets is profinite (See also [RiZ, Thm. 1.1.12] for the connection with condition “X is
totally disconnected”.)

Lemma 4.7: Let X be a compact Hausdorff space and G a profinite group which acts
continuously on X. Suppose X/G has a basis consisting of open-closed sets. Then X is
profinite.

Proof: Let x ∈ X and W an open neighborhood of x. We have to find an open-closed
neighborhood of x in W .

Part A: G is finite. Let S = {σ ∈ G | xσ = x}. Write G =
⋃
· m

i=1 Sσi with σ1 =
1. Then xσ1 , . . . , xσm are the distinct conjugates of x. Since X is Hausdorff, there
are open neighborhoods V1, . . . , Vm of x in W such that V σ1

1 , . . . , V σm
m are disjoint.

Put V =
⋂m

i=1

⋂
σ∈S V

σ
i . This is an S-invariant open neighborhood of x in W and

V σ1 , . . . , V σm are disjoint.
The quotient map π: X → X/G is continuous and open. In particular, π(V )

is an open neighborhood of π(x) in X/G. By assumption, there is an open-closed
neighborhood Ū of π(x) in X/G with Ū ⊆ π(V ). Then, U = π−1(Ū) is an open-
closed G-invariant neighborhood of x in X and U ⊆ π−1(π(V )) =

⋃
· m

i=1 V
σi . Therefore

U =
⋃
· m

i=1 U ∩ V σi . Since the sets U ∩ V σi are open, they are also closed in U , and
hence in X. Thus U ∩ V = U ∩ V σ1 is an open-closed neighborhood of x contained in
W .

Part B: G is arbitrary. The action X × G → X is continuous and x1 ∈ W . Hence,
x has an open neighborhood V and G has an open normal subgroup N with V N ⊆W .
Let ν: X → X/N be the quotient map. Then ν(V ) is an open neighborhood of ν(x) in
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X/N . Since X is compact Hausdorff, so is X/N [Bre, Thm. 3.1(1)]. The finite group
G/N acts on X/N continuously and X/G = (X/N)/(G/N). Thus, by Part A, X/N is
profinite. Therefore, ν(x) has an open-closed neighborhood Ū in X/N with Ū ⊆ ν(V ).
Therefore U = ν−1(Ū) is an open-closed neighborhood of x in X and U ⊆ V N ⊆W , as
desired.

Proposition 4.8: Let G be a profinite group and G an étale compact G-invariant
subset of Subgr(G). Suppose 1 /∈ StrictClosure(G) and G is strongly G-projective.
Then Gmax is étale profinite.

Proof: By Lemma 4.6, G is strongly Gmax-projective and Gmax is étale Hausdorff
compact. We may therefore replace G by Gmax, if necessary, to assume G = Gmax and
prove that the étale topology of G has a basis consisting of étale open-closed sets.

Let π: Subgr(G)→ Subgr(G)/G be the quotient map modulo conjugation. Put a
bar over each group in Subgr(G) and each subset of Subgr(G) to denote their images
under π. By Lemma 4.7, it suffices to prove that the étale topology of Ḡ has a basis
consisting of étale open-closed sets. Thus, given Γ0 ∈ G and H ∈ Open(G) with
Γ0 ≤ H, it suffices to find a G-invariant étale open-closed subset U0 of Subgr(G) with
Γ̄0 ∈ Ū0 ⊆ Subgr(H). The construction of U0 breaks up into three parts.

Part A: An open normal subgroup of G. Since 1 /∈ ÉtaleClosure(G), there is N0 ∈
OpenNormal(G) which contains no Γ ∈ G. Consider the étale open subset H =⋃

g∈G Subgr(Hg) of Subgr(G) and the étale closed subset H′ = GrH of G. Both
H and H′ are G-invariant. Since G is étale compact and Hausdorff, so is H′. Each
Γ ∈ H′ is not contained in H, so Γ 6= Γ0. Since G = Gmax, Γ0 6≤ Γ. Therefore, there is
NΓ ∈ OpenNormal(G) with NΓΓ0 6≤ NΓΓ and NΓΓ 6≤ NΓH.

The set Subgr(NΓΓ) is an étale open neighborhood of Γ in Subgr(G). Since H′
is étale compact, there are ∆1, . . . ,∆m ∈ H′ with H′ ⊆

⋃m
i=1 Subgr(N∆i∆i). Then

N = N0 ∩
⋂m

i=1N∆i
is an open normal subgroup of G, NΓ 6= N for each Γ ∈ G, and

NΓ0 6≤ NΓ, NΓ 6≤ NH for each Γ ∈ H′.

Part B: G-embedding problem forG with local data. Put A = G/N and let ϕ: G→ A
be the quotient map. By Part A,
(4a) ϕ(Γ) 6= 1 for each Γ ∈ G and
(4b) ϕ(Γ0) 6≤ ϕ(Γ) and ϕ(Γ) 6≤ ϕ(H) for each Γ ∈ H′.

Now choose Γ1, . . . ,Γn ∈ H′ such that ϕ(Γ1), . . . , ϕ(Γn) represent the conjugacy
classes in A of the maximal elements of ϕ(H′). Let B0 be an isomorphic copy of ϕ(H)
and Bi an isomorphic copy of ϕ(Γi), i = 1, . . . , n. Choose a positive integer e ≥ rank(A).
Put B = F̂e ∗

∏
∗ n

i=0Bi. Then B is finitely generated and there is an epimorphism
α: B → A which maps B0 isomorphically onto ϕ(H) and Bi isomorphically onto ϕ(Γi),
i = 1, . . . , n. Let B = Con(B0, . . . , Bn). Then

(5) (ϕ: G→ A, α: B → A, B)

is a G-embedding problem for G with local data. By Lemma 4.3, there is a homomor-
phism γ: G→ B with α ◦ γ = ϕ and γ(G) ⊆ B.
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Part C: Partition of G. For each i let B′i be an identical copy of Bi. Let B′ =
∏n

i=0B
′
i

be the direct product of B0, . . . , Bn. Let β: B → B′ be the epimorphism which maps
F̂e to 1 and each Bi identically onto B′i. Put γ′ = β ◦ γ. For each i put Ui = {Γ ∈
G | γ′(Γ) ≤ B′i}. Then Ui is a G-invariant étale open subset of G. Therefore, Ūi is an
étale open subset of Ḡ.

Claim C1: Ḡ =
⋃
· m

i=0 Ūi. Indeed, since γ(G) ⊆ B, there are for each Γ ∈ G an i
between 0 and m and a b ∈ B with γ(Γ) ≤ Bb

i . Hence, γ′(Γ) ≤ B′i and Γ̄ ∈ Ūi.
Moreover, by (4a), α(γ(Γ)) = ϕ(Γ) 6= 1. Hence, γ(Γ) 6= 1. Since β is injective on

Bb
i , we have γ′(Γ) 6= 1. Hence, γ′(Γ) 6≤ B′j , so Γ̄ /∈ Ūj for all j 6= i.

It follows that each Ūi is an étale open-closed subset of Ḡ. In particular, so is Ū0.

Claim C2: Γ̄0 ∈ Ū0. Indeed, γ(Γ0) ≤ Bb
i with 0 ≤ i ≤ n and b ∈ B (Claim C1).

Assume i ≥ 1. Then ϕ(Γ0) = α(γ(Γ0)) ≤ α(Bi)α(b) = ϕ(Γg
i ) for some g ∈ G and

Γg
i ∈ H′ (by the choice of Γi). Hence, by (4b), ϕ(Γ0) 6≤ ϕ(Γg

i ). This contradiction
proves that i = 0, γ′(Γ) ≤ B′0, and Γ̄0 ∈ Ū0.

Claim C3: Ū0 ⊆ H̄. Indeed, consider Γ ∈ U0. By Part B, γ(Γ) ≤ Bb
i with 0 ≤ i ≤ n

and b ∈ B. If i ≥ 1, then γ′(Γ) ≤ B′i and Γ̄ ∈ Ūi, in contradiction to Claim C1. Hence,
γ(Γ) ≤ Bb

0. Therefore, ϕ(Γg) ≤ ϕ(H) for some g ∈ G with ϕ(g) = α(b)−1. Since H′ is
G-invariant, (4b) implies Γ /∈ H′. Consequently, Γ ∈ H, as desired.

Finally, observe that H̄ = Subgr(H) to conclude the proof of the proposition.

5. Projective Group Structures

The crucial step of going from solvability of finite G-embedding problems for a profinite
group G to solvability of arbitrary G-embedding problems occurs in the category of
“profinite group structures”. We recall the definition of this concept from [HJPa, Section
2].

A profinite group structure is a data G = (G,X,Gx)x∈X where G is a profinite
group, X is a profinite space on which G acts continuously from the right, and Gx is a
closed subgroup of G, x ∈ X. These objects must satisfy the following conditions:
(1a) The map x 7→ Gx from X into Subgr(G) is étale continuous.
(1b) Gxg = Gg

x for all x ∈ X and g ∈ G.
(1c) {g ∈ G | xg = x} ≤ Gx for each x ∈ X.
The structure G is finite if both G and X are finite.

A morphism of group structures ϕ: (G,X,Gx)x∈X → (H,Y,Hy)y∈Y is a couple
consisting of a homomorphism ϕ: G → H and a continuous map ϕ: X → Y such that
ϕ(Gx) ≤ Hϕ(x) and ϕ(xg) = ϕ(x)ϕ(g) for all x ∈ X and g ∈ G. The morphism ϕ
is an epimorphism if ϕ(G) = H, ϕ(X) = Y , and for each y ∈ Y , there is x ∈ X
with ϕ(Gx) = Hy. We call ϕ a cover if ϕ(G) = H, ϕ(X) = Y , ϕ: Gx → Hϕ(x) is an
isomorphism for each x ∈ X, and ϕ(x) = ϕ(x′) implies xk = x′ for some k ∈ Ker(ϕ).

An embedding problem for G is a pair (ϕ: G → A, α: B → A) where A and
B are profinite group structures, ϕ is a morphism, and α is a cover. A solution of the
problem is a morphism γ: G → B satisfying α ◦ γ = ϕ. The problem is finite if both
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B and A are finite. We say G is projective if every finite embedding problem for G
is solvable. Then every embedding problem for G is solvable [HJPa, Prop. 4.2].

Lemma 5.1: Let G = (G,X,Gx)x∈X be a projective group structure. Put G =
{Gx | x ∈ X}. Then G is strongly G-projective.

Proof: By definition, G is the image of the compact space X under the étale continuous
map x 7→ Gx. Hence, G is étale compact.

Now consider a finite G-embedding problem

(2) (ϕ: G→ A, α: B → A, B)

for G with local data. Replace A by A0 = ϕ(G), B by B0 = α−1(ϕ(G)), and B
by B0 = B ∩ Subgr(B0), if necessary, to assume ϕ is surjective. By [HJPa, Lemma
3.8], ϕ: G → A extends to an epimorphism ϕ of G onto a finite group structure A =
(A, I,Ai)i∈I . Choose a set of representatives I0 for the A-orbits of I. For each i ∈ I0
there exists x ∈ X with ϕ(x) = i and ϕ(Gx) = Ai. The rigidity condition (2) of
Section 4 gives B′ ∈ B which α maps isomorphically onto Ai. Hence, by [HJPa, Lemma
4.5], there is a group structure B = (B, J,Bj)j∈J and α: B → A extends to a cover
α: B → A with Bj ∈ B for all j ∈ J . In particular, ϕ: J → I is an epimorphism with
finite fibers, so J is finite, hence B is finite. Since G is projective, there is a morphism
γ: G → B with α ◦ γ = ϕ. Its group component γ: G → B solves embedding problem
(2). Consequently, G is strongly G-projective.

Lemma 5.2: Let G be a profinite group and G an étale compact subset of Subgr(G).
Suppose G =

⋃
· i∈I Gi is a partition of G into finitely many disjoint open-closed subsets.

Then there exists an open normal subgroup N of G such that if ϕ: G → A is an
epimorphism with Ker(ϕ) ≤ N and Γ,Γ′ ∈ G satisfy ϕ(Γ) ≤ ϕ(Γ′), then there is i ∈ I
with Γ,Γ′ ∈ Gi.

Proof: Let Γ ∈ G. There Γ belongs to a unique Gi. Since Gi is open in G, there is an open
normal subgroup NΓ of G with G ∩ Subgr(ΓNΓ) ⊆ Gi. Thus, G ⊆

⋃
Γ∈G Subgr(ΓNΓ).

Since G is étale compact, there are Γ1, . . . ,Γm ∈ G with G ⊆
⋃m

j=1 Subgr(ΓjNΓj
).

For each 1 ≤ j ≤ m there is a unique i(j) ∈ I with G ∩ Subgr(ΓjNΓj
) ⊆ Gi(j).

Put N =
⋂m

j=1NΓj
. Let ϕ: G → A be an epimorphism with Ker(ϕ) ≤ N and let

Γ,Γ′ ∈ G with ϕ(Γ) ≤ ϕ(Γ′). Choose j between 1 and m with Γ′ ∈ Subgr(ΓjNΓj
).

Then Γ′ ∈ Gi(j). Hence, Γ ≤ Γ′Ker(ϕ) ≤ Γ′N ≤ Γ′NΓj ≤ ΓjNΓj . Therefore, Γ ∈ Gi(j),
as desired.

Let G = (G,X,Gx)x∈X be a group structure. Put G = {Gx | x ∈ X}. We say G
is proper if the map x 7→ Gx of X onto G is an étale homeomorphism.

Proposition 5.3: Let G = (G,X,Gx)x∈X be a proper group structure. Let G =
{Gx | x ∈ X}. Suppose G is strongly G-projective. Then G is projective.

Proof: Consider a finite embedding problem

(3) (ϕ: G→ A, α: B→ A)

for G with A = (A, I,Ai)i∈I . The solution of this problem breaks up into three parts.
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Part A: A partition of G. Consider the partition X =
⋃
· i∈I ϕ

−1(i) into open-closed
sets. For each i ∈ I let Gi = {Gx | ϕ(x) = i}. Since the map x 7→ Gx is an étale
homeomorphism, G =

⋃
· i∈I Gi is a partition of G into étale open-closed sets. Lemma

5.2 gives an open normal subgroup N of G such that if ϕ̂: G → Â is an epimorphism
with ker(ϕ̂) ≤ N , then
(4) x, y ∈ X and ϕ̂(Gx) ≤ ϕ̂(Gy) imply ϕ(x) = ϕ(y).

By [HJPa, Lemma 3.8] there are a morphism ϕ̄: Â→ A of finite group structures
and an epimorphism ϕ̂: G → Â such that ϕ = ϕ̄ ◦ ϕ̂ and Ker(ϕ̂) ≤ N . In particular,
(4) holds.

The fiber product B̂ = (B̂, Ĵ , B̂j)j∈Ĵ = B×A Â fits into a commutative diagram

G

ϕ̂

��
B̂

α̂ //

β

��

Â

ϕ̄

��
B

α // A

in which α̂ is a cover [HJPa, Lemma 2.12(c)]. Let B̂ = Con
(
{B̂j | j ∈ Ĵ}

)
. Then

(ϕ̂: G→ Â, α̂: B̂ → Â, B̂) is an embedding problem for G with a local data. Since G is
strongly G-projective, there exists a homomorphism γ̂: G→ B̂ such that α̂ ◦ γ̂ = ϕ̂ and
(5) for each x ∈ X there is j ∈ Ĵ with γ̂(Gx) ≤ B̂j .

Part B: The map γ̂: X → Ĵ . Consider the open normal subgroup K = Ker(γ̂) of
G. For each y ∈ X, the open subgroup GyK of G contains Sy = {σ ∈ G | yσ = y}.
Also, Vy = {x ∈ X | Gx ≤ GyK} of y is an open neighborhood of y in X which is
GyK-invariant. Indeed, if σ ∈ Gy, κ ∈ K, and x ∈ Vy, then

Gxσκ = Gσκ
x ≤ (GyK)σκ = (Gσ

yK
σ)κ = (GyK)κ = GyK,

whence xσκ ∈ Vy.
By [HJPa, Lemma 3.6], there are y1, . . . , ym ∈ X and open-closed subsets X1, . . . ,

Xm of X such that the following holds for each k between 1 and m:
(6a) Xk is Gyk

K-invariant and yk ∈ Xk ⊆ Vyk
.

(6b) X =
⋃
· m

k=1

⋃
· τ∈Tk

Xτ
k , where G =

⋃
· τ∈Tk

Gyk
Kτ and 1 ∈ Tk ⊆ G.

Define γ̂: X → Ĵ as follows. For each k between 1 and m use (5) to choose
γ̂(yk) ∈ Ĵ with γ̂(Gyk

) ≤ B̂γ̂(yk). Then let

(7) γ̂(yτ ) = γ̂(yk)γ̂(τ) for all y ∈ Xk and τ ∈ Tk.

By (6b), γ̂: X → Ĵ is well defined. In addition,
(8) γ̂ is constant on each Xτ

k with τ ∈ Tk.
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Hence, by (6b), γ̂ is continuous.
Taking τ = 1 in (7), gives γ̂(y) = γ̂(yk) for all y ∈ Xk. Hence, by (7),

(9) γ̂(yτ ) = γ̂(y)γ̂(τ) for all y ∈ Xk and τ ∈ Tk.

We claim that
(10) γ̂(Gx) ≤ B̂γ̂(x) for every x ∈ X.

Indeed, x = yτ , where y ∈ Xk, τ ∈ Tk. By (6a), y ∈ Vyk
, that is, Gy ≤ Gyk

K, so
γ̂(Gy) ≤ γ̂(Gyk

) ≤ B̂γ̂(yk) = B̂γ̂(y). By (9), γ̂(y)γ̂(τ) = γ̂(x). Hence, γ̂(Gx) = γ̂(Gτ
y) =

γ̂(Gy)γ̂(τ) ≤ B̂γ̂(τ)
γ̂(y) = B̂γ̂(y)γ̂(τ) = B̂γ̂(x), as claimed.

We know that α̂ ◦ γ̂ = ϕ̂ on G. But we do not know that α̂ ◦ γ̂ = ϕ̂ on X.
Therefore, we define γ = β ◦ γ̂: G → B and γ = β ◦ γ̂: X → J and prove directly that
γ: G→ A is a morphism which solves embedding problem (3).

Part C: The morphism γ: G→ B. An application of β on (8), (9), and (10) implies:
(11a) γ is constant on each Xτ

k with τ ∈ Tk, so, by (6b), γ: X → J is continuous.
(11b) γ(yτ ) = γ(y)γ(τ) for all y ∈ Xk and τ ∈ Tk

(11c) γ(Gx) ≤ Bγ(x) for every x ∈ X.

Claim C1: α ◦ γ = ϕ. That α ◦ γ = ϕ on G follows from the equality α̂ ◦ γ̂ = ϕ̂ on
G. Consider therefore x ∈ X. Since ϕ̂: G→ Â is an epimorphism, there is y ∈ X such
that ϕ̂(y) = α̂(γ̂(x)) and ϕ̂(Gy) = Âα̂(γ̂(x)). By (10),

ϕ̂(Gx) = α̂(γ̂(Gx)) ≤ α̂(B̂γ̂(x)) = Âα̂(γ̂(x)) = ϕ̂(Gy).

By (4), ϕ(x) = ϕ(y). In addition,

ϕ(y) = ϕ̄(ϕ̂(y)) = ϕ̄(α̂(γ̂(x))) = α(β(γ̂(x))) = α(γ(x)).

Hence, ϕ(x) = α(γ(x)), as claimed.

Claim C2: γ(Gyk
) is contained in the stabilizer Sγ(yk) of γ(yk) in B. Let j = γ(yk).

By Claim C1, α(j) = ϕ(yk). By [HJPa, Remark 2.1], Gyk
= Syk

. Hence,

(12) α(γ(Gyk
)) = ϕ(Gyk

) = ϕ(Syk
) ≤ Sϕ(yk) = Sα(j).

By (11c), γ(Gyk
) ≤ Bj . Since α: B → A is a cover, α: Bj → Aα(j) is an isomorphism

that maps Sj onto Sα(j) [HJPa, Lemma 2.2]. Therefore, by (12), γ(Gyk
) ≤ Sγ(yk).

Claim C3: γ preserves the action. We prove first that γ(yσ) = γ(y)γ(σ) for all y ∈ Xk

and σ ∈ G. To this end we use (6b) to write σ = λτ with λ ∈ Gyk
K and τ ∈ Tk. Then

γ(λ) ∈ γ(Gyk
K) = γ(Gyk

). Hence, by Claim C2, γ(yk)γ(λ) = γ(yk). Whence, by (11a),
γ(y)γ(λ) = γ(y). By (6a), yλ ∈ Xλ

k = Xk. Hence, by (11a), γ(yλ) = γ(y), and by
(11b), γ((yλ)τ ) = γ(yλ)γ(τ). Therefore, γ(yσ) = γ((yλ)τ ) = γ(yλ)γ(τ) = γ(y)γ(τ) =
γ(y)γ(λ)γ(τ) = γ(y)γ(σ).
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Now consider x ∈ Xτ ′

k with τ ′ ∈ Tk. Write x = yτ ′ with y ∈ Xk. Let g ∈ G. By
the preceding paragraph, γ(xg) = γ(yτ ′g) = γ(y)γ(τ ′g) = γ(y)γ(τ ′)γ(g) = γ(yτ ′)γ(g) =
γ(x)γ(g), as claimed.

Thus, γ is a solution of embedding problem (3).

Let G be a profinite group and G an étale profinite G-invariant subset of Subgr(G).
Suppose NG(Γ) = Γ for each Γ ∈ G. Choose a homeomorphic copy X of G and a
homeomorphism x 7→ Gx of X onto G. The action of G on G induces an action on
X making G = (G,X,Gx)x∈X a proper group structure. In this case we also refer to
(G,G) as a proper group structure. We call (G,G) projective if G is projective.

Proposition 5.4: Let G be a profinite group and G an étale compact G-invariant
subset of Subgr(G). Suppose 1 /∈ StrictClosure(G) and G is strongly G-projective.
Then (G,Gmax) is a proper projective group structure.

Proof: By Lemma 4.6, NG(Γ) = Γ for each Γ ∈ Gmax and G is strongly Gmax-projective.
By Proposition 4.8, Gmax is étale profinite. It follows, (G,Gmax) is a proper group
structure. By Proposition 5.3, (G,Gmax) is projective.

Remark 5.5: Relatively projective groups. Let G and G be as in Proposition 5.4. Then
Gmax is étale profinite. Let Γ1,Γ2 be distinct groups in Gmax. By Lemma 4.5, Γ1∩Γ2 = 1.
Choose étale open-closed neighborhoods U1 and U2 of Γ1 and Γ2 in Gmax, respectively,
with G = U1

⋃
· U2. By [HJPa, Lemma 2.3], the union of all Γ in Ui is a closed subset of

G. Thus, G is separated in the sense of [Har, Def. 3.1]. In addition, G is strongly Gmax-
projective. Consequently, G is projective relative to G in the sense of [Har, Def. 4.2].

We interpret the notions of a “morphism” and a “cover” of proper group structures
in terms of the pairs (G,G): Let (H,H) and (G,G) be proper group structures. Then a
morphism ϕ: (H,H) → (G,G) is just a homomorphism ϕ: H → G which maps H into
Con(G). In other words, for each ∆ ∈ H there is Γ ∈ G with ϕ(∆) ≤ Γ.

The morphism ϕ is a cover if
(13a) ϕ(H) = G, ϕ(H) = G,
(13b) ϕ is injective on each ∆ ∈ H, and
(13c) if ∆,∆′ ∈ H and ϕ(∆) = ∆′, then there exists κ ∈ Ker(ϕ) with ∆κ = ∆′.

A sub-group-structure of (H,H) is a proper group structure (H0,H0) with
H0 ≤ H and H0 ⊆ H. Specializing [HJPa, Cor. 4.3] to proper group structures gives
the following result:

Proposition 5.6: Let ϕ: (H,H) → (G,G) be a cover of proper group structures.
Suppose (G,G) is projective. Then (H,H) has a sub-group-structure (H0,H0) which ϕ
maps isomorphically onto (G,G).

6. Big Quotients

Let G be a profinite group and G a subset of Subgr(G). We have already mentioned
in Section 4 that if G is strongly G-projective, then G is G-projective. We show in this
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section that the converse is also true if there are only finitely many isomorphism types
of groups in G and they have a “system of big quotients”.

Let C be a finite set of finitely generated profinite groups. Each profinite group ∆
which is isomorphic to a group in C is of type C. A set G of profinite groups is said to
be of type C if each H ∈ G is of type C.

Let G be a profinite group and G a subset of Subgr(G). For each Γ ∈ C let
GΓ = {H ∈ G | H ∼= Γ}. We prove an analog of Lemma 4.3 for G-projective groups:

Lemma 6.1: Let G be a profinite group and G a subset of Subgr(G) of type C. Suppose
G is G-projective and

(1) (ϕ: G→ A, α: B → A)

is a G-embedding problem with A finite and rank(B) ≤ ℵ0. Then (1) is solvable.

Proof: There exists a descending sequence Ker(α) = N0 ≥ N1 ≥ N2 ≥ · · · of open
normal subgroups of B with trivial intersection. Identify A with B/N0 and α with the
quotient map B → B/N0. Let ϕ0 = ϕ and α0 = α. For each i and j with j ≥ i ≥ 0 let
αi: B → B/Ni and αji: B/Nj → B/Ni be the quotient maps.

Claim: Let i ≥ 0 and let ϕi: G → B/Ni be a homomorphism such that (ϕi: G →
B/Ni, αi: B → B/Ni) is a G-embedding problem for G. Then there is a homomorphism
ϕi+1: G → B/Ni+1 such that αi+1,i ◦ ϕi+1 = ϕi and (ϕi+1: G → B/Ni+1, αi+1: B →
B/Ni+1) is a G-embedding problem for G.

Once the claim has been proved, we may inductively construct for each i ≥ 0 a
homomorphism ϕi+1: G → B/Ni+1 with αi+1,i ◦ ϕi+1 = ϕi. The maps ϕi define a
γ ∈ Hom(G,B) with α ◦ γ = ϕ.

Without loss we prove the claim for i = 0. To this end note that for each j,
(ϕ: G → A, αj,0: B/Nj → A) is a finite G-embedding problem of G. Indeed, given
Γ ∈ G, there is a homomorphism γ′: Γ→ B with α◦γ′ = ϕ|Γ. Thus, αj,0◦(αj◦γ′) = ϕ|Γ,
as desired.

For each β ∈ Hom(G,B/Nj) let

β ◦
∏
Γ∈C

Hom(Γ, G) = {(β ◦ ψΓ)Γ∈C | ψΓ ∈ Hom(Γ, G) for each Γ ∈ C}.

This is a subset of
∏

Γ∈C Hom(Γ, B/Nj). Since C is finite, each Γ ∈ C is finitely generated,
and B/Nj is finite,

∏
Γ∈C Hom(Γ, B/Nj) is finite. Hence, the collection of subsets

Hj = {β ◦
∏
Γ∈C

Hom(Γ, G) | β ∈ Hom(G,B/Nj), αj,0 ◦ β = ϕ}

of
∏

Γ∈C Hom(Γ, B/Nj) is finite. Since G is G-projective, Hj is nonempty.
The map β ◦

∏
Γ∈C Hom(Γ, G) 7→ αj+1,j ◦β ◦

∏
Γ∈C Hom(Γ, G) maps Hj+1 into Hj .

Hence, lim←−Hj 6= ∅. Thus, there are homomorphisms βj : G→ B/Nj with αj,0 ◦ βj = ϕ

and

(2) αj+1,j ◦ βj+1 ◦
∏
Γ∈C

Hom(Γ, G) = βj ◦
∏
Γ∈C

Hom(Γ, G), j = 0, 1, 2, . . . .
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In particular, α1,0 ◦ β1 = ϕ.
We prove that (β1: G→ B/N1, α1: B → B/N1) is a G-embedding problem for G.

To this end consider Γ ∈ C and H ∈ GΓ. Then H ∼= Γ. Hence, by (2),

(3) αj+1,j ◦ βj+1 ◦Hom(H,G) = βj ◦Hom(H,G), j = 0, 1, 2, . . . , .

Use (3) to inductively construct homomorphisms ηj : H → B/Nj , j = 1, 2, . . . with
η1 = β1|H and αj+1,j ◦ ηj+1 = ηj . The ηj ’s define a homomorphism η: H → B with
α1 ◦ η = β1, as needed. This concludes the proof of the claim.

Lemma 6.2: Let C be a finite set of finitely generated profinite groups, G a profinite
group, and G a subset of Subgr(G) of type C. Consider a finite G-embedding problem
with local data for G

(4) (ϕ: G→ A, α: B → A, B).

Then there are
(5a) a positive integer e,
(5b) a finite set {∆λ | λ ∈ Λ} of groups of type C, and
(5c) an epimorphism β: B∗ = F̂e ∗

∏
∗ λ∈Λ ∆λ → B such that

(6) (ϕ: G→ A, α ◦ β: B∗ → A)

is a G-embedding problem for G with A finite, rank(B∗) ≤ ℵ0, and β(∆λ) ∈ B for
each λ ∈ Λ.

Proof: The proof has two parts.

Part A: Free product. For each Γ ∈ C let ΛΓ be the set of all homomorphisms
λ: Γ→ B satisfying
(7) λ(Γ) ∈ B and there is an embedding ε: Γ→ G such that α ◦ λ = ϕ ◦ ε.

Since Γ is finitely generated and B is finite, ΛΓ is a finite set. For each λ ∈ ΛΓ

choose an isomorphic copy ∆λ of Γ and an isomorphism δλ: ∆λ → Γ. Let Λ =
⋃
· Γ∈C ΛΓ.

Then {∆λ | λ ∈ Λ} is a finite set of groups of type C. Put e = rank(B). Choose an
epimorphism βe: F̂e → B. Then consider the free product B∗ = F̂e ∗

∏
∗ λ∈Λ ∆λ. Let

β: B∗ → B be the unique epimorphism whose restriction to F̂e is βe and to ∆λ is λ◦ δλ.
By (7), β(∆λ) ∈ B for all λ ∈ Λ.

Part B: G-embedding problem. Let Γ ∈ C and H ∈ GΓ. Then, there is an iso-
morphism θ: Γ → H. The definition of embedding problems with local data (Section
4) gives a homomorphism η of H into B such that η(H) ∈ B and α ◦ η = ϕ ◦ ι,
where ι is the inclusion H → G. Put λ = η ◦ θ and ε = ι ◦ θ. Then α ◦ λ = ϕ ◦ ε,
so λ ∈ ΛΓ. Thus, δ−1

λ ◦ θ−1 maps H onto the subgroup ∆λ of B∗. Furthermore,
α ◦ β ◦ (δ−1

λ ◦ θ−1) = α ◦ (λ ◦ δλ) ◦ (δ−1
λ ◦ θ−1) = α ◦ λ ◦ θ−1 = α ◦ η ◦ θ ◦ θ−1 = ϕ ◦ ι.

Therefore, (6) is a G-embedding problem for G.
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Lemma 6.3: Let G be a profinite group and G a subset of Subgr(G) of type C. For
each Γ ∈ C let Γ̄ be a finite quotient of Γ. Suppose GΓ is strictly closed in Subgr(G).
Then G has an open normal subgroup N satisfying: For each Γ ∈ C and each H ∈ GΓ

the group Γ̄ is a quotient of H/H ∩N = HN/N .

Proof: Let Γ ∈ C and H ∈ GΓ. Then H ∼= Γ, so H has an open normal subgroup
MH with H/MH

∼= Γ̄. Choose NH ∈ OpenNormal(G) with H ∩ NH ≤ MH . Let
UH = {H ′ ∈ GΓ | H ′NH = HNH}. Then UH is a strictly open neighborhood of H in
GΓ. By assumption, GΓ is strictly compact. Hence, there are HΓ,1, . . . ,HΓ,m(Γ) ∈ GΓ

with GΓ =
⋃m(Γ)

i=1 UHΓ,i
.

Let N =
⋂

Γ∈C
⋂m(Γ)

i=1 NHΓ,i
. Consider Γ ∈ C and H ∈ GΓ. Then there is i with

HNHΓ,i
= HΓ,iNHΓ,i

. By construction, N ≤ NHΓ,i
. This gives a sequence H/H ∩

N −→ H/H ∩ NHΓ,i
∼= HNHΓ,i/NHΓ,i = HΓ,iNHΓ,i/NHΓ,i

∼= HΓ,i/HΓ,i ∩ NHΓ,i −→
HΓ,i/MHΓ,i

∼= Γ̄ where the arrows are epimorphisms. Therefore, Γ̄ is a quotient of
H/H ∩N .

Definition 6.4: Big quotients. For each Γ ∈ C let Γ̄ be a finite quotient of Γ. We say
{Γ̄ | Γ ∈ C} is a system of big quotients for C if it has the following property: Let e
be a nonnegative integer, J a finite set, and for each j ∈ J let ∆j be a profinite group
of type C. Consider the free product B∗ = F̂e ∗

∏
∗ j∈J ∆j . Let Γ ∈ C and let ∆ be a

closed subgroup of B∗ with epimorphisms Γ
γ−→ ∆ → Γ̄. Then ∆ is conjugate to a

closed subgroup of some ∆j and γ is an isomorphism.

Proposition 6.5: Let C be a finite set of finitely generated groups, G a profinite group,
and G a G-invariant subset of Subgr(G) of type C. Suppose C has a system of finite big
quotients and GΓ is strictly closed in Subgr(G) for each Γ ∈ C, and G is G-projective.
Then:
(a) G is strongly G-projective.
(b) There is a homomorphism δ: G→

∏
∗ Γ∈C Γ which maps each H ∈ G injectively into

a conjugate of some Γ ∈ C.
(c) Suppose in addition, 1 /∈ C. Then (G,Gmax) is a proper projective group structure.

Proof of (a): By assumption, G =
⋃

Γ∈C GΓ is strictly closed. By [HJPa, Remark 1.2],
G is étale compact. It remains to solve a finite G-embedding problem for G with local
data (4). Let {Γ̄ | Γ ∈ C} be a system of finite big quotients for C.
Part A: Γ̄ is a quotient of ϕ(H) for each Γ ∈ C and each H ∈ G. Lemma 6.3 gives
N ∈ OpenNormal(G) such that Γ̄ is a quotient of H/H ∩N for all Γ ∈ C and H ∈ GΓ.
We may assume N ≤ Ker(ϕ), otherwise replace N with N ∩ Ker(ϕ). Put A′ = G/N .
Let ϕ′: G→ A′ be the quotient map and ϕ̄: A′ → A the map induced by ϕ. Then Γ̄ is
a quotient of ϕ′(H) for all Γ ∈ C and H ∈ GΓ. Also, ϕ = ϕ̄ ◦ϕ′. Put B′ = B ×A A

′ and
let α′: B′ → A′ and β: B′ → B be the canonical projections.

Put B′0 = {B0 ×A ϕ′(H) | B0 ∈ B, H ∈ G, α(B0) = ϕ(H)} and B′ = Con(B′0).
Then ϕ′(G) ⊆ α′(B′). By definition, α is injective on each B0 ∈ B. Therefore, α′ is
injective on each B′0 ∈ B′0, hence on each B′0 ∈ B′. Thus,

(8) (ϕ′: G→ A′, α′: B′ → A′, B′)
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is a finite G-embedding problem with local data for G.
Since β(B′) ⊆ B, any solution γ′ of (8) gives rise to a solution β ◦ γ′ of embedding

problem (4). Thus, replacing (4) with (8), if necessary, we may assume Γ̄ is a quotient
of ϕ(H) for each Γ ∈ C and each H ∈ G.

Part B: Solving embedding problem (6). Lemma 6.2 gives a G-embedding problem
(6) for G with rank(B∗) ≤ ℵ0, and β(∆λ) ∈ B for each λ ∈ Λ. Since G is G-projective,
Lemma 6.1 gives a homomorphism γ∗: G → B∗ with α ◦ β ◦ γ∗ = ϕ. We claim that
β ◦ γ∗ solves (4).

Let Γ ∈ C and H ∈ GΓ. Put ∆ = γ∗(H). Then ∆ is a subgroup of B∗ as well as a
quotient of Γ. Moreover, α(β(∆)) = ϕ(H). Therefore, by Part A, Γ̄ is a quotient of ∆.
By the definition of big quotients, ∆ is conjugate to a closed subgroup of ∆λ for some
λ ∈ Λ and γ∗ is injective on H. Since β(∆λ) ∈ B, we have β ◦ γ∗(H) ∈ B.

Proof of (b): Consider embedding problem (4) with B = A = 1. The proof of (a)
gives a homomorphism γ∗: G→ F̂e ∗

∏
∗ λ∈Λ ∆λ which maps each H ∈ G isomorphically

into a conjugate of some ∆λ. Define a homomorphism δ∗: F̂e ∗
∏
∗ λ∈Λ ∆λ →

∏
∗ Γ∈C Γ

which is the trivial map on F̂e and maps each ∆λ ∈ GΓ isomorphically onto Γ. Then
δ = δ∗ ◦ γ∗ is a homomorphism of G into

∏
∗ Γ∈C Γ which maps each H ∈ G injectively

into a conjugate of some Γ ∈ C.

Proof of (c): Since Γ 6= 1 for each Γ ∈ C and G is strictly closed, 1 /∈ StrictClosure(G).
By (a), G is strongly G-projective. Therefore, by Proposition 5.4, (G,Gmax) is a proper
projective group structure.

7. P-adically Closed Fields

We prove in the next section that any finite family of absolute Galois groups of P-
adically closed fields has a system of big quotients. This section gives the necessary
prerequisites for the proof.

Let p be a prime number. Denote the algebraic closure of Q in Qp by Qp,abs. It
is well defined up to an isomorphism.

Let (L, v) be a valued field. Call (L, v) P-adic if there is a prime number p
satisfying these conditions:
(1a) The residue field L̄v is finite, say with q = pf elements.
(1b) There is π ∈ L with a smallest positive value v(π) in v(L×). Call π a prime

element of (L, v).
(1c) There is a positive integer e with v(p) = ev(π).

Refer to (p, e, f) as the type of (L, v) and to p as the residue characteristic
of (L, v). We say (L, v) is P-adically closed if (L, v) admits no finite proper P-adic
extension of the same type. Refer to a field L as P-adically closed if L admits a
valuation v with (L, v) P-adically closed.

Remark 7.1: Comparison with former definitions. Prestel and Roquette [PrR] use “p-
adically closed” instead of “P-adically closed of residue characteristic p”. The same
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expression, “p-adically closed”, is used in [HaJ2] for “P-adically closed field of type
(p, 1, 1)”.

The proposition below summarizes well known facts about P-adically closed fields
(see also [Pop1, Sec. 1]). We use F ≡ F ′ to denote elementary equivalence between
fields and (F, v) ≡ (F ′, v′) to denote elementary equivalence between valued fields.

Proposition 7.2:
(a) Qp is P-adically closed of type (p, 1, 1).
(b) Every P-adically closed valued field (L, v) is Henselian of characteristic 0.
(c) A field L is P -adically closed for at most one P -adic valuation.
(d) Suppose (K, v) is a P-adic field. Then (K, v) has a P-adically closed algebraic

extension (L,w) of the same type. Call (L,w) a P-adic closure of (K, v). If
(K, v) is discrete, then (L,w) is uniquely determined up to a K-isomorphism.

(e) In the notation of (d), L is minimal among all P -adically closed extensions of K.
(f) Let K be a subfield of a P-adically closed field L. Suppose K is algebraically closed

in L. Then, K is a P-adically closed field of the same type as L and K ≡ L.
Moreover, the restriction of the P-adic valuation of L to K is the P-adic valuation
of K.

(g) A P-adic field (L, v) is P-adically closed if and only if (L, v) is Henselian and
v(L×)/nv(L×) ∼= Z/nZ for every positive integer n.

(h) Suppose a field L is elementarily equivalent (in the language of fields) to a P-adically
closed field F . Then L is a P-adically closed field of the same type as F . Moreover,
let v (resp. w) be the P-adic valuation of L (resp. F ). Then (L, v) ≡ (F,w).

(i) Every finite extension of a P-adically closed field is a P-adically closed field of the
same residue characteristic.

(j) Every P-adically closed field of residue characteristic p is elementarily equivalent to
a finite extension of Qp,abs and also to a finite extension of Qp.

(k) Let L be a P-adically closed field. Then Gal(L) is a finitely generated prosolvable
group.

(l) Let L be a P-adically closed field and L0 = L ∩ Q̃. Then res: Gal(L) → Gal(L0) is
an isomorphism.

(m) Let F be a P-adically closed field and F ′ an arbitrary field. Suppose F ′ ≡ F . Then
Gal(F ′) ∼= Gal(F ).

(n) Let F be a P -adically closed field and F ′ an arbitrary field. Suppose Gal(F ′) ∼=
Gal(F ). Then F ′ is a P -adically closed field of the same type as F .

Proof of (a): Let K be a finite proper extension of Qp. Then [K : Qp] = ef where e is
the ramification index and f is the residue degree [CaF, p. 19, Prop. 3]. In particular,
e = v(p), where v is the unique normalized p-adic valuation of K. Also, the residue
fields of Qp and K are Fp and Fpf , respectively. Hence, e > 1 or f > 1. This proves
(a).

Proof of (b): That (L, v) is Henselian is stated in [PrR, p. 34, Thm. 3.1]. By (1a),
p = char(L̄v) is a prime number. Hence, either char(L) = 0 or char(L) = p. By (1b)
and (1c), v(p) 6= 0. Therefore, char(L) = 0.
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Proof of (c): Suppose v and v′ are P-adic valuations of L. By (b), both are Henselian.
Since their residue fields are not separably closed (by (1a)), F.K. Schmidt - Engler [Jar2,
Prop. 13.4] implies v is equivalent to v′.

Proof of (d): See [PrR, p. 37, Thm. 3.2].

Proof of (e): Let (L0, w0) be a P-adically closed field with K ⊆ L0 ⊆ L. Denote the
unique P -adically closed valuation of L by w. By (b), both (L,w) and (L0, w0) are
Henselian. Extend w0 to a valuation w1 of L. Then (L,w1) is Henselian.

Assume w1 is inequivalent to w. By (1a), both L̄w and L̄w1 are algebraic extensions
of finite fields. Hence, none of them is the residue field of a nontrivial valuation of the
other. This means, w and w1 are incomparable. Hence, by F.K. Schmidt - Engler [Jar,
Prop. 13.4], L̄w is separably closed , in contradiction to (1a). Therefore, w and w1 are
equivalent.

Thus, (L,w) extends (L0, w0) and (L0, w0) extends (K, v). Since (L,w) and (K, v)
have the same type, also (L0, w0) has the same type. In particular, the residue char-
acteristic of (L0, w0) is p. Since (L0, w0) is P-adically closed, (L0, w0) = (L,w), as
contended.

Proof of (f): [PrR, p. 38, Thm. 3.4] says K is P-adically closed of the same type as L.
Moreover, the P -adic valuation of K is the restriction of the P-adic valuation of L. By
[PrR, p. 86, Thm. 5.1], K ≡ L.

Proof of (g): See [PrR, p. 34, Thm. 3.1].

Proof of (h): Denote the P-adic valuation of F by v. Let (p, e, f) be the type of (F, v)
and π a prime element F . Consider the Kochen operator

γ(X) =
1
π

Xq −X
(Xq −X)2 − 1

,

with q = pf . Put γ(F ) = {γ(x) | x ∈ F and xq − x 6= ±1}. By [JaR, Lemma 4.1(iii)],
γ(F ) is the valuation ring of v.

Since L ≡ F , γ(L) is a valuation ring of L. Denote the corresponding valuation
by w. Then (L,w) ≡ (F, v). Since (F, v) satisfies (1), so does (L,w). Thus, (L,w) is
P-adic.

Finally note: The conditions of (g) on a P-adic field to be P-adically closed are
elementary in the language of valued fields. Consequently, (L,w) is P-adically closed.

Proof of (i): Let (L, v) be a P-adically closed field and L′ a finite extension of L.
Since L is Henselian, v uniquely extends to a valuation v of L′ and (L′, v) is Henselian.
Since both [L̄′v : L̄v] and

(
v((L′)×) : v(L×)

)
are finite, (L′, v) is a P -adic valued field

and v((L′)×)/nv((L′)×)) ∼= Z/nZ for every positive integer n. By (g), L′ is P-adically
closed.

Proof of (j): Let (L, v) be a P-adically closed field of residue characteristic p. By (b),
char(L) = 0. Put L0 = L ∩ Q̃. By (f), L0 is a P-adically closed field of the same type
as L and L0 ≡ L.
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Let v0 be the P -adic valuation of L0. By (b), (L0, v0) is Henselian. Moreover, v0|Q
is the p-adic valuation vp of Q. Hence, Qp,abs ⊆ L0. The relation [K : Qp,abs] = ef for
finite extensions K/Qp,abs and the finiteness of the type of L0 imply [L0 : Qp,abs] <∞.

It follows that F = L0Qp is a finite extension of Qp with F ∩ Q̃ = L0. By (i), F
is P-adically closed. By (f), F ≡ L0. Consequently, F ≡ L.

Proof of (k) and (l): Let L0 and F be as in the proof of (j). By [Jan, Satz 3.6], Gal(F ) is
finitely generated (see also [JRi2, p. 2]). By [CaF, p. 31, Cor. 1], Gal(F ) is prosolvable.
By Krasner’s Lemma, Q̃Qp = Q̃p, so res: Gal(F ) → Gal(L0) is an isomorphism and
Gal(L0) is finitely generated. Since L ≡ L0, every finite quotient G of Gal(L) is a finite
quotient of Gal(L0) (as the proof of [FrJ, Prop. 18.12] shows). It follows from [FrJ,
Props. 15.3 and 15.4] that the epimorphism res: Gal(L)→ Gal(L0) is an isomorphism.
Consequently, Gal(L) is prosolvable and finitely generated.

Proof of (m): By (h), F ′ is a P-adically closed field. Let F0 = F ∩ Q̃ and F ′0 = F ′ ∩ Q̃.
Then F0 ≡ F ′0. Hence, F0

∼= F ′0 [FrJ, Lemma 18.19]. By (l), Gal(F ) ∼= Gal(F0) and
Gal(F ′) ∼= Gal(F ′0). Therefore, Gal(F ) ∼= Gal(F ′).

Proof of (n): Efrat [Efr, Thm. A] (in the case p 6= 2) and Koenigsmann [Koe1, Thm. 4.1]
(in general) construct a Henselian valuation v′ of F ′ with char(F̄ ′v′) 6= 0. It follows from
[Pop1, E9] that F ′ is P-adically closed. Moreover, if F is a finite extension of Qp, then
so is F ′.

Lemma 7.3: For each prime number p the group Gal(Qp) is torsion free.

Proof: For p 6= 2 there is x ∈ Qp with x2 + p − 1 = 0 (Hensel’s lemma). For p = 2
there is x ∈ Q2 with x2 + 7 = 0 (use Hensel-Rychlik). Since both p− 1 and 7 are sums
of squares (namely 12 + · · ·+ 12), Qp is not formally real. Therefore, by Artin-Schreier,
Gal(Qp) is torsion free.

We summarize some well known facts about real closed fields and algebraically
closed fields of characteristic 0.

Remark 7.4: Algebraically closed and real closed fields. Let F be a finite extension of
R. Then either F = R or F = C. Suppose F ≡ F. If F = R, then F is real closed
and Gal(F ) = Z/2Z. If F = C, then F is algebraically closed and Gal(F ) is trivial.
Now let K be a subfield of F . Then res: Gal(F )→ Gal(F ∩ K̃) is an isomorphism and
F ≡ F ∩ K̃ [Pre, p. 53, Cor. 5.6 and p. 51, Cor. 5.3]. Conversely, if F ′ extends F and
F ′ ≡ F , then F ′ ∩ F̃ = F .

8. Construction of Big Quotients for Classical Groups

We say that a field F is classical local of characteristic 0 if F is either R, C, or a finite
extension of Qp for some p. A profinite group G is classical local of characteristic 0
if G is isomorphic to the absolute Galois group of a classical local field of characteristic
0.

Let F be a finite set of classical local fields of characteristic 0. Put

C = {Gal(F) | F ∈ F}.
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We have already mentioned that each Γ ∈ C is finitely generated and prosolvable (Propo-
sition 7.2(k)). We use the next result together with Lemma 7.3 to equip C with a system
of big quotients.

Notation 8.1: Let p be a prime number and G a profinite group. Denote the maximal
pro-p quotient of G by G(p). Let Gp be a p-Sylow subgroup of G.

Proposition 8.2: Let p, l be prime numbers and F be a finite extension of Qp. Then
F has a finite Galois extension F′ with the following properties:
(a) Let ∆ be a quotient of Gal(F) which has Gal(F′/F) as a quotient. Then, ∆p is not

a free pro-p group and ∆l is not a free pro-l group.
(b) Let p′ be a prime number, L an algebraic extension of Qp′ , and γ: Gal(F)→ Gal(L)

an epimorphism. Suppose there is an epimorphism β: Gal(L) → Gal(F′/F). Then
p = p′, γ is an isomorphism, and [F : Qp] = [L : Qp].

Proof: By Proposition 7.2(k), Gal(F) is finitely generated.

Construction of F′: Denote the compositum of all extensions of F of degree at
most max(p− 1, l− 1) by E0. In particular, E0 contains the roots of unity ζp and ζl of
order p and l, respectively.

By [HaJ2, Lemma 11.1], E0 has a finite extension E1 with this property:
(1) rank(Gal(E′1/E0)(p)) = rank(Gal(E0)(p)) for every Galois extension E′1 of E0 which

contains E1.

Since ζp ∈ E0, Gal(E0)(p) is not a free pro-p group [Koc, p. 96, Satz 10.3]. By
[HaJ2, Lemma 11.2], E0 has a proper finite p-extension E2,p with this property:
(2a) For every Galois extension E′2 of E0 containing E2,p, the group Gal(E′2/E0) is not

a free pro-p group.
Similarly, E0 has a proper finite l-extension E2,l satisfying this:
(2b) For every Galois extension E′2 of E0 containing E2,l, the group Gal(E′2/E0) is not

a free pro-l group.
Put E2 = E2,pE2,l.

Since Gal(Qp) is finitely generated, Qp has only finitely many extensions of degree
[F : Qp]. Let L1, . . . , Lk be all extensions of Qp satisfying this:
(3) [Lj : Qp] = [F : Qp], Gal(Lj) is a quotient of Gal(F), but Gal(Lj) 6∼= Gal(F),

j = 1, . . . , k (k may be 0).

For each j choose a finite Galois extension Fj of F such that Gal(Fj/F) is not a
quotient of Gal(Lj) [FrJ, Prop. 15.4]. Let F′ be the compositum of all extensions of F
of degree at most m = max([Ei : F], [Fj : F])i=1,2; j=1,...,k. Then F′ is a finite Galois
extension of F which contains E1, E2, F1, . . . , Fk.

Proof of (a): Let ∆ be as in (a). Then ∆ ∼= Gal(M/F) for some Galois extension
M of F. Since Gal(F′/F) is a quotient of ∆, there is a Galois extension F′′ of F in M
with Gal(F′′/F) ∼= Gal(F′/F). In particular, F′′ is the compositum of extensions of F of
degree at most m, so F′′ ⊆ F′. Since [F′′ : F] = [F′ : F], we have F′ = F′′ ⊆M .

Assume Gal(M/F)p is a free pro-p group. Then Gal(M/E0)p is also a free pro-p
group [FrJ, Cor. 20.38], so cdpGal(M/E0) ≤ 1 [Rib, p. 235, Thm. 6.5]. Therefore, by
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[Rib, p, 255, Thm. 3.2], Gal(M/E0)(p) is pro-p free. This contradiction to (2a) proves
that Gal(M/F)p is not a free pro-p group. Similarly, Gal(M/F)l is not a free pro-l
group.

Proof of (b): Let p′, L, γ, and β be as in (b). Denote the fixed field of Ker(γ)
(resp. Ker(β ◦ γ)) in Q̃p by N (resp. F ′). Then F ′ is a Galois extension of F in N
satisfying Gal(F ′/F) ∼= Gal(F′/F). In particular, F ′ is a compositum of extensions of F
of degree at most m. Hence, F ′ ⊆ F′. Since [F ′ : F] = [F′ : F], we have F ′ = F′.

By construction, E0 ⊂ E2,p ⊆ F′ ⊆ N and E2,p/E0 is a proper p-extension, so

p divides [N : E0]. Let E(p)
0 be the maximal pro-p extension of E0. Then Gal(N ∩

E
(p)
0 /E0) is the maximal pro-p quotient of Gal(N/E0). Also, E2,p ⊆ N ∩ E(p)

0 . Hence,

by (2a), Gal(N ∩ E(p)
0 /E0) is not a free pro-p group. It follows from [Rib, p. 255] that

cdpGal(N/E0) > 1.
Let L0 be the fixed field of γ(Gal(E0)) in Q̃p′ . Then Gal(N/E0) ∼= Gal(L0).

Hence, by the preceding paragraph, cdpGal(L0) > 1. This implies, p∞ - [L0 : Qp′ ]
[Rib, p. 291–292]. Also, L0 is the compositum of all extensions of L of degree at most
max(p− 1, l − 1). In particular, ζp ∈ L0. By (1) applied to N instead of to E′1 and by
[Neu, Satz 4]

(4) rank(Gal(L0)(p)) = rank(Gal(N/E0)(p)) = rank(Gal(E0)(p)) = 2 + [E0 : Qp].

In particular, rank(Gal(L0)(p)) ≥ 3. Hence, p′ = p and rank(Gal(L0)(p)) = 2+[L0 : Qp]
[Neu, Satz 4]. It follows from (4) that [E0 : Qp] = [L0 : Qp]. Since [E0 : F] = [L0 : L],
this implies [F : Qp] = [L : Qp].

Finally assume Gal(L) 6∼= Gal(F). By assumption, Gal(L) is a quotient of Gal(F).
Hence, L = Lj with 1 ≤ j ≤ m. By construction, Gal(Fj/F) is not a quotient of Gal(L).
Since F ⊆ Fj ⊆ F′, this implies Gal(F′/F) is not a quotient of Gal(L), in contradiction
to our assumption. Thus, Gal(F) ∼= Gal(L). Consequently, by [FrJ, Prop. 15.3], γ is an
isomorphism.

The following result gives sufficient conditions for a finite set C of finitely generated
profinite groups to have a system of big quotients (Definition 6.4):

Proposition 8.3: Let C be a finite set of finitely generated profinite groups. Suppose
each Γ ∈ C is finite or prosolvable. For each infinite Γ ∈ C let Γ̄ be a finite quotient of
Γ and for each finite Γ ∈ C let Γ̄ = Γ. Suppose there exists a prime number l such that

for every infinite Γ ∈ C and every profinite group ∆ with epimorphisms Γ
γ−→ ∆ −→ Γ̄

the following holds:
(5a) Γl is torsion free.
(5b) ∆l is not a free pro-l group.
(5c) There is a prime number p 6= l such that ∆p is not a free pro-p group.
(5d) If ∆ is isomorphic to a subgroup of some Γ′ ∈ C, then γ is an isomorphism.

Then {Γ̄ | Γ ∈ C} is a system of big quotients for C.
Proof: Let {∆j | j ∈ J} be a finite collection of profinite groups of type C and let e
be a positive integer. Put B∗ = F̂e ∗

∏
∗ j∈J ∆j . Let Γ be a group in C and ∆ a closed

subgroup of B∗ with epimorphisms Γ
γ−→ ∆→ Γ̄.
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First suppose ∆ is finite. By [HeR, p. 160, Thm. 1], ∆ is conjugate to a closed
subgroup of some ∆j . By (5d), γ is an isomorphism.

Now suppose ∆ is prosolvable. Let l be a prime number as in the proposition. By
the first paragraph and (5a) (applied to ∆j instead of to Γ), no element of B∗ has order
l. In particular, ∆l is torsion free. By [Pop3, Thm. 2(2)], ∆ is conjugate to a subgroup
of some ∆j . Again, by (5d), γ is an isomorphism.

Lemma 8.4: Let F be a finite set of classical local fields of characteristic 0. Put
C = {Gal(F) | F ∈ F}. Then C has a system of big quotients.

Proof: Let S be the set of all residue characteristics of F ∈ F . Choose a prime number
l not in S∪{2}. By Proposition 7.2(k) and Remark 7.4, each Γ ∈ C is finitely generated
and prosolvable. Moreover, Γl is torsion free (Lemma 7.3). Omit C from F , if necessary,
to assume 1 /∈ C. For each Γ ∈ C choose F ∈ F with Γ ∼= Gal(F). If Γ is finite (i.e. F = R)
choose Γ̄ = Γ. If Γ is infinite and F is a finite extension of Qp, let Γ̄ = Gal(F′/F), where
F′ is the finite extension of F given by Proposition 8.2. We apply Lemma 7.3 to prove
that {Γ̄ | Γ ∈ C} is a system of big quotients for C in the sense of Definition 6.4:

Since each Γ ∈ C is an absolute Galois group, Γl is torsion free. Let F ∈ F ,
Γ = Gal(F), ∆ be a profinite group, and Γ

γ−→ ∆ → Γ̄ epimorphisms. Let p be the
residue characteristic of F. By Proposition 8.2(a), ∆p is not a free pro-p group and ∆l

is not a free pro-l group. Finally, suppose ∆ is isomorphic to a subgroup of some Γ′ ∈ C.
Identify ∆ with Gal(L) where L is an algebraic extension of Qp′ . By Proposition 8.2, γ
is an isomorphism. Thus, all parts of Condition (4) hold. By Proposition 8.3, C has a
system of big quotients.

9. Spaces of Classically Local Fields

Let F be a finite set of classical local fields of characteristic 0 and let K be a field.
For each F ∈ F let AlgExt(K,F) be the set of all algebraic extensions of K which are
elementarily equivalent to F. Put AlgExt(K,F) =

⋃
F∈F AlgExt(K,F). Call a field

K pseudo-F-closed (abbreviated PFC) if it is pseudo-AlgExt(K,F)-closed; that is,
V (K) 6= ∅ for each smooth absolutely irreducible variety V satisfying V (F ) 6= ∅ for all
F ∈ AlgExt(K,F).

We call a profinite group G (strongly) F-projective, if G is (strongly) G-
projective, where G =

⋃
F∈F{H ∈ Subgr(G) | H ∼= Gal(F)}.

Our first main result is that “K is PFC” implies “Gal(K) is strongly
F-projective”. The only still missing ingredient of the proof is the strict closedness
of AlgExt(K,F).

Lemma 9.1: Let K be a field and F a finite extension of Qp or of R. Then AlgExt(K,F)
is strictly closed in AlgExt(K).

Proof: We prove the theorem in the case where F is a finite extension of Qp. The same
proof applies to the case where F is R or C. We only have to replace the references to
Proposition 7.2 by references to Remark 7.4. By Proposition 7.2(f) and Remark 7.4,
F ≡ F ∩ Q̃. Hence, we may replace F by F ∩ Q̃.
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So, assume without loss, F is a finite extension of Qp,alg. By [FrJ, Lemma 18.19],
AlgExt(Q,F) = {Fσ | σ ∈ Gal(Q)}. Thus, AlgExt(Q,F) is the image of the strictly
continuous map Gal(Q)→ AlgExt(Q) given by σ 7→ Fσ. Since both spaces are profinite,
AlgExt(Q,F) is strictly closed in AlgExt(Q).

Now put X = AlgExt(K,F). Consider F ∈ StrictClosure(X ). Then, for every
finite Galois extension N of K, WN = {E ∈ X | E ∩N = F ∩N} 6= ∅. By Proposition
7.2(m), Gal(E) ∼= Gal(F) for each E ∈ X . Therefore,
(1) every finite quotient of Gal(F ) is a finite quotient of Gal(F).

Conversely, let F0 = F ∩ Q̃. Observe that the map ϕ: AlgExt(K) → AlgExt(Q)
given by L 7→ L∩ Q̃ is strictly continuous. It maps AlgExt(K,F) into AlgExt(Q,F) (by
Proposition 7.2(f)). Hence, F0 = ϕ(F ) ∈ StrictClosure(AlgExt(Q,F)). By the second
paragraph of the proof, F0 ∈ AlgExt(Q,F). Thus, F0 ≡ F. Hence, by Proposition
7.2(m), Gal(F0) ∼= Gal(F), so Gal(F) is an image of Gal(F ). In particular, every finite
quotient of Gal(F) is a finite quotient of Gal(F ). Combining with (1), we conclude
that Gal(F ) and Gal(F) have the same finite quotients. By Proposition 7.2(k), Gal(F)
is finitely generated. Hence, by [FrJ, Prop. 15.4], Gal(F ) ∼= Gal(F). It follows that
Gal(F ) is finitely generated and isomorphic to Gal(F0). Since res: Gal(F ) → Gal(F0)
is surjective, it is bijective [FrJ, Prop. 15.3].

Next observe that the intersection of finitely many sets WN contains a set of this
form. Hence the intersection is nonempty. Therefore, there is an ultrafilter D of X
which contains each WN . Put F ∗ =

∏
E∈X E/D. By the fundamental property of

ultraproducts, F ∗ ≡ F [FrJ, Cor. 6.12].
Embed F in F ∗ by mapping each x ∈ F onto the element (xE)/D where xE is

x if x ∈ E and xE = 0 otherwise. Put F ∗0 = F ∗ ∩ Q̃. Then, by Proposition 7.2(f),
F0 ≡ F ≡ F ∗ ≡ F ∗0 . Also, F0 ⊆ F ∗0 . Let x ∈ F ∗0 . Put f = irr(x,Q). Since F0 ≡ F ∗0 ,
the number of roots of f in F0 is equal to the number of roots of f in F ∗0 . Hence,
x ∈ F0. Therefore, F0 = F ∗0 . By Proposition 7.2(l), res: Gal(F ∗) → Gal(F0) is an
isomorphism. Hence, so is res: Gal(F ∗ ∩ K̃) → Gal(F0). Since F ⊆ F ∗ ∩ K̃ and
res: Gal(F )→ Gal(F0) is an isomorphism, we have F = F ∗ ∩ K̃. Again, by Proposition
7.2(f), F ≡ F ∗. Consequently, F ∈ X , as desired.

In order to formulate the first main result of this work we have to impose a certain
restriction on F .

Remark 9.2: Isomorphism of Galois groups of P -adic fields. We say F is closed under
Galois isomorphism if for all classical local fields F,F′ the following holds:
(1) F ∈ F and Gal(F) ∼= Gal(F′) implies F′ ∈ F .

Actually, by Remark 7.4, it suffices to impose Condition (2) only for a finite
extension F of Qp and a finite extension F′ of Qp′ . By Proposition 8.2, Gal(F) ∼= Gal(F′)
implies p = p′ and [F′ : Qp] = [F : Qp]. So, for each F ∈ F there are only finitely many
fields F′ with Gal(F′) ∼= Gal(F).

Section 2 of [JRi1] gives for each p examples of nonisomorphic extensions F and F ′

of Qp with Gal(F ) ∼= Gal(F ′). Indeed, [JRi1, p. 2, Thm.] and [Rit, p. 281, Thm.] prove
for arbitrary finite extensions F, F ′ of Qp (if p = 2, the theorem assumes

√
−1 ∈ F )
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that Gal(F ) ∼= Gal(F ′) if and only if [F : Qp] = [F ′ : Qp] and F ∩ Qp,ab = F ′ ∩ Qp,ab.
Here Qp,ab is the maximal abelian extension of Qp.

Finally consider classical local fields F and F ′ of characteristic 0. Suppose F is
elementarily equivalent to F ′. Then F is isomorphic to F ′. Indeed, we may assume F
is a finite extension of Qp and F ′ is a finite extension of Qp′ . By 7.2(h), p = p′. Let
F0 = F ∩ Q̃ and F ′0 = F ′ ∩ Q̃. By 7.2(f), F0 ≡ F and F ′0 ≡ F ′. Hence, by [FrJ, Lemma
18.19], F0

∼= F ′0. We may therefore assume F0 = F ′0 and F0 is a finite extension of
Qp,alg. But then the isomorphism res: Gal(Qp) → Gal(Qp,alg) (see 7.2(l)) maps both
Gal(F ) and Gal(F ′) onto Gal(F0). Consequently F = F ′.

Lemma 9.3: Let F be a finite set of classical local fields of characteristic 0. Suppose
F is closed under Galois isomorphism. Then for every field K we have

(3)
⋃

F∈F
{F ∈ AlgExt(K) | F ≡ F} =

⋃
F∈F
{F ∈ AlgExt(K) | Gal(F ) ∼= Gal(F)}.

Proof: By Proposition 7.2(m), the left hand side of (3) is contained in its right hand
side. Conversely, let F ∈ AlgExt(K) and F ∈ F be fields with Gal(F ) ∼= Gal(F). If F is
real closed, then so is F and F ≡ F (Remark 7.4). Otherwise, F is a finite extension of
Qp for some p. By Proposition 7.2(n), F is elementarily equivalent to a finite extension
F′ of Qp. Hence, by Proposition 7.2(m), Gal(F′) ∼= Gal(F ) ∼= Gal(F). Since F is closed
under Galois isomorphism, F′ ∈ F . Consequently, F belongs to the left hand side of
(3).

Theorem 9.4: Let F be a finite set of classical local fields of characteristic 0 not
containing C which is closed under Galois isomorphism. Let K be a PFC field. Put

G =
⋃

F∈F
{Gal(F ) | F ∈ AlgExt(K) and Gal(F ) ∼= Gal(F)}.

Then Gal(K) is strongly F-projective and (Gal(K),Gmax) is a proper projective group
structure.

Proof: Let C = {Gal(F) | F ∈ F}. For each Γ ∈ C let

GΓ =
⋃
F∈F

Gal(F)∼=Γ

{Gal(F ) | F ∈ AlgExt(K,F)}.

By Lemma 9.1, GΓ is strictly closed in Subgr(Gal(K). By Lemma 9.3, G =
⋃

Γ∈C GΓ,
so G is strictly closed in Subgr(Gal(K)). Hence, by [HJPa, Remark 1.2], G is étale
compact. By Proposition 3.1, Gal(K) is G-projective. By Lemma 8.4, C has a system
of big quotients. It follows from Proposition 6.5 that Gal(K) is strongly G-projective
and (Gal(K),Gmax) is a proper projective group structure.
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10. Realization of Strongly Projective Groups as Absolute Galois Groups

The second main result of this work is a converse to Theorem 9.4. We consider again a
finite set F of classical local fields of characteristic 0 not containing C. We prove that
each F-projective group G which satisfies the group theoretic analog of Lemma 9.1 is
isomorphic to Gal(K) for some PFC field K. Moreover, we construct K equipped with
a “field-valuation structure” satisfying the “block approximation condition”. We recall
the definition of these concepts from [HJPa]:

A field structure is data K = (K,X,Kx)x∈X where K is a field, X is a profinite
space with a continuous action of Gal(K) on X, and for each x ∈ X, Kx is separable
algebraic extension of K satisfying the following conditions:
(1a) For each finite separable extension L of K the set XL = {x ∈ X | L ⊆ Kx} is

open.
(1b) Kxσ = Kσ

x for all x ∈ X and σ ∈ Gal(K).
(1c) {σ ∈ Gal(K) | xσ = x} ⊆ Gal(Kx).

Thus, Gal(K) = (Gal(K), X,Gal(Kx))x∈X is a group structure called the absolute
Galois structure associated with K [HJPa, Section 6].

Denote the set of all valuations, including the trivial one, of a field L by Val(L).
A subbasis for the patch topology of Val(L) consists of all sets

Vala(K) = {v ∈ Val(K) | v(a) > 0}, Val′a(K) = {v ∈ Val(K) | v(a) ≥ 0}

with a ∈ K.
A field-valuation structure is a structure K = (K,X,Kx, vx)x∈X satisfying the

following conditions:
(2a) (K,X,Kx)x∈x is a field structure.
(2b) vx is a valuation of Kx satisfying vxσ = vσ

x for all x ∈ X and σ ∈ Gal(K). Here
vσ

x (uσ) = vx(u) for each u ∈ Kx.
(2c) For each finite separable extension L of K define a map νL: XL → Val(L) by

νL(x) = vx|L. Then νL is continuous.

We call K Henselian if (Kx, vx) is Henselian for each x ∈ X.
The absolute Galois structure associated with K is the same associated with

the underlying field structure, namely Gal(K) = (Gal(K), X,Gal(Kx))x∈X . We call K
proper if Gal(K) is proper.

Definition 10.1: Block approximation condition. A block approximation problem
for a field-valuation structure K = (K,X,Kx, vx)x∈X is data (V,Xi, Li,ai, ci)i∈I0 sat-
isfying this:
(3a) (Gal(Li), Xi)i∈I0 is a special partition of Gal(K): For each i ∈ I0 the set Xi is

open-closed in X, for all x ∈ Xi we have Li ⊆ Kx, Gal(Li) = {σ ∈ Gal(K) | Xσ
i =

Xi}, and X =
⋃
· i∈I0

⋃
· ρ∈Ri

Xρ
i , where Ri is any subset of Gal(K) satisfying

Gal(K) =
⋃
· ρ∈Ri

Gal(Li)ρi.
(3b) V is a smooth affine variety over K.
(3c) ai ∈ V (Li).
(3d) ci ∈ K×.
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A solution of the problem is a point a ∈ V (K) with vx(a − ai) > vx(ci) for all
i ∈ I0 and x ∈ Xi. We say K satisfies the block approximation condition if each
block approximation problem for K is solvable.

The block approximation condition has several interesting consequences:

Proposition 10.2 ([HJPa, Proposition 12.3]): Let K = (K,X,Kx, vx)x∈X be a Hen-
selian field-valuation structure satisfying the block approximation condition.
(a) Put K = {Kx | x ∈ X}. Then K is PKC.
(b) Suppose x1, . . . , xn ∈ X lie in distinct Gal(K)-orbits. Then vx1 |K , . . . vxn

|K satisfies
the weak approximation theorem.

(c) Suppose x, y ∈ X lie in distinct Gal(K)-orbits. Then vx|K and vy|K are indepen-
dent.

(d) Suppose X has more than one Gal(K)-orbit. Then the trivial valuation is not in
νK(X).

(e) For each x ∈ X, K is vx-dense in Kx; and
(f) (Kx, vx) is a Henselian closure of (K, vx|K).

Theorem 10.3: Let F be a finite set of classical local fields of characteristic 0 and G
an F-projective group. Let

C = {Gal(F) | F ∈ F} and G = Subgr(G, C) =
⋃
Γ∈C

Subgr(G,Γ).

Suppose:
(5a) C /∈ F .
(5b) F is closed under Galois isomorphism.
(5c) Subgr(G,Γ) is strictly closed in Subgr(G) for each Γ ∈ C.
Then there is a proper field-valuation structure K = (K,X,Kx, vx)x∈X such that:
(6a) K satisfies the block approximation condition.
(6b) There is an isomorphism ϕ: (G,Gmax)→ Gal(K); in particular G ∼= Gal(K).
(6c) {Kx | x ∈ X} = AlgExt(K,F)min.
(6d) K is PFC.

Proof: By Lemma 8.4, C has a system of finite big quotients. By Proposition 7.2(k),
each Γ ∈ C is finitely generated and prosolvable. Finally, by assumption, G is G-
projective. Hence, by Proposition 6.5, G = (G,Gmax) is a proper projective group
structure. Moreover, Proposition 6.5 gives a homomorphism δ: G →

∏
∗ Γ∈C Γ which

maps each H ∈ G injectively into a conjugate of some Γ ∈ C. By assumption, each Γ ∈ C
is the absolute Galois group of a Henselian algebraic extension of Q or a real closure of Q.
Therefore, by [Gey, Thm. 10.1], we may identify

∏
∗ Γ∈C Γ with Gal(D) for some algebraic

extension field D of Q. Let E be the fixed field of δ(G) in Q̃. Then δ: G → Gal(E) is
an epimorphism of profinite groups which extends to a cover δ: G → Gal(E) of group
structures, with E being a field structure whose underlying field is E. Indeed, E is the
associated field structure to the quotient structure (G,Gmin)/Ker(δ) [HJPa, Example
2.5]. Note that Gal(E) need not be proper.
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Put X = Gmax. By [HJPa, Thm. 15.4], there is a proper Henselian field-valuation
structure K = (K,X,Kx, vx)x∈X which satisfies the block approximation condition and
there is an isomorphism ϕ: G→ Gal(K) such that
(7a) E = K

⋂
Q̃, Eδ(x) = Kx ∩ Q̃, and vx is trivial on Eδ(x) for all x ∈ X.

(7b) resK̃/Ẽ ◦ ϕ = δ.

By Lemma 9.3, F ∈ AlgExt(K,F) if and only if Gal(F ) ∼= Gal(F) for some F ∈
F . Therefore the isomorphism ϕ: G → Gal(K) establishes, via Galois correspon-
dence, a bijection of Subgr(G, C) onto AlgExt(K,F) which maps Subgr(G, C)max onto
AlgExt(K,F)min. This proves (6c)

By Proposition 10.2(a), K is pseudo-{Kx | x ∈ X}-closed. Therefore, by (6c), K
is PFC.

Problem 10.4: Is it possible to remove the condition “F is closed under Galois iso-
morphism” from Theorem 10.3?
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