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Abstract: Let K be a global field, V an infinite proper subset of the set of all primes

of K, and S a finite subset of V. Denote the maximal Galois extension of K in which

each p ∈ S totally splits by Ktot,S . Let M be an algebraic extension of K. A data for

an (S,V)-Skolem density problem for M consists of a finite subset T of V containing S,

polynomials f1, . . . , fm ∈ K̃[X1, . . . , Xn] satisfying |fi|q = 1 for each non-archimedean

prime q ∈ Ṽ r T̃ , a point a ∈ Mn, and a positive real number γ. A solution to the

problem is a point x ∈ Mn such that |xi − ai|p < γ for each p ∈ T̃ and |xi|q ≤ 1,

|fj(x)|q = 1 for each non-archimedean prime q ∈ Ṽ r T̃ , i = 1, . . . , n, j = 1, . . . ,m.

For σ = (σ1, . . . , σe) ∈ Gal(K)e let Ks(σ) = {x ∈ Ks | σi(x) = x, i = 1, . . . , e}.

Denote the maximal Galois extension of K inside Ks(σ) by Ks[σ]. Then, for almost all

σ ∈ Gal(K)e (with respect to the Haar measure), each (S,V)-Skolem density problem

for Ks[σ] ∩Ktot,S has a solution.

This result generalizes a previous work [JR2] in which V corresponds to the set of

all nonzero prime ideals of OK (in particular, V does not contain archimedean primes).

There we prove for almost all σ ∈ Gal(K)e that each (S,V)-Skolem density problem

for the maximal purely inseparable extension of Ks(σ) ∩Ktot,S has a solution.
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Introduction

Let K be a global field. Fix a separable closure Ks and an algebraic closure K̃ of K.

Denote the absolute Galois group of K by Gal(K).

Denote the set of all primes of K by P, all finite (= nonarchimedean) primes

by P0, and all infinite (= archimedean) primes by P∞. Each p ∈ P is, by definition,

an equivalence class of absolute values. For each p ∈ P choose a separable algebraic

extension Kp of K as follows: If p ∈ P0, then Kp is a Henselization of K at p. If p ∈ P∞
is real, then Kp is a real closure of K at p. Finally, if p ∈ P∞ is complex, then Kp = Ks.

For each p ∈ P choose an absolute value | |p of K representing p and, for each prime q

of K̃ lying over p, denote the absolute value of K̃ which represents q and extends | |p
by | |q. For a subset R of P, we denote the set of primes of K̃ lying over primes in R

by R̃.

Fix an infinite proper subset V of P and a finite subset S of V. Let

Ktot,S =
⋂
p∈S

⋂
σ∈Gal(K)

Kσ
p

be the field of totally S-adic numbers. This is the maximal Galois extension of K in

which each p ∈ S totally splits.

The goal of this work is to prove the following result:

Theorem A: Let e be a nonnegative integer. Then, for almost all σ ∈ Gal(K)e, both

Ks(σ) ∩Ktot,S and Ks[σ] ∩Ktot,S are S-Skolem fields with respect to V.

Here “almost all” is used in the sense of the Haar measure of Gal(K)e. For each

σ = (σ1, . . . , σe), the field Ks(σ) is the fixed field of σ1, . . . , σe in Ks. The field Ks[σ]

is the maximal Galois extension of K inside Ks(σ).

An algebraic extension M of K is an S-Skolem field with respect to V if the

following holds: Let T be a finite subset of V containing S. Put U = (V r T ) ∩ P0.

Let f1, . . . , fm ∈ K̃[X1, . . . , Xn] be q-primitive polynomials for each q ∈ Ũ . Here a

polynomial is q-primitive if its coefficients are q-integrals and at least one of them is a

q-unit. Let a = (a1, . . . , an) ∈ Mn and γ > 0. Then there is x ∈ Mn with |x− a|p < γ

for each p ∈ T̃ , and |x|q ≤ 1, |fi(x)|q = 1 for each q ∈ Ũ , i = 1, . . . ,m.
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Theorem A generalizes a result of Skolem [Sko] from 1934: Suppose g ∈ Z[X]

is a primitive polynomial. Then, there is an algebraic integer x such that g(x) is an

algebraic unit.

Indeed, by Theorem A applied to K = Q, V = the set of all prime numbers, S = ∅,

and e = 0, Q̃ is an S-Skolem field with respect to V. The result follows then from the

case T = ∅, m = n = 1, and f1 = g.

In 1963 Dade [Dad] reproved Skolem’s result. Cantor and Roquette [CaR] proved

in 1982 that Ktot,S is an S-Skolem field with respect to V when K is a number field and

P∞ 6⊆ V. A weaker version of Theorem A appears in a work of the present authors [JR2]

from 1995. In that version, V contains only finite primes. Moreover, it proves only that

for almost all σ ∈ Gal(K)e the maximal purely inseparable extension of Ks(σ)∩Ktot,S

is S-Skolem with respect to V.

Theorem A improves the main result of [JR2] in three ways:

1. Including infinite primes. The set V may contain now infinite primes. Note: V may

contain all infinite primes. Here we have to use that each Hilbert subset of a number

field K contains elements which strongly approximate finitely many elements of K.

2. Omitting the perfectness assumption. When char(K) > 0, the S-Skolem fields

we find are now separable over K. We do not need to make them perfect. This was

an essential difficulty in [JR2]. Here we have overcome it by exploiting compactness

arguments in a more careful way then in [JR2] (See Part B of the proof of Lemma 3.2.)

We are indebted to Moret-Bailly for his help at this point.

3. Constructing smaller S-Skolem fields. In addition to the fields Ks(σ) ∩ Ktot,S ,

Theorem A says that almost all fields Ks[σ] ∩Ktot,S are S-Skolem with respect to V.

Consider a nonempty finite subset T of V containing S and put U = (V r T ) ∩

P0. Let OK,U = {a ∈ K | |a|p ≤ 1 for each p ∈ U}. The main step in the proof of

Theorem A (Lemma 3.2) starts from a monic polynomial f ∈ OK,U [X] which factors

into a product of distinct monic irreducible polynomials over K. It constructs a monic

polynomial h0 ∈ OK,U [X] of degree d > deg(f), relatively prime to f , with d distinct

roots in Ktot,S which are T -close to 0. It also constructs a nonzero element m ∈ OK,U ,
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T -close to 0, such that the polynomial maf(X) + h0(X) has d distinct roots in Ktot,S

which are T -close to 0 for each a ∈ OK,U . Consider the absolutely irreducible polynomial

h̃(T,X) = mf(X)T + h0(X). We know that almost all fields Ks(σ) are “PAC over

OK,U” (Propositions 1.3 and 1.5). This gives a ∈ OK,V and x ∈ Ks(σ) with h̃(a, x) = 0.

Let h(X) = maf(X) + h0(X). As x is a root of h, it follows from the construction that

x ∈ Ktot,S and is T -close to 0. So, x ∈ Ks(σ) ∩Ktot,S . As h ∈ OK,U [X] is monic, x

is q-integral for each q ∈ Ũ . Finally, since gcd(f, h) = 1, there are g, r ∈ OK,U [X] such

that gh + rf = 1. Therefore r(x)f(x) = 1. So, since x is q-integral, f(x) is a q-unit for

each q ∈ Ũ .

For almost all fields Ks[σ] we know only a weaker property than being PAC over

OK,U . However, Ks[σ] is Galois over K. Moreover, the Appendix due to Wulf-Dieter

Geyer, allows us to construct h0 as above such that h̃(T,X) is stable with respect to

X. That is, Gal(h̃(T,X),K(T )) ∼= Gal(h̃(T,X), K̃(T )). With the weaker property of

Ks[σ], this suffices to prove the existence of a ∈ OK,U and x ∈ Ks[σ]∩Ktot,S as in the

preceding paragraph.

Based on [JR2], the work [JR3] of the authors proves Rumely’s local-global prin-

ciple for the maximal purely inseparable extensions of Ks(σ) ∩ Ktot,S for almost all

σ ∈ Gal(K)e. It is our hope, building on the present work, to prove the local-global

principle for almost all fields M = Ks[σ] ∩ Ktot,S . This will imply the local-global

principle for each extension of M in Ktot,S . In particular, this will imply that each such

extension is an S-Skolem field with respect to V.
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1. Weakly PSC fields over holomorphy domains

This section makes adjustments to [JR2, §1] in order to include infinite primes.

Recall: A field M is pseudo algebraically closed (PAC) if every absolutely

irreducible variety over M has an M -rational point. If O is a subset of M , then M may

have a stronger property:

Definition 1.1: [JR1, Def. 1.1]. Let O be a subset of a field M . We say M is PAC

over O if this holds: For every absolutely irreducible variety V of dimension r ≥ 0 and

for each dominating separable rational map ϕ: V → Ar over M there is a ∈ V (M) with

ϕ(a) ∈ Or.

Examples arise from “Hilbertian subsets” of fields:

Definition 1.2: Let O be a subset of a field K. We say O is K-Hilbertian if H∩O 6= ∅

for each separable Hilbert subset H of K. (See [FrJ, Chap. 11] for the definition of a

separable Hilbert subset.) Note: If O ⊆ O′ ⊆ K and O is K-Hilbertian, then so is O′.

Let K be a field. We denote the separable closure of K by Ks, the algebraic

closure by K̃, and the absolute Galois group, Gal(Ks/K), by Gal(K). As Gal(K)

is a compact topological group, it is equipped with a Haar measure. Recall that if

σ1, . . . , σe ∈ Gal(K), then Ks(σ) is the fixed field in Ks of σ1, . . . , σe. In the following

we use the clause “for almost all σ ∈ Gal(K)e” with respect to the Haar measure of

Gal(K)e. Also, we denote the maximal Galois extension of K inside Ks(σ) by Ks[σ].

Proposition 1.3: LetO be a subset of a countable field K. SupposeO is K-Hilbertian.

Let e be a positive integer. Then, for almost all σ ∈ Gal(K)e, the field Ks(σ) is PAC

over O.

Proof: [JR1, Prop. 3.1] proves the proposition when O is a subring of K with quotient

field K. The proof applies verbatim to the general case.

Data 1.4: We fix the following data for the rest of this work:

(a) K is a global field and OK is its ring of integers [FrJ, §5.2].
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(b) P = PK is the set of all primes (finite and infinite) of K. A finite (resp. infinite)

prime of a field E is an equivalence class of non-archimedean (resp. archimedean)

absolute values of E. We denote the set of all finite primes of K by P0 and the set

of all infinite primes of K by P∞. Thus, P∞ = ∅ and P0 = P when char(K) > 0.

For each p ∈ P we choose an absolute value | |p which belongs to p.

(c) V is a proper subset of P.

(d) Let L be an algebraic extension of K and R a subset of P .

R0 = R∩ P0 and R∞ = R∩ P∞.

RL is the set of primes of L which lie over primes in R. For L = K̃ we set

R̃ = RK̃ . If q ∈ PL lies over p ∈ P, we write q|p and p = q|K . We denote the

unique absolute value which represents q and extends | |p by | |q.

If L is a normal extension of K, then Aut(L/K) acts on RL according to

|x|pσ = |xσ−1
|p, for p ∈ RL and x ∈ L.

We may choose a subset R0 of RL which contains exactly one extension of each

prime in R. Then, for each q ∈ RL there are p ∈ R0 and σ ∈ Aut(L/K) with

q = pσ. We say that R0 represents RL over K.

OL,R is the R-holomorphy domain {x ∈ L | |x|q ≤ 1 for each q ∈ RL} of L. It

is closed under multiplication. If R ⊆ P0, then OL,R is a ring.

ML,R = {x ∈ L | |x|q < 1 for each q ∈ RL}. If R ⊆ P0, it is an ideal of OL,R.

For a = (a1, . . . , an) ∈ Ln, |a|R = max
q∈RK(a)

max
1≤i≤n

|ai|q = max
q̃∈R̃

max
1≤i≤n

|ai|q̃.

For f(X) =
∑n

i=0 aiX
i ∈ L[X], |f |R = |(a0, . . . , an)|R.

The set V satisfies the strong approximation theorem: Let T be a finite subset

of V. For each p ∈ T consider an element ap of K and let ε be a positive real number.

Then there exists x ∈ OK,V r T such that |x−ap|p < ε for each p ∈ T [CaF, p. 67]. The

proof of the proposition below is an adjustment of the proof of [FrJ, Thm. 12.7].

Proposition 1.5: The subset OK,P0∩V ∩MK,P∞∩V of OK,V is K-Hilbertian.

Proof: Assume without loss that V is cofinite in P and let P∞ ∩ V = {q1, . . . , qn}.

Let H be a separable Hilbert subset of K. ¿From [FrJ, Lemma 12.1] there exist ab-

solutely irreducible polynomials h1, . . . , hm ∈ OK [T,X], monic and separable in X,
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with degX(hi) > 1, i = 1, . . . ,m, such that
⋂m

i=1 H ′
K(hi) ⊆ H, where H ′

K(hi) =

{a ∈ K | hi(a, b) 6= 0 for each b ∈ K}. Apply [FrJ, Lemma 12.6] to find distinct

p1, . . . , pm ∈ P0 ∩ V and elements a1, . . . , am ∈ OK such that x ∈ H ′
K(hi) for each

x ∈ K with |x − ai|pi
< 1, i = 1, . . . ,m. Let T = {p1, . . . , pm, q1, . . . , qn}. Then

use the strong approximation theorem to find x ∈ OK,V r T such that |x − ai|pi < 1,

i = 1, . . . ,m, and |x|qj
< 1, j = 1, . . . , n. Then x ∈ H and |x|pi

≤ 1, i = 1, . . . ,m.

Hence, x ∈ H ∩ OK,P0∩V ∩MK,P∞∩V , as desired.

Combine Proposition 1.3 with Proposition 1.5:

Corollary 1.6: Let e be a positive integer. Then, for almost all σ ∈ Gal(K)e, the

field Ks(σ) is PAC over OK,P0∩V ∩MK,P∞∩V .

Data 1.7: We add the following data to Data 1.4 and fix it for the rest of this work:

(a) Let p ∈ P.

p̃ is a fixed extension of p to a prime of K̃. If q̃ ∈ P̃ and q̃|p, then there is

σ ∈ Gal(K) such that q̃ = p̃σ.

K̂p is the completion of K at p inside the completion of K̃ at p̃. Then | |p uniquely

extends to an absolute value | |p of K̂p and then uniquely to an absolute value of

K̃K̂p. The restriction of the latter to K̃ coincide with | |p̃.

If p ∈ P∞, then either K̂p
∼= R or K̂p

∼= C; in the former case p is real, in the

latter case p is complex.

Kp = Ks∩K̂p. It is well defined up to a K-isomorphism. If p ∈ P0, then Kp is

an Henselian closure of K at p. As K̂p/Kp is a separable extension [Ja1, Lemma

2.2], so is K̂p/K.

Ktp =
⋂

σ∈Gal(K) Kσ
p .

(b) S is a finite subset of V.

(c) N = Ktot,S =
⋂

p∈S Ktp. This is the maximal Galois extension of K in which

each p ∈ S totally splits. If S = ∅, we let N = Ks.

Note: If L is a subextension of N/K, then Ltot,SL
= N .

We call a polynomial f ∈ K̃[X] of degree n separable if it has n distinct roots.

We call f N-admissible if in addition it is monic and all its roots are in N .
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Proposition 1.8: Let q̃ ∈ P̃ and let E be a separable algebraic extension of Kσ
p , where

p = q̃|K and q̃ = p̃σ for σ ∈ Gal(K). Let f ∈ K[X] be a monic separable polynomial of

degree n and let x1, . . . , xn be its distinct roots. Then, for each ε > 0 there is δ > 0 such

that if g is a monic polynomial in E[X] of degree n and |g−f |q̃ < δ, then g is separable

and its roots can be enumerated as y1, . . . , yn with |yi − xi|q̃ < ε and E(xi) = E(yi).

Proof: If q̃ ∈ P̃0, the proposition follows from a combination of the theorem about the

continuity of roots of polynomials and Krasner’s lemma [Ja2, Prop. 12.3]. If q̃ ∈ P̃∞,

the proposition follows from Sturm’s theorem for real roots and from the theorem about

the continuity of roots of polynomials for complex roots.

The following lemma replaces [JR2, Lemma 1.2].

Lemma 1.9: Let T be a nonempty finite subset of P which contains S. Let f ∈ K[X]

be an N -admissible polynomial of degree n and let x1, . . . , xn ∈ N be its distinct roots.

Then, for each ε > 0 there is δ > 0 with the following property: If

(1a) g ∈ N [X] is a monic polynomial of degree n with |g − f |T < δ,

then g is N -admissible and for each q̃ ∈ T̃

(1b) the roots of g can be enumerated as y1, . . . , yn with |yi − xi|q̃ < ε.

If, in addition, there is a ∈ K with |xi − a|p < ε for each p ∈ T , i = 1, . . . , n, then we

can choose δ such that (1a) implies |yi − a|T < ε, i = 1, . . . , n.

Proof: For each p ∈ T Proposition 1.8 gives δp > 0 such that if g is a monic polynomial

in N [X] of degree n and |g − f |p̃ < δp, then g has n distinct roots y1, . . . , yn with

|yi − xi|p̃ < ε and KpN(xi) = KpN(yi). In particular, for each p ∈ S, y1, . . . , yn ∈ Kp.

Let δ = maxp∈T δp and consider a polynomial g as in (1a). For each q̃ ∈ T̃ there

exist p ∈ T and σ ∈ Gal(K) such that q̃ = p̃σ. Since N/K is Galois, gσ−1 ∈ N [X].

Also, |gσ−1 − f |p̃ = |g− f |q̃ < δ. Hence (1b) holds for p̃ and gσ−1
, and the roots of gσ−1

are in Kp if p ∈ S. Moreover, σ permutes the roots of f and maps the roots of gσ−1

onto the roots of g. So (1b) holds for q̃ and g, and the roots of g are in Kσ
p if p ∈ S. It

follows that all roots of g belong to N , so g is N -admissible.

If, in addition, there is a ∈ K with |xi−a|p < ε for each p ∈ T , i = 1, . . . , n, then,

by (1b), we can choose δ such that (1a) implies |yi − a|T < ε, i = 1, . . . , n.
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Definition 1.10: Let M be a subextension of N/K and O a subset of M .

(a) We say M is pseudo S-adically closed (PSC) if every absolutely irreducible

variety over M has an M -rational point provided it has a simple Kp-rational point for

each p ∈ S.

(b) A polynomial h ∈ N [T,X] is N -admissible with respect to X if h is monic

in X and h(0, X) is N -admissible.

(c) An absolutely irreducible polynomial h ∈ K[T,X], separable with respect to

X, is K-stable with respect to X if Gal(h(T,X),K(T )) ∼= Gal(h(T,X), K̃(T )) [FrJ,

§15.3].

(d) We say M is weakly PSC over O if for each absolutely irreducible N -

admissible polynomial h ∈ M [T,X] with respect to X and for each g ∈ M [T ] with

g(0) 6= 0, there exists (a, b) ∈ O ×M such that h(a, b) = 0 and g(a) 6= 0.

(e) We say M is weakly K-stably PSC over O if for each absolutely irreducible

N -admissible and K-stable polynomial h ∈ K[T,X] with respect to X and for each

g ∈ K[T ] with g(0) 6= 0, there exists (a, b) ∈ O×M such that h(a, b) = 0 and g(a) 6= 0.

Remark 1.11: (a) If S = ∅, then N = Ks. So, M is weakly PSC over O if and only if

M is PAC over O [JR1, Lemma 1.3].

(b) If M is weakly PSC over O, then it is also weakly K-stably PSC over O.

(c) If O ⊆ O′ ⊆ M and M is weakly PSC over O (resp. weakly K-stably PSC

over O), then it is also weakly PSC over O′ (resp. weakly K-stably PSC over O′).

(d) Suppose p is a complex prime of K and let S ′ = S ∪ {p}. Then Ktp = K̃ and

therefore N = Ktot,S = Ktot,S′ . Thus M is weakly PSC over O if and only if M is

weakly PS ′C over O.

(e) If S does not contain complex primes and M is a PSC field, then M is weakly

PSC over OM,S [Raz, Prop. 3.3].

The following lemma replaces [JR2, Lemma 1.4].

Lemma 1.12: Let M0 be an algebraic extension of K, M = M0 ∩N , and e a positive

integer. Let O be a subset of OM,S such that OK,V · O ⊆ O and M0 is PAC over O.
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Then:

(a) M is weakly PSC over O. In particular, Ktot,S is weakly PSC over OK,V and

Ks(σ) ∩Ktot,S is weakly PSC over OK,V for almost all σ ∈ Gal(K)e.

(b) Let M ′ be the maximal Galois extension of K inside M . Then M ′ is weakly K-

stably PSC over OK,V . In particular, Ks[σ] ∩Ktot,S is weakly K-stably PSC over

OK,V for almost all σ ∈ Gal(K)e.

Proof: Let T be a nonempty finite subset of V containing S.

Proof of (a): Let h ∈ M [T,X] be an absolutely irreducible N -admissible polynomial

with respect to X and let g ∈ M [T ] with g(0) 6= 0. Let L be a finite subextension of

M/K which contains the coefficients of h. Lemma 1.9, applied to L,SL, TL instead of

to K,S, T , gives δ > 0 such that if k ∈ N [X] is a monic polynomial of the same degree

as h(0, X) with |k(X)−h(0, X)|T < δ, then k is N -admissible. Also, there exists γ > 0

such that if a ∈ N satisfies |a|T < γ, then |h(a,X) − h(0, X)|T < δ. Use the strong

approximation theorem to find 0 6= m ∈ OK,V such that |m|T < γ. Let T ′ = 1
mT . Since

M0 is PAC over O, the absolutely irreducible polynomial h(mT ′, X) has a zero (c, b)

in O × M0 such that g(mc) 6= 0 [JR1, Lemma 1.3]. Hence, a = mc ∈ OK,V · O ⊆ O

satisfies h(a, b) = 0 and g(a) 6= 0. Check that |h(a,X)−h(0, X)|T < δ. Hence, all roots

of h(a,X) belong to N . In particular b ∈ M0 ∩ N = M . Conclude that M is weakly

PSC over O.

Proof of (b): Let h ∈ K[T,X] be an absolutely irreducible N -admissible and K-stable

polynomial with respect to X and let g ∈ K[T ] with g(0) 6= 0. Choose a transcendental

element t over K and an element x such that h(t, x) = 0. Set F = K(t, x) and let F̂ be

the Galois hull of F/K(t). Choose a primitive element y for F̂ /K(t). By assumption,

F̂ /K is a regular extension. Since M0 is PAC over O, there exist a ∈ O, b ∈ K̃,

and c ∈ M0 such that (a, b, c) is a K-specialization of (t, x, y), g(a) 6= 0, and a is T -

close enough to 0 to get h(a,X) is T -closed enough to h(0, X) so that b ∈ N . Then

K(b) ⊆ K(c) and K(c) is a Galois extension of K which is contained in M0. Then

b ∈ K(c) ∩N ⊆ M0 ∩N = M . Since K(c) ∩N is a Galois of K, it follows that b ∈ M ′.
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Remark: If M is a subextension of N/K which is weakly PSC over O = OK,P0∩V ∩

MK,P∞∩V , we can prove directly that the maximal Galois extension M ′ of K inside M

is weakly K-stably PSC over O.

Example 1.13: Let f, r, g be nonzero polynomials in N [X] such that f is N -admissible.

Suppose gcd(r, f) = 1, deg(r) < deg(f), and g(0) 6= 0. Let 0 6= m ∈ K. Then

h(T,X) = mr(X)T + f(X) is an absolutely irreducible polynomial which is monic in

X. Since h(0, X) = f(X) is N -admissible, h is N -admissible with respect to X.

Let M be a subextension of N/K and let O be a subset of M .

(a) Suppose M is weakly PSC over O and f, r, g ∈ M [X]. Then there exists

(a, b) ∈ O ×M such that mr(b)a + f(b) = 0 and g(a) 6= 0.

(b) Suppose M is weakly K-stably PSC over O, f, r, g ∈ K[X], and f
r is a Morse

function (Definition 4.1). Then − 1
m

f
r is also a Morse function. Therefore, by Proposi-

tion 4.2, h(T,X) is K-stable with respect to X. Hence there exists (a, b) ∈ O×M such

that mr(b)a + f(b) = 0 and g(a) 6= 0.

The next lemma replaces [JR2, Lemma 1.8]:

Lemma 1.14 (Quasi uniform approximation): Let M be a subextension of N/K which

is weakly PSC over OM,V and let T be a finite subset of V which contains S. Let x ∈ N

and ε > 0. Then M has a finite subset B such that for each q̃ ∈ T̃ there is b ∈ B with

|b− x|q̃ < ε.

Proof: Assume without loss that x 6= 0 and T 6= ∅. Since N/M is Galois, irr(x,M)

is an N -admissible polynomial which has x as a root. Hence, it suffices to prove the

following statement about N -admissible polynomials h ∈ M [X]:

(2) There exists a finite set Bh ⊂ M such that for each root z of h and for each q̃ ∈ T̃

there is b ∈ Bh with |b− z|q̃ < ε.

The case deg(h) = 1 being trivial we assume that d = deg(h) ≥ 2 and proceed by

induction on d. Let L be a finite extension of K in M which contains the coefficients of

h. Note that Ltot,SL
= Ktot,S = N . Hence, by Lemma 1.9 applied to L,SL, TL instead

of to K,S, T , there is δ > 0 with the following property:
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(3) Every monic polynomial h1 ∈ N [X] of degree d which satisfies |h1 − h|T < δ is

N -admissible and for each q̃ ∈ T̃ and each root z of h there is a root y of h1 with

|y − z|q̃ < ε
2 .

Choose 0 6= m ∈ K such that |m|T < δ. Since M is weakly PSC over OM,V ,

Example 1.13 (a) (applied to h, 1 instead of to f, r) gives a ∈ OM,V and c ∈ M with

ma + h(c) = 0. It follows that the monic polynomial h1(X) = ma + h(X) ∈ M [X] of

degree d satisfies h1(c) = 0 and |h1 − h|T < δ. Hence, h1 satisfies the conclusion of (3).

In particular g(X) = h1(X)
X−c ∈ M [X] is an N -admissible polynomial of degree d−1.

By the induction hypothesis, there exists a finite subset Bg ⊆ M such that for each root

y of g and for each q̃ ∈ T̃ there is b ∈ Bg with |b− y|q̃ < ε
2 .

Let Bh = Bg ∪ {c} and consider q̃ ∈ T̃ . Let z be a root of h. By (3) there exists

a root y of h1 such that |y − z|q̃ < ε
2 . So, y = c or y is a root of g. In the later case

there exists b ∈ Bg such that |b− y|q̃ < ε
2 and therefore |b− z|q̃ < ε. In both cases the

induction is complete.

Finally, we replace [JR2, Prop. 1.9]:

Proposition 1.15: Let M be a subextension of N/K which is weakly K-stably PSC

over OM,V . Let p be a prime in V rS and q̃ an extension of p to K̃. Suppose q̃ = p̃σ

for σ ∈ Gal(K). Then Kσ
p M = Ks and M is q̃-dense in K̃.

Proof: Consider 0 6= x ∈ Ks. Let hp = irr(x, K) and n = deg(hp). Let T be a

nonempty finite subset of V r{p} containing S. Choose n distinct elements a1, . . . , an ∈

K and let hT (X) =
∏n

i=1(X − ai). By Lemma 1.9 and Proposition 1.8, there exists

δ > 0 such that

(4a) if h ∈ N [X] is a monic polynomial of degree n and |h − hT |T < δ, then h has n

distinct roots in N , and

(4b) if h ∈ M [X] is a monic polynomial of degree n and |h − hp|q̃ < δ, then we can

enumerate the roots of hp as x1, . . . , xn and the roots of h as x′1, . . . , x
′
n such that

Kσ
p M(x′i) = Kσ

p M(xi).

If char(K)|n, let f(X) = X. Otherwise, let f(X) = 1. Use Proposition 4.3 and

the assumption p /∈ S with the weak approximation theorem to find a monic polynomial
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h ∈ K[X] such that |h− hT |T < δ, δ1 = |h− hp|p < δ, and h
f is a Morse function. By

(4a), h is N -admissible.

To prove Kσ
p M = Ks we may assume K(x)/K is Galois. Choose 0 6= m ∈ K with

|m|p < δ−δ1. Then Example 1.13 (b) supplies c ∈ OM,V and b ∈ M with mcf(b)+h(b) =

0. So, b is a root of the monic polynomial h1(X) = mcf(X) + h(X) ∈ M [X]. By (4b),

Kσ
p M(b) = Kσ

p M(x′) for some root x′ of hp. It follows that Kσ
p (x′) ⊆ Kσ

p M . But

K(x) = K(x′). Hence x ∈ Kσ
p M . Conclude that Kσ

p M = Ks.

In particular, M is q̃-dense in Ks. As Ks is q̃-dense in K̃ [JR1, Lemma 9.1], M is

q̃-dense in K̃.
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2. A compactness lemma

We keep Data 1.4 and 1.7 in force. The main results of this note depend on the as-

sumption that K is a global field. Here we use the finiteness of the class number of K

and Dirichlet’s unit theorem to prove that a certain group is compact.

For each finite subset R of P regard K̂×
R =

∏
p∈R K̂×

p as a topological group with

the product topology. For R ⊆ V, identify O×
K,V0 rR with its image in K̂×

R under the

diagonal embedding. Lemma 2.3 below replaces [JR2, Lemma 2.2]. It states that the

group K̂×
R/O×

K,V0 rR is compact. Its proof follows the proof of [CaR, Lemma 4.4] which

proves the same result only in the case P∞ 6⊆ V.

Here we follow the terminology of [HeR] for compact groups. Thus, a topological

group G is compact if every covering of G by open sets has a finite subcovering ([Bou,

§9.1] uses the terminology quasi-compact instead).

Suppose N is a normal subgroup of a topological group G which is not necessarily

closed. The following rules hold:

(1a) The quotient map G → G/N is continuous and open [HeR, Chap. II, (5.16) and

(5.17)].

(1b) If G is compact, so is G/H [HeR, Chap. II, (5.22)].

(1c) If H and G/H are compact, so is G [HeR, Chap. II (5.25)].

We use the following lemma from linear algebra in the proof of Lemma 2.3.

Lemma 2.2: Let E be a field, a1, . . . , an nonzero elements of E, and xi = (xi1, . . . , xin),

i = 1, . . . , n − 1, linearly independent vectors in En. Suppose
∑n

j=1 ajxij = 0, i =

1, . . . , n − 1. Let J be a proper subset of {1, . . . , n}. Put m = |J | and x′i = (xij)j∈J ,

i = 1, . . . , n− 1. Then x′1, . . . ,x
′
n−1 span a subspace of Em of dimension m.

Proof: Assume without loss n /∈ J . By assumption, the rows of the (n− 1)×n matrix

A = (xij)1≤i≤n−1, 1≤j≤n are linearly independent. Hence, n − 1 of the columns of A

are linearly independent. By assumption, the nth column of A is a linear combination

of the first ones. Hence, the first n − 1 columns are linearly independent. Conclude:

rank
(
(xij)1≤i≤n−1, j∈J

)
= m. So, m of the vectors x′1, . . . ,x

′
n−1 are linearly indepen-

dent.
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Lemma 2.3: Let T be a nonempty finite subset of V. Then the group K̂×
T /O×

K,V0 r T

is compact.

Proof: Choose p0 ∈ P rV. Then, V0 r T ⊆ (P0 r{p0}) r T . So, O×
K,(P0 r{p0}) r T ≤

O×
K,V0 r T ≤ K̂×

T . Thus, K̂T /O×
K,V0 r T is a quotient of K̂×

T /O×
K,(P0 r{p0}) r T . Using

(1b), this allows us to assume V = P r{p0}. The rest of the proof naturally breaks up

into several parts.

Part A: Reduction to compactness of divisor classes. For each p ∈ V let Up = {α ∈

K̂×
p | |α|p = 1} be the group of units in K̂p. If p is infinite and real, Up = {±1}; if

p is complex, Up is the multiplicative group of the unit circle. When p is finite, Up is

profinite. In any case, Up is compact.

For each finite subset R of V let UR =
∏

p∈R Up. By the preceding paragraph UR

is compact. Consider the R-divisor class CR = K̂R/URO×
K,V0 rR. It appears as the

quotient of the right upper groups in the diagram

K̂×
R

UR URO×
K,V0 rR

UR ∩ O×
K,V0 rR O×

K,V0 rR .

For R = T , the diagram gives a short exact sequence:

1 −→ UT /(UT ∩ O×
K,V0 r T ) −→ K̂×

T /O×
K,V0 r T −→ CT −→ 1.

By the preceding paragraph and (1b), the second term is compact. So, in order to prove

that the middle term is compact, it suffices, by (1c), to prove that CT is compact.

Part B: Separation of the finite and the infinite parts of CT . Consider the epimor-

phism p: K̂×
T → K̂×

T0
given by p

(
(αp)p∈T

)
= (αp)p∈T0 . Observe: V0 r T = V0 r T0. So,

p maps UT onto UT0 and O×
K,V0 r T , considered as a subgroup of K̂×

T , onto O×
K,V0 r T0

,

considered as a subgroup of K̂×
T0

. Let p̄: CT → CT0 be the epimorphism that p induces.
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Now consider the injection i: K̂T∞ → K̂×
T given by

i
(
(αp)p∈T∞

)
=

(
(1)p∈T0 , (αp)p∈T∞

)
.

It maps UT∞ into UT . For a ∈ O×
K,V0 r T∞ we have

i(a) =
(
(1)p∈T0 , (a)p∈T∞

)
=

(
(a−1)p∈T0 , (1)p∈T∞

)
a ∈ UTO×

K,V0 r T .

So, i induces a homomorphism ı̄: CT∞ → CT .

Suppose α = (αp)p∈T∞ ∈ K̂×
T∞ and i(α) ∈ UTO×

K,V0 r T . Then there are µp ∈ Up,

p ∈ T , and a ∈ O×
K,V0 r T with 1 = µpa for p ∈ T0 and αp = µpa for p ∈ T∞. In

particular, a ∈ O×
K,V0 r T∞ and α =

(
(µp)p∈T∞

)
a ∈ UT∞O×

V0 r T∞ . So, ı̄ is injective.

By definition, Im(̄ı) ⊆ Ker(p̄). Conversely, suppose α =
(
(αp)p∈T

)
∈ K̂×

T and

p(α) ∈ UT0O×
K,V0 r T0

. Then there are µp ∈ Up, p ∈ T0, and a ∈ O×
K,V0 r T0

with αp =

µpa, p ∈ T0. So, α = i
(
(αpa

−1)p∈T∞
)
·
(
(µp)p∈T0 , (1)p∈T∞

)
a ∈ i(K×

T∞)UTO×
K,V0 r T .

Conclude: Ker(p̄) = Im(̄ı).

We have therefore established a short exact sequence 1 → CT∞
ı̄→CT

p̄→CT0 → 1.

By (1c) is suffices to prove that each of the groups CT0 and CT∞ is compact. We do

this in Parts C and D.

Part C: CT is finite when T = T0. To prove this, let D be the group of divisors of

K and P the group of principal divisors. For each p ∈ P0 let ordp be the normalized

valuation associated with p. Define a homomorphism d from K̂×
T into the group D of

divisors of K by d
(
(αp)p∈T

)
=

∑
p∈T ordp(αp)p. If (αp)p∈T ∈ d−1(P ), then there is

a ∈ K× with
∑

p∈T ordp(αp)p =
∑

p∈P0
ordp(a)p. So, a ∈ O×

K,P0 r T . Then d−1(P ) =

UTO×
K,P0 r T ≤ UTO×

K,V0 r T . So, d induces an embedding of K̂×
T /UTO×

K,P0 r T into

D/P . The latter is a finite group [CaF, p. 71]. So, the former is a finite group. It

follows that CT = K̂×
T /UTO×

K,V0 r T is a finite group.

Part D: CT is compact when T = T∞. Indeed, let s = |P∞| and t = |T |. Consider

a subset R of P∞ ∪ {p0} and let r = |R|. Define a homomorphism λR: K̂×
R → Rr by

λR
(
(αp)p∈R

)
=

(
log |αp|p

)
p∈R. Then Ker(λR) = UR and λR(K̂×

R) = Rr if R ⊆ P∞.

Hence CR ∼= Rr/λR(O×
K,V0 rR) if R ⊆ P∞. There are two cases to consider.
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Case D1: p0 ∈ P∞. Then V0 r T = P0 and T ⊂ P∞. By Dirichlet’s unit the-

orem [CaF, p. 72, Thm], λP∞(O×
K,P0

) is a lattice of rank s − 1 in the hyperplane

H = {(xp)p∈P∞ |
∑

p∈P∞ npxp = 0} of Rs. Here np are positive integers chosen for

the product formula to hold in K. In particular, λP∞(O×
K,P0

) contains s− 1 linearly in-

dependent vectors (xi,p)p∈P∞ , i = 1, . . . , s− 1. Their projections on the T -coordinates,

namely (xi,p)p∈T , i = 1, . . . , s−1, contain t linearly independent vectors over R (Lemma

2.2). The latter vectors belong to λT (O×
K,P0

). Hence, CT ∼= Rt/λT (O×
K,P0

) is a quotient

of (R/Z)t which is a compact group. Conclude from (1b): CT is compact.

Case D2: p0 ∈ P0. In this case V0 r T = P0 r{p0} and T ⊆ P∞. Note that

P r(P0 r{p0}) = P∞ ∪ {p0} has s + 1 elements. So, by Dirichlet’s unit theorem,

λP∞∪{p0}(O
×
K,P0 r{p0}) is a lattice of rank s in the hyperplane

H =
{
(xp)p∈P∞∪{p0} |

∑
p∈P∞∪{p0}

npxp = 0
}

of Rs+1. In particular, λP∞∪{p0}
(
O×

K,P0 r{p0}
)

contains s linearly independent vectors

(xi,p)p∈P∞∪{p0}, i = 1, . . . , s. Their projection on the T -coordinates contain t linearly

independent vectors (Lemma 2.2). The latter belong to λT (O×
K,P0 r{p0}). Hence, CT ∼=

Rt/λT (O×
K,P0 r{p0}) is a quotient of (R/Z)t. Conclude: CT is compact.

The use of compactness of the above group will be through the following lemma.

Lemma 2.4: Let U be a nonempty open subset of a compact group G. Then there exist

u1, . . . , un ∈ U such that 1 = u1 · · ·un.

Proof: Choose u ∈ U . Then V = u−1U is an open neighborhood of 1 such that uV ⊆ U .

If necessary, replace V by V ∩V −1 to assume that V is closed under taking inverse. As

G is compact, the sequence u, u2, u3, . . . contains a subsequence uk1 , uk2 , uk3 , . . . which

converges to an element u′ of G. Hence, uk2−k1 , uk3−k2 , . . . converge to 1. In particular,

there exists an integer n ≥ 2 such that v = un ∈ V . By assumption, v−1 ∈ V and

therefore uv−1 ∈ U . So, 1 = unv−1 = u · · ·u(uv−1) is the desired presentation of 1.
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3. Skolem density problems

This section makes adjustments to [JR2, §3,4] in order to include infinite primes and

omit the assumption on perfectness.

Data and Assumption 3.1: We fix the following data and assumptions for the rest of

this work:

(1a) V is an infinite proper subset of P.

(1b) T is a finite subset of V which contains S.

(1c) U = V0 r T .

(1d) M is a subextension of N/K which is either weakly PSC over OM,V or weakly

K-stable PSC over OM,V and Galois over K.

Lemmas 3.2 and 3.4 below strengthen [JR2, Lemma 3.2]. We are gratefull to

Moret-Bailly for his help in the proof of Lemma 3.2.

Lemma 3.2: Assume T 6= ∅. Consider a monic polynomial f ∈ K[X] and a positive

real number ε. Suppose that

(2a) f ∈ OK,U [X];

(2b) f = f1 · · · fr, where f1, . . . , fr ∈ OK,U [X] are distinct monic irreducible polynomi-

als over K; and

(2c) OK,U [c] = OK(c),U for each root c of f(X).

Then there are a monic polynomial h0 ∈ OK,U [X] of degree d > deg(f), relatively

prime to f , and γ > 0 such that if a monic polynomial h ∈ ON,U [X] of degree d,

relatively prime to f , satisfies |h− h0|T < γ, then each root x of h satisfies:

(3a) f(x) ∈ (OK̃,U )×;

(3b) |x|T < ε; and

(3c) x is simple and belongs to N .

Moreover, there exists h ∈ OM,U [X] as above with a root in M .

Proof: Replace f(X) with f(X)(X − c) for some c ∈ OK,U different from the roots of

f , if necessary, to assume that char(K) - deg(f) if char(K) > 0.

The proof is rather long. So, it may help the reader to know in advance what its

main features are.
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Part A: Outline of the proof. First we use Lemma 2.3 in order to prove that the group∏
p∈T

(
K̂p[X]/f(X)K̂p[X]

)× modulo
(
OK,U [X]/f(X)OK,U [X]

)× is compact. Then we

use Lemma 2.4 to find a large positive integer d, a polynomial l0 ∈ OK,U [X] relatively

prime to f , and for each p ∈ T a monic polynomial hp ∈ K̂p[X] of degree d with d

distinct zeros in K̂p close to 0 such that hp

f is a Morse function and hp ≡ l0 mod f ·

K̂p[X]. Next we apply the strong approximation theorem to find a monic polynomial

h0 ∈ OK,U [X] of degree d, relatively prime to f , which is p-close to hp for each p ∈ T .

Suppose h ∈ ON,U [X] is a monic polynomial of degree d which is relatively prime to

f and T -close to h0. Then each root x of h satisfies (3). Using Example 1.13, we find

h ∈ OM,U [X] with a root in M .

Part B: A compact group. For each integral domain R which contains OK,U let

H(R) =
(
R[X]/f(X)R[X]

)× ∼= r∏
i=1

(
R[X]/fi(X)R[X]

)×
.

Let xi be a root of fi, i = 1, . . . , r. Then, by (2c),

(4) H(OK,U ) ∼=
r∏

i=1

OK,U [xi]× =
r∏

i=1

O×
K(xi),U .

Now let p ∈ T . In order to compute H(K̂p) we decompose each fi into its

irreducible monic components over K̂p:

fi = fp,i,1 · · · fp,i,ri,p ,

where ri,p is the number of primes of K(xi) which lie over p [CaF, p. 58, Cor.]. Let xij be

a root of fp,i,j , j = 1, . . . , ri,p. Since K̂p/K is separable (Data 1.7(a)), fp,i,1, . . . , fp,i,ri,p

are distinct and therefore

(
K̂p[X]/fi(X)K̂p[X]

)× ∼= ri,p∏
j=1

K̂p(xij)× ∼=
∏

q∈PK(xi)

q|p

K̂(xi)
×
q .

Thus

H(K̂p) ∼=
r∏

i=1

∏
q∈PK(xi)

q|p

K̂(xi)
×
q .
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So,

(5)
∏
p∈T

H(K̂p) ∼=
r∏

i=1

∏
q∈TK(xi)

K̂(xi)
×
q .

Identify H(OK,U ) with its image in
∏

p∈T H(K̂p) under the injection given by

g(X) + f(X)OK,U [X] 7→
(
g(X) + f(X)K̂p[X]

)
p∈T (note that f ∈ OK,U [X] is monic).

Then, by (4), (5), and Lemma 2.3,

(6)
( ∏

p∈T
H(K̂p)

)/
H(OK,U ) ∼=

r∏
i=1

(( ∏
q∈TK(xi)

K̂(xi)
×
q

)/
O×

K(xi),V0 r T

)

is compact.

Part C: An open subset of the compact group. Let D be the set of all positive integers

d with d > deg(f) and char(K)|d if char(K) > 0. Thus, if char(K) > 0, then d 6≡ deg(f)

modulo char(K) for each d ∈ D. For each d ∈ D and each p ∈ T , let Ωp,d be the set of

all polynomials h in K̂p[X] of the form h(X) =
∏d

i=1(X − ai,p) with

(7a) a1,p, . . . , ad,p are in K̂p, mutually distinct, and none of which is a root of f . In

particular, h is relatively prime to f ;

(7b) |ai,p|p < ε, i = 1, . . . , d; and

(7c) h
f is a Morse function (Definition 4.1).

Also, let

Wp,d = {h(X) + f(X)K̂p[X] | h ∈ Ωp,d}.

By (7) and Proposition 4.3, Wp,d is a nonempty open subset of H(K̂p). Hence,

Wd =
∏
p∈T

Wp,d

is a nonempty open subset of
∏

p∈T H(K̂p). So,

(8) the image of Wd in
( ∏

p∈T
H(K̂p)

)/
H(OK,U ) is nonempty and open.

Claim: Wp,dWp,d′ ⊆ Wp,d+d′ for all d, d′ ∈ D. Indeed, let h ∈ Ωp,d and h′ ∈ Ωp,d′ .

Since they are monic, we can write them uniquely as h = kf + l and h′ = k′f + l′, where
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k and k′ are monic of degrees d−deg(f), d′−deg(f), respectively, and l, l′ have degrees

< deg(f) and are invertible modulo f . If h and h′ are not coprime, choose k1 ∈ K̂p[X]

monic of degree d− deg(f) such that h1 = k1f + l is in Ωp,d and is relatively prime to

h′. Then(
h(X) + f(X)K̂p[X]

)(
h′(X) + f(X)K̂p[X]

)
= l(X)l′(X) + f(X)K̂p[X]

= h1(X)h′(X) + f(X)K̂p[X]

is in Wp,d+d′ .

It follows that in the group
∏

p∈T H(K̂p) we have

(9) WdWd′ ⊆ Wd+d′ .

Choose some d0 ∈ D. By (6), (8), and Lemma 2.4, there exists a positive integer

n with

(10) Wn
d0
∩H(OK,U ) 6= ∅.

Let d = nd0. By (9), Wn
d0
⊆ Wd. Hence, by (10),

(11) Wd ∩H(OK,U ) 6= ∅.

Part D: Construction of h0 and γ. By (11), there is l0 ∈ OK,U [X] of degree < deg(f)

which is invertible modulo f in OK,U [X] and, for each p ∈ T , there exists hp ∈ Ωp,d

such that hp ≡ l0 mod f in K̂p[X]. Write each hp as hp = kpf + l0 with kp ∈ K̂p[X]

monic of degree e = d− deg(f). For each p ∈ T , let Up be the set of all b = (b1, . . . , be)

in K̂e
p such that the polynomial

(
Xe +

∑e−1
i=0 biX

i
)
f(X) + l0(X) belongs to Ωp,d. Since

kpf + l0 ∈ Ωp,d, Up is nonempty.

Now use the strong approximation theorem to find c = (c1, . . . , ce) ∈ (OK,U )e ∩⋂
p∈T Up. Let k0(X) = Xe +

∑e−1
i=0 ciX

i ∈ OK,U [X] and let h0 = k0f + l0. Then

h0 ∈ Ωp,d for each p ∈ T . That is, h0
f is a Morse function, gcd(f, h0) = 1, each root x

of h0 is simple and belongs to Kp, and |x|p < ε for each p ∈ T . Finally, use Lemma 1.9

to find γ > 0 such that if h ∈ N [X] is monic of degree d = deg(h0) and |h− h0|T < γ,

then each root y of h is simple and belongs to N , and |y|T < ε.
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Part E: Conclusion of the proof. Let h ∈ ON,U [X] be a monic polynomial of degree

d = deg(h0), relatively prime to f , with |h− h0|T < γ. Let x be a root of h. Then x is

simple and belongs to N , and |x|T < ε. Thus, (3b) and (3c) are satisfied.

Since h ∈ ON,U [X] is monic, x ∈ ON,U . As gcd(f, h) = 1, there are g, r ∈ ON,U [X]

such that gh + rf = 1. Since h(x) = 0, r(x)f(x) = 1. But r(x), f(x) ∈ ON,U , so

f(x) ∈ (ON,U )×. Thus f(x) ∈ (OK̃,U )× and (3a) holds.

Finally h0 ∈ OK,U [X] is N -admissible, gcd(f, h0) = 1, deg(f) < d = deg(h0),

and h0
f is a Morse function. Choose, by the strong approximation theorem, 0 6= m ∈

OK,U such that |m|T < γ. Apply Example 1.13 (b) to find (a, x1) ∈ OM,V ×M with

mf(x1)a + h0(x1) = 0. Let h(X) = maf(X) + h0(X). Then h ∈ OM,U [X] is a monic

polynomial of degree d, relatively prime to f , and |h − h0|T < γ. So, its root x1 ∈ M

satisfies (3).

We denote the maximal purely inseparable extension of a field E by Eins.

Remark 3.3: Lemma 3.2 generalizes [JR2, Lemma 3.2]. In the latter lemma f ∈ K[X]

is separable. That is f decomposes into distinct linear factors over K̃. For nonseparable

f ∈ K[X], [JR2, Thm. 4.3, Case A1] replaces f by its separable kernel f ′ ∈ Kins[X]

and K by a finite purely inseparable extension K ′. This construction works because

M is assumed in [JR2] to be perfect. Here, M being separable over K need not be

perfect. So, we decompose f into irreducible factors over K̂p for each p ∈ T . As K̂p/K

is separable, these factors are distinct. This makes the arguments in Part B of the proof

of Lemma 3.2 work.

Cantor and Roquette assume throughout their work [CaR] that K is a number

field. They note in [CaR, Rem. 1.7] that their proofs work also when K is a function

field of one variable over a finite field. However, at the beginning of the proof of [CaR,

Lemma 5.2] they write “we may assume that f(X) is free from multiple roots”, where

f ∈ K[X] is a non-constant polynomial. To make this assumption they replace f by

its separable kernel. As in the preceding paragraph, this forces a purely inseparable

extension of K. So, when char(K) > 0, the proof of [CaR] holds only for Ktot,S,ins and

not for Ktot,S .
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[GPR] proves Rumely’s local-global principle for Ktot,S when K is an arbitrary

global field. However, the proof of [GPR, Thm. 4.1] applies [CaR, Lemma 5.2] to

a polynomial a0(X) instead of f(X) which need not be separable. So the proof of

Rumely’s local-global principle that [GPR] gives seems to hold only for Ktot,S,ins but

not for Ktot,S .

Lemma 3.4: Consider a monic polynomial f ∈ OK,U [X], an element a ∈ M , and a

positive real number γ. Then there exists x ∈ OM,U with |x − a|T < γ and f(x) ∈

(OM,U )×.

Proof: Let L be the Galois closure of K(a)/K. Use the strong approximation theorem

to find b ∈ OK(a),U such that γ1 = |b−a|T < γ and f(b) 6= 0. For each root c of f(X) let

fc be the conductor of OK,U [c− b] in its integral closure OK(c−b),U [ZaS, p. 269]. It is a

nonzero ideal of OK,U [c−b], so fc∩OK,U is a nonzero ideal of OK,U . By (1), UL is infinite.

So, we can choose p0 ∈ UL such that {z ∈ OK,U | |z|p0 < 1} 6⊇ fc ∩OK,U for each root c

of f(X) and |f(bσ)|p0 = 1 for each σ ∈ Gal(L/K). Let R = {p0|K}, T ′ = T ∪ R, and

U ′ = U rR. Then |f(b)|p = 1 for each p ∈ RL. Moreover, OK,U ′ [c − b] = OK(c−b),U ′

for each root c of f(X) [ZaS, Ch. V §5, Lemma, p. 269].

Let g(Y ) =
∏

σ∈Gal(L/K) f(Y +bσ) ∈ OK,U [Y ]. Write g(Y ) = g1(Y )α1 · · · gr(Y )αr ,

with g1, . . . , gr ∈ OK,U [Y ] distinct monic irreducible polynomials over K. Put g̃ =

g1 · · · gr. Suppose σ ∈ Gal(L/K) and c is a root of f(X). Then OK,U ′ [cσ−1 − b] =

OK(cσ−1−b),U ′ . Hence, OK,U ′ [c − bσ] = OK(c−bσ),U ′ . So each root d of g(Y ) (hence of

g̃(Y )) satisfies OK,U ′ [d] = OK(d),U ′ .

Since T ′ 6= ∅, Lemma 3.2 with T ′,U ′, g̃, δ = min{γ − γ1, 1} replacing T ,U , f , ε

gives y ∈ OM,U ′ with g̃(y) ∈ (OM,U ′)× and |y|T ′ < δ. Let x = y + b. Then

|x− a|T ≤ |x− b|T + |b− a|T = |y|T + |b− a|T < (γ − γ1) + γ1 = γ,

By the choice of δ, |y|R < 1. So, y ∈ OM,U and |f(x)|p = |f(b)|p = 1 for each

p ∈ RM . As b ∈ OM,U , we have x = y + b ∈ OM,U .

¿From g1(y), . . . , gr(y) ∈ OM,U ′ and g1(y) · · · gr(y) = g̃(y) ∈ (OM,U ′)× follows

that gi(y) ∈ (OM,U ′)×, i = 1, . . . , r. Hence g(y) = g1(y)α1 · · · gr(y)αr ∈ (OM,U ′)×. Now
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each f(y + bσ) is in OM,U ′ and g(y) =
∏

σ∈Gal(L/K)

f(y + bσ). So, f(y + bσ) ∈ (OM,U ′)×

for each σ ∈ Gal(L/K). In particular, f(x) = f(y + b) ∈ (OM,U ′)×. Hence, since

|f(x)|p = 1 for each p ∈ RM , f(x) ∈ (OM,U )×, as desired.

Corollary 3.5: Let R be a finite subset of U , a ∈ K̃, and γ > 0. Then there is x ∈ K̃

with |x− a|p < 1 for each p ∈ R̃ and |x|q = 1 for each q ∈ Ũ r R̃.

Proof: When char(K) = 0 apply Lemma 3.4 with ∅,R,U rR, X, K̃ replacing S, T ,U ,

f(X),M to achieve x.

Suppose char(K) > 0. Take a power q of char(K) with aq ∈ Ks. Lemma 3.4 with

∅,R,U rR, Xq,Ks replacing S, T ,U , f(X),M gives y ∈ Ks with |y− aq|p < 1 for each

p ∈ RKs and |y|q = 1 for each q ∈ UKs
rRKs . Then x = y1/q satisfies |x− a|p < 1 for

each p ∈ R̃ and |x|q = 1 for each q ∈ Ũ r R̃.

In Case A1 of the proof of Theorem 3.7, it becomes necessary to enlarge T (thus

shrinking U). Lemma 3.6 takes care of this enlargement.

Lemma 3.6: Let f be a polynomial in K[X] with |f |p = 1 for each p ∈ U . Consider a

finite subset R of U , an element a ∈ M , and γ > 0. Let T ′ = T ∪R and U ′ = U rR =

V0 r T ′. Suppose

(12) for each a′ ∈ M and each γ′ > 0 there is x′ ∈ OM,U ′ with |x′ − a′|T ′ < γ′ and

f(x′) ∈ (OM,U ′)×.

Then

(13) there exists x ∈ OM,U with |x− a|T < γ and f(x) ∈ (OM,U )×.

Proof:

Claim A: There exists a finite subextension L of M/K which contains a such that for

each q ∈ RN there exists bq ∈ L with |bq|q ≤ 1 and |f(bq)|q = 1.

Choose a finite set R0 that represents RN over K. Let p ∈ R0 and let p0 = p|K .

The Henselian closure Mp of M with respect to p|M is Ks (Proposition 1.15). Hence

the corresponding residue field M̄p is infinite. By assumption, the reduced polynomial

f̄ ∈ K̄p0 [X] is nonzero. Hence, there is xp ∈ M with |xp|p ≤ 1, f̄(x̄p) 6= 0, and

|f(xp)|p = 1. Since N/K is Galois, the finite subset Cp = {xσ
p | σ ∈ Gal(N/K)} is
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contained in N . If M is weakly PSC over OM,V , then Lemma 1.14 gives a finite subset

Bp of M such that for each c ∈ Cp and for each q ∈ RN which lies over p0 there exists

b ∈ Bp with |b− c|q < 1. If M/K is Galois, set Bp = Cp.

Choose a finite extension L of K in M which contains a and Bp for all p ∈ R0.

For each q ∈ RN there exists p ∈ R0 and σ ∈ Gal(N/K) with q = pσ. Choose bq ∈ Bp

with |bq − xσ
p |q < 1. Then |xσ

p |q = |xp|p ≤ 1 and therefore |bq|q ≤ 1. Hence, since

the coefficients of f are q-integral, |f(bq)− f(xσ
p )|q < 1. Also, |f(xσ

p )|q = |fσ(xσ
p )|pσ =

|f(xp)|p = 1. Hence |f(bq)|q = 1, as claimed.

Claim B: There exists y ∈ OL,R with |y − a|T < γ
2 and |f(y)|R = 1. Indeed, choose

a finite set R1 which represents RN over L and choose a finite set T1 which represents

TN over L. For each p ∈ R1 Claim A gives bp ∈ L such that |bp|p ≤ 1 and |f(bp)|p = 1.

The weak approximation theorem gives y ∈ L such that

|y − a|p <
γ

2
for each p ∈ T1 and

|y − bp|p < 1 for each p ∈ R1.

Now let q ∈ TN . Then there exists σ ∈ Gal(N/L) and p ∈ T1 such that q = pσ. Since

a, y ∈ L, we have |y − a|q = |y − a|p < γ
2 . If q ∈ RN , there exists σ ∈ Gal(N/L) and

p ∈ R1 such that q = pσ. As in Claim A, |y|q ≤ 1 and |f(y)|q = |f(y)|p = |f(bp)|p = 1,

as claimed.

Conclusion of the proof: By assumption, there exists x ∈ M with |x−y|T ′ < min{γ
2 , 1},

|x|q ≤ 1, and |f(x)|q = 1 for each q ∈ U ′N . In particular, if q ∈ TN , then, by Claim B,

|x − a|q ≤ |x − y|q + |y − a|q < γ. If q ∈ RN , then |x − y|q < 1 and q is finite. Since

y and the coefficients of f are q-integral, |f(x) − f(y)|q < 1. Hence |x|q = |y|q ≤ 1

and |f(x)|q = |f(y)|q = 1. Conclude that |x|q ≤ 1 and |f(x)|q = 1 for each q ∈ UN , as

desired.

A data for an (S,V)-Skolem density problem for an algebraic extension M ′ of

K consists of a quadruple (T ′, f ,a, γ) in which

(14a) T ′ is a finite subset of V containing S;

(14b) f = (f1, . . . , fm) and fi ∈ K̃[X1, . . . , Xn] is p-primitive, i.e. |fi|p = 1, for each

p ∈ Ṽ0 r T̃ ′, i = 1, . . . ,m;
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(14c) a point a = (a1, . . . , an) ∈ M ′n; and

(14d) a positive real number γ.

A solution is a point x ∈ (OM ′,V0 r T ′)n with |x−a|T ′ < γ and f(x) ∈ O×
K̃,V0 r T ′ .

M ′ is called an S-Skolem field with respect to V if every (S,V)-Skolem density

problem for M ′ has a solution.

Theorem 3.7: M is an S-Skolem field with respect to V.

Proof: Let f = (f1, . . . , fm) with fi ∈ K̃[X1, . . . , Xn] and |fi|p = 1 for each p ∈ Ũ ,

i = 1, . . . ,m, a = (a1, . . . , an) ∈ Mn, and γ > 0. We prove that the S-Skolem density

problem (with respect to V) with data (T , f ,a, γ) has a solution. We have to find

x ∈ (OM,U )n with |x− a|T < γ and f1(x), . . . , fm(x) ∈ (OK̃,U )×.

We prove this by induction on n. We break the proof into three parts.

Part A: n = 1 and f1, . . . , fm ∈ K[X1]. Put a = a1 and X = X1. There are two

cases to consider.

Case A1: m=1. Put f = f1. Let c be the leading coefficient of f and let R = {p ∈

U | |c|p < 1}. Then R is a finite subset of U . Let T ′ = T ∪ R and U ′ = U rR. By

Lemma 3.4, for each a′ ∈ M and each γ′ > 0 there is x′ ∈ OM,U ′ with |x′ − a′|T ′ < γ′

and f(x′) ∈ (OM,U ′)×. Lemma 3.6 then gives x ∈ M that solves the problem with data

(T , f, a, γ).

Case A2: m is arbitrary. The polynomial f = f1 · · · fm satisfies |f |p = 1 for each

p ∈ U . By Case A1, there exists x ∈ OM,U such that |x− a|T < γ and f(x) ∈ (OK̃,U )×.

As f1(x), . . . , fm(x) are in OK̃,U and their product is in (OK̃,U )×, each of them is in

(OK̃,U )×. Hence x ∈ M solves the problem with data (T , f , a, γ).

Part B: The general case for n = 1. Let K ′ be a finite extension of K which contains

the coefficients of f1, . . . , fm. The norm gi(X) = NK′/Kfi(X) is a product gi(X) =∏
fij(X) of polynomials fij which are conjugate to fi over K. In particular |fij |p = 1

and therefore |gi|p = 1 for each p ∈ Ũ . Apply Part A to the problem with data

(T ,g, a, γ), where g = (g1, . . . , gm), to get x ∈ M that solves it. That is x ∈ OM,U ,

|x − a|T < γ, and g1(x), . . . , gm(x) ∈ (OK̃,U )×. Then for each i, the elements fij(x)
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are in OK̃,U and their product is gi(x) ∈ (OK̃,U )×. Thus, each fij(x) is in (OK̃,U )×.

In particular each fi(x) is in (OK̃,U )×. Conclude that x solves the problem with data

(T , f , a, γ).

Part C: n > 1. Suppose now the theorem holds for n−1. Let L be a finite extension

of K which contains all coefficients of f1, . . . , fm. Consider each fi as a polynomial in

X1, . . . , Xn−1 with coefficients in L[Xn] and let {hij(Xn) ∈ L[Xn] | j ∈ Ji} be the set

of all nonzero coefficients of fi(X). Then |hij |UL
≤ 1 and Rij = {p ∈ UL | |hij |p < 1}

is a finite subset of UL for each i and each j ∈ Ji. For each i and j and for each

p ∈ Rij , let bi,j,p ∈ L be a coefficient of hij with |bi,j,p|p = |hij |p. Then use the weak

approximation theorem to find bij ∈ L such that |bij − bi,j,p|p < 1 for each p ∈ Rij .

Find, by Corollary 3.5, aij ∈ K̃ with |aij − bij |p < 1 for each p ∈ R̃ij and |aij |q = 1 for

each q ∈ Ũ r R̃ij . Let h′ij = 1
aij

hij . Then |h′ij |p = 1 for each p ∈ Ũ . By Part B, applied

to the polynomials h′ij , i = 1, . . . ,m, j ∈ Ji, there is xn ∈ OM,U with |xn − an|T < γ

and h′ij(xn) ∈ (OK̃,U )×, i = 1, . . . ,m, j ∈ Ji.

Consider i between 1 and m and p ∈ Ũ . Since |fi|p = 1, there is j ∈ Ji with

|hij |p = 1. Then |aij |p = 1 and therefore |hij(xn)|p = |aijh
′
ij(xn)|p = 1. Thus

gi(X1, . . . , Xn−1) = fi(X1, . . . , Xn−1, xn) satisfies |gi|p = 1 for each p ∈ Ũ . Apply induc-

tion to the polynomials g1, . . . , gm, to get x1, . . . , xn−1 ∈ OM,U such that |xl−al|T < γ,

l = 1, . . . , n− 1, and gi(x1, . . . , xn−1) ∈ (OK̃,U )×.

The point x = (x1, . . . , xn) ∈ Mn solves the problem with data (T , f ,a, γ).

Corollary 3.8: Let e be a nonnegative integer. Then, for almost all σ ∈ Gal(K)e,

both Ks(σ) ∩Ktot,S and Ks[σ] ∩Ktot,S are S-Skolem fields with respect to V.

Proof: Combine Lemma 1.12 with Theorem 3.7.

Remark 3.9: As in Corollary 3.5 we can prove that if M ′ is an algebraic extension of

K which is an S-Skolem field with respect to V, then so is M ′
ins. In particular, Theorem

3.7 and Corollary 3.8 imply the results of [JR2].
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4. Appendix: Morse functions

by Wulf-Dieter Geyer, Erlangen University

Let K be a field of characteristic p ≥ 0 which we assume for simplicity to be algebraically

closed.

Definition 4.1: Let ϕ = f
g be a rational function in K(t), represented as a quotient of

two relatively prime polynomials f and g in K[t], with ϕ(∞) = ∞, i.e. deg f > deg g.

Then ϕ is called a Morse function, if it satisfies the following conditions (the first two

are for the elements of K which are not roots of g):

(a) The critical points of ϕ, i.e. the zeros of ϕ′, are non degenerate.

(b) The critical values of ϕ are distinct, i.e.

ϕ′(τ) = ϕ′(η) = 0 and ϕ(τ) = ϕ(η) =⇒ τ = η .

(c) If p > 0, then ϕ(t) has no pole of order divisible by p, i.e. g has no zero of order

divisible by p and deg f 6≡ deg g mod p.

To make the definition precise we have to explain what non degenerate means

in (a). If p 6= 2, it means that ϕ′ has simple roots, i.e.

(1) ϕ′(τ) = 0 =⇒ ϕ′′(τ) 6= 0 .

If p = 2, this does not work since always ϕ′′ = 0. We have to switch to the mod-

ified Hasse-Schmidt derivatives, the second one is given by the expansion (let u, t be

independent variables)

ϕ(t + u) ≡ ϕ(t) + ϕ′(t)u + ϕ[2](t)u2 mod u3 .

Comparing to Taylor’s formula we have

ϕ[2](t) =
ϕ′′(t)

2
if p 6= 2;

but, if charK = 2, then ϕ[2] is the welcome substitute for the vanishing ϕ′′. Moreover

we have in all characteristics, for a ∈ K,

ϕ(a) = ϕ′(a) = 0 6= ϕ[2](a) ⇐⇒ a is a root of multiplicity 2 of ϕ .
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So, instead of (1), the non degeneracy of the critical points in condition (a) for all

characteristics is the condition

(a) ϕ′(τ) = 0 =⇒ ϕ[2](τ) 6= 0 .

Definition 1 is made to fit the following

Proposition 4.2: Let ϕ = f
g ∈ K(t) be a Morse function of degree n = deg f > deg g.

Then the Galois group of the covering ϕ : P1 → P1 of degree n is the full symmetric

group, i.e.

Gal(f(t)− xg(t),K(x)) ∼= Sn .

Proof: As f(t) − xg(t) is an irreducible polynomial of degree n in t, its Galois group

G is a transitive subgroup of Sn. We look at the ramification of ϕ over the points

of K = A1(K): Condition (a) says that the orders of ramification are all ≤ 2, so an

equation ϕ(t) = α for α ∈ K has at most double roots in K. Condition (b) says that

no two critical points are in the same fibre, so an equation ϕ(t) = α for α ∈ K has at

least n − 1 roots in K. Therefore the map ϕ has the simplest ramification behaviour

over the affine line, the ramification group over a finite point x = α just permutes two

roots of f(t)− xg(t), i.e. is generated by a transposition. At ∞ condition (c) says that

the ramification at ∞ is tame. Now the affine line A1 has a trivial tame fundamental

group, i.e. there is no unramified covering of A1 which is only tamely ramified at ∞.

Therefore the Galois group G is generated by the ramification groups of the finite points,

i.e. by transpositions. The proposition follows from the standard fact that a transitive

subgroup of a finite symmetric group which is generated by transpositions cannot be

proper.

Remark: We proved proposition 4.2 for algebraically closed fields K. But then it holds

for all fields K since Sn is the maximal Galois group of a polynomial of degree n.

We are now going to construct Morse functions ϕ = f
g where the denominator g

is given as a separable polynomial.
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Proposition 4.3: Let K be an algebraically closed field, let g ∈ K[X] be a separable

polynomial of degree d ≥ 0, let n > d be an integer such that n 6≡ d mod p if p > 0.

Then the polynomials f = Xn + an−1X
n−1 + · · ·+ a1X + a0 ∈ K[X] of degree n such

that f
g is a Morse function form a Zariski-open dense subset of the affine n-space with

coordinates a0, . . . , an−1.

Proof: Condition (c) of the definition of a Morse function is fulfilled since g is separable

and n 6≡ d mod p. Condition (a) means that the numerator of ϕ′, i.e.

D(t) = f(t)g′(t)− f ′(t)g(t)

and the numerator of ϕ[2] which is gD2 − g′D with

D2(t) = f(t)g[2](t)− f [2](t)g(t)

have no common root. ¿From gcd(g,D) = 1 follows that we have to achieve gcd(D,D2) =

1. The resultant of the polynomials D and D2 is a polynomial R(a0, . . . , an−1) in the

coefficients of f , and (a) just says R 6= 0. Condition (b) means that the product

Π =
∏
i 6=j

(
f(τi)g(τj)− f(τj)g(τi)

)
where τi are the roots of D(t) does not vanish. By the theorem on symmetric functions,

Π = Π(a1, . . . , an) is again a polynomial in the coefficients of f . So the space of

polynomials f giving Morse functions ϕ is given by the inequalities

(2) R(a1, . . . , an) 6= 0, Π(a1, . . . , an) 6= 0.

Hence, it is a Zariski-open set in the affine n-space.

To show that it is dense, it suffices to show that it is not empty. We first assume

d > 0 and handle the case d = 0 at the end. We will show that the following polynomial

will satisfy the inequalities (2):

(3) f(t) = tn + an−1t
n−1 + · · ·+ a2t

2 + a1t + u = f◦(t) + u
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with u transcendental over K and

gcd(f ′◦, g
′) = 1,(3a)

f
[2]
◦ 6= 0.(3b)

Condition (3b) can be satisfied e.g. by the inequality a2 6= 0. Condition (3a) is for any

choice of an−1, . . . , a2 satisfied for almost all a1 ∈ K.

We prove that f/g is a Morse function in the following four steps.

Claim A: The polynomial equation

(4) D(τ) = f(τ)g′(τ)− f ′(τ)g(τ) = (f◦(τ) + u)g′(τ)− f ′◦(τ)g(τ) = 0

for the critical points τ of ϕ is irreducible over K(u). The degree of D(t) is n + d− 1.

Proof of Claim A: D(t) is irreducible in the polynomial ring K[u, t] since it is linear in u

and gcd(f ′◦g, g′) = 1. The degree of D(t) is n+d−1 since D(t) = f(t)g′(t)−f ′(t)g(t) =

(d−n)bdt
n+d−1 + . . . , where bd is the leading coefficient of g, and d−n does not vanish

by assumption.

Claim B: The critical points τ of ϕ are transcendental over K. Moreover u is a rational

function of degree n + d− 1 of any such τ .

Proof of Claim B: Otherwise the equation (4) has a vanishing coefficient at u, so

g′(τ) = 0, so f ′◦(τ)g(τ) = 0, from which by gcd(f ′◦, g
′) = 1 follows that g(τ) = 0. This

contradicts the separability of g. The irreducible equation (4) also gives the presentation

(5) u = f ′◦(τ) · g(τ)
g′(τ)

− f◦(τ) .

Claim C: The polynomials D(t) and D2(t) have no common root.

Proof of Claim C: If τ were a common root of D(t) and D2(t), then besides (4)

(6) (f◦(τ) + u)g[2](τ) = f
[2]
◦ (τ)g(τ)

would hold. This is an equation for τ over K(u) of lower degree than D(τ) = 0. By

Claim A, it has to be trivial. This gives g[2](τ) = 0 and therefore f
[2]
◦ (τ) · g(τ) = 0.

Since we assumed f
[2]
◦ 6= 0, we have from Claim B that f

[2]
◦ (τ) 6= 0 and g(τ) 6= 0. This

shows that (6) is impossible.
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Claim D: The critical values of ϕ are distinct.

Proof of Claim D: Assume we have two critical points τ and η , i.e. D(τ) = D(η) = 0,

with same ϕ-values, so

(7)
f(τ)
g(τ)

=
f(η)
g(η)

=: v.

Then there is by Claim A an isomorphism σ, trivial on K(u), with

σ(τ) = η .

Now, by assumption, σ also fixes the quotient v in (7). So σ is the identity on the field

L = K(u, v) ⊆ K(τ) .

To show τ = η it suffices to show

L = K(τ) .

To prove this, let r = [K(τ) : L]. This degree r divides the degrees in (5) and (7),

namely

[K(τ) : K(u)] = n + d− 1 and [K(τ) : K(v)] = n .

Now denote the pole of τ in K(τ)/K by p. Consider its ramification over certain

subfields. In equations (5) and (7), the degree of the numerator is larger than the

degree of the denominator. Therefore up = vp = ∞, so p is a common pole of u and

v. ¿From (5) follows that the other poles of u are the zeros of g′; from (7) follows that

the other poles of v are the zeros of g. ¿From gcd(g, g′) = 1 follows that p is the only

common pole of u and v. Since K is algebraically closed, p is purely ramified over L.

So the degree r of the extension K(τ)/L is the ramification index of p over L. The

ramification index of p in K(τ)/K(v) is n−d by (7) and is divisible by the ramification

index r in K(τ)/L. From

r divides gcd(n + d− 1, n, n− d) = 1

follows L = K(τ) and the proof of the proposition in case d > 0 is complete.

31



It remains to consider the case g = 1, i.e. the construction of Morse polynomials

ϕ = f . If n = 1, all polynomials f satisfy (2), so assume n > 1. We will show that the

following polynomial will satisfy the inequalities (2):

(3)′ f(t) = tn + an−1t
n−1 + · · ·+ a2t

2 + u1t + a0 = f◦(t) + u1t

with u1 transcendental over K and f
[2]
◦ 6= 0 which may be satisfied by a2 6= 0. We prove

this again in four steps as in the case d > 0.

Claim A’: The polynomial equation

(4)′ f ′(τ) = f ′◦(τ) + u1 = 0

for the critical points τ of f is irreducible of degree n− 1 over K(u1).

Claim B’: From (4)′ follows that the critical points τ are transcendental over K, and

u1 is a polynomial of degree n− 1 in K[τ ].

Claim C’: The polynomials f ′ = f ′◦ + u1 and f [2] = f
[2]
◦ have no common root, since

we assumed f
[2]
◦ 6= 0 and its roots are algebraic over K.

Claim D’: The critical values of f are distinct.

Proof of Claim D’: Let τ and η be two roots of f ′ with

(7)′ f(τ) = f(η) =: v1 .

Then there is by Claim A’ an isomorphism σ, trivial on K(u1) with

σ(τ) = η .

Now σ also fixes v1 in (7)′. So σ is the identity on the field

L = K(u1, v1) ⊆ K(τ) .

From

[K(τ) : K(u1)] = n− 1 and [K(τ) : K(v1)] = n

follows L = K(τ), so σ fixes τ , so η = τ . This finishes the discussion in case d = 0.

Now the proof of the proposition is complete.
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