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Introduction

A central problem in Galois theory and Field Arithmetic is the characterization of the

absolute Galois groups among all profinite groups. To fix notation, let K be a field.

Denote its separable closure by Ks and its absolute Galois group by Gal(K) =

Gal(Ks/K). Then Gal(K) is a profinite group. An arbitrary profinite group G is said

to be an absolute Galois group if G ∼= Gal(K) for some field K.

A sufficient condition for a profinite group G to be an absolute Galois group is

that G is projective. This means that each epimorphism G′ → G of profinite groups

has a section. Indeed, there is a Galois extension L/K with Gal(L/K) ∼= G [Lep].

Each section of res: Gal(K) → Gal(L/K) gives a separable algebraic extension F with

Gal(F ) ∼= G. Lubotzky and v. d. Dries [FrJ, Cor. 20.16] improve on that by constructing

F with the PAC property. Conversely, the absolute Galois group of each PAC field is

projective [FrJ, Thm. 10.17].

The goal of this work is to generalize this characterization of projective groups by

proving Theorem A and Theorem B below:

Theorem A: Let K be a field, vi a valuation of K, and Ki a Henselian closure of

(K, vi), i = 1, . . . , n. Suppose v1, . . . , vn are independent and K is pseudo closed with

respect toK1, . . . ,Kn. Then Gal(K) is projective with respect to Gal(K1), . . . ,Gal(Kn).

Here K is pseudo closed with respect to K1, . . . ,Kn if the following holds: Every

absolutely irreducible variety V over K with a simple Ki-rational point, i = 1, . . . , n,

has a K-rational point.

A profinite group G is projective with respect to n closed subgroups G1, . . . , Gn

if the following holds: Suppose G′ is a profinite group, G′1, . . . , G
′
n are closed subgroups

and α: G′ → G is an epimorphism which maps G′i isomorphically onto Gi, i = 1, . . . , n.

Then there are an embedding α′: G→ G′ with α◦α′ = idG and elements a1, . . . , an ∈ G′

with α′(Gi) = (G′i)
ai , i = 1, . . . , n.

Theorem B: Let G be a profinite group and G1, . . . , Gn closed subgroups. Suppose

each Gi is an absolute Galois group and G is projective with respect to G1, . . . , Gn.

Then there are a field K, independent valuations v1, . . . , vn of K, and a Henselian
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closure Ki of (K, vi), i = 1, . . . , n, with these properties: K is pseudo closed with

respect to K1, . . . ,Kn and has the approximation property with respect to v1, . . . , vn,

and there is an isomorphism Gal(K)→ G that maps Gal(Ki) onto Gi, i = 1, . . . , n.

The approximation property is defined as follows: Let V be an absolutely

irreducible variety over K. Given a simple Ki-rational point ai of V and ci ∈ K×,

i = 1, . . . , n, there is an a ∈ V (K) with vi(a− ai) > vi(ci), i = 1, . . . , n.

Special cases of Theorems A and B are consequences of the main result of [HaJ].

That paper characterizes a p-adically projective group as the absolute Galois group of

a PpC field. In particular, that result implies Theorems A and B when G1, . . . , Gn are

isomorphic to Gal(Qp) for a fixed prime number p.

There is an overlapping between our results and those of [Pop]. An application of

[Pop, Thm. 3.3] to the situation of Theorem A gives a weaker result than the projectivity

in our sense: Let ϕ: G → A and ψ: B → A be epimorphisms with B finite. Suppose

B1, . . . , Bn are subgroups of B and ψ maps Bi isomorphically onto ϕ(Gi), i = 1, . . . , n.

Then there is a homomorphism γ: G→ B with ψ ◦ γ = ϕ. However, no extra condition

like ‘γ(Gi) is conjugate to Bi’ is proved. In other words, [Pop, Thm. 3.3] does not prove

G is, in his terminology, ‘strongly projective’.

Likewise, a somewhat weaker version of Theorem B can be derived from [Pop] and

[HeP]. In the situation of Theorem B we may first use [HJK, Prop. 2.5] to construct

fields E,E0, E1 . . . , En such that Gal(E0) is the free profinite group F̂ of rank equal to

rank(G), Gal(Ei) ∼= Gi, i = 1, . . . , n, Ei is a separable algebraic extension of E, and⋂n
i=0Ei = E. Then there is an epimorphism ψ: G∗ = F̂ ∗

∏
∗ ni=1Gi → Gal(E) which

maps Gi isomorphically onto Gal(Ei), i = 1, . . . , n. This gives a ‘Galois approximation’

in the sense of [Pop, §2]. Using [Pop, Thm. 3.4], we can find a perfect field K, algebraic

extensionsK1, . . . ,Kn, and an isomorphism λ: G→ Gal(K) such that λ(Gi) = Gal(Ki),

i = 1, . . . , n, and K is pseudo closed with respect to K1, . . . ,Kn. However, unlike

Theorem B, [Pop, Thm. 3.4] does not equip the Ki’s with valuations. Furthermore, the

approximation property of Theorem B allows Ki to be algebraically closed, so it does

not follow from [HeP, Thm. 1.9]. Thus, Theorem B is an improvement of what can be

derived from [Pop] and [HeP].
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The present work is a follow up of an earlier work [HJK] of the authors with

Jochen Koenigsmann. Theorems A and B (except for the approximation property)

appear also in [Koe]. While [Koe] uses model theoretic methods to prove Theorem A,

our proof restricts to methods of algebraic geometry (Propositions 2.1 and 3.2) and is

much shorter.

Finally, [HJP] gives a far reaching generalization of Theorems A and B. Instead of

finitely many local objects (i.e. subgroups, algebraic extensions, and valuations), [HJP]

deals with families of local objects subject to certain finiteness conditions. Unfortu-

nately, [HJP] is a very long and complicated paper whose technical arguments may

disguise the basic ideas lying underneath the proof. Some of these ideas, like “unira-

tionally closed n-fold field structure” can be accessed much faster in this short note.
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1. Relatively projective profinite groups

Consider a profinite group G and closed subgroups G1, . . . , Gn (with n ≥ 0). Refer to

G = (G,G1, . . . , Gn) as a group structure (or as an n-fold group structure if n is

not clear from the context). An embedding problem for G is a tuple

(1) E = (ϕ: G→ A, ψ: B → A, B1, . . . , Bn)

where ϕ is a homomorphism and ψ an epimorphism of profinite groups, B1, . . . , Bn are

subgroups of B, and ψ maps Bi isomorphically onto ϕ(Gi), i = 1, . . . , n. When B is

finite, we say E is finite. A weak solution of (1) is a homomorphism γ: G→ B with

ψ ◦ γ = ϕ and γ(Gi) ≤ Bbi
i for some bi ∈ B, i = 1, . . . , n. Note that ψ maps Bbi

i

isomorphically onto ϕ(Gi)ψ(bi). So, γ(Gi) = Bbi
i .

We say G is projective if each finite embedding problem E for G where ϕ is an

epimorphism has a weak solution (cf. [Har, Def. 4.2]). Then every finite embedding

problem E has a weak solution. Indeed, replace A by ϕ(G) and B by ψ−1(ϕ(G)) to

obtain an embedding problem E ′ for G with epimorphisms. By assumption, E ′ has a

solution γ. This γ is also a solution of E .

Example 1.1: Let G0, G1, . . . , Gn be profinite groups with G0 being free. Put G =∏
∗ nk=0Gk. Then (G,G1, . . . , Gn) is projective.

Lemma 1.2: Suppose G = (G,G1, . . . , Gn) is a projective group structure. Then every

embedding problem (1) for G in which A is finite and rank(B) ≤ ℵ0 is weakly solvable.

Proof: Assume without loss that ϕ is an epimorphism. Then there is an inverse system

of epimorphisms

B
πj−→ B(j) ψj−→ A, B(j+1) ψj+1,j−→ B(j), j = 0, 1, 2, 3, . . .

such that B(0) = A, π0 = ψ, the B(j) are finite groups, ψj+1 = ψj ◦ ψj+1,j , πj =

ψj+1,j ◦ πj+1, and ψ: B → A is the inverse limit of ψj : B(j) → A. For all i and j let

B
(j)
i = πj(Bi).

Suppose by induction that γj : G→ B(j) is a homomorphism such that ψj ◦γj = ϕ

and γj(Gi) = (B(j)
i )bij with bij ∈ B(j), i = 1, . . . , n. Choose b′i,j+1 ∈ B(j+1) with
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ψj+1,j(b′i,j+1) = bij . Then ψj+1,j maps (B(j+1)
i )b

′
i,j+1 isomorphically onto (B(j)

i )bij . So,

(
γj : G→ B(j), ψj+1,j : B(j+1) → B(j), (B(j+1)

1 )b
′
1,j+1 , . . . , (B(j+1)

n )b
′
n,j+1

)
is a finite embedding problem for G.

Since G is projective, there is a homomorphism γj+1: G → B(j+1) with ψj+1,j ◦

γj+1 = γj and γj+1(Gi) = (B(j+1)
i )bi,j+1 , for some bi,j+1 ∈ B(j+1), i = 1, . . . , n. By

assumption on γj , we have ψj+1 ◦ γj+1 = ϕ.

The homomorphisms γj define a homomorphism γ: G → B with πj ◦ γ = γj ,

j = 0, 1, 2, . . . . So, ψ ◦ γ = ϕ.

Fix i between 1 and n. Let Cj = {b ∈ B(j) | γj(Gi) = (B(j)
i )b}. By construction,

Cj is a nonempty finite subset of B(j). Moreover, ψj+1,j(Cj+1) ⊆ Cj . Hence, there is

bi ∈ B with πj(bi) ∈ Cj for j = 0, 1, 2, . . . . For each j we have πj(γ(Gi)) = πj(Bbi
i ).

Hence, γ(Gi) = Bbi
i . Therefore, γ is a weak solution of (1).

Lemma 1.3: Let G = (G,G1, . . . , Gn) be a projective group structure. Suppose g ∈ G

and Gi ∩Ggj 6= 1. Then i = j and g ∈ Gi.

Proof: There is an epimorphism ϕ0: G → A0 with A0 finite and ϕ0(Gi ∩ Ggj ) 6= 1.

Consider an arbitrary epimorphism ϕ: G → A with A finite and Ker(ϕ) ≤ Ker(ϕ0).

Then ϕ(Gi ∩Ggj ) 6= 1. Thus, there are gi ∈ Gi and gj ∈ Gj with gi = ggj and ϕ(gi) 6= 1.

Let Ak = ϕ(Gk), k = 1, . . . , n. Put A0 = A. Consider the free profinite product

A∗ =
∏
∗ nk=0Ak together with the epimorphism ψ: A∗ → A whose restriction to Ak is

the identity map, k = 0, 1, . . . , n.

The group A∗ is infinite, but its rank is finite. Since G is projective, Lemma 1.2

gives a homomorphism γ: G→ A∗ with ψ ◦ γ = ϕ and γ(Gk) = A
a∗k
k for some a∗k ∈ A∗;

in particular, ψ(Aa
∗
k

k ) = ϕ(Gk) = Ak, k = 1, . . . , n.

By the first paragraph, γ(gi) = γ(gj)γ(g) and ψ(γ(gi)) = ϕ(gi) 6= 1, which implies

γ(gi) 6= 1. Hence, Aa
∗
i
i ∩ A

a∗jγ(g)

j 6= 1 in A∗. Using the epimorphism A∗ →
∏n
k=0Ak

which is the identity map on each Ai, we find that i = j. By [HeR, Thm. B’], γ(g) ∈ Aa
∗
i
i .

So, ϕ(g) ∈ ψ(Aa
∗
i
i ) = ϕ(Gi). Since this holds for all ϕ as above, g ∈ Gi.
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Lemma 1.4: Suppose G is a projective group structure. Then every finite embedding

problem (1) has a solution γ with γ(Gi) = Bbi
i and ψ(bi) = 1, i = 1, . . . , n.

Proof: Without loss ϕ is an epimorphism and Gi 6= 1, i = 1, . . . , n. Let i be between

1 and n. Consider g ∈ GrGiKer(ϕ). In particular, g /∈ Gi. By Lemma 1.3, Ggi 6= Gi.

Hence, there is an open normal subgroup Ni,g ≤ Ker(ϕ) with GgiNi,g 6= GiNi,g. The

collection of all open sets gNi,g covers the compact set GrGiKer(ϕ). Hence, there are

g1, . . . , gm, depending on i, with

(2) GrGiKer(ϕ) =
m⋃
j=1

gjNi,gj
.

Let N =
⋂
i,j Ni,gj

. This is an open normal subgroup of G. Put Â = G/N and let

ϕ̂: G → Â be the canonical homomorphism. Then there is an epimorphism α: Â → A

with α ◦ ϕ̂ = ϕ. Let Ai = ϕ(Gi) and Âi = ϕ̂(Gi).

Consider a ∈ ArAi. Choose g ∈ G with ϕ(g) = a. Then g ∈ GrGiKer(ϕ). So,

in the notation of (2), g ∈ gjNi,gj for some j. By definition, Ggj

i Ni,gj 6= GiNi,gj . So,

GgiNi,gj
6= GiNi,gj

. Hence, GgiN 6= GiN and therefore Âϕ̂(g)
i 6= Âi. Consequently,

(3) if â ∈ Â and Ââi = Âi, then α(â) ∈ Ai.

Consider now the fiber product B̂ = B ×A Â. Let β: B̂ → B and ψ̂: B̂ → Â be

the corresponding projections. For each i let B̂i = {b̂ ∈ B̂ | ψ̂(b̂) ∈ Âi and β(b̂) ∈ Bi}.

Then B̂i is a subgroup of B̂ which ψ̂ maps isomorphically onto Âi. Also, β(B̂i) = Bi,

i = 1, . . . , n. So,

(ϕ̂: G→ Â, ψ̂: B̂ → Â, B̂1, . . . , B̂n)

is a finite embedding problem for G.

By assumption, there is a homomorphism γ̂: G → B̂ such that ψ̂ ◦ γ̂ = ϕ̂ and

γ̂(Gi) = B̂b̂
′
i with b̂′i ∈ B̂, i = 1, . . . , n. Let γ = β ◦ γ̂, b′i = β(b̂′i), â

′
i = ψ̂(b̂′i), and

a′i = α(â′i), i = 1, . . . , n. Then ψ ◦ γ = ϕ and Â
â′i
i = ψ̂(B̂b̂

′
i
i ) = ϕ̂(Gi) = Âi. By (3),
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a′i ∈ Ai.
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There is (a unique) ci ∈ Bi with ψ(ci) = a′i. Let bi = c−1
i b′i. Then ψ(bi) = 1 and

Bbi
i = B

b′i
i = γ(Gi), i = 1, . . . , n, as desired.

Proposition 1.5: Let G be a projective group structure. Then every embedding

problem for G is solvable.

Proof: Let (1) be an embedding problem for G. Assume without loss that ϕ and ψ

are epimorphisms. Denote Ker(ψ) by K.

Part A: Suppose K is finite. Then K̇ = K r{1} is closed in B. By assumption,

Bi ∩ K̇ = ∅, i = 1, . . . , n. Hence, B has an open normal subgroup N with N ∩ K̇ = ∅

and BiN ∩ K̇N = ∅ , i = 1, . . . , n. It follows that N ∩ K = 1 and BiN ∩ KN = N ,

i = 1, . . . , n. Let B̄ = B/N , Ā = A/ψ(N), α: A → Ā and β: B → B̄ be the quotient

maps, and ψ̄: B̄ → Ā the map induced by ψ. Then β(K) = Ker(ψ̄) and B = B̄ ×Ā A.

Let ϕ̄ = α ◦ ϕ. For each i let Ai = ϕ(Gi), Āi = α(Ai), and B̄i = β(Bi). From

BiN ∩KN = N it follows that B̄i ∩ Ker(ψ̄) = 1. So, ψ̄ maps B̄i isomorphically onto

Āi, i = 1, . . . , n. This gives a finite embedding problem Ē = (ϕ̄: G → Ā, ψ̄: B̄ →

Ā, B̄1, . . . , B̄n) for G.

Lemma 1.4 gives a homomorphism γ̄: G→ B̄ such that ψ̄◦ γ̄ = ϕ̄ and γ̄(Gi) = B̄b̄i
i

with b̄i ∈ B̄ and ψ̄(b̄i) = 1. By the properties of fiber products, there is a homomorphism

γ: G→ B with ψ ◦ γ = ϕ and β ◦ γ = γ̄.

(4) G

ϕ

��

γ
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Also, for each i there is a bi ∈ B with β(bi) = b̄i and ψ(bi) = 1. Let g ∈ Gi. Then

ϕ(g) ∈ Ai = ψ(Bbi
i ). Hence, there is b ∈ Bbi

i with ψ(b) = ϕ(g). It satisfies β(b) ∈ B̄b̄i
i

and ψ̄(β(b)) = α(ψ(b)) = α(ϕ(g)) = ψ̄(γ̄(g)). Since ψ̄: B̄b̄i
i → Āi is injective, β(b) =

γ̄(g). In addition, β(γ(g)) = γ̄(g) and ψ(γ(g)) = ϕ(g). It follows that γ(g) = b ∈ Bbi
i .

So, γ(Gi) ≤ Bbi
i . Consequently, γ is a solution to the embedding problem (1).

Part B: Application of Zorn’s lemma. Suppose (1) is an arbitrary embedding problem

for G. For each normal subgroup L ofB which is contained inK let ψL: B/L→ A be the

epimorphism ψL(bL) = ψ(b), b ∈ B. It maps BiL/L isomorphically onto Ai = ϕ(Gi).

This gives an embedding problem

(5) (ϕ: G→ A, ψL: B/L→ A, B1L/L, . . . , BnL/L).

Let Λ be the set of pairs (L, λ), where L is a closed normal subgroup of B contained

in K and λ is a solution of (5). The pair (K,ψ−1
K ◦ ϕ) belongs to Λ. Partially order

Λ by (L′, λ′) ≤ (L,Λ) if L′ ≤ L and ψL′,L ◦ λ′ = λ. Here ψL′,L: B/L′ → B/L is the

epimorphism ψL′,L(bL′) = bL, b ∈ B.

Suppose Λ0 = {(Lj , λj) | j ∈ J} is a descending chain in Λ. Then lim←−B/Lj =

B/L with L =
⋂
j∈J LJ . The λj ’s define a homomorphism λ: G→ B/L with ψL,Lj ◦λ =

λj for each j. For each i a compactness argument gives bi ∈ B with λ(Gi) = Bbi
i L/L.

Thus, (L, λ) is a lower bound to Λ0.

Zorn’s lemma gives a minimal element (L, λ) for Λ. It suffices to prove that L = 1.

Assume L 6= 1. Then B has an open normal subgroup N with L 6≤ N . So, L′ =

N∩L is a proper open subgroup of L which is normal in B. For each i choose bi ∈ B with

λ(Gi) = Bbi
i L/L. Then (λ: G → B/L, ψL′,L: B/L′ → B/L, Bb11 L

′/L, . . . , Bbn
n L

′/L) is

an embedding problem for G. Its kernel Ker(ψL′,L) = L/L′ is a finite group. By Part

A, it has a solution λ′. The pair (L′, λ′) is an element of Λ which is strictly smaller than

(L, λ). This contradiction to the minimality of (L, λ) proves that L = 1, as desired.

Corollary 1.6: Let G = (G,G1, . . . , Gn) and G′ = (G′, G′1, . . . , G
′
n) be n-fold group

structures with G projective. Let ψ: G′ → G be an epimorphism which maps G′i
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isomorphically onto Gi, i = 1, . . . , n. Then there are a monomorphism ψ′: G → G′

with ψ ◦ ψ′ = idG and elements a1, . . . , an ∈ G′ with ψ′(Gi) = (G′i)
ai and ψ(ai) = 1,

i = 1, . . . , n.

Proof: An application of Proposition 1.5 to the embedding problem

(idG: G→ G, ψ: G′ → G, G′1, . . . , G
′
n)

gives a section ψ′: G → G′ of ψ and elements a′1, . . . , a
′
n ∈ G′ with ψ′(Gi) = (G′i)

a′i .

Thus, Gi = G
ψ(a′i)
i . By Lemma 1.3, ψ(a′i) ∈ Gi.

Choose bi ∈ G′i with ψ(bi) = ψ(a′i). Let ai = b−1
i a′i. Then (G′i)

ai = (G′i)
a′i =

ψ′(Gi) and ψ(ai) = 1, i = 1, . . . , n.
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2. Unirationally closed n-fold field structures

Consider a field K and separable algebraic extensions K1, . . . ,Kn (with n ≥ 0). Refer

to K = (K,K1, . . . ,Kn) as a field structure (or as an n-fold field structure if n

is not clear from the context). By an absolutely irreducible variety over K we

mean a geometrically integral scheme of finite type over K. (In the language of Weil’s

Foundation, this is a variety defined over K.) Let r be a positive integer and V an

absolutely irreducible variety over K. For each i let Ui be an absolutely irreducible

variety over Ki birationally equivalent to ArKi
and ϕi: Ui → V ×K Ki be a dominant

separable morphism (of varieties over Ki). Refer to

(1) Φ = (V, ϕ1: U1 → V ×K K1, . . . , ϕn: Un → V ×K Kn)

as a unirational arithmetical problem for K. A solution to Φ is a tuple

(a,b1, . . . ,bn) with a ∈ V (K), bi ∈ Ui(Ki), and ϕi(bi) = a for i = 1, . . . , n. Call

K unirationally closed if each unirational arithmetical problem has a solution.

Associate to K its absolute Galois group structure

Gal(K) = (Gal(K),Gal(K1), . . . ,Gal(Kn)).

Proposition 2.1: Let K = (K,K1, . . . ,Kn) be a unirationally closed field structure.

Then Gal(K) is a projective group structure.

Proof: By [HJK, Lemma 3.1] it suffices to weakly solve each embedding problem

(res: Gal(K)→ Gal(L/K), res: Gal(F/E)→ Gal(L/K),Gal(F/F1), . . . ,Gal(F/Fn))

satisfying the following conditions: L/K is a finite Galois extension, E is a finitely

generated regular extension of K, F is a finite Galois extension of E which contains

L, Fi is a finite subextension of F/E that contains Li = Ki ∩ L, Fi/Li is a purely

transcendental extension of transcendence degree r = [F : E], and res: Gal(F/Fi) →

Gal(L/Li) is an isomorphism, i = 1, . . . , n.

It is possible to choose x1, . . . , xk ∈ E, yi ∈ Fi, i = 1, . . . , n, and z ∈ F with this:

(2a) E = K(x) and V = Spec(K[x]) is a smooth subvariety of AkK with generic point

x.
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(2b) For each i, Fi = Li(x, yi) and Ui = Spec(Li[x, yi]) is a smooth subvariety of Ak+1
Li

with generic point (x, yi).

(2c) yi is integral over Li[x] and the discriminant of irr(yi, Li(x)) is a unit of Li[x].

Thus, Li[x, yi]/Li[x] is, in the terminology of [FrJ, Definition 5.4], a ring cover.

So, the projection on the first k coordinates is an étale morphism πi: Ui → V ×KLi.

(2d) F = K(x, z) and L[x, z]/L[x] is a ring cover.

By assumption, there are points a ∈ V (K) and (a, bi) ∈ Ui(Ki), i = 1, . . . , n.

Since a is simple on V , there is a K-place ρ0: E → K ∪ {∞} with ρ0(x) = a [JaR,

Cor. A2]. Extend ρ0 to an L-place ρ: F → K̃∪{∞}. Let F̄ ∪{∞} be the residue field of

ρ. By (2d) and [FrJ, Lemma 5.5], F̄ is a finite Galois extension of K which contains L.

Moreover, there is an embedding ρ∗: Gal(F̄ /K)→ Gal(F/E) with ρ(ρ∗(σ)u) = σ(ρ(u))

for each σ ∈ Gal(F̄ /K) and u ∈ F with ρ(u) 6= ∞. Let γ = ρ∗ ◦ resKs/F̄ . This is a

homomorphism from Gal(K) to Gal(F/E) with resF/L ◦ γ = resKs/L.

For each i, (2c) gives an Li-place ρi: Fi → Ki ∪ {∞} which extends ρ0 such that

ρi(x, yi) = (a, bi). Extend ρi to an L-place ρi: F → K̃∪{∞}. Since ρi|EL = ρ|EL, there

is σi ∈ Gal(F/EL) with ρi = ρ◦σ−1
i . Thus, ρ(Fσi ) = ρ◦σ−1

i (Fi) = ρi(Fi) ⊆ Li(bi)∪{∞}.

This implies γ(Gal(Ki)) ≤ γ(Gal(Li(bi)) = ρ∗(F̄ /Li(bi)) ≤ Gal(F/Fi)σi . Consequently,

γ is a solution of the embedding problem.
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3. Pseudo closed fields

Let n ≥ 0. A field structure K = (K,K1, . . . ,Kn) is pseudo closed if every absolutely

irreducible variety V over K with Ki-rational simple points has a K-rational point. In

this case we also say K is pseudo closed with respect to K1, . . . ,Kn.

Lemma 3.1: Suppose 0 ≤ m ≤ n.

(a) Let (G,G1, . . . , Gm) be a projective group structure. Then (G,G1, . . . , Gm,

(n−m)×︷ ︸︸ ︷
1, . . . , 1 )

is projective.

(b) Let (K,K1, . . . ,Kn) be a pseudo closed field structure. Suppose for each m < i ≤ n

either Ki = Ks or there is 1 ≤ j ≤ m with Kj ⊆ Ki. Then (K,K1, . . . ,Km) is

pseudo closed.

Proof of (a): Standard checking.

Proof of (b): Use that Vsimp(Ks) 6= ∅ for every absolutely irreducible variety V over

Ks.

A field-valuation structure is a tuple K = (K,K1, v1, . . . ,Kn, vn) such that

(K,K1, . . . ,Kn) is a field structure and vi is a valuation of Ki, i = 1, . . . , n. If (Ki, vi)

is Henselian, then vi has a unique extension to Ks which we also denote by vi. We say

v1, . . . , vn are independent if for all 1 ≤ i 6= j ≤ n the ring generated by the valuation

rings of the restrictions of vi and vj toK isK. This is equivalent to the weak approxima-

tion theorem [Jar, Prop. 4.2 and 4.4]. The absolute Galois structure of K is the one

associated with (K,K1, . . . ,Kn), namely, Gal(K) = (Gal(K),Gal(K1), . . . ,Gal(Kn)).

Proposition 3.2: Let K = (K,K1, v1, . . . ,Kn, vn) be a field-valuation structure. Sup-

pose (Ki, vi) is a Henselian closure of K at vi, i = 1, . . . , n, the valuations v1, . . . , vn

are independent, and K is pseudo closed with respect to K1, . . . ,Kn. Then Gal(K) is

projective.

Proof: By Lemma 3.1 we may assume Ki 6= Ks, i = 1, . . . , n. By [Jar, Lemma 13.2],

Ki 6⊆ Kj for i 6= j. By Proposition 2.1 it suffices to show that (K,K1, . . . ,Kn) is

unirationally closed.
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Consider a unirational arithmetical problem Φ for K as in (1) of Section 2. Let

Vi = V ×K Ki, i = 1, . . . , n. Since Ui is a rational variety, it is smooth and there is a

point b′i ∈ Ui(Ki). Let ai = ϕi(b′i). By [GPR, Cor. 9.5], b′i has a vi-open neighborhood

Ui in U(Ki) which ϕi maps vi-homeomorphically onto a vi-open neighborhood Vi of ai

in Vi(Ki).

Since K is pseudo closed and Ki 6⊆ Kj for i 6= j, [HeP, Thm. 1.9] gives a point

a ∈ V (K) which belongs to Vi, i = 1, . . . , n. Hence, there is a bi ∈ Ui(Ki) with

ϕi(bi) = a, i = 1, . . . , n. Note that [HeP, p. 298] makes the assumption char(K) = 0.

Nevertheless, the proof of [HeP, Thm. 1.9] is also valid in positive characteristic. See

also [Sch, Thm. 4.9] which generalizes [HeP, Thm. 1.9]. Therefore, K is unirationally

closed.

An isomorphism α: (G,G1, . . . , Gn) → (G′, G′1, . . . , G
′
n) of group structures is

an isomorphism α: G→ G′ of groups with α(Gi) = G′i, i = 1, . . . , n.

Lemma 3.3: Let G = (G,G1, . . . , Gn) be a projective group structure. Suppose each

Gi is an absolute Galois group. Then there is a field structure K of characteristic 0

with Gal(K) ∼= G. If each Gi is an absolute Galois group of a field of characteristic p

independent of i, then K may be chosen to be of characteristic p.

Proof: Let F̂m be the free profinite group of rank m ≥ rank(G). Since F̂m is pro-

jective [FrJ, Example 20.13], it is an absolute Galois group in each characteristic [FrJ,

Cor. 20.16]. Put G∗ = F̂m ∗
∏
∗ ni=1Gi. By [HJK, Thm. 3.4], G∗ ∼= Gal(F ) for a field

F of characteristic 0. If there is p such that each Gi with i ≥ 1 is a Galois group in

characteristic p, then we may choose F to be of characteristic p.

By [FrJ, Cor. 15.20] there is an epimorphism ψ0: F̂m → G. Let ψ: G∗ → G be the

unique epimorphism that extends ψ0 and the identity maps of G1, . . . , Gn. Corollary

1.6 gives an embedding of G into G∗. Let K be the fixed field of G in Fs. For each

i ≥ 1 let Ki be the fixed field of Gi in Fs. Then Gal(K,K1, . . . ,Kn) ∼= G.

Let K = (K,K1, v1, . . . ,Kn, vn) and K′ = (K ′,K ′
1, v

′
1, . . . ,K

′
n, v

′
n) be field-valu-

ation structures. We say K′ is an extension of K if K ⊆ K ′, Ki = K ′
i ∩Ks, and vi is

the restriction of v′i to Ki, i = 1, . . . , n. In this case K is a substructure of K′.
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Let (K, v) be a valued field. For a = (a1, . . . , ar),b = (b1, . . . , br) ∈ Kr we write

v(a− b) = minj v(aj − bj).

Lemma 3.4: Let K = (K,K1, v1, . . . ,Kn, vn) be a field-valuation structure and let

K̄ = (K̄, K̄1, v̄1, . . . , K̄n, v̄n) be a substructure of K. Assume:

(1a) K̄i is perfect and v̄i is trivial, i = 1, . . . , n.

(1b) Gal(K̄) is projective.

(1c) (Ki, vi) is a Henselian field with residue field K̄i, i = 1, . . . , n.

(1d) res: Gal(K)→ Gal(K̄) is an isomorphism.

Suppose V ⊆ Ar is an affine variety over K and bi ∈ Vsimp(Ki), i = 1, . . . , n.

Then K has an extension K′ = (K ′,K ′
1, v

′
1, . . . ,K

′
n, v

′
n) with these properties:

(2a) (K ′
i, v

′
i) is a Henselian field with residue field K̄i, i = 1, . . . , n.

(2b) res: Gal(K′)→ Gal(K) is an isomorphism.

(2c) There is x ∈ V (K ′) with v′i(x− bi) > γ for each γ ∈ vi(K×
i ), i = 1, . . . , n.

Proof: Let x be a generic point of V over K and let F = K(x). For each i put

Mi = Ki(x). Then [JaR, p. 456, Cor. 2] gives a Ki-place ϕi: Mi → Ki ∪ {∞} with

ϕi(x) = bi. Now let ρi: Ki → K̄i ∪ {∞} be the K̄i-place associated with vi. The

compositum ϕ′i = ρi ◦ ϕi: Mi → K̄i ∪ {∞} is a K̄i-place of Mi that extends ρi. Denote

the corresponding valuation of Mi by wi. Then wi extends vi, K̄i is the residue field

of wi, and for every c ∈ K×
i and every coordinate 1 ≤ j ≤ r, ϕ′i(

xj−bij

c ) = ρi
(
0
c

)
= 0.

Thus, wi(x− bi) > w(c), i = 1, . . . , n.

Extend wi to a Henselization M ′
i of (Mi, wi). By [HJK, Prop. 2.4], (M ′

i , wi) has

a separable algebraic extension (Ni, wi) such that the map res: Gal(Ni) → Gal(Ki) is

an isomorphism and K̄i is the residue field of Ni. In particular, Ni is Henselian.

By (1b) and (1d), Gal(K) is projective. So, we may apply Corollary 1.6 to the map

res: Gal(F ) → Gal(K) with the isomorphisms res: Gal(Ni) → Gal(Ki), i = 1, . . . , n.

This gives elements σ1, . . . , σn ∈ Gal(F ) such that σi|Ks
= id, i = 1, . . . , n, and an

n-fold field structure (K ′, (N1)σ1 , . . . , (Nn)σn) such that

res: Gal(K ′, (N1)σ1 , . . . , (Nn)σn)→ Gal(K,K1, . . . ,Kn)
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is an isomorphism.

Finally let K ′
i = Nσi

i and v′i = wi ◦ σ−1
i , i = 1, . . . , n. Note that σi fixes x as well

as each element of Ks. So, (2) holds.

Let K = (K,K1, v1, . . . ,Kn, vn) be a field-valuation structure. We say K is

pseudo-closed with the approximation property if it has this property:

(3) Suppose V ⊆ Ar is an affine absolutely irreducible variety over K, ai ∈ Vsimp(Ki),

and γi ∈ vi(K×
i ), i = 1, . . . , n. Then there is a ∈ V (K) with vi(a − ai) > γi,

i = 1, . . . , n.

Proposition 3.5: Let K = (K,K1, v1, . . . ,Kn, vn) be a field-valuation structure and

K̄ = (K̄, K̄1, v̄1, . . . , K̄n, v̄n) a substructure of K satisfying conditions (1).

Then K has an extension K′ = (K ′,K ′
1, v

′
1, . . . ,K

′
n, v

′
n) with these properties:

(4a) (K ′
i, v

′
i) is a Henselian field with residue field K̄i, i = 1, . . . , n.

(4b) The map res: Gal(K′)→ Gal(K) is an isomorphism.

(4c) K′ is pseudo closed with the approximation property.

Proof: Well-order all tuples (V,b1, . . . ,bn) where V is an affine absolutely irreducible

variety over K and bi ∈ Vsimp(Ki), i = 1, . . . , n. Use transfinite induction and

Lemma 3.4 to construct a transfinite tower of field-valuation structures whose union

is a field-valuation structure L1 = (L1, L1,1, v1,1, . . . , L1,n, v1,n) with these properties:

(5a) (L1,i, v1,i) is a Henselian field with residue field K̄i, i = 1, . . . , n.

(5b) The map res: Gal(L1)→ Gal(K) is an isomorphism.

(5c) Suppose V is an absolutely irreducible affine variety over K and bi ∈ Vsimp(Ki),

i = 1, . . . , n. Then there is x ∈ V (L1) with v1,i(x − bi) > γi for all γi ∈ vi(K×
i ),

i = 1, . . . , n.

Use ordinary induction to construct an ascending sequence of n-fold field-valuation

structures Lj , j = 1, 2, 3, . . . with Lj+1 relating to Lj as L1 relates to K, j = 1, 2, 3, . . . .

Then K′ =
⋃∞
j=1 Lj satisfies (4).

Lemma 3.6: Let (K, v) be a Henselian field and L a separable algebraic extension of

K. Suppose K is v-dense in L. Then K = L.
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Proof: Consider x ∈ L and let x1, . . . , xn be the conjugates of x overK. By assumption,

there is y ∈ K with v(y − x) > maxi 6=j v(xi − xj). By Krasner’s Lemma [Jar, Lemma

12.1], K(x) ⊆ K(y) = K. Therefore, x ∈ K.

Theorem 3.7: Let G = (G,G1, . . . , Gn) be a projective group structure. Suppose

each Gi is an absolute Galois group. Then G is the group structure of a field structure

K = (K,K1, . . . ,Kn) with these properties: char(K) = 0, Ki is the Henselian closure

of K at a valuation vi, i = 1, . . . , n, and (K,K1, v1, . . . ,Kn, vn) is pseudo closed with

the approximation property. If all Gi are absolute Galois groups of fields of the same

characteristic p, then K can be chosen to have characteristic p.

Proof: Lemma 3.3 gives a field structure (Ē, Ē1, . . . , Ēn) with G ∼= Gal(Ē, Ē1, . . . , Ēn).

Let v̄i be the trivial valuation of Ēi. Put Ē = (Ē, Ē1, v̄1, . . . , Ēn, v̄n).

The pair (Ē, Ē) has all properties that (K̄,K) of Proposition 3.5 has. So, Propo-

sition 3.5 gives an extension K = (K,K1, v1, . . . ,Kn, vn) of E with these properties:

(6a) (Ki, vi) is a Henselian field, i = 1, . . . , n.

(6b) The map res: Gal(K)→ Gal(E) is an isomorphism.

(6c) K is pseudo closed with the approximation property.

By (6b), Gal(K) ∼= G. By (6a), (K, vi) has a Henselian closure (Hi, vi) which is

contained in (Ki, vi). By (6c) applied to A1
K , K is vi-dense in Ki. Hence, Hi is vi-dense

in Ki. Therefore, by Lemma 3.6, (Ki, vi) is the Henselian closure of K at vi.
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