Skolem Density Problems over Large Galois Extensions of Global Fields

by

Moshe Jarden, Tel Aviv University*

and

Aharon Razon, Bar-Ilan University**

with

Appendix by Wulf-Dieter Geyer, Erlangen University

Abstract: Let K be a global field, \mathcal{V} an infinite proper subset of the set of all primes of K, and \mathcal{S} a finite subset of \mathcal{V} . Denote the maximal Galois extension of K in which each $\mathfrak{p} \in \mathcal{S}$ totally splits by $K_{\text{tot},\mathcal{S}}$. Let M be an algebraic extension of K. A data for an $(\mathcal{S}, \mathcal{V})$ -Skolem density problem for M consists of a finite subset \mathcal{T} of \mathcal{V} containing \mathcal{S} , polynomials $f_1, \ldots, f_m \in \tilde{K}[X_1, \ldots, X_n]$ satisfying $|f_i|_{\mathfrak{q}} = 1$ for each non-archimedean prime $\mathfrak{q} \in \tilde{\mathcal{V}} \setminus \tilde{\mathcal{T}}$, a point $\mathbf{a} \in M^n$, and a positive real number γ . A solution to the problem is a point $\mathbf{x} \in M^n$ such that $|x_i - a_i|_{\mathfrak{p}} < \gamma$ for each $\mathfrak{p} \in \tilde{\mathcal{T}}$ and $|x_i|_{\mathfrak{q}} \leq 1$, $|f_j(\mathbf{x})|_{\mathfrak{q}} = 1$ for each non-archimedean prime $\mathfrak{q} \in \tilde{\mathcal{V}} \setminus \tilde{\mathcal{T}}$, $i = 1, \ldots, n$, $j = 1, \ldots, m$.

For $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_e) \in \operatorname{Gal}(K)^e$ let $K_s(\boldsymbol{\sigma}) = \{x \in K_s \mid \sigma_i(x) = x, i = 1, \dots, e\}$. Denote the maximal Galois extension of K inside $K_s(\boldsymbol{\sigma})$ by $K_s[\boldsymbol{\sigma}]$. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$ (with respect to the Haar measure), each $(\mathcal{S}, \mathcal{V})$ -Skolem density problem for $K_s[\boldsymbol{\sigma}] \cap K_{\operatorname{tot},\mathcal{S}}$ has a solution.

This result generalizes a previous work [JR2] in which \mathcal{V} corresponds to the set of all nonzero prime ideals of \mathcal{O}_K (in particular, \mathcal{V} does not contain archimedean primes). There we prove for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ that each $(\mathcal{S}, \mathcal{V})$ -Skolem density problem for the maximal purely inseparable extension of $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},\mathcal{S}}$ has a solution.

24 June, 2006

^{*} Research supported by the Minkowski Center for Geometry at Tel Aviv University established by the Minerva Foundation.

^{**} Partially supported by the Emmy Noether Research Institute for Mathematics.

Introduction

Let K be a global field. Fix a separable closure K_s and an algebraic closure \tilde{K} of K. Denote the absolute Galois group of K by Gal(K).

Denote the set of all primes of K by \mathbb{P} , all finite (= nonarchimedean) primes by \mathbb{P}_0 , and all infinite (= archimedean) primes by \mathbb{P}_{∞} . Each $\mathfrak{p} \in \mathbb{P}$ is, by definition, an equivalence class of absolute values. For each $\mathfrak{p} \in \mathbb{P}$ choose a separable algebraic extension $K_{\mathfrak{p}}$ of K as follows: If $\mathfrak{p} \in \mathbb{P}_0$, then $K_{\mathfrak{p}}$ is a Henselization of K at \mathfrak{p} . If $\mathfrak{p} \in \mathbb{P}_{\infty}$ is real, then $K_{\mathfrak{p}}$ is a real closure of K at \mathfrak{p} . Finally, if $\mathfrak{p} \in \mathbb{P}_{\infty}$ is complex, then $K_{\mathfrak{p}} = K_s$. For each $\mathfrak{p} \in \mathbb{P}$ choose an absolute value $| |_{\mathfrak{p}}$ of K representing \mathfrak{p} and, for each prime \mathfrak{q} of \tilde{K} lying over \mathfrak{p} , denote the absolute value of \tilde{K} which represents \mathfrak{q} and extends $| |_{\mathfrak{p}}$ by $| |_{\mathfrak{q}}$. For a subset \mathcal{R} of \mathbb{P} , we denote the set of primes of \tilde{K} lying over primes in \mathcal{R} by $\tilde{\mathcal{R}}$.

Fix an infinite proper subset \mathcal{V} of \mathbb{P} and a finite subset \mathcal{S} of \mathcal{V} . Let

$$K_{\text{tot},\mathcal{S}} = \bigcap_{\mathfrak{p} \in \mathcal{S}} \bigcap_{\sigma \in \text{Gal}(K)} K_{\mathfrak{p}}^{\sigma}$$

be the field of **totally** *S*-adic numbers. This is the maximal Galois extension of *K* in which each $\mathfrak{p} \in S$ totally splits.

The goal of this work is to prove the following result:

THEOREM A: Let e be a nonnegative integer. Then, for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, both $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},\mathcal{S}}$ and $K_s[\boldsymbol{\sigma}] \cap K_{\text{tot},\mathcal{S}}$ are S-Skolem fields with respect to \mathcal{V} .

Here "almost all" is used in the sense of the Haar measure of $\operatorname{Gal}(K)^e$. For each $\boldsymbol{\sigma} = (\sigma_1, \ldots, \sigma_e)$, the field $K_s(\boldsymbol{\sigma})$ is the fixed field of $\sigma_1, \ldots, \sigma_e$ in K_s . The field $K_s[\boldsymbol{\sigma}]$ is the maximal Galois extension of K inside $K_s(\boldsymbol{\sigma})$.

An algebraic extension M of K is an S-Skolem field with respect to \mathcal{V} if the following holds: Let \mathcal{T} be a finite subset of \mathcal{V} containing S. Put $\mathcal{U} = (\mathcal{V} \setminus \mathcal{T}) \cap \mathbb{P}_0$. Let $f_1, \ldots, f_m \in \tilde{K}[X_1, \ldots, X_n]$ be \mathfrak{q} -primitive polynomials for each $\mathfrak{q} \in \tilde{\mathcal{U}}$. Here a polynomial is \mathfrak{q} -primitive if its coefficients are \mathfrak{q} -integrals and at least one of them is a \mathfrak{q} -unit. Let $\mathbf{a} = (a_1, \ldots, a_n) \in M^n$ and $\gamma > 0$. Then there is $\mathbf{x} \in M^n$ with $|\mathbf{x} - \mathbf{a}|_{\mathfrak{p}} < \gamma$ for each $\mathfrak{p} \in \tilde{\mathcal{T}}$, and $|\mathbf{x}|_{\mathfrak{q}} \leq 1$, $|f_i(\mathbf{x})|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \tilde{\mathcal{U}}$, $i = 1, \ldots, m$. Theorem A generalizes a result of Skolem [Sko] from 1934: Suppose $g \in \mathbb{Z}[X]$ is a primitive polynomial. Then, there is an algebraic integer x such that g(x) is an algebraic unit.

Indeed, by Theorem A applied to $K = \mathbb{Q}$, $\mathcal{V} =$ the set of all prime numbers, $\mathcal{S} = \emptyset$, and e = 0, \mathbb{Q} is an S-Skolem field with respect to \mathcal{V} . The result follows then from the case $\mathcal{T} = \emptyset$, m = n = 1, and $f_1 = g$.

In 1963 Dade [Dad] reproved Skolem's result. Cantor and Roquette [CaR] proved in 1982 that $K_{\text{tot},S}$ is an S-Skolem field with respect to \mathcal{V} when K is a number field and $\mathbb{P}_{\infty} \not\subseteq \mathcal{V}$. A weaker version of Theorem A appears in a work of the present authors [JR2] from 1995. In that version, \mathcal{V} contains only finite primes. Moreover, it proves only that for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$ the maximal purely inseparable extension of $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},S}$ is S-Skolem with respect to \mathcal{V} .

Theorem A improves the main result of [JR2] in three ways:

1. Including infinite primes. The set \mathcal{V} may contain now infinite primes. Note: \mathcal{V} may contain all infinite primes. Here we have to use that each Hilbert subset of a number field K contains elements which strongly approximate finitely many elements of K.

2. Omitting the perfectness assumption. When char(K) > 0, the S-Skolem fields we find are now separable over K. We do not need to make them perfect. This was an essential difficulty in [JR2]. Here we have overcome it by exploiting compactness arguments in a more careful way then in [JR2] (See Part B of the proof of Lemma 3.2.) We are indebted to Moret-Bailly for his help at this point.

3. Constructing smaller S-Skolem fields. In addition to the fields $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},S}$, Theorem A says that almost all fields $K_s[\boldsymbol{\sigma}] \cap K_{\text{tot},S}$ are S-Skolem with respect to \mathcal{V} .

Consider a nonempty finite subset \mathcal{T} of \mathcal{V} containing \mathcal{S} and put $\mathcal{U} = (\mathcal{V} \setminus \mathcal{T}) \cap \mathbb{P}_0$. Let $\mathcal{O}_{K,\mathcal{U}} = \{a \in K \mid |a|_{\mathfrak{p}} \leq 1 \text{ for each } \mathfrak{p} \in \mathcal{U}\}$. The main step in the proof of Theorem A (Lemma 3.2) starts from a monic polynomial $f \in \mathcal{O}_{K,\mathcal{U}}[X]$ which factors into a product of distinct monic irreducible polynomials over K. It constructs a monic polynomial $h_0 \in \mathcal{O}_{K,\mathcal{U}}[X]$ of degree $d > \deg(f)$, relatively prime to f, with d distinct roots in $K_{\text{tot},\mathcal{S}}$ which are \mathcal{T} -close to 0. It also constructs a nonzero element $m \in \mathcal{O}_{K,\mathcal{U}}$,

 \mathcal{T} -close to 0, such that the polynomial $maf(X) + h_0(X)$ has d distinct roots in $K_{\text{tot},S}$ which are \mathcal{T} -close to 0 for each $a \in \mathcal{O}_{K,\mathcal{U}}$. Consider the absolutely irreducible polynomial $\tilde{h}(T,X) = mf(X)T + h_0(X)$. We know that almost all fields $K_s(\sigma)$ are "PAC over $\mathcal{O}_{K,\mathcal{U}}$ " (Propositions 1.3 and 1.5). This gives $a \in \mathcal{O}_{K,\mathcal{V}}$ and $x \in K_s(\sigma)$ with $\tilde{h}(a,x) = 0$. Let $h(X) = maf(X) + h_0(X)$. As x is a root of h, it follows from the construction that $x \in K_{\text{tot},S}$ and is \mathcal{T} -close to 0. So, $x \in K_s(\sigma) \cap K_{\text{tot},S}$. As $h \in \mathcal{O}_{K,\mathcal{U}}[X]$ is monic, xis \mathfrak{q} -integral for each $\mathfrak{q} \in \tilde{\mathcal{U}}$. Finally, since gcd(f,h) = 1, there are $g, r \in \mathcal{O}_{K,\mathcal{U}}[X]$ such that gh + rf = 1. Therefore r(x)f(x) = 1. So, since x is \mathfrak{q} -integral, f(x) is a \mathfrak{q} -unit for each $\mathfrak{q} \in \tilde{\mathcal{U}}$.

For almost all fields $K_s[\boldsymbol{\sigma}]$ we know only a weaker property than being PAC over $O_{K,\mathcal{U}}$. However, $K_s[\boldsymbol{\sigma}]$ is Galois over K. Moreover, the Appendix due to Wulf-Dieter Geyer, allows us to construct h_0 as above such that $\tilde{h}(T,X)$ is stable with respect to X. That is, $\operatorname{Gal}(\tilde{h}(T,X), K(T)) \cong \operatorname{Gal}(\tilde{h}(T,X), \tilde{K}(T))$. With the weaker property of $K_s[\boldsymbol{\sigma}]$, this suffices to prove the existence of $a \in \mathcal{O}_{K,\mathcal{U}}$ and $x \in K_s[\boldsymbol{\sigma}] \cap K_{\operatorname{tot},\mathcal{S}}$ as in the preceding paragraph.

Based on [JR2], the work [JR3] of the authors proves Rumely's local-global principle for the maximal purely inseparable extensions of $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},\mathcal{S}}$ for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$. It is our hope, building on the present work, to prove the local-global principle for almost all fields $M = K_s[\boldsymbol{\sigma}] \cap K_{\text{tot},\mathcal{S}}$. This will imply the local-global principle for each extension of M in $K_{\text{tot},\mathcal{S}}$. In particular, this will imply that each such extension is an \mathcal{S} -Skolem field with respect to \mathcal{V} .

1. Weakly PSC fields over holomorphy domains

This section makes adjustments to [JR2, §1] in order to include infinite primes.

Recall: A field M is **pseudo algebraically closed (PAC)** if every absolutely irreducible variety over M has an M-rational point. If \mathcal{O} is a subset of M, then M may have a stronger property:

Definition 1.1: [JR1, Def. 1.1]. Let \mathcal{O} be a subset of a field M. We say M is **PAC** over \mathcal{O} if this holds: For every absolutely irreducible variety V of dimension $r \geq 0$ and for each dominating separable rational map $\varphi: V \to \mathbb{A}^r$ over M there is $\mathbf{a} \in V(M)$ with $\varphi(\mathbf{a}) \in \mathcal{O}^r$.

Examples arise from "Hilbertian subsets" of fields:

Definition 1.2: Let \mathcal{O} be a subset of a field K. We say \mathcal{O} is K-Hilbertian if $H \cap \mathcal{O} \neq \emptyset$ for each separable Hilbert subset H of K. (See [FrJ, Chap. 11] for the definition of a separable Hilbert subset.) Note: If $\mathcal{O} \subseteq \mathcal{O}' \subseteq K$ and \mathcal{O} is K-Hilbertian, then so is \mathcal{O}' .

Let K be a field. We denote the separable closure of K by K_s , the algebraic closure by \tilde{K} , and the absolute Galois group, $\operatorname{Gal}(K_s/K)$, by $\operatorname{Gal}(K)$. As $\operatorname{Gal}(K)$ is a compact topological group, it is equipped with a Haar measure. Recall that if $\sigma_1, \ldots, \sigma_e \in \operatorname{Gal}(K)$, then $K_s(\sigma)$ is the fixed field in K_s of $\sigma_1, \ldots, \sigma_e$. In the following we use the clause "for almost all $\sigma \in \operatorname{Gal}(K)^{e}$ " with respect to the Haar measure of $\operatorname{Gal}(K)^e$. Also, we denote the maximal Galois extension of K inside $K_s(\sigma)$ by $K_s[\sigma]$.

PROPOSITION 1.3: Let \mathcal{O} be a subset of a countable field K. Suppose \mathcal{O} is K-Hilbertian. Let e be a positive integer. Then, for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, the field $K_s(\boldsymbol{\sigma})$ is PAC over \mathcal{O} .

Proof: [JR1, Prop. 3.1] proves the proposition when \mathcal{O} is a subring of K with quotient field K. The proof applies verbatim to the general case.

Data 1.4: We fix the following data for the rest of this work:

(a) K is a global field and \mathcal{O}_K is its ring of integers [FrJ, §5.2].

- (b) $\mathbb{P} = \mathbb{P}_K$ is the set of all primes (finite and infinite) of K. A finite (resp. infinite) **prime** of a field E is an equivalence class of non-archimedean (resp. archimedean) absolute values of E. We denote the set of all finite primes of K by \mathbb{P}_0 and the set of all infinite primes of K by \mathbb{P}_∞ . Thus, $\mathbb{P}_\infty = \emptyset$ and $\mathbb{P}_0 = \mathbb{P}$ when char(K) > 0. For each $\mathfrak{p} \in \mathbb{P}$ we choose an absolute value $| |_{\mathfrak{p}}$ which belongs to \mathfrak{p} .
- (c) \mathcal{V} is a proper subset of \mathbb{P} .
- (d) Let L be an algebraic extension of K and \mathcal{R} a subset of \mathbb{P} .

 $\mathcal{R}_0 = \mathcal{R} \cap \mathbb{P}_0$ and $\mathcal{R}_\infty = \mathcal{R} \cap \mathbb{P}_\infty$.

 \mathcal{R}_L is the set of primes of L which lie over primes in \mathcal{R} . For $L = \tilde{K}$ we set $\tilde{\mathcal{R}} = \mathcal{R}_{\tilde{K}}$. If $\mathfrak{q} \in \mathbb{P}_L$ lies over $\mathfrak{p} \in \mathbb{P}$, we write $\mathfrak{q}|\mathfrak{p}$ and $\mathfrak{p} = \mathfrak{q}|_K$. We denote the unique absolute value which represents \mathfrak{q} and extends $||_{\mathfrak{p}}$ by $||_{\mathfrak{q}}$.

If L is a normal extension of K, then $\operatorname{Aut}(L/K)$ acts on \mathcal{R}_L according to

$$|x|_{\mathfrak{p}^{\sigma}} = |x^{\sigma^{-1}}|_{\mathfrak{p}}, \text{ for } \mathfrak{p} \in \mathcal{R}_L \text{ and } x \in L.$$

We may choose a subset \mathcal{R}_0 of \mathcal{R}_L which contains exactly one extension of each prime in \mathcal{R} . Then, for each $\mathfrak{q} \in \mathcal{R}_L$ there are $\mathfrak{p} \in \mathcal{R}_0$ and $\sigma \in \operatorname{Aut}(L/K)$ with $\mathfrak{q} = \mathfrak{p}^{\sigma}$. We say that \mathcal{R}_0 represents \mathcal{R}_L over K.

 $\mathcal{O}_{L,\mathcal{R}}$ is the \mathcal{R} -holomorphy domain $\{x \in L \mid |x|_{\mathfrak{q}} \leq 1 \text{ for each } \mathfrak{q} \in \mathcal{R}_L\}$ of L. It is closed under multiplication. If $\mathcal{R} \subseteq \mathbb{P}_0$, then $\mathcal{O}_{L,\mathcal{R}}$ is a ring.

 $\mathcal{M}_{L,\mathcal{R}} = \{ x \in L \mid |x|_{\mathfrak{q}} < 1 \text{ for each } \mathfrak{q} \in \mathcal{R}_L \}. \text{ If } \mathcal{R} \subseteq \mathbb{P}_0, \text{ it is an ideal of } \mathcal{O}_{L,\mathcal{R}}.$ For $\mathbf{a} = (a_1, \dots, a_n) \in L^n, \ |\mathbf{a}|_{\mathcal{R}} = \max_{\mathfrak{q} \in \mathcal{R}_{K(\mathbf{a})}} \max_{1 \leq i \leq n} |a_i|_{\mathfrak{q}} = \max_{\tilde{\mathfrak{q}} \in \tilde{\mathcal{R}}} \max_{1 \leq i \leq n} |a_i|_{\tilde{\mathfrak{q}}}.$ For $f(X) = \sum_{i=0}^n a_i X^i \in L[X], \ |f|_{\mathcal{R}} = |(a_0, \dots, a_n)|_{\mathcal{R}}.$

The set \mathcal{V} satisfies the **strong approximation theorem**: Let \mathcal{T} be a finite subset of \mathcal{V} . For each $\mathfrak{p} \in \mathcal{T}$ consider an element $a_{\mathfrak{p}}$ of K and let ε be a positive real number. Then there exists $x \in \mathcal{O}_{K, \mathcal{V} \smallsetminus \mathcal{T}}$ such that $|x - a_{\mathfrak{p}}|_{\mathfrak{p}} < \varepsilon$ for each $\mathfrak{p} \in \mathcal{T}$ [CaF, p. 67]. The proof of the proposition below is an adjustment of the proof of [FrJ, Thm. 12.7].

PROPOSITION 1.5: The subset $\mathcal{O}_{K,\mathbb{P}_0\cap\mathcal{V}}\cap\mathcal{M}_{K,\mathbb{P}_\infty\cap\mathcal{V}}$ of $\mathcal{O}_{K,\mathcal{V}}$ is K-Hilbertian.

Proof: Assume without loss that \mathcal{V} is cofinite in \mathbb{P} and let $\mathbb{P}_{\infty} \cap \mathcal{V} = \{\mathfrak{q}_1, \ldots, \mathfrak{q}_n\}$. Let H be a separable Hilbert subset of K. From [FrJ, Lemma 12.1] there exist absolutely irreducible polynomials $h_1, \ldots, h_m \in \mathcal{O}_K[T, X]$, monic and separable in X, with $\deg_X(h_i) > 1$, i = 1, ..., m, such that $\bigcap_{i=1}^m H'_K(h_i) \subseteq H$, where $H'_K(h_i) = \{a \in K \mid h_i(a, b) \neq 0 \text{ for each } b \in K\}$. Apply [FrJ, Lemma 12.6] to find distinct $\mathfrak{p}_1, \ldots, \mathfrak{p}_m \in \mathbb{P}_0 \cap \mathcal{V}$ and elements $a_1, \ldots, a_m \in \mathcal{O}_K$ such that $x \in H'_K(h_i)$ for each $x \in K$ with $|x - a_i|_{\mathfrak{p}_i} < 1$, $i = 1, \ldots, m$. Let $\mathcal{T} = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_m, \mathfrak{q}_1, \ldots, \mathfrak{q}_n\}$. Then use the strong approximation theorem to find $x \in \mathcal{O}_{K, \mathcal{V} \smallsetminus \mathcal{T}}$ such that $|x - a_i|_{\mathfrak{p}_i} < 1$, $i = 1, \ldots, m$. Then $x \in H$ and $|x|_{\mathfrak{p}_i} \leq 1$, $i = 1, \ldots, m$. Hence, $x \in H \cap \mathcal{O}_{K, \mathbb{P}_0 \cap \mathcal{V}} \cap \mathcal{M}_{K, \mathbb{P}_\infty \cap \mathcal{V}}$, as desired.

Combine Proposition 1.3 with Proposition 1.5:

COROLLARY 1.6: Let e be a positive integer. Then, for almost all $\boldsymbol{\sigma} \in \operatorname{Gal}(K)^e$, the field $K_s(\boldsymbol{\sigma})$ is PAC over $\mathcal{O}_{K,\mathbb{P}_0\cap\mathcal{V}}\cap\mathcal{M}_{K,\mathbb{P}_\infty\cap\mathcal{V}}$.

Data 1.7: We add the following data to Data 1.4 and fix it for the rest of this work:
(a) Let p ∈ P.

 $\tilde{\mathfrak{p}}$ is a fixed extension of \mathfrak{p} to a prime of \tilde{K} . If $\tilde{\mathfrak{q}} \in \tilde{\mathbb{P}}$ and $\tilde{\mathfrak{q}}|\mathfrak{p}$, then there is $\sigma \in \operatorname{Gal}(K)$ such that $\tilde{\mathfrak{q}} = \tilde{\mathfrak{p}}^{\sigma}$.

 $\hat{K}_{\mathfrak{p}}$ is the completion of K at \mathfrak{p} inside the completion of \tilde{K} at $\tilde{\mathfrak{p}}$. Then $||_{\mathfrak{p}}$ uniquely extends to an absolute value $||_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$ and then uniquely to an absolute value of $\tilde{K}\hat{K}_{\mathfrak{p}}$. The restriction of the latter to \tilde{K} coincide with $||_{\mathfrak{p}}$.

If $\mathfrak{p} \in \mathbb{P}_{\infty}$, then either $\hat{K}_{\mathfrak{p}} \cong \mathbb{R}$ or $\hat{K}_{\mathfrak{p}} \cong \mathbb{C}$; in the former case \mathfrak{p} is **real**, in the latter case \mathfrak{p} is **complex**.

 $K_{\mathfrak{p}} = K_s \cap \hat{K}_{\mathfrak{p}}$. It is well defined up to a K-isomorphism. If $\mathfrak{p} \in \mathbb{P}_0$, then $K_{\mathfrak{p}}$ is an Henselian closure of K at \mathfrak{p} . As $\hat{K}_{\mathfrak{p}}/K_{\mathfrak{p}}$ is a separable extension [Ja1, Lemma 2.2], so is $\hat{K}_{\mathfrak{p}}/K$.

 $K_{\mathrm{t}\mathfrak{p}} = \bigcap_{\sigma \in \mathrm{Gal}(K)} K_{\mathfrak{p}}^{\sigma}.$

- (b) \mathcal{S} is a finite subset of \mathcal{V} .
- (c) $N = K_{\text{tot},S} = \bigcap_{\mathfrak{p}\in\mathcal{S}} K_{\mathfrak{t}\mathfrak{p}}$. This is the maximal Galois extension of K in which each $\mathfrak{p}\in\mathcal{S}$ totally splits. If $\mathcal{S}=\emptyset$, we let $N=K_s$.

Note: If L is a subextension of N/K, then $L_{tot,S_L} = N$.

We call a polynomial $f \in \tilde{K}[X]$ of degree n separable if it has n distinct roots. We call f N-admissible if in addition it is monic and all its roots are in N. PROPOSITION 1.8: Let $\tilde{\mathfrak{q}} \in \tilde{\mathbb{P}}$ and let E be a separable algebraic extension of $K_{\mathfrak{p}}^{\sigma}$, where $\mathfrak{p} = \tilde{\mathfrak{q}}|_{K}$ and $\tilde{\mathfrak{q}} = \tilde{\mathfrak{p}}^{\sigma}$ for $\sigma \in \operatorname{Gal}(K)$. Let $f \in K[X]$ be a monic separable polynomial of degree n and let x_{1}, \ldots, x_{n} be its distinct roots. Then, for each $\varepsilon > 0$ there is $\delta > 0$ such that if g is a monic polynomial in E[X] of degree n and $|g - f|_{\tilde{\mathfrak{q}}} < \delta$, then g is separable and its roots can be enumerated as y_{1}, \ldots, y_{n} with $|y_{i} - x_{i}|_{\tilde{\mathfrak{q}}} < \varepsilon$ and $E(x_{i}) = E(y_{i})$.

Proof: If $\tilde{\mathfrak{q}} \in \tilde{\mathbb{P}}_0$, the proposition follows from a combination of the theorem about the continuity of roots of polynomials and Krasner's lemma [Ja2, Prop. 12.3]. If $\tilde{\mathfrak{q}} \in \tilde{\mathbb{P}}_{\infty}$, the proposition follows from Sturm's theorem for real roots and from the theorem about the continuity of roots of polynomials for complex roots.

The following lemma replaces [JR2, Lemma 1.2].

LEMMA 1.9: Let \mathcal{T} be a nonempty finite subset of \mathbb{P} which contains \mathcal{S} . Let $f \in K[X]$ be an N-admissible polynomial of degree n and let $x_1, \ldots, x_n \in N$ be its distinct roots. Then, for each $\varepsilon > 0$ there is $\delta > 0$ with the following property: If (1a) $g \in N[X]$ is a monic polynomial of degree n with $|g - f|_{\mathcal{T}} < \delta$, then g is N-admissible and for each $\tilde{\mathfrak{q}} \in \tilde{\mathcal{T}}$

(1b) the roots of g can be enumerated as y_1, \ldots, y_n with $|y_i - x_i|_{\tilde{\mathfrak{q}}} < \varepsilon$.

If, in addition, there is $a \in K$ with $|x_i - a|_{\mathfrak{p}} < \varepsilon$ for each $\mathfrak{p} \in \mathcal{T}$, $i = 1, \ldots, n$, then we can choose δ such that (1a) implies $|y_i - a|_{\mathcal{T}} < \varepsilon$, $i = 1, \ldots, n$.

Proof: For each $\mathfrak{p} \in \mathcal{T}$ Proposition 1.8 gives $\delta_{\mathfrak{p}} > 0$ such that if g is a monic polynomial in N[X] of degree n and $|g - f|_{\tilde{\mathfrak{p}}} < \delta_{\mathfrak{p}}$, then g has n distinct roots y_1, \ldots, y_n with $|y_i - x_i|_{\tilde{\mathfrak{p}}} < \varepsilon$ and $K_{\mathfrak{p}}N(x_i) = K_{\mathfrak{p}}N(y_i)$. In particular, for each $\mathfrak{p} \in \mathcal{S}, y_1, \ldots, y_n \in K_{\mathfrak{p}}$.

Let $\delta = \max_{\mathfrak{p} \in \mathcal{T}} \delta_{\mathfrak{p}}$ and consider a polynomial g as in (1a). For each $\tilde{\mathfrak{q}} \in \tilde{\mathcal{T}}$ there exist $\mathfrak{p} \in \mathcal{T}$ and $\sigma \in \operatorname{Gal}(K)$ such that $\tilde{\mathfrak{q}} = \tilde{\mathfrak{p}}^{\sigma}$. Since N/K is Galois, $g^{\sigma^{-1}} \in N[X]$. Also, $|g^{\sigma^{-1}} - f|_{\tilde{\mathfrak{p}}} = |g - f|_{\tilde{\mathfrak{q}}} < \delta$. Hence (1b) holds for $\tilde{\mathfrak{p}}$ and $g^{\sigma^{-1}}$, and the roots of $g^{\sigma^{-1}}$ are in $K_{\mathfrak{p}}$ if $\mathfrak{p} \in S$. Moreover, σ permutes the roots of f and maps the roots of $g^{\sigma^{-1}}$ onto the roots of g. So (1b) holds for $\tilde{\mathfrak{q}}$ and g, and the roots of g are in $K_{\mathfrak{p}}^{\sigma}$ if $\mathfrak{p} \in S$. It follows that all roots of g belong to N, so g is N-admissible.

If, in addition, there is $a \in K$ with $|x_i - a|_{\mathfrak{p}} < \varepsilon$ for each $\mathfrak{p} \in \mathcal{T}$, i = 1, ..., n, then, by (1b), we can choose δ such that (1a) implies $|y_i - a|_{\mathcal{T}} < \varepsilon$, i = 1, ..., n. Definition 1.10: Let M be a subextension of N/K and \mathcal{O} a subset of M.

(a) We say M is **pseudo** *S*-adically closed (PSC) if every absolutely irreducible variety over M has an M-rational point provided it has a simple $K_{\mathfrak{p}}$ -rational point for each $\mathfrak{p} \in S$.

(b) A polynomial $h \in N[T, X]$ is N-admissible with respect to X if h is monic in X and h(0, X) is N-admissible.

(c) An absolutely irreducible polynomial $h \in K[T, X]$, separable with respect to X, is K-stable with respect to X if $\operatorname{Gal}(h(T, X), K(T)) \cong \operatorname{Gal}(h(T, X), \tilde{K}(T))$ [FrJ, §15.3].

(d) We say M is **weakly** PSC **over** \mathcal{O} if for each absolutely irreducible Nadmissible polynomial $h \in M[T, X]$ with respect to X and for each $g \in M[T]$ with $g(0) \neq 0$, there exists $(a, b) \in \mathcal{O} \times M$ such that h(a, b) = 0 and $g(a) \neq 0$.

(e) We say M is weakly K-stably PSC over \mathcal{O} if for each absolutely irreducible N-admissible and K-stable polynomial $h \in K[T, X]$ with respect to X and for each $g \in K[T]$ with $g(0) \neq 0$, there exists $(a, b) \in \mathcal{O} \times M$ such that h(a, b) = 0 and $g(a) \neq 0$.

Remark 1.11: (a) If $S = \emptyset$, then $N = K_s$. So, M is weakly PSC over \mathcal{O} if and only if M is PAC over \mathcal{O} [JR1, Lemma 1.3].

(b) If M is weakly PSC over \mathcal{O} , then it is also weakly K-stably PSC over \mathcal{O} .

(c) If $\mathcal{O} \subseteq \mathcal{O}' \subseteq M$ and M is weakly PSC over \mathcal{O} (resp. weakly K-stably PSC over \mathcal{O}), then it is also weakly PSC over \mathcal{O}' (resp. weakly K-stably PSC over \mathcal{O}').

(d) Suppose \mathfrak{p} is a complex prime of K and let $\mathcal{S}' = \mathcal{S} \cup \{\mathfrak{p}\}$. Then $K_{\mathfrak{t}\mathfrak{p}} = \tilde{K}$ and therefore $N = K_{tot,\mathcal{S}} = K_{tot,\mathcal{S}'}$. Thus M is weakly PSC over \mathcal{O} if and only if M is weakly PS'C over \mathcal{O} .

(e) If S does not contain complex primes and M is a PSC field, then M is weakly PSC over $\mathcal{O}_{M,S}$ [Raz, Prop. 3.3].

The following lemma replaces [JR2, Lemma 1.4].

LEMMA 1.12: Let M_0 be an algebraic extension of K, $M = M_0 \cap N$, and e a positive integer. Let \mathcal{O} be a subset of $\mathcal{O}_{M,\mathcal{S}}$ such that $\mathcal{O}_{K,\mathcal{V}} \cdot \mathcal{O} \subseteq \mathcal{O}$ and M_0 is PAC over \mathcal{O} . Then:

- (a) M is weakly PSC over \mathcal{O} . In particular, $K_{\text{tot},S}$ is weakly PSC over $\mathcal{O}_{K,V}$ and $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},S}$ is weakly PSC over $\mathcal{O}_{K,V}$ for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$.
- (b) Let M' be the maximal Galois extension of K inside M. Then M' is weakly K-stably PSC over O_{K,V}. In particular, K_s[σ] ∩ K_{tot,S} is weakly K-stably PSC over O_{K,V} for almost all σ ∈ Gal(K)^e.

Proof: Let \mathcal{T} be a nonempty finite subset of \mathcal{V} containing \mathcal{S} .

Proof of (a): Let $h \in M[T, X]$ be an absolutely irreducible N-admissible polynomial with respect to X and let $g \in M[T]$ with $g(0) \neq 0$. Let L be a finite subextension of M/K which contains the coefficients of h. Lemma 1.9, applied to $L, \mathcal{S}_L, \mathcal{T}_L$ instead of to $K, \mathcal{S}, \mathcal{T}$, gives $\delta > 0$ such that if $k \in N[X]$ is a monic polynomial of the same degree as h(0, X) with $|k(X) - h(0, X)|_{\mathcal{T}} < \delta$, then k is N-admissible. Also, there exists $\gamma > 0$ such that if $a \in N$ satisfies $|a|_{\mathcal{T}} < \gamma$, then $|h(a, X) - h(0, X)|_{\mathcal{T}} < \delta$. Use the strong approximation theorem to find $0 \neq m \in \mathcal{O}_{K,\mathcal{V}}$ such that $|m|_{\mathcal{T}} < \gamma$. Let $T' = \frac{1}{m}T$. Since M_0 is PAC over \mathcal{O} , the absolutely irreducible polynomial h(mT', X) has a zero (c, b)in $\mathcal{O} \times M_0$ such that $g(mc) \neq 0$ [JR1, Lemma 1.3]. Hence, $a = mc \in \mathcal{O}_{K,\mathcal{V}} \cdot \mathcal{O} \subseteq \mathcal{O}$ satisfies h(a, b) = 0 and $g(a) \neq 0$. Check that $|h(a, X) - h(0, X)|_{\mathcal{T}} < \delta$. Hence, all roots of h(a, X) belong to N. In particular $b \in M_0 \cap N = M$. Conclude that M is weakly PSC over \mathcal{O} .

Proof of (b): Let $h \in K[T, X]$ be an absolutely irreducible N-admissible and K-stable polynomial with respect to X and let $g \in K[T]$ with $g(0) \neq 0$. Choose a transcendental element t over K and an element x such that h(t, x) = 0. Set F = K(t, x) and let \hat{F} be the Galois hull of F/K(t). Choose a primitive element y for $\hat{F}/K(t)$. By assumption, \hat{F}/K is a regular extension. Since M_0 is PAC over \mathcal{O} , there exist $a \in \mathcal{O}, b \in \tilde{K}$, and $c \in M_0$ such that (a, b, c) is a K-specialization of $(t, x, y), g(a) \neq 0$, and a is \mathcal{T} close enough to 0 to get h(a, X) is \mathcal{T} -closed enough to h(0, X) so that $b \in N$. Then $K(b) \subseteq K(c)$ and K(c) is a Galois extension of K which is contained in M_0 . Then $b \in K(c) \cap N \subseteq M_0 \cap N = M$. Since $K(c) \cap N$ is a Galois of K, it follows that $b \in M'$. Remark: If M is a subextension of N/K which is weakly PSC over $\mathcal{O} = \mathcal{O}_{K,\mathbb{P}_0\cap\mathcal{V}}\cap \mathcal{M}_{K,\mathbb{P}_\infty\cap\mathcal{V}}$, we can prove directly that the maximal Galois extension M' of K inside M is weakly K-stably PSC over \mathcal{O} .

Example 1.13: Let f, r, g be nonzero polynomials in N[X] such that f is N-admissible. Suppose gcd(r, f) = 1, deg(r) < deg(f), and $g(0) \neq 0$. Let $0 \neq m \in K$. Then h(T, X) = mr(X)T + f(X) is an absolutely irreducible polynomial which is monic in X. Since h(0, X) = f(X) is N-admissible, h is N-admissible with respect to X.

Let M be a subextension of N/K and let \mathcal{O} be a subset of M.

(a) Suppose M is weakly PSC over \mathcal{O} and $f, r, g \in M[X]$. Then there exists $(a,b) \in \mathcal{O} \times M$ such that mr(b)a + f(b) = 0 and $g(a) \neq 0$.

(b) Suppose M is weakly K-stably PSC over \mathcal{O} , $f, r, g \in K[X]$, and $\frac{f}{r}$ is a Morse function (Definition 4.1). Then $-\frac{1}{m}\frac{f}{r}$ is also a Morse function. Therefore, by Proposition 4.2, h(T, X) is K-stable with respect to X. Hence there exists $(a, b) \in \mathcal{O} \times M$ such that mr(b)a + f(b) = 0 and $g(a) \neq 0$.

The next lemma replaces [JR2, Lemma 1.8]:

LEMMA 1.14 (Quasi uniform approximation): Let M be a subextension of N/K which is weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$ and let \mathcal{T} be a finite subset of \mathcal{V} which contains \mathcal{S} . Let $x \in N$ and $\varepsilon > 0$. Then M has a finite subset B such that for each $\tilde{\mathfrak{q}} \in \tilde{\mathcal{T}}$ there is $b \in B$ with $|b-x|_{\tilde{\mathfrak{q}}} < \varepsilon$.

Proof: Assume without loss that $x \neq 0$ and $\mathcal{T} \neq \emptyset$. Since N/M is Galois, $\operatorname{irr}(x, M)$ is an N-admissible polynomial which has x as a root. Hence, it suffices to prove the following statement about N-admissible polynomials $h \in M[X]$:

(2) There exists a finite set $B_h \subset M$ such that for each root z of h and for each $\tilde{\mathfrak{q}} \in \tilde{\mathcal{T}}$ there is $b \in B_h$ with $|b - z|_{\tilde{\mathfrak{q}}} < \varepsilon$.

The case $\deg(h) = 1$ being trivial we assume that $d = \deg(h) \ge 2$ and proceed by induction on d. Let L be a finite extension of K in M which contains the coefficients of h. Note that $L_{\text{tot},S_L} = K_{\text{tot},S} = N$. Hence, by Lemma 1.9 applied to L, S_L, T_L instead of to K, S, T, there is $\delta > 0$ with the following property: (3) Every monic polynomial $h_1 \in N[X]$ of degree d which satisfies $|h_1 - h|_{\mathcal{T}} < \delta$ is N-admissible and for each $\tilde{\mathfrak{q}} \in \tilde{\mathcal{T}}$ and each root z of h there is a root y of h_1 with $|y - z|_{\tilde{\mathfrak{q}}} < \frac{\varepsilon}{2}$.

Choose $0 \neq m \in K$ such that $|m|_{\mathcal{T}} < \delta$. Since M is weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$, Example 1.13 (a) (applied to h, 1 instead of to f, r) gives $a \in \mathcal{O}_{M,\mathcal{V}}$ and $c \in M$ with ma + h(c) = 0. It follows that the monic polynomial $h_1(X) = ma + h(X) \in M[X]$ of degree d satisfies $h_1(c) = 0$ and $|h_1 - h|_{\mathcal{T}} < \delta$. Hence, h_1 satisfies the conclusion of (3).

In particular $g(X) = \frac{h_1(X)}{X-c} \in M[X]$ is an N-admissible polynomial of degree d-1. By the induction hypothesis, there exists a finite subset $B_g \subseteq M$ such that for each root y of g and for each $\tilde{\mathfrak{q}} \in \tilde{\mathcal{T}}$ there is $b \in B_g$ with $|b-y|_{\tilde{\mathfrak{q}}} < \frac{\varepsilon}{2}$.

Let $B_h = B_g \cup \{c\}$ and consider $\tilde{\mathfrak{q}} \in \tilde{T}$. Let z be a root of h. By (3) there exists a root y of h_1 such that $|y - z|_{\tilde{\mathfrak{q}}} < \frac{\varepsilon}{2}$. So, y = c or y is a root of g. In the later case there exists $b \in B_g$ such that $|b - y|_{\tilde{\mathfrak{q}}} < \frac{\varepsilon}{2}$ and therefore $|b - z|_{\tilde{\mathfrak{q}}} < \varepsilon$. In both cases the induction is complete.

Finally, we replace [JR2, Prop. 1.9]:

PROPOSITION 1.15: Let M be a subextension of N/K which is weakly K-stably PSC over $\mathcal{O}_{M,\mathcal{V}}$. Let \mathfrak{p} be a prime in $\mathcal{V} \setminus S$ and $\tilde{\mathfrak{q}}$ an extension of \mathfrak{p} to \tilde{K} . Suppose $\tilde{\mathfrak{q}} = \tilde{\mathfrak{p}}^{\sigma}$ for $\sigma \in \operatorname{Gal}(K)$. Then $K_{\mathfrak{p}}^{\sigma}M = K_s$ and M is $\tilde{\mathfrak{q}}$ -dense in \tilde{K} .

Proof: Consider $0 \neq x \in K_s$. Let $h_{\mathfrak{p}} = \operatorname{irr}(x, K)$ and $n = \operatorname{deg}(h_{\mathfrak{p}})$. Let \mathcal{T} be a nonempty finite subset of $\mathcal{V} \setminus \{\mathfrak{p}\}$ containing \mathcal{S} . Choose *n* distinct elements $a_1, \ldots, a_n \in$ K and let $h_{\mathcal{T}}(X) = \prod_{i=1}^n (X - a_i)$. By Lemma 1.9 and Proposition 1.8, there exists $\delta > 0$ such that

- (4a) if $h \in N[X]$ is a monic polynomial of degree n and $|h h_{\mathcal{T}}|_{\mathcal{T}} < \delta$, then h has n distinct roots in N, and
- (4b) if $h \in M[X]$ is a monic polynomial of degree n and $|h h_{\mathfrak{p}}|_{\tilde{\mathfrak{q}}} < \delta$, then we can enumerate the roots of $h_{\mathfrak{p}}$ as x_1, \ldots, x_n and the roots of h as x'_1, \ldots, x'_n such that $K^{\sigma}_{\mathfrak{p}}M(x'_i) = K^{\sigma}_{\mathfrak{p}}M(x_i).$

If $\operatorname{char}(K)|n$, let f(X) = X. Otherwise, let f(X) = 1. Use Proposition 4.3 and the assumption $\mathfrak{p} \notin S$ with the weak approximation theorem to find a monic polynomial $h \in K[X]$ such that $|h - h_{\mathcal{T}}|_{\mathcal{T}} < \delta$, $\delta_1 = |h - h_{\mathfrak{p}}|_{\mathfrak{p}} < \delta$, and $\frac{h}{f}$ is a Morse function. By (4a), h is N-admissible.

To prove $K_{\mathfrak{p}}^{\sigma}M = K_s$ we may assume K(x)/K is Galois. Choose $0 \neq m \in K$ with $|m|_{\mathfrak{p}} < \delta - \delta_1$. Then Example 1.13 (b) supplies $c \in \mathcal{O}_{M,\mathcal{V}}$ and $b \in M$ with mcf(b) + h(b) = 0. So, b is a root of the monic polynomial $h_1(X) = mcf(X) + h(X) \in M[X]$. By (4b), $K_{\mathfrak{p}}^{\sigma}M(b) = K_{\mathfrak{p}}^{\sigma}M(x')$ for some root x' of $h_{\mathfrak{p}}$. It follows that $K_{\mathfrak{p}}^{\sigma}(x') \subseteq K_{\mathfrak{p}}^{\sigma}M$. But K(x) = K(x'). Hence $x \in K_{\mathfrak{p}}^{\sigma}M$. Conclude that $K_{\mathfrak{p}}^{\sigma}M = K_s$.

In particular, M is $\tilde{\mathfrak{q}}$ -dense in K_s . As K_s is $\tilde{\mathfrak{q}}$ -dense in \tilde{K} [JR1, Lemma 9.1], M is $\tilde{\mathfrak{q}}$ -dense in \tilde{K} .

2. A compactness lemma

We keep Data 1.4 and 1.7 in force. The main results of this note depend on the assumption that K is a global field. Here we use the finiteness of the class number of Kand Dirichlet's unit theorem to prove that a certain group is compact.

For each finite subset \mathcal{R} of \mathbb{P} regard $\hat{K}_{\mathcal{R}}^{\times} = \prod_{\mathfrak{p} \in \mathcal{R}} \hat{K}_{\mathfrak{p}}^{\times}$ as a topological group with the product topology. For $\mathcal{R} \subseteq \mathcal{V}$, identify $\mathcal{O}_{K,\mathcal{V}_0 \sim \mathcal{R}}^{\times}$ with its image in $\hat{K}_{\mathcal{R}}^{\times}$ under the diagonal embedding. Lemma 2.3 below replaces [JR2, Lemma 2.2]. It states that the group $\hat{K}_{\mathcal{R}}^{\times}/\mathcal{O}_{K,\mathcal{V}_0 \sim \mathcal{R}}^{\times}$ is compact. Its proof follows the proof of [CaR, Lemma 4.4] which proves the same result only in the case $\mathbb{P}_{\infty} \not\subseteq \mathcal{V}$.

Here we follow the terminology of [HeR] for compact groups. Thus, a topological group G is **compact** if every covering of G by open sets has a finite subcovering ([Bou, §9.1] uses the terminology **quasi-compact** instead).

Suppose N is a normal subgroup of a topological group G which is not necessarily closed. The following rules hold:

- (1a) The quotient map $G \to G/N$ is continuous and open [HeR, Chap. II, (5.16) and (5.17)].
- (1b) If G is compact, so is G/H [HeR, Chap. II, (5.22)].

(1c) If H and G/H are compact, so is G [HeR, Chap. II (5.25)].

We use the following lemma from linear algebra in the proof of Lemma 2.3.

LEMMA 2.2: Let *E* be a field, a_1, \ldots, a_n nonzero elements of *E*, and $\mathbf{x}_i = (x_{i1}, \ldots, x_{in})$, $i = 1, \ldots, n-1$, linearly independent vectors in E^n . Suppose $\sum_{j=1}^n a_j x_{ij} = 0$, $i = 1, \ldots, n-1$. Let *J* be a proper subset of $\{1, \ldots, n\}$. Put m = |J| and $\mathbf{x}'_i = (x_{ij})_{j \in J}$, $i = 1, \ldots, n-1$. Then $\mathbf{x}'_1, \ldots, \mathbf{x}'_{n-1}$ span a subspace of E^m of dimension *m*.

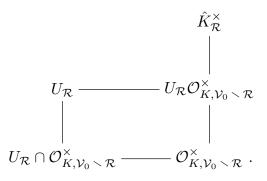
Proof: Assume without loss $n \notin J$. By assumption, the rows of the $(n-1) \times n$ matrix $A = (x_{ij})_{1 \leq i \leq n-1, 1 \leq j \leq n}$ are linearly independent. Hence, n-1 of the columns of A are linearly independent. By assumption, the *n*th column of A is a linear combination of the first ones. Hence, the first n-1 columns are linearly independent. Conclude: rank $((x_{ij})_{1 \leq i \leq n-1, j \in J}) = m$. So, m of the vectors $\mathbf{x}'_1, \ldots, \mathbf{x}'_{n-1}$ are linearly independent. \blacksquare

LEMMA 2.3: Let \mathcal{T} be a nonempty finite subset of \mathcal{V} . Then the group $\hat{K}_{\mathcal{T}}^{\times}/\mathcal{O}_{K,\mathcal{V}_0 \times \mathcal{T}}^{\times}$ is compact.

Proof: Choose $\mathfrak{p}_0 \in \mathbb{P} \setminus \mathcal{V}$. Then, $\mathcal{V}_0 \setminus \mathcal{T} \subseteq (\mathbb{P}_0 \setminus \{\mathfrak{p}_0\}) \setminus \mathcal{T}$. So, $\mathcal{O}_{K,(\mathbb{P}_0 \setminus \{\mathfrak{p}_0\}) \setminus \mathcal{T}}^{\times} \leq \mathcal{O}_{K,\mathcal{V}_0 \setminus \mathcal{T}}^{\times} \leq \hat{K}_{\mathcal{T}}^{\times}$. Thus, $\hat{K}_{\mathcal{T}}/O_{K,\mathcal{V}_0 \setminus \mathcal{T}}^{\times}$ is a quotient of $\hat{K}_{\mathcal{T}}^{\times}/O_{K,(\mathbb{P}_0 \setminus \{\mathfrak{p}_0\}) \setminus \mathcal{T}}^{\times}$. Using (1b), this allows us to assume $\mathcal{V} = \mathbb{P} \setminus \{\mathfrak{p}_0\}$. The rest of the proof naturally breaks up into several parts.

PART A: Reduction to compactness of divisor classes. For each $\mathfrak{p} \in \mathcal{V}$ let $U_{\mathfrak{p}} = \{\alpha \in \hat{K}_{\mathfrak{p}}^{\times} \mid |\alpha|_{\mathfrak{p}} = 1\}$ be the group of units in $\hat{K}_{\mathfrak{p}}$. If \mathfrak{p} is infinite and real, $U_{\mathfrak{p}} = \{\pm 1\}$; if \mathfrak{p} is complex, $U_{\mathfrak{p}}$ is the multiplicative group of the unit circle. When \mathfrak{p} is finite, $U_{\mathfrak{p}}$ is profinite. In any case, $U_{\mathfrak{p}}$ is compact.

For each finite subset \mathcal{R} of \mathcal{V} let $U_{\mathcal{R}} = \prod_{\mathfrak{p} \in \mathcal{R}} U_{\mathfrak{p}}$. By the preceding paragraph $U_{\mathcal{R}}$ is compact. Consider the \mathcal{R} -divisor class $C_{\mathcal{R}} = \hat{K}_{\mathcal{R}}/U_{\mathcal{R}}\mathcal{O}_{K,\mathcal{V}_0 \sim \mathcal{R}}^{\times}$. It appears as the quotient of the right upper groups in the diagram



For $\mathcal{R} = \mathcal{T}$, the diagram gives a short exact sequence:

$$1 \longrightarrow U_{\mathcal{T}}/(U_{\mathcal{T}} \cap \mathcal{O}_{K,\mathcal{V}_0 \,\smallsetminus\, \mathcal{T}}^{\times}) \longrightarrow \hat{K}_{\mathcal{T}}^{\times}/O_{K,\mathcal{V}_0 \,\smallsetminus\, \mathcal{T}}^{\times} \longrightarrow \mathcal{C}_{\mathcal{T}} \longrightarrow 1.$$

By the preceding paragraph and (1b), the second term is compact. So, in order to prove that the middle term is compact, it suffices, by (1c), to prove that $C_{\mathcal{T}}$ is compact.

PART B: Separation of the finite and the infinite parts of $C_{\mathcal{T}}$. Consider the epimorphism $p: \hat{K}_{\mathcal{T}}^{\times} \to \hat{K}_{\mathcal{T}_0}^{\times}$ given by $p((\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}}) = (\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}_0}$. Observe: $\mathcal{V}_0 \setminus \mathcal{T} = \mathcal{V}_0 \setminus \mathcal{T}_0$. So, p maps $U_{\mathcal{T}}$ onto $U_{\mathcal{T}_0}$ and $\mathcal{O}_{K,\mathcal{V}_0 \setminus \mathcal{T}}^{\times}$, considered as a subgroup of $\hat{K}_{\mathcal{T}}^{\times}$, onto $\mathcal{O}_{K,\mathcal{V}_0 \setminus \mathcal{T}_0}^{\times}$, considered as a subgroup of $\hat{K}_{\mathcal{T}_0}^{\times}$. Let $\bar{p}: C_{\mathcal{T}} \to C_{\mathcal{T}_0}$ be the epimorphism that p induces. Now consider the injection $i: \hat{K}_{\mathcal{T}_{\infty}} \to \hat{K}_{\mathcal{T}}^{\times}$ given by

$$i((\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}_{\infty}}) = ((1)_{\mathfrak{p}\in\mathcal{T}_{0}}, (\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}_{\infty}}).$$

It maps $U_{\mathcal{T}_{\infty}}$ into $U_{\mathcal{T}}$. For $a \in \mathcal{O}_{K,\mathcal{V}_0 \\ \subset \mathcal{T}_{\infty}}^{\times}$ we have

$$i(a) = \left((1)_{\mathfrak{p}\in\mathcal{T}_0}, (a)_{\mathfrak{p}\in\mathcal{T}_\infty} \right) = \left((a^{-1})_{\mathfrak{p}\in\mathcal{T}_0}, (1)_{\mathfrak{p}\in\mathcal{T}_\infty} \right) a \in U_{\mathcal{T}}\mathcal{O}_{K,\mathcal{V}_0\smallsetminus\mathcal{T}}^{\times}.$$

So, *i* induces a homomorphism $\overline{i}: C_{\mathcal{T}_{\infty}} \to C_{\mathcal{T}}$.

Suppose $\alpha = (\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}_{\infty}} \in \hat{K}_{\mathcal{T}_{\infty}}^{\times}$ and $i(\alpha) \in U_{\mathcal{T}}\mathcal{O}_{K,\mathcal{V}_{0} \smallsetminus \mathcal{T}}^{\times}$. Then there are $\mu_{\mathfrak{p}} \in U_{\mathfrak{p}}$, $\mathfrak{p} \in \mathcal{T}$, and $a \in O_{K,\mathcal{V}_{0} \smallsetminus \mathcal{T}}^{\times}$ with $1 = \mu_{\mathfrak{p}}a$ for $\mathfrak{p} \in \mathcal{T}_{0}$ and $\alpha_{\mathfrak{p}} = \mu_{\mathfrak{p}}a$ for $\mathfrak{p} \in \mathcal{T}_{\infty}$. In particular, $a \in \mathcal{O}_{K,\mathcal{V}_{0} \smallsetminus \mathcal{T}_{\infty}}^{\times}$ and $\alpha = ((\mu_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}_{\infty}})a \in U_{\mathcal{T}_{\infty}}\mathcal{O}_{\mathcal{V}_{0} \smallsetminus \mathcal{T}_{\infty}}^{\times}$. So, $\overline{\imath}$ is injective.

By definition, $\operatorname{Im}(\overline{i}) \subseteq \operatorname{Ker}(\overline{p})$. Conversely, suppose $\alpha = ((\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}}) \in \hat{K}_{\mathcal{T}}^{\times}$ and $p(\alpha) \in U_{\mathcal{T}_0}\mathcal{O}_{K,\mathcal{V}_0 \smallsetminus \mathcal{T}_0}^{\times}$. Then there are $\mu_{\mathfrak{p}} \in U_{\mathfrak{p}}, \mathfrak{p} \in \mathcal{T}_0$, and $a \in \mathcal{O}_{K,\mathcal{V}_0 \smallsetminus \mathcal{T}_0}^{\times}$ with $\alpha_{\mathfrak{p}} = \mu_{\mathfrak{p}}a, \mathfrak{p} \in \mathcal{T}_0$. So, $\alpha = i((\alpha_{\mathfrak{p}}a^{-1})_{\mathfrak{p}\in\mathcal{T}_\infty}) \cdot ((\mu_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}_0}, (1)_{\mathfrak{p}\in\mathcal{T}_\infty})a \in i(K_{\mathcal{T}_\infty}^{\times})U_{\mathcal{T}}\mathcal{O}_{K,\mathcal{V}_0 \smallsetminus \mathcal{T}}^{\times}$. Conclude: $\operatorname{Ker}(\overline{p}) = \operatorname{Im}(\overline{i})$.

We have therefore established a short exact sequence $1 \to C_{\mathcal{T}_{\infty}} \xrightarrow{\bar{\nu}} C_{\mathcal{T}} \xrightarrow{\bar{p}} C_{\mathcal{T}_0} \to 1$. By (1c) is suffices to prove that each of the groups $C_{\mathcal{T}_0}$ and $C_{\mathcal{T}_{\infty}}$ is compact. We do this in Parts C and D.

PART C: $C_{\mathcal{T}}$ is finite when $\mathcal{T} = \mathcal{T}_0$. To prove this, let D be the group of divisors of K and P the group of principal divisors. For each $\mathfrak{p} \in \mathbb{P}_0$ let $\operatorname{ord}_{\mathfrak{p}}$ be the normalized valuation associated with \mathfrak{p} . Define a homomorphism d from $\hat{K}_{\mathcal{T}}^{\times}$ into the group D of divisors of K by $d((\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}}) = \sum_{\mathfrak{p}\in\mathcal{T}} \operatorname{ord}_{\mathfrak{p}}(\alpha_{\mathfrak{p}})\mathfrak{p}$. If $(\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}} \in d^{-1}(P)$, then there is $a \in K^{\times}$ with $\sum_{\mathfrak{p}\in\mathcal{T}} \operatorname{ord}_{\mathfrak{p}}(\alpha_{\mathfrak{p}})\mathfrak{p} = \sum_{\mathfrak{p}\in\mathbb{P}_0} \operatorname{ord}_{\mathfrak{p}}(a)\mathfrak{p}$. So, $a \in \mathcal{O}_{K,\mathbb{P}_0 \smallsetminus \mathcal{T}}^{\times}$. Then $d^{-1}(P) = U_{\mathcal{T}}\mathcal{O}_{K,\mathbb{P}_0 \smallsetminus \mathcal{T}}^{\times} \leq U_{\mathcal{T}}\mathcal{O}_{K,\mathbb{V}_0 \smallsetminus \mathcal{T}}^{\times}$. So, d induces an embedding of $\hat{K}_{\mathcal{T}}^{\times}/U_{\mathcal{T}}\mathcal{O}_{K,\mathbb{P}_0 \smallsetminus \mathcal{T}}^{\times}$ into D/P. The latter is a finite group [CaF, p. 71]. So, the former is a finite group. It follows that $C_{\mathcal{T}} = \hat{K}_{\mathcal{T}}^{\times}/U_{\mathcal{T}}\mathcal{O}_{K,\mathbb{V}_0 \smallsetminus \mathcal{T}}^{\times}$ is a finite group.

PART D: $C_{\mathcal{T}}$ is compact when $\mathcal{T} = \mathcal{T}_{\infty}$. Indeed, let $s = |\mathbb{P}_{\infty}|$ and $t = |\mathcal{T}|$. Consider a subset \mathcal{R} of $\mathbb{P}_{\infty} \cup \{\mathfrak{p}_0\}$ and let $r = |\mathcal{R}|$. Define a homomorphism $\lambda_{\mathcal{R}} \colon \hat{K}_{\mathcal{R}}^{\times} \to \mathbb{R}^r$ by $\lambda_{\mathcal{R}}((\alpha_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{R}}) = (\log |\alpha_{\mathfrak{p}}|_{\mathfrak{p}})_{\mathfrak{p}\in\mathcal{R}}$. Then $\operatorname{Ker}(\lambda_{\mathcal{R}}) = U_{\mathcal{R}}$ and $\lambda_{\mathcal{R}}(\hat{K}_{\mathcal{R}}^{\times}) = \mathbb{R}^r$ if $\mathcal{R} \subseteq \mathbb{P}_{\infty}$. Hence $C_{\mathcal{R}} \cong \mathbb{R}^r / \lambda_{\mathcal{R}}(\mathcal{O}_{K,\mathcal{V}_0 \times \mathcal{R}}^{\times})$ if $\mathcal{R} \subseteq \mathbb{P}_{\infty}$. There are two cases to consider. CASE D1: $\mathfrak{p}_0 \in \mathbb{P}_{\infty}$. Then $\mathcal{V}_0 \setminus \mathcal{T} = \mathbb{P}_0$ and $\mathcal{T} \subset \mathbb{P}_{\infty}$. By Dirichlet's unit theorem [CaF, p. 72, Thm], $\lambda_{\mathbb{P}_{\infty}}(\mathcal{O}_{K,\mathbb{P}_0}^{\times})$ is a lattice of rank s-1 in the hyperplane $H = \{(x_{\mathfrak{p}})_{\mathfrak{p}\in\mathbb{P}_{\infty}} \mid \sum_{\mathfrak{p}\in\mathbb{P}_{\infty}} n_{\mathfrak{p}}x_{\mathfrak{p}} = 0\}$ of \mathbb{R}^s . Here $n_{\mathfrak{p}}$ are positive integers chosen for the product formula to hold in K. In particular, $\lambda_{\mathbb{P}_{\infty}}(\mathcal{O}_{K,\mathbb{P}_0}^{\times})$ contains s-1 linearly independent vectors $(x_{i,\mathfrak{p}})_{\mathfrak{p}\in\mathbb{P}_{\infty}}, i = 1, \ldots, s-1$. Their projections on the \mathcal{T} -coordinates, namely $(x_{i,\mathfrak{p}})_{\mathfrak{p}\in\mathcal{T}}, i = 1, \ldots, s-1$, contain t linearly independent vectors over \mathbb{R} (Lemma 2.2). The latter vectors belong to $\lambda_{\mathcal{T}}(\mathcal{O}_{K,\mathbb{P}_0}^{\times})$. Hence, $C_{\mathcal{T}} \cong \mathbb{R}^t / \lambda_{\mathcal{T}}(\mathcal{O}_{K,\mathbb{P}_0}^{\times})$ is a quotient of $(\mathbb{R}/\mathbb{Z})^t$ which is a compact group. Conclude from (1b): $C_{\mathcal{T}}$ is compact.

CASE D2: $\mathfrak{p}_0 \in \mathbb{P}_0$. In this case $\mathcal{V}_0 \smallsetminus \mathcal{T} = \mathbb{P}_0 \smallsetminus \{\mathfrak{p}_0\}$ and $\mathcal{T} \subseteq \mathbb{P}_\infty$. Note that $\mathbb{P} \smallsetminus (\mathbb{P}_0 \smallsetminus \{\mathfrak{p}_0\}) = \mathbb{P}_\infty \cup \{\mathfrak{p}_0\}$ has s + 1 elements. So, by Dirichlet's unit theorem, $\lambda_{\mathbb{P}_\infty \cup \{\mathfrak{p}_0\}}(\mathcal{O}_{K,\mathbb{P}_0 \smallsetminus \{\mathfrak{p}_0\}}^{\times})$ is a lattice of rank s in the hyperplane

$$H = \left\{ (x_{\mathfrak{p}})_{\mathfrak{p} \in \mathbb{P}_{\infty} \cup \{\mathfrak{p}_{0}\}} \mid \sum_{\mathfrak{p} \in \mathbb{P}_{\infty} \cup \{\mathfrak{p}_{0}\}} n_{\mathfrak{p}} x_{\mathfrak{p}} = 0 \right\}$$

of \mathbb{R}^{s+1} . In particular, $\lambda_{\mathbb{P}_{\infty} \cup \{\mathfrak{p}_0\}} (\mathcal{O}_{K,\mathbb{P}_0 \setminus \{\mathfrak{p}_0\}}^{\times})$ contains *s* linearly independent vectors $(x_{i,\mathfrak{p}})_{\mathfrak{p} \in \mathbb{P}_{\infty} \cup \{\mathfrak{p}_0\}}, i = 1, \ldots, s$. Their projection on the \mathcal{T} -coordinates contain *t* linearly independent vectors (Lemma 2.2). The latter belong to $\lambda_{\mathcal{T}}(\mathcal{O}_{K,\mathbb{P}_0 \setminus \{\mathfrak{p}_0\}}^{\times})$. Hence, $C_{\mathcal{T}} \cong \mathbb{R}^t / \lambda_{\mathcal{T}}(\mathcal{O}_{K,\mathbb{P}_0 \setminus \{\mathfrak{p}_0\}}^{\times})$ is a quotient of $(\mathbb{R}/\mathbb{Z})^t$. Conclude: $C_{\mathcal{T}}$ is compact.

The use of compactness of the above group will be through the following lemma. LEMMA 2.4: Let U be a nonempty open subset of a compact group G. Then there exist $u_1, \ldots, u_n \in U$ such that $1 = u_1 \cdots u_n$.

Proof: Choose $u \in U$. Then $V = u^{-1}U$ is an open neighborhood of 1 such that $uV \subseteq U$. If necessary, replace V by $V \cap V^{-1}$ to assume that V is closed under taking inverse. As G is compact, the sequence u, u^2, u^3, \ldots contains a subsequence $u^{k_1}, u^{k_2}, u^{k_3}, \ldots$ which converges to an element u' of G. Hence, $u^{k_2-k_1}, u^{k_3-k_2}, \ldots$ converge to 1. In particular, there exists an integer $n \geq 2$ such that $v = u^n \in V$. By assumption, $v^{-1} \in V$ and therefore $uv^{-1} \in U$. So, $1 = u^n v^{-1} = u \cdots u(uv^{-1})$ is the desired presentation of 1.

3. Skolem density problems

This section makes adjustments to [JR2, §3,4] in order to include infinite primes and omit the assumption on perfectness.

Data and Assumption 3.1: We fix the following data and assumptions for the rest of this work:

- (1a) \mathcal{V} is an infinite proper subset of \mathbb{P} .
- (1b) \mathcal{T} is a finite subset of \mathcal{V} which contains \mathcal{S} .
- (1c) $\mathcal{U} = \mathcal{V}_0 \smallsetminus \mathcal{T}$.
- (1d) M is a subextension of N/K which is either weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$ or weakly K-stable PSC over $\mathcal{O}_{M,\mathcal{V}}$ and Galois over K.

Lemmas 3.2 and 3.4 below strengthen [JR2, Lemma 3.2]. We are gratefull to Moret-Bailly for his help in the proof of Lemma 3.2.

LEMMA 3.2: Assume $\mathcal{T} \neq \emptyset$. Consider a monic polynomial $f \in K[X]$ and a positive real number ε . Suppose that

- (2a) $f \in \mathcal{O}_{K,\mathcal{U}}[X];$
- (2b) $f = f_1 \cdots f_r$, where $f_1, \ldots, f_r \in \mathcal{O}_{K,\mathcal{U}}[X]$ are distinct monic irreducible polynomials over K; and
- (2c) $\mathcal{O}_{K,\mathcal{U}}[c] = \mathcal{O}_{K(c),\mathcal{U}}$ for each root c of f(X).

Then there are a monic polynomial $h_0 \in \mathcal{O}_{K,\mathcal{U}}[X]$ of degree $d > \deg(f)$, relatively prime to f, and $\gamma > 0$ such that if a monic polynomial $h \in \mathcal{O}_{N,\mathcal{U}}[X]$ of degree d, relatively prime to f, satisfies $|h - h_0|_{\mathcal{T}} < \gamma$, then each root x of h satisfies:

- (3a) $f(x) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times};$
- (3b) $|x|_{\mathcal{T}} < \varepsilon$; and
- (3c) x is simple and belongs to N.

Moreover, there exists $h \in \mathcal{O}_{M,\mathcal{U}}[X]$ as above with a root in M.

Proof: Replace f(X) with f(X)(X-c) for some $c \in \mathcal{O}_{K,\mathcal{U}}$ different from the roots of f, if necessary, to assume that $\operatorname{char}(K) \nmid \operatorname{deg}(f)$ if $\operatorname{char}(K) > 0$.

The proof is rather long. So, it may help the reader to know in advance what its main features are.

PART A: Outline of the proof. First we use Lemma 2.3 in order to prove that the group $\prod_{\mathfrak{p}\in\mathcal{T}} \left(\hat{K}_{\mathfrak{p}}[X]/f(X)\hat{K}_{\mathfrak{p}}[X]\right)^{\times}$ modulo $\left(\mathcal{O}_{K,\mathcal{U}}[X]/f(X)\mathcal{O}_{K,\mathcal{U}}[X]\right)^{\times}$ is compact. Then we use Lemma 2.4 to find a large positive integer d, a polynomial $l_0 \in \mathcal{O}_{K,\mathcal{U}}[X]$ relatively prime to f, and for each $\mathfrak{p}\in\mathcal{T}$ a monic polynomial $h_{\mathfrak{p}}\in\hat{K}_{\mathfrak{p}}[X]$ of degree d with d distinct zeros in $\hat{K}_{\mathfrak{p}}$ close to 0 such that $\frac{h_{\mathfrak{p}}}{f}$ is a Morse function and $h_{\mathfrak{p}} \equiv l_0 \mod f \cdot \hat{K}_{\mathfrak{p}}[X]$. Next we apply the strong approximation theorem to find a monic polynomial $h_0 \in \mathcal{O}_{K,\mathcal{U}}[X]$ of degree d, relatively prime to f, which is \mathfrak{p} -close to $h_{\mathfrak{p}}$ for each $\mathfrak{p} \in \mathcal{T}$. Suppose $h \in \mathcal{O}_{N,\mathcal{U}}[X]$ is a monic polynomial of degree d which is relatively prime to f and \mathcal{T} -close to h_0 . Then each root x of h satisfies (3). Using Example 1.13, we find $h \in \mathcal{O}_{M,\mathcal{U}}[X]$ with a root in M.

PART B: A compact group. For each integral domain R which contains $\mathcal{O}_{K,\mathcal{U}}$ let

$$H(R) = \left(R[X]/f(X)R[X]\right)^{\times} \cong \prod_{i=1}^{r} \left(R[X]/f_i(X)R[X]\right)^{\times}$$

Let x_i be a root of f_i , $i = 1, \ldots, r$. Then, by (2c),

(4)
$$H(\mathcal{O}_{K,\mathcal{U}}) \cong \prod_{i=1}^{r} \mathcal{O}_{K,\mathcal{U}}[x_i]^{\times} = \prod_{i=1}^{r} \mathcal{O}_{K(x_i),\mathcal{U}}^{\times}$$

Now let $\mathfrak{p} \in \mathcal{T}$. In order to compute $H(\hat{K}_{\mathfrak{p}})$ we decompose each f_i into its irreducible monic components over $\hat{K}_{\mathfrak{p}}$:

$$f_i = f_{\mathfrak{p},i,1} \cdots f_{\mathfrak{p},i,r_{i,\mathfrak{p}}},$$

where $r_{i,\mathfrak{p}}$ is the number of primes of $K(x_i)$ which lie over \mathfrak{p} [CaF, p. 58, Cor.]. Let x_{ij} be a root of $f_{\mathfrak{p},i,j}$, $j = 1, \ldots, r_{i,\mathfrak{p}}$. Since $\hat{K}_{\mathfrak{p}}/K$ is separable (Data 1.7(a)), $f_{\mathfrak{p},i,1}, \ldots, f_{\mathfrak{p},i,r_{i,\mathfrak{p}}}$ are distinct and therefore

$$\left(\hat{K}_{\mathfrak{p}}[X]/f_{i}(X)\hat{K}_{\mathfrak{p}}[X]\right)^{\times} \cong \prod_{j=1}^{r_{i,\mathfrak{p}}} \hat{K}_{\mathfrak{p}}(x_{ij})^{\times} \cong \prod_{\substack{\mathfrak{q}\in\mathbb{P}_{K(x_{i})}\\\mathfrak{q}\mid\mathfrak{p}}} \widehat{K(x_{i})}_{\mathfrak{q}}^{\times}$$

Thus

$$H(\hat{K}_{\mathfrak{p}}) \cong \prod_{i=1}^{r} \prod_{\substack{\mathfrak{q} \in \mathbb{P}_{K(x_{i})}\\ \mathfrak{q} \mid \mathfrak{p}}} \widehat{K(x_{i})}_{\mathfrak{q}}^{\times}.$$

So,

(5)
$$\prod_{\mathfrak{p}\in\mathcal{T}}H(\hat{K}_{\mathfrak{p}})\cong\prod_{i=1}^{r}\prod_{\mathfrak{q}\in\mathcal{T}_{K(x_{i})}}\widehat{K(x_{i})}_{\mathfrak{q}}^{\times}.$$

Identify $H(\mathcal{O}_{K,\mathcal{U}})$ with its image in $\prod_{\mathfrak{p}\in\mathcal{T}} H(\hat{K}_{\mathfrak{p}})$ under the injection given by $g(X) + f(X)\mathcal{O}_{K,\mathcal{U}}[X] \mapsto (g(X) + f(X)\hat{K}_{\mathfrak{p}}[X])_{\mathfrak{p}\in\mathcal{T}}$ (note that $f \in \mathcal{O}_{K,\mathcal{U}}[X]$ is monic). Then, by (4), (5), and Lemma 2.3,

(6)
$$\left(\prod_{\mathfrak{p}\in\mathcal{T}}H(\hat{K}_{\mathfrak{p}})\right)/H(\mathcal{O}_{K,\mathcal{U}}) \cong \prod_{i=1}^{r} \left(\left(\prod_{\mathfrak{q}\in\mathcal{T}_{K(x_{i})}}\widehat{K(x_{i})}_{\mathfrak{q}}^{\times}\right)/\mathcal{O}_{K(x_{i}),\mathcal{V}_{0}\smallsetminus\mathcal{T}}^{\times}\right)$$

is compact.

PART C: An open subset of the compact group. Let D be the set of all positive integers d with $d > \deg(f)$ and $\operatorname{char}(K)|d$ if $\operatorname{char}(K) > 0$. Thus, if $\operatorname{char}(K) > 0$, then $d \not\equiv \deg(f)$ modulo $\operatorname{char}(K)$ for each $d \in D$. For each $d \in D$ and each $\mathfrak{p} \in \mathcal{T}$, let $\Omega_{\mathfrak{p},d}$ be the set of all polynomials h in $\hat{K}_{\mathfrak{p}}[X]$ of the form $h(X) = \prod_{i=1}^{d} (X - a_{i,\mathfrak{p}})$ with

- (7a) $a_{1,\mathfrak{p}},\ldots,a_{d,\mathfrak{p}}$ are in $\hat{K}_{\mathfrak{p}}$, mutually distinct, and none of which is a root of f. In particular, h is relatively prime to f;
- (7b) $|a_{i,\mathfrak{p}}|_{\mathfrak{p}} < \varepsilon, i = 1, \dots, d;$ and
- (7c) $\frac{h}{f}$ is a Morse function (Definition 4.1).

Also, let

$$W_{\mathfrak{p},d} = \{h(X) + f(X)K_{\mathfrak{p}}[X] \mid h \in \Omega_{\mathfrak{p},d}\}.$$

By (7) and Proposition 4.3, $W_{\mathfrak{p},d}$ is a nonempty open subset of $H(\hat{K}_{\mathfrak{p}})$. Hence,

$$W_d = \prod_{\mathfrak{p} \in \mathcal{T}} W_{\mathfrak{p}, d}$$

is a nonempty open subset of $\prod_{\mathfrak{p}\in\mathcal{T}} H(\hat{K}_{\mathfrak{p}})$. So,

(8) the image of W_d in $\left(\prod_{\mathfrak{p}\in\mathcal{T}}H(\hat{K}_{\mathfrak{p}})\right)/H(\mathcal{O}_{K,\mathcal{U}})$ is nonempty and open.

CLAIM: $W_{\mathfrak{p},d}W_{\mathfrak{p},d'} \subseteq W_{\mathfrak{p},d+d'}$ for all $d, d' \in D$. Indeed, let $h \in \Omega_{\mathfrak{p},d}$ and $h' \in \Omega_{\mathfrak{p},d'}$. Since they are monic, we can write them uniquely as h = kf + l and h' = k'f + l', where k and k' are monic of degrees $d - \deg(f)$, $d' - \deg(f)$, respectively, and l, l' have degrees $< \deg(f)$ and are invertible modulo f. If h and h' are not coprime, choose $k_1 \in \hat{K}_{\mathfrak{p}}[X]$ monic of degree $d - \deg(f)$ such that $h_1 = k_1 f + l$ is in $\Omega_{\mathfrak{p},d}$ and is relatively prime to h'. Then

$$\begin{pmatrix} h(X) + f(X)\hat{K}_{\mathfrak{p}}[X] \end{pmatrix} \begin{pmatrix} h'(X) + f(X)\hat{K}_{\mathfrak{p}}[X] \end{pmatrix} = l(X)l'(X) + f(X)\hat{K}_{\mathfrak{p}}[X]$$
$$= h_1(X)h'(X) + f(X)\hat{K}_{\mathfrak{p}}[X]$$

is in $W_{\mathfrak{p},d+d'}$.

It follows that in the group $\prod_{\mathfrak{p}\in\mathcal{T}} H(\hat{K}_{\mathfrak{p}})$ we have

(9)
$$W_d W_{d'} \subseteq W_{d+d'}.$$

Choose some $d_0 \in D$. By (6), (8), and Lemma 2.4, there exists a positive integer n with

(10)
$$W_{d_0}^n \cap H(\mathcal{O}_{K,\mathcal{U}}) \neq \emptyset.$$

Let $d = nd_0$. By (9), $W_{d_0}^n \subseteq W_d$. Hence, by (10),

(11)
$$W_d \cap H(\mathcal{O}_{K,\mathcal{U}}) \neq \emptyset.$$

PART D: Construction of h_0 and γ . By (11), there is $l_0 \in \mathcal{O}_{K,\mathcal{U}}[X]$ of degree $\langle \deg(f) \rangle$ which is invertible modulo f in $\mathcal{O}_{K,\mathcal{U}}[X]$ and, for each $\mathfrak{p} \in \mathcal{T}$, there exists $h_{\mathfrak{p}} \in \Omega_{\mathfrak{p},d}$ such that $h_{\mathfrak{p}} \equiv l_0 \mod f$ in $\hat{K}_{\mathfrak{p}}[X]$. Write each $h_{\mathfrak{p}}$ as $h_{\mathfrak{p}} = k_{\mathfrak{p}}f + l_0$ with $k_{\mathfrak{p}} \in \hat{K}_{\mathfrak{p}}[X]$ monic of degree $e = d - \deg(f)$. For each $\mathfrak{p} \in \mathcal{T}$, let $U_{\mathfrak{p}}$ be the set of all $\mathbf{b} = (b_1, \ldots, b_e)$ in $\hat{K}^e_{\mathfrak{p}}$ such that the polynomial $(X^e + \sum_{i=0}^{e-1} b_i X^i) f(X) + l_0(X)$ belongs to $\Omega_{\mathfrak{p},d}$. Since $k_{\mathfrak{p}}f + l_0 \in \Omega_{\mathfrak{p},d}, U_{\mathfrak{p}}$ is nonempty.

Now use the strong approximation theorem to find $\mathbf{c} = (c_1, \ldots, c_e) \in (\mathcal{O}_{K,\mathcal{U}})^e \cap \bigcap_{\mathfrak{p}\in\mathcal{T}} U_\mathfrak{p}$. Let $k_0(X) = X^e + \sum_{i=0}^{e-1} c_i X^i \in \mathcal{O}_{K,\mathcal{U}}[X]$ and let $h_0 = k_0 f + l_0$. Then $h_0 \in \Omega_{\mathfrak{p},d}$ for each $\mathfrak{p} \in \mathcal{T}$. That is, $\frac{h_0}{f}$ is a Morse function, $\gcd(f,h_0) = 1$, each root x of h_0 is simple and belongs to $K_\mathfrak{p}$, and $|x|_\mathfrak{p} < \varepsilon$ for each $\mathfrak{p} \in \mathcal{T}$. Finally, use Lemma 1.9 to find $\gamma > 0$ such that if $h \in N[X]$ is monic of degree $d = \deg(h_0)$ and $|h - h_0|_\mathcal{T} < \gamma$, then each root y of h is simple and belongs to N, and $|y|_\mathcal{T} < \varepsilon$.

PART E: Conclusion of the proof. Let $h \in \mathcal{O}_{N,\mathcal{U}}[X]$ be a monic polynomial of degree $d = \deg(h_0)$, relatively prime to f, with $|h - h_0|_{\mathcal{T}} < \gamma$. Let x be a root of h. Then x is simple and belongs to N, and $|x|_{\mathcal{T}} < \varepsilon$. Thus, (3b) and (3c) are satisfied.

Since $h \in \mathcal{O}_{N,\mathcal{U}}[X]$ is monic, $x \in \mathcal{O}_{N,\mathcal{U}}$. As gcd(f,h) = 1, there are $g, r \in \mathcal{O}_{N,\mathcal{U}}[X]$ such that gh + rf = 1. Since h(x) = 0, r(x)f(x) = 1. But $r(x), f(x) \in \mathcal{O}_{N,\mathcal{U}}$, so $f(x) \in (\mathcal{O}_{N,\mathcal{U}})^{\times}$. Thus $f(x) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$ and (3a) holds.

Finally $h_0 \in \mathcal{O}_{K,\mathcal{U}}[X]$ is N-admissible, $gcd(f,h_0) = 1$, $deg(f) < d = deg(h_0)$, and $\frac{h_0}{f}$ is a Morse function. Choose, by the strong approximation theorem, $0 \neq m \in \mathcal{O}_{K,\mathcal{U}}$ such that $|m|_{\mathcal{T}} < \gamma$. Apply Example 1.13 (b) to find $(a, x_1) \in \mathcal{O}_{M,\mathcal{V}} \times M$ with $mf(x_1)a + h_0(x_1) = 0$. Let $h(X) = maf(X) + h_0(X)$. Then $h \in \mathcal{O}_{M,\mathcal{U}}[X]$ is a monic polynomial of degree d, relatively prime to f, and $|h - h_0|_{\mathcal{T}} < \gamma$. So, its root $x_1 \in M$ satisfies (3).

We denote the maximal purely inseparable extension of a field E by E_{ins} .

Remark 3.3: Lemma 3.2 generalizes [JR2, Lemma 3.2]. In the latter lemma $f \in K[X]$ is separable. That is f decomposes into distinct linear factors over \tilde{K} . For nonseparable $f \in K[X]$, [JR2, Thm. 4.3, Case A1] replaces f by its separable kernel $f' \in K_{ins}[X]$ and K by a finite purely inseparable extension K'. This construction works because M is assumed in [JR2] to be perfect. Here, M being separable over K need not be perfect. So, we decompose f into irreducible factors over \hat{K}_p for each $\mathfrak{p} \in \mathcal{T}$. As \hat{K}_p/K is separable, these factors are distinct. This makes the arguments in Part B of the proof of Lemma 3.2 work.

Cantor and Roquette assume throughout their work [CaR] that K is a number field. They note in [CaR, Rem. 1.7] that their proofs work also when K is a function field of one variable over a finite field. However, at the beginning of the proof of [CaR, Lemma 5.2] they write "we may assume that f(X) is free from multiple roots", where $f \in K[X]$ is a non-constant polynomial. To make this assumption they replace f by its separable kernel. As in the preceding paragraph, this forces a purely inseparable extension of K. So, when char(K) > 0, the proof of [CaR] holds only for $K_{tot,S,ins}$ and not for $K_{tot,S}$. [GPR] proves Rumely's local-global principle for $K_{\text{tot},S}$ when K is an arbitrary global field. However, the proof of [GPR, Thm. 4.1] applies [CaR, Lemma 5.2] to a polynomial $a_0(X)$ instead of f(X) which need not be separable. So the proof of Rumely's local-global principle that [GPR] gives seems to hold only for $K_{\text{tot},S,\text{ins}}$ but not for $K_{\text{tot},S}$.

LEMMA 3.4: Consider a monic polynomial $f \in \mathcal{O}_{K,\mathcal{U}}[X]$, an element $a \in M$, and a positive real number γ . Then there exists $x \in \mathcal{O}_{M,\mathcal{U}}$ with $|x - a|_{\mathcal{T}} < \gamma$ and $f(x) \in (\mathcal{O}_{M,\mathcal{U}})^{\times}$.

Proof: Let L be the Galois closure of K(a)/K. Use the strong approximation theorem to find $b \in \mathcal{O}_{K(a),\mathcal{U}}$ such that $\gamma_1 = |b-a|_{\mathcal{T}} < \gamma$ and $f(b) \neq 0$. For each root c of f(X) let \mathfrak{f}_c be the conductor of $\mathcal{O}_{K,\mathcal{U}}[c-b]$ in its integral closure $\mathcal{O}_{K(c-b),\mathcal{U}}$ [ZaS, p. 269]. It is a nonzero ideal of $\mathcal{O}_{K,\mathcal{U}}[c-b]$, so $\mathfrak{f}_c \cap \mathcal{O}_{K,\mathcal{U}}$ is a nonzero ideal of $\mathcal{O}_{K,\mathcal{U}}$. By (1), \mathcal{U}_L is infinite. So, we can choose $\mathfrak{p}_0 \in \mathcal{U}_L$ such that $\{z \in \mathcal{O}_{K,\mathcal{U}} \mid |z|_{\mathfrak{p}_0} < 1\} \not\supseteq \mathfrak{f}_c \cap \mathcal{O}_{K,\mathcal{U}}$ for each root cof f(X) and $|f(b^{\sigma})|_{\mathfrak{p}_0} = 1$ for each $\sigma \in \operatorname{Gal}(L/K)$. Let $\mathcal{R} = \{\mathfrak{p}_0|_K\}, \mathcal{T}' = \mathcal{T} \cup \mathcal{R}$, and $\mathcal{U}' = \mathcal{U} \smallsetminus \mathcal{R}$. Then $|f(b)|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \mathcal{R}_L$. Moreover, $\mathcal{O}_{K,\mathcal{U}'}[c-b] = \mathcal{O}_{K(c-b),\mathcal{U}'}$ for each root c of f(X) [ZaS, Ch. V §5, Lemma, p. 269].

Let $g(Y) = \prod_{\sigma \in \operatorname{Gal}(L/K)} f(Y+b^{\sigma}) \in \mathcal{O}_{K,\mathcal{U}}[Y]$. Write $g(Y) = g_1(Y)^{\alpha_1} \cdots g_r(Y)^{\alpha_r}$, with $g_1, \ldots, g_r \in \mathcal{O}_{K,\mathcal{U}}[Y]$ distinct monic irreducible polynomials over K. Put $\tilde{g} = g_1 \cdots g_r$. Suppose $\sigma \in \operatorname{Gal}(L/K)$ and c is a root of f(X). Then $\mathcal{O}_{K,\mathcal{U}'}[c^{\sigma^{-1}} - b] = \mathcal{O}_{K(c^{\sigma^{-1}} - b),\mathcal{U}'}$. Hence, $\mathcal{O}_{K,\mathcal{U}'}[c - b^{\sigma}] = \mathcal{O}_{K(c-b^{\sigma}),\mathcal{U}'}$. So each root d of g(Y) (hence of $\tilde{g}(Y)$) satisfies $\mathcal{O}_{K,\mathcal{U}'}[d] = \mathcal{O}_{K(d),\mathcal{U}'}$.

Since $\mathcal{T}' \neq \emptyset$, Lemma 3.2 with $\mathcal{T}', \mathcal{U}', \tilde{g}, \delta = \min\{\gamma - \gamma_1, 1\}$ replacing $\mathcal{T}, \mathcal{U}, f, \varepsilon$ gives $y \in \mathcal{O}_{M,\mathcal{U}'}$ with $\tilde{g}(y) \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$ and $|y|_{\mathcal{T}'} < \delta$. Let x = y + b. Then

$$|x - a|_{\mathcal{T}} \le |x - b|_{\mathcal{T}} + |b - a|_{\mathcal{T}} = |y|_{\mathcal{T}} + |b - a|_{\mathcal{T}} < (\gamma - \gamma_1) + \gamma_1 = \gamma_2$$

By the choice of δ , $|y|_{\mathcal{R}} < 1$. So, $y \in \mathcal{O}_{M,\mathcal{U}}$ and $|f(x)|_{\mathfrak{p}} = |f(b)|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \mathcal{R}_M$. As $b \in \mathcal{O}_{M,\mathcal{U}}$, we have $x = y + b \in \mathcal{O}_{M,\mathcal{U}}$.

From $g_1(y), \ldots, g_r(y) \in \mathcal{O}_{M,\mathcal{U}'}$ and $g_1(y) \cdots g_r(y) = \tilde{g}(y) \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$ follows that $g_i(y) \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$, $i = 1, \ldots, r$. Hence $g(y) = g_1(y)^{\alpha_1} \cdots g_r(y)^{\alpha_r} \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$. Now each $f(y + b^{\sigma})$ is in $\mathcal{O}_{M,\mathcal{U}'}$ and $g(y) = \prod_{\sigma \in \operatorname{Gal}(L/K)} f(y + b^{\sigma})$. So, $f(y + b^{\sigma}) \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$ for each $\sigma \in \operatorname{Gal}(L/K)$. In particular, $f(x) = f(y + b) \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$. Hence, since $|f(x)|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \mathcal{R}_M$, $f(x) \in (\mathcal{O}_{M,\mathcal{U}})^{\times}$, as desired.

COROLLARY 3.5: Let \mathcal{R} be a finite subset of \mathcal{U} , $a \in \tilde{K}$, and $\gamma > 0$. Then there is $x \in \tilde{K}$ with $|x - a|_{\mathfrak{p}} < 1$ for each $\mathfrak{p} \in \tilde{\mathcal{R}}$ and $|x|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \tilde{\mathcal{U}} \setminus \tilde{\mathcal{R}}$.

Proof: When char(K) = 0 apply Lemma 3.4 with $\emptyset, \mathcal{R}, \mathcal{U} \setminus \mathcal{R}, X, \tilde{K}$ replacing $\mathcal{S}, \mathcal{T}, \mathcal{U}, f(X), M$ to achieve x.

Suppose char(K) > 0. Take a power q of char(K) with $a^q \in K_s$. Lemma 3.4 with $\emptyset, \mathcal{R}, \mathcal{U} \setminus \mathcal{R}, X^q, K_s$ replacing $\mathcal{S}, \mathcal{T}, \mathcal{U}, f(X), M$ gives $y \in K_s$ with $|y - a^q|_{\mathfrak{p}} < 1$ for each $\mathfrak{p} \in \mathcal{R}_{K_s}$ and $|y|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \mathcal{U}_{K_s} \setminus \mathcal{R}_{K_s}$. Then $x = y^{1/q}$ satisfies $|x - a|_{\mathfrak{p}} < 1$ for each $\mathfrak{p} \in \tilde{\mathcal{R}}$ and $|x|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \tilde{\mathcal{U}} \setminus \tilde{\mathcal{R}}$.

In Case A1 of the proof of Theorem 3.7, it becomes necessary to enlarge \mathcal{T} (thus shrinking \mathcal{U}). Lemma 3.6 takes care of this enlargement.

LEMMA 3.6: Let f be a polynomial in K[X] with $|f|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \mathcal{U}$. Consider a finite subset \mathcal{R} of \mathcal{U} , an element $a \in M$, and $\gamma > 0$. Let $\mathcal{T}' = \mathcal{T} \cup \mathcal{R}$ and $\mathcal{U}' = \mathcal{U} \setminus \mathcal{R} = \mathcal{V}_0 \setminus \mathcal{T}'$. Suppose

(12) for each $a' \in M$ and each $\gamma' > 0$ there is $x' \in \mathcal{O}_{M,\mathcal{U}'}$ with $|x' - a'|_{\mathcal{T}'} < \gamma'$ and $f(x') \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$.

Then

(13) there exists $x \in \mathcal{O}_{M,\mathcal{U}}$ with $|x - a|_{\mathcal{T}} < \gamma$ and $f(x) \in (\mathcal{O}_{M,\mathcal{U}})^{\times}$.

Proof:

CLAIM A: There exists a finite subextension L of M/K which contains a such that for each $\mathfrak{q} \in \mathcal{R}_N$ there exists $b_{\mathfrak{q}} \in L$ with $|b_{\mathfrak{q}}|_{\mathfrak{q}} \leq 1$ and $|f(b_{\mathfrak{q}})|_{\mathfrak{q}} = 1$.

Choose a finite set \mathcal{R}_0 that represents \mathcal{R}_N over K. Let $\mathfrak{p} \in \mathcal{R}_0$ and let $\mathfrak{p}_0 = \mathfrak{p}|_K$. The Henselian closure $M_\mathfrak{p}$ of M with respect to $\mathfrak{p}|_M$ is K_s (Proposition 1.15). Hence the corresponding residue field $\overline{M}_\mathfrak{p}$ is infinite. By assumption, the reduced polynomial $\overline{f} \in \overline{K}_{\mathfrak{p}_0}[X]$ is nonzero. Hence, there is $x_\mathfrak{p} \in M$ with $|x_\mathfrak{p}|_\mathfrak{p} \leq 1$, $\overline{f}(\overline{x}_\mathfrak{p}) \neq 0$, and $|f(x_\mathfrak{p})|_\mathfrak{p} = 1$. Since N/K is Galois, the finite subset $C_\mathfrak{p} = \{x_\mathfrak{p}^\sigma \mid \sigma \in \operatorname{Gal}(N/K)\}$ is contained in N. If M is weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$, then Lemma 1.14 gives a finite subset $B_{\mathfrak{p}}$ of M such that for each $c \in C_{\mathfrak{p}}$ and for each $\mathfrak{q} \in \mathcal{R}_N$ which lies over \mathfrak{p}_0 there exists $b \in B_{\mathfrak{p}}$ with $|b - c|_{\mathfrak{q}} < 1$. If M/K is Galois, set $B_{\mathfrak{p}} = C_{\mathfrak{p}}$.

Choose a finite extension L of K in M which contains a and $B_{\mathfrak{p}}$ for all $\mathfrak{p} \in \mathcal{R}_0$. For each $\mathfrak{q} \in \mathcal{R}_N$ there exists $\mathfrak{p} \in \mathcal{R}_0$ and $\sigma \in \operatorname{Gal}(N/K)$ with $\mathfrak{q} = \mathfrak{p}^{\sigma}$. Choose $b_{\mathfrak{q}} \in B_{\mathfrak{p}}$ with $|b_{\mathfrak{q}} - x_{\mathfrak{p}}^{\sigma}|_{\mathfrak{q}} < 1$. Then $|x_{\mathfrak{p}}^{\sigma}|_{\mathfrak{q}} = |x_{\mathfrak{p}}|_{\mathfrak{p}} \leq 1$ and therefore $|b_{\mathfrak{q}}|_{\mathfrak{q}} \leq 1$. Hence, since the coefficients of f are \mathfrak{q} -integral, $|f(b_{\mathfrak{q}}) - f(x_{\mathfrak{p}}^{\sigma})|_{\mathfrak{q}} < 1$. Also, $|f(x_{\mathfrak{p}}^{\sigma})|_{\mathfrak{q}} = |f^{\sigma}(x_{\mathfrak{p}}^{\sigma})|_{\mathfrak{p}^{\sigma}} =$ $|f(x_{\mathfrak{p}})|_{\mathfrak{p}} = 1$. Hence $|f(b_{\mathfrak{q}})|_{\mathfrak{q}} = 1$, as claimed.

CLAIM B: There exists $y \in \mathcal{O}_{L,\mathcal{R}}$ with $|y-a|_{\mathcal{T}} < \frac{\gamma}{2}$ and $|f(y)|_{\mathcal{R}} = 1$. Indeed, choose a finite set \mathcal{R}_1 which represents \mathcal{R}_N over L and choose a finite set \mathcal{T}_1 which represents \mathcal{T}_N over L. For each $\mathfrak{p} \in \mathcal{R}_1$ Claim A gives $b_{\mathfrak{p}} \in L$ such that $|b_{\mathfrak{p}}|_{\mathfrak{p}} \leq 1$ and $|f(b_{\mathfrak{p}})|_{\mathfrak{p}} = 1$. The weak approximation theorem gives $y \in L$ such that

$$|y-a|_{\mathfrak{p}} < \frac{\gamma}{2}$$
 for each $\mathfrak{p} \in \mathcal{T}_1$ and
 $|y-b_{\mathfrak{p}}|_{\mathfrak{p}} < 1$ for each $\mathfrak{p} \in \mathcal{R}_1$.

Now let $\mathbf{q} \in \mathcal{T}_N$. Then there exists $\sigma \in \operatorname{Gal}(N/L)$ and $\mathbf{p} \in \mathcal{T}_1$ such that $\mathbf{q} = \mathbf{p}^{\sigma}$. Since $a, y \in L$, we have $|y - a|_{\mathbf{q}} = |y - a|_{\mathbf{p}} < \frac{\gamma}{2}$. If $\mathbf{q} \in \mathcal{R}_N$, there exists $\sigma \in \operatorname{Gal}(N/L)$ and $\mathbf{p} \in \mathcal{R}_1$ such that $\mathbf{q} = \mathbf{p}^{\sigma}$. As in Claim A, $|y|_{\mathbf{q}} \leq 1$ and $|f(y)|_{\mathbf{q}} = |f(y)|_{\mathbf{p}} = |f(b_{\mathbf{p}})|_{\mathbf{p}} = 1$, as claimed.

Conclusion of the proof: By assumption, there exists $x \in M$ with $|x-y|_{\mathcal{T}'} < \min\{\frac{\gamma}{2}, 1\}$, $|x|_{\mathfrak{q}} \leq 1$, and $|f(x)|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \mathcal{U}'_N$. In particular, if $\mathfrak{q} \in \mathcal{T}_N$, then, by Claim B, $|x-a|_{\mathfrak{q}} \leq |x-y|_{\mathfrak{q}} + |y-a|_{\mathfrak{q}} < \gamma$. If $\mathfrak{q} \in \mathcal{R}_N$, then $|x-y|_{\mathfrak{q}} < 1$ and \mathfrak{q} is finite. Since y and the coefficients of f are \mathfrak{q} -integral, $|f(x) - f(y)|_{\mathfrak{q}} < 1$. Hence $|x|_{\mathfrak{q}} = |y|_{\mathfrak{q}} \leq 1$ and $|f(x)|_{\mathfrak{q}} = |f(y)|_{\mathfrak{q}} = 1$. Conclude that $|x|_{\mathfrak{q}} \leq 1$ and $|f(x)|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \mathcal{U}_N$, as desired.

A data for an $(\mathcal{S}, \mathcal{V})$ -Skolem density problem for an algebraic extension M' of K consists of a quadruple $(\mathcal{T}', \mathbf{f}, \mathbf{a}, \gamma)$ in which

(14a) \mathcal{T}' is a finite subset of \mathcal{V} containing \mathcal{S} ;

(14b) $\mathbf{f} = (f_1, \dots, f_m)$ and $f_i \in \tilde{K}[X_1, \dots, X_n]$ is **p-primitive**, i.e. $|f_i|_{\mathbf{p}} = 1$, for each $\mathbf{p} \in \tilde{\mathcal{V}}_0 \smallsetminus \tilde{\mathcal{T}}', i = 1, \dots, m$;

- (14c) a point $\mathbf{a} = (a_1, \ldots, a_n) \in M'^n$; and
- (14d) a positive real number γ .

A solution is a point $\mathbf{x} \in (\mathcal{O}_{M',\mathcal{V}_0 \smallsetminus \mathcal{T}'})^n$ with $|\mathbf{x}-\mathbf{a}|_{\mathcal{T}'} < \gamma$ and $f(\mathbf{x}) \in \mathcal{O}_{\tilde{K},\mathcal{V}_0 \smallsetminus \mathcal{T}'}^{\times}$. M' is called **an** *S*-Skolem field with respect to \mathcal{V} if every $(\mathcal{S}, \mathcal{V})$ -Skolem density problem for M' has a solution.

THEOREM 3.7: M is an S-Skolem field with respect to \mathcal{V} .

Proof: Let $\mathbf{f} = (f_1, \ldots, f_m)$ with $f_i \in \tilde{K}[X_1, \ldots, X_n]$ and $|f_i|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \tilde{\mathcal{U}}$, $i = 1, \ldots, m$, $\mathbf{a} = (a_1, \ldots, a_n) \in M^n$, and $\gamma > 0$. We prove that the S-Skolem density problem (with respect to \mathcal{V}) with data $(\mathcal{T}, \mathbf{f}, \mathbf{a}, \gamma)$ has a solution. We have to find $\mathbf{x} \in (\mathcal{O}_{M,\mathcal{U}})^n$ with $|\mathbf{x} - \mathbf{a}|_{\mathcal{T}} < \gamma$ and $f_1(\mathbf{x}), \ldots, f_m(\mathbf{x}) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$.

We prove this by induction on n. We break the proof into three parts.

PART A: n = 1 and $f_1, \ldots, f_m \in K[X_1]$. Put $a = a_1$ and $X = X_1$. There are two cases to consider.

CASE A1: m=1. Put $f = f_1$. Let c be the leading coefficient of f and let $\mathcal{R} = \{\mathfrak{p} \in \mathcal{U} \mid |c|_{\mathfrak{p}} < 1\}$. Then \mathcal{R} is a finite subset of \mathcal{U} . Let $\mathcal{T}' = \mathcal{T} \cup \mathcal{R}$ and $\mathcal{U}' = \mathcal{U} \setminus \mathcal{R}$. By Lemma 3.4, for each $a' \in M$ and each $\gamma' > 0$ there is $x' \in \mathcal{O}_{M,\mathcal{U}'}$ with $|x' - a'|_{\mathcal{T}'} < \gamma'$ and $f(x') \in (\mathcal{O}_{M,\mathcal{U}'})^{\times}$. Lemma 3.6 then gives $x \in M$ that solves the problem with data $(\mathcal{T}, f, a, \gamma)$.

CASE A2: *m* is arbitrary. The polynomial $f = f_1 \cdots f_m$ satisfies $|f|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \mathcal{U}$. By Case A1, there exists $x \in \mathcal{O}_{M,\mathcal{U}}$ such that $|x - a|_{\mathcal{T}} < \gamma$ and $f(x) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$. As $f_1(x), \ldots, f_m(x)$ are in $\mathcal{O}_{\tilde{K},\mathcal{U}}$ and their product is in $(\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$, each of them is in $(\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$. Hence $x \in M$ solves the problem with data $(\mathcal{T}, \mathbf{f}, a, \gamma)$.

PART B: The general case for n = 1. Let K' be a finite extension of K which contains the coefficients of f_1, \ldots, f_m . The norm $g_i(X) = N_{K'/K} f_i(X)$ is a product $g_i(X) = \prod f_{ij}(X)$ of polynomials f_{ij} which are conjugate to f_i over K. In particular $|f_{ij}|_{\mathfrak{p}} = 1$ and therefore $|g_i|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \tilde{\mathcal{U}}$. Apply Part A to the problem with data $(\mathcal{T}, \mathbf{g}, a, \gamma)$, where $\mathbf{g} = (g_1, \ldots, g_m)$, to get $x \in M$ that solves it. That is $x \in \mathcal{O}_{M,\mathcal{U}}$, $|\mathbf{x} - \mathbf{a}|_{\mathcal{T}} < \gamma$, and $g_1(x), \ldots, g_m(x) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$. Then for each i, the elements $f_{ij}(x)$ are in $\mathcal{O}_{\tilde{K},\mathcal{U}}$ and their product is $g_i(x) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$. Thus, each $f_{ij}(x)$ is in $(\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$. In particular each $f_i(x)$ is in $(\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$. Conclude that x solves the problem with data $(\mathcal{T}, \mathbf{f}, a, \gamma)$.

PART C: n > 1. Suppose now the theorem holds for n-1. Let L be a finite extension of K which contains all coefficients of f_1, \ldots, f_m . Consider each f_i as a polynomial in X_1, \ldots, X_{n-1} with coefficients in $L[X_n]$ and let $\{h_{ij}(X_n) \in L[X_n] \mid j \in J_i\}$ be the set of all nonzero coefficients of $f_i(\mathbf{X})$. Then $|h_{ij}|_{\mathcal{U}_L} \leq 1$ and $\mathcal{R}_{ij} = \{\mathfrak{p} \in \mathcal{U}_L \mid |h_{ij}|_{\mathfrak{p}} < 1\}$ is a finite subset of \mathcal{U}_L for each i and each $j \in J_i$. For each i and j and for each $\mathfrak{p} \in \mathcal{R}_{ij}$, let $b_{i,j,\mathfrak{p}} \in L$ be a coefficient of h_{ij} with $|b_{i,j,\mathfrak{p}}|_{\mathfrak{p}} = |h_{ij}|_{\mathfrak{p}}$. Then use the weak approximation theorem to find $b_{ij} \in L$ such that $|b_{ij} - b_{i,j,\mathfrak{p}}|_{\mathfrak{p}} < 1$ for each $\mathfrak{p} \in \mathcal{R}_{ij}$. Find, by Corollary 3.5, $a_{ij} \in \tilde{K}$ with $|a_{ij} - b_{ij}|_{\mathfrak{p}} < 1$ for each $\mathfrak{p} \in \tilde{\mathcal{R}}_{ij}$ and $|a_{ij}|_{\mathfrak{q}} = 1$ for each $\mathfrak{q} \in \tilde{\mathcal{U}} \setminus \tilde{\mathcal{R}}_{ij}$. Let $h'_{ij} = \frac{1}{a_{ij}}h_{ij}$. Then $|h'_{ij}|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \tilde{\mathcal{U}}$. By Part B, applied to the polynomials h'_{ij} , $i = 1, \ldots, m$, $j \in J_i$, there is $x_n \in \mathcal{O}_{M,\mathcal{U}}$ with $|x_n - a_n|_{\mathcal{T}} < \gamma$ and $h'_{ij}(x_n) \in (\mathcal{O}_{\tilde{K},\mathcal{U}})^{\times}$, $i = 1, \ldots, m$, $j \in J_i$.

Consider *i* between 1 and *m* and $\mathfrak{p} \in \mathcal{U}$. Since $|f_i|_{\mathfrak{p}} = 1$, there is $j \in J_i$ with $|h_{ij}|_{\mathfrak{p}} = 1$. Then $|a_{ij}|_{\mathfrak{p}} = 1$ and therefore $|h_{ij}(x_n)|_{\mathfrak{p}} = |a_{ij}h'_{ij}(x_n)|_{\mathfrak{p}} = 1$. Thus $g_i(X_1, \ldots, X_{n-1}) = f_i(X_1, \ldots, X_{n-1}, x_n)$ satisfies $|g_i|_{\mathfrak{p}} = 1$ for each $\mathfrak{p} \in \mathcal{U}$. Apply induction to the polynomials g_1, \ldots, g_m , to get $x_1, \ldots, x_{n-1} \in \mathcal{O}_{M,\mathcal{U}}$ such that $|x_l - a_l|_{\mathcal{T}} < \gamma$, $l = 1, \ldots, n-1$, and $g_i(x_1, \ldots, x_{n-1}) \in (\mathcal{O}_{\tilde{K}, \mathcal{U}})^{\times}$.

The point $\mathbf{x} = (x_1, \dots, x_n) \in M^n$ solves the problem with data $(\mathcal{T}, \mathbf{f}, \mathbf{a}, \gamma)$.

COROLLARY 3.8: Let *e* be a nonnegative integer. Then, for almost all $\boldsymbol{\sigma} \in \text{Gal}(K)^e$, both $K_s(\boldsymbol{\sigma}) \cap K_{\text{tot},\mathcal{S}}$ and $K_s[\boldsymbol{\sigma}] \cap K_{\text{tot},\mathcal{S}}$ are \mathcal{S} -Skolem fields with respect to \mathcal{V} .

Proof: Combine Lemma 1.12 with Theorem 3.7.

Remark 3.9: As in Corollary 3.5 we can prove that if M' is an algebraic extension of K which is an S-Skolem field with respect to \mathcal{V} , then so is M'_{ins} . In particular, Theorem 3.7 and Corollary 3.8 imply the results of [JR2].

4. Appendix: Morse functions

by Wulf-Dieter Geyer, Erlangen University

Let K be a field of characteristic $p \ge 0$ which we assume for simplicity to be algebraically closed.

Definition 4.1: Let $\varphi = \frac{f}{g}$ be a rational function in K(t), represented as a quotient of two relatively prime polynomials f and g in K[t], with $\varphi(\infty) = \infty$, i.e. deg $f > \deg g$. Then φ is called a **Morse function**, if it satisfies the following conditions (the first two are for the elements of K which are not roots of g):

- (a) The critical points of φ , i.e. the zeros of φ' , are non degenerate.
- (b) The critical values of φ are distinct, i.e.

$$\varphi'(\tau) = \varphi'(\eta) = 0$$
 and $\varphi(\tau) = \varphi(\eta) \implies \tau = \eta$

(c) If p > 0, then φ(t) has no pole of order divisible by p, i.e. g has no zero of order divisible by p and deg f ≠ deg g mod p.

To make the definition precise we have to explain what **non degenerate** means in (a). If $p \neq 2$, it means that φ' has simple roots, i.e.

(1)
$$\varphi'(\tau) = 0 \Longrightarrow \varphi''(\tau) \neq 0.$$

If p = 2, this does not work since always $\varphi'' = 0$. We have to switch to the modified Hasse-Schmidt derivatives, the second one is given by the expansion (let u, t be independent variables)

$$\varphi(t+u) \equiv \varphi(t) + \varphi'(t)u + \varphi^{[2]}(t)u^2 \mod u^3.$$

Comparing to Taylor's formula we have

$$\varphi^{[2]}(t) = \frac{\varphi''(t)}{2} \qquad \text{if } p \neq 2;$$

but, if charK = 2, then $\varphi^{[2]}$ is the welcome substitute for the vanishing φ'' . Moreover we have in all characteristics, for $a \in K$,

$$\varphi(a) = \varphi'(a) = 0 \neq \varphi^{[2]}(a) \Longleftrightarrow a \text{ is a root of multiplicity 2 of } \varphi \,.$$

So, instead of (1), the non degeneracy of the critical points in condition (a) for all characteristics is the condition

(a)
$$\varphi'(\tau) = 0 \Longrightarrow \varphi^{[2]}(\tau) \neq 0.$$

Definition 1 is made to fit the following

PROPOSITION 4.2: Let $\varphi = \frac{f}{g} \in K(t)$ be a Morse function of degree $n = \deg f > \deg g$. Then the Galois group of the covering $\varphi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree n is the full symmetric group, i.e.

$$\operatorname{Gal}(f(t) - xg(t), K(x)) \cong S_n$$

Proof: As f(t) - xg(t) is an irreducible polynomial of degree n in t, its Galois group G is a transitive subgroup of S_n . We look at the ramification of φ over the points of $K = \mathbb{A}^1(K)$: Condition (a) says that the orders of ramification are all ≤ 2 , so an equation $\varphi(t) = \alpha$ for $\alpha \in K$ has at most double roots in K. Condition (b) says that no two critical points are in the same fibre, so an equation $\varphi(t) = \alpha$ for $\alpha \in K$ has at least n - 1 roots in K. Therefore the map φ has the simplest ramification behaviour over the affine line, the ramification group over a finite point $x = \alpha$ just permutes two roots of f(t) - xg(t), i.e. is generated by a transposition. At ∞ condition (c) says that the ramification at ∞ is tame. Now the affine line \mathbb{A}^1 has a trivial tame fundamental group, i.e. there is no unramified covering of \mathbb{A}^1 which is only tamely ramified at ∞ . Therefore the Galois group G is generated by the ramification groups of the finite points, i.e. by transpositions. The proposition follows from the standard fact that a transitive subgroup of a finite symmetric group which is generated by transpositions cannot be proper.

Remark: We proved proposition 4.2 for algebraically closed fields K. But then it holds for all fields K since S_n is the maximal Galois group of a polynomial of degree n.

We are now going to construct Morse functions $\varphi = \frac{f}{g}$ where the denominator g is given as a separable polynomial.

PROPOSITION 4.3: Let K be an algebraically closed field, let $g \in K[X]$ be a separable polynomial of degree $d \ge 0$, let n > d be an integer such that $n \not\equiv d \mod p$ if p > 0. Then the polynomials $f = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0 \in K[X]$ of degree n such that $\frac{f}{g}$ is a Morse function form a Zariski-open dense subset of the affine n-space with coordinates a_0, \ldots, a_{n-1} .

Proof: Condition (c) of the definition of a Morse function is fulfilled since g is separable and $n \not\equiv d \mod p$. Condition (a) means that the numerator of φ' , i.e.

$$D(t) = f(t)g'(t) - f'(t)g(t)$$

and the numerator of $\varphi^{[2]}$ which is $gD_2 - g'D$ with

$$D_2(t) = f(t)g^{[2]}(t) - f^{[2]}(t)g(t)$$

have no common root. From gcd(g, D) = 1 follows that we have to achieve $gcd(D, D_2) =$ 1. The resultant of the polynomials D and D_2 is a polynomial $R(a_0, \ldots, a_{n-1})$ in the coefficients of f, and (a) just says $R \neq 0$. Condition (b) means that the product

$$\Pi = \prod_{i \neq j} \left(f(\tau_i) g(\tau_j) - f(\tau_j) g(\tau_i) \right)$$

where τ_i are the roots of D(t) does not vanish. By the theorem on symmetric functions, $\Pi = \Pi(a_1, \ldots, a_n)$ is again a polynomial in the coefficients of f. So the space of polynomials f giving Morse functions φ is given by the inequalities

(2)
$$R(a_1,\ldots,a_n) \neq 0, \qquad \Pi(a_1,\ldots,a_n) \neq 0.$$

Hence, it is a Zariski-open set in the affine n-space.

To show that it is dense, it suffices to show that it is not empty. We first assume d > 0 and handle the case d = 0 at the end. We will show that the following polynomial will satisfy the inequalities (2):

(3)
$$f(t) = t^n + a_{n-1}t^{n-1} + \dots + a_2t^2 + a_1t + u = f_{\circ}(t) + u$$

with u transcendental over K and

(3a)
$$\operatorname{gcd}(f'_{\circ},g') = 1$$

(3b)
$$f_{\circ}^{[2]} \neq 0$$

Condition (3b) can be satisfied e.g. by the inequality $a_2 \neq 0$. Condition (3a) is for any choice of a_{n-1}, \ldots, a_2 satisfied for almost all $a_1 \in K$.

We prove that f/g is a Morse function in the following four steps.

CLAIM A: The polynomial equation

(4)
$$D(\tau) = f(\tau)g'(\tau) - f'(\tau)g(\tau) = (f_{\circ}(\tau) + u)g'(\tau) - f'_{\circ}(\tau)g(\tau) = 0$$

for the critical points τ of φ is irreducible over K(u). The degree of D(t) is n + d - 1.

Proof of Claim A: D(t) is irreducible in the polynomial ring K[u, t] since it is linear in uand $gcd(f'_{\circ}g, g') = 1$. The degree of D(t) is n + d - 1 since $D(t) = f(t)g'(t) - f'(t)g(t) = (d-n)b_dt^{n+d-1} + \dots$, where b_d is the leading coefficient of g, and d-n does not vanish by assumption.

CLAIM B: The critical points τ of φ are transcendental over K. Moreover u is a rational function of degree n + d - 1 of any such τ .

Proof of Claim B: Otherwise the equation (4) has a vanishing coefficient at u, so $g'(\tau) = 0$, so $f'_{\circ}(\tau)g(\tau) = 0$, from which by $gcd(f'_{\circ}, g') = 1$ follows that $g(\tau) = 0$. This contradicts the separability of g. The irreducible equation (4) also gives the presentation

(5)
$$u = f'_{\circ}(\tau) \cdot \frac{g(\tau)}{g'(\tau)} - f_{\circ}(\tau) \,.$$

CLAIM C: The polynomials D(t) and $D_2(t)$ have no common root.

Proof of Claim C: If τ were a common root of D(t) and $D_2(t)$, then besides (4)

(6)
$$(f_{\circ}(\tau) + u)g^{[2]}(\tau) = f_{\circ}^{[2]}(\tau)g(\tau)$$

would hold. This is an equation for τ over K(u) of lower degree than $D(\tau) = 0$. By Claim A, it has to be trivial. This gives $g^{[2]}(\tau) = 0$ and therefore $f_{\circ}^{[2]}(\tau) \cdot g(\tau) = 0$. Since we assumed $f_{\circ}^{[2]} \neq 0$, we have from Claim B that $f_{\circ}^{[2]}(\tau) \neq 0$ and $g(\tau) \neq 0$. This shows that (6) is impossible. CLAIM D: The critical values of φ are distinct.

Proof of Claim D: Assume we have two critical points τ and η , i.e. $D(\tau) = D(\eta) = 0$, with same φ -values, so

(7)
$$\frac{f(\tau)}{g(\tau)} = \frac{f(\eta)}{g(\eta)} =: v.$$

Then there is by Claim A an isomorphism σ , trivial on K(u), with

$$\sigma(\tau) = \eta$$

Now, by assumption, σ also fixes the quotient v in (7). So σ is the identity on the field

$$L = K(u, v) \subseteq K(\tau) \,.$$

To show $\tau = \eta$ it suffices to show

$$L = K(\tau) \,.$$

To prove this, let $r = [K(\tau) : L]$. This degree r divides the degrees in (5) and (7), namely

$$[K(\tau): K(u)] = n + d - 1$$
 and $[K(\tau): K(v)] = n$.

Now denote the pole of τ in $K(\tau)/K$ by \mathfrak{p} . Consider its ramification over certain subfields. In equations (5) and (7), the degree of the numerator is larger than the degree of the denominator. Therefore $u\mathfrak{p} = v\mathfrak{p} = \infty$, so \mathfrak{p} is a common pole of u and v. ¿From (5) follows that the other poles of u are the zeros of g'; from (7) follows that the other poles of v are the zeros of g. ¿From gcd(g,g') = 1 follows that \mathfrak{p} is the only common pole of u and v. Since K is algebraically closed, \mathfrak{p} is purely ramified over L. So the degree r of the extension $K(\tau)/L$ is the ramification index of \mathfrak{p} over L. The ramification index of \mathfrak{p} in $K(\tau)/K(v)$ is n-d by (7) and is divisible by the ramification index r in $K(\tau)/L$. From

$$r$$
 divides $gcd(n+d-1, n, n-d) = 1$

follows $L = K(\tau)$ and the proof of the proposition in case d > 0 is complete.

It remains to consider the case g = 1, i.e. the construction of Morse polynomials $\varphi = f$. If n = 1, all polynomials f satisfy (2), so assume n > 1. We will show that the following polynomial will satisfy the inequalities (2):

(3)'
$$f(t) = t^n + a_{n-1}t^{n-1} + \dots + a_2t^2 + u_1t + a_0 = f_o(t) + u_1t$$

with u_1 transcendental over K and $f_{\circ}^{[2]} \neq 0$ which may be satisfied by $a_2 \neq 0$. We prove this again in four steps as in the case d > 0.

CLAIM A': The polynomial equation

(4)'
$$f'(\tau) = f'_{\circ}(\tau) + u_1 = 0$$

for the critical points τ of f is irreducible of degree n-1 over $K(u_1)$.

CLAIM B': From (4)' follows that the critical points τ are transcendental over K, and u_1 is a polynomial of degree n-1 in $K[\tau]$.

CLAIM C': The polynomials $f' = f'_{\circ} + u_1$ and $f^{[2]} = f^{[2]}_{\circ}$ have no common root, since we assumed $f^{[2]}_{\circ} \neq 0$ and its roots are algebraic over K.

CLAIM D': The critical values of f are distinct.

Proof of Claim D': Let τ and η be two roots of f' with

(7)'
$$f(\tau) = f(\eta) =: v_1.$$

Then there is by Claim A' an isomorphism σ , trivial on $K(u_1)$ with

$$\sigma(\tau) = \eta$$

Now σ also fixes v_1 in (7)'. So σ is the identity on the field

$$L = K(u_1, v_1) \subseteq K(\tau) \,.$$

From

$$[K(\tau): K(u_1)] = n - 1$$
 and $[K(\tau): K(v_1)] = n$

follows $L = K(\tau)$, so σ fixes τ , so $\eta = \tau$. This finishes the discussion in case d = 0.

Now the proof of the proposition is complete.

References

- [Bou] N. Bourbaki, General Topology, Chapters 1–4, Springer, Berlin, 1989.
- [CaF] J.W.S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- [CaR] D.C. Cantor and P. Roquette, On diophantine equations over the ring of all algebraic integers, Journal of Number Theory 18 (1984), 1–16.
- [Dad] E. C. Dade, Algebraic integral representations by arbitrary forms, Mathematika 10 (1963), 96–100; A correction, Mathematika 11 (1964), 89–90.
- [FrJ] M.D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 1986.
- [GPR] B. Green, F. Pop, and P. Roquette, On Rumely's local-global principle, Jahresbericht der Deutsche Mathematickervereinigung 97 (1995), 43–74.
- [HeR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften 115, Springer-Verlag, Berlin, 1963.
- [Ja1] M. Jarden, The inverse Galois problem over formal power series fields, Israel Journal of Mathematics 85 (1994), 263–275.
- [Ja2] M. Jarden, Intersection of local algebraic extensions of a Hilbertian field (A. Barlotti et al., eds), NATO ASI Series C 333 343–405, Kluwer, Dordrecht, 1991.
- [JR1] M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, Israel Journal of Mathematics 86 (1994), 25–59.
- [JR2] M. Jarden and A. Razon, Skolem density problems over algebraic PSC fields over rings, Nieuw Archief fur Wisskunde 13 (3), November 1995, 381–399.
- [JR3] M. Jarden and A. Razon, Rumely local global principle for algebraic PSC fields over rings, Transactions of AMS 350 (1), January 1998, 55–85.
- [Raz] A. Razon, On the density property of PSC fields, submitted to the Mathematischen Nachrichten.
- [Sko] Th. Skolem, Lösung gewisser Gleichungen in ganzen algebraischen Zahlen, insbesondere in Einheiten, Skrifter Norske Videnskaps-Akademi Oslo I. Mat. Naturv. Kl. 10 (1934).
- [ZaS] O. Zariski and P. Samuel, *Commutative Algebra*, Volume I, The university series in heigher mathematics, D. Van nostrand company, inc..