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Introduction

A field K is PAC if every nonvoid absolutely irreducible variety V over K has a K-

rational point. The concept of a PAC field originated in Ax’ work [Ax] on the elementary

theory of finite fields. Although finite fields are not PAC, nonprincipal ultra products of

finite fields (Ax, [FrJ, Cor. 10.6]) and infinite algebraic extensions of finite fields (Ershov,

[FrJ, Cor. 10.7]) are PAC. Each separably closed field is PAC. If K is a countable

Hilbertian field and e is a positive integer, then for almost all σ ∈ G(K)e the field

Ks(σ) is PAC [FrJ, Thm. 16.18]. Here G(K) is the absolute Galois group of K equipped

with the Haar measure, Ks is the separable closure of K, and Ks(σ) is the fixed field

of σ1, . . . , σe in Ks. An explicit example of an algebraic extension of Q which is PAC

is Qtr(
√
−1), where Qtr is the field of all totally real algebraic numbers (Pop). Finally,

Fried starts from an arbitrary field K0 and adjoins algebraically independent generic

points of all absolutely irreducible varieties over K0. Then he iterates this construction

inductively. Finally he takes the union of the sequence of fields obtained in this way to

obtain a regular extension K of K0 which is PAC [FrJ, Prop. 12.11].

Although one expects most fields to be non-PAC, it is not easy to construct one.

Clearly, if K is formally real, then it is non-PAC [FrJ, Thm. 10.2]. If K has a valuation

v whose residue field is finite, then K is non-PAC (Ax). More generally, if the Henselian

closure Kv of K with respect to v is not separably closed, then K is non-PAC (Frey-

Prestel [FrJ, Thm. 10.14]). Consequently, [FrJ, Prob. 10.16(b)] raises the following

problem:

Problem A: Is there an infinite field K which is neither formally real nor PAC all of

whose Henselian closures are separably closed?

A recent work of Efrat gives a clue to the solution of Problem A. To this end

consider a field K and let F be an extension of K of transcendence degree 1. Denote

the set of all equivalence classes of valuations of F which are trivial on K by P(F/K).

For each p ∈ P(F/K) let Fp be the Henselian closure of F at v. We say that F satisfies
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the Hasse principle for Brauer groups if the restriction maps of Brauer groups

res: Br(F ) →
∏

v∈V (F/K)

Br(Fv)

is injective.

Proposition B: Let K be a perfect field.

(a) If K is PAC, then each extension F of K of transcendence degree 1 satisfies the

Hasse principle for Brauer groups [Efr, Thm. 3.4].

(b) Suppose that K is not necessarily PAC but each extension F of K of transcendence

degree 1 satisfies the Hasse principle for Brauer groups. Then every nontrivial

valuation of K has an algebraically closed residue field and a divisible value group

[Efr, Thm. 4.1].

Following these results, Efrat [Efr, Question 4.2] asks:

Problem C: Let K be a non-real infinite perfect field such that the Hasse principle

holds for all extensions F of K of relative transcendence degree 1. Is K necessarily

PAC?

The goal of this work is to construct a field which simultaneously solves both

Problems.

Theorem D: Let K0 be either a finite field or a global field. Then K0 has an infinite

regular extension K with the following properties:

(a) Every extension F of K of transcendence degree 1 satisfies the Hasse principle for

Brauer groups.

(b) K is not formally real.

(c) Each Henselization of K is separably closed.

(d) K is not PAC.

Our construction follows that of Fried which we mentioned above. However instead

of adjoining generic points of all varieties we adjoin only generic points of varieties which

are birationally equivalent over the algebraic closure to either a rational variety or to

an abelian variety. If the basic field K0 is either a finite field or a number field, then
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the constructed field K is not PAC but each variety of the above types has a K-rational

point. So, K is weakly PAC. Using the results of [Efr], we prove that K satisfies

conditions (a)-(d) of Theorem D.

1. Weakly PAC fields

Let K be a field. Denote the algebraic (resp., separable, purely inseparable) closure of

K by K̃ (resp., Ks, Kins) and let G(K) = G(Ks/K) be the absolute Galois group of K.

When we say that V is a variety (or a curve) over K we mean that V is absolutely

irreducible and nonempty. This is the case if V is irreducible and if the function field

of V is a regular extension of K [FrJ, Lemma 9.5]. If L is an extension of K, we

abbreviate V ×K L by VL and put Ṽ = VK̃ . Similarly, if α: V → W is a rational map,

then α̃: Ṽ → W̃ is the rational map which is obtained from α by extension of scalars

from K to K̃.

Recall that K is PAC if each variety V over K has a K-rational point. In this

work we impose the latter condition only on varieties of restrictive type. We obtain

”weakly PAC fields” which are not always PAC fields.

Let V be a variety over K. We say that V is a variety of type i, i = 0, 1, if the

following condition holds:

(Type 0) Ṽ is birationally equivalent to An for some positive integer n.

(Type 1) Ṽ is birationally equivalent to an abelian variety of positive dimension.

Here are some simple conservation rules for the types that follow immediately

from the definition:

(1a) Suppose that V and V ′ are birationally equivalent varieties over K. If V is of type

i, then so is V ′.

(1b) If V1, . . . , Vm are varieties over K of type i, then so is V1 × · · · × Vm.

(1c) If V is a variety over K of type i, then so is VL for every field extension L of K.

(1d) Suppose that V is a variety over K, L is an algebraic extension of K, and W is a

variety of type i over L which is birationally equivalent to VL. Then V is of type

i.

3



We say that K is weakly PAC if each affine variety V over K of type 0 or

1 has a K-rational point. It follows from (1a) that V (K) is Zariski-dense in V for

each projective variety of type 0 or 1 over K. In particular, K is an infinite field. By

definition, each PAC field is weakly PAC.

Lemma 1.1: Let K be a field and let L be an algebraic extension of K.

(a) If each variety over K of type i has a K-rational point, then each variety over L of

type i has a K-rational point, i = 0, 1.

(b) If K is weakly PAC, then so is L.

Proof: Condition (b) follows from condition (a). In order to prove (a), we may assume

that L is a finite extension of K. Moreover, we may assume that either L is a separable

extension of K or L is a purely inseparable extension of K. Consider therefore a variety

V over L of type i.

If L/K is separable, then Weil’s descent gives an affine variety W over K such

that W̃ ∼= Ṽ d and a morphism α: WL → V [FrJ, Prop. 9.34].

If L/K is purely inseparable, then a theorem of Roquette gives a variety V over

K and a birational morphism α: WL → V [FrJ, Prop. 9.35].

Rules (1a)-(1d) imply that W is of type i. By assumption, W has a K-rational

point. Hence, V has an L-rational point.

J. Ax observes in [Ax, p. 269, Lemma 2] that if K is a PAC field, then its Brauer

group Br(K) is trivial. The proof uses the fact that the reduced norm of a simple

central K-algebra is an absolutely irreducible homogeneous polynomial. As K is PAC,

this polynomial has a nontrivial K-rational zero. This implies that A splits over K.

For weakly PAC field we have to use an alternative proof. It reproves Ax’ result.

Proposition 1.2: Let K be a field. Suppose that each variety over K of type 0 has a

K-rational point. Then Br(K) = 0 and G(K) is projective. In particular, this holds if

K is weakly PAC.

Proof: Each simple central K-algebra A of dimension n2 corresponds to a Severi-

Brauer variety V over K of dimension n− 1 [Ser, P. 168]. By definition, Ṽ ∼= Pn−1. In
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particular, V is a variety of type 0. By assumption, V has a K-rational point. Hence,

A splits over K [Jac, p. 113, Thm. 3.5.6] Conclude that Br(K) = 0.

By Lemma 1.1, each algebraic extension L of K is weakly PAC. By the preceding

paragraph, Br(L) = 0. It follows that cd(G(K)) ≤ 1 [Rib, p. 262, Cor. 3.8]. In other

words, G(K) is projective.

Let F be an extension of a field K. A prime divisor of F/K is an equivalence

class of valuations of F which are trivial over K. We denote the set of all prime divisors

of F/K by P(F/K). For each p ∈ P(F/K) we denote the Henselian closure of F with

respect to p by Fp. It is unique up to a K-isomorphism. Tensoring central simple finite

dimensional F -algebras with Fp defines a homomorphism resp: Br(F ) → Br(Fp). We

consider the direct product of all these homomorphisms:

(2) res: Br(F ) →
∏

p∈P(F/K)

Br(Fp)

and say that F satisfies the Hasse principle for Brauer groups if res is injective.

Ido Efrat [Efr, Thm. 3.4] proves that if K is a perfect PAC field, then each

extension F of K of transcendence degree 1 satisfies the Hasse principle for Brauer

groups. A careful analysis of Efrat’s proof shows that it works even if K is perfect and

weakly PAC [Efr, Remark 3.5(c)].

Proposition 1.3: Let K be a weakly PAC field. Then

(a) each extension F of Kins of transcendence degree 1 satisfies the Hasse principle for

Brauer groups,

(b) all Henselian closures of K are separably closed, and

(c) K is not formally real.

Proof of (a): By Lemma 1.1, F ∩ K̃ is a perfect weakly PAC field. Replace K by

F ∩ K̃, if necessary, to assume that K is perfect and F/K is a regular extension. By

[Efr, Lemma 3.3], we may assume that F/K is finitely generated. In other words, F is

a function field of one variable over K. As cd(G(K)) ≤ 1 (Proposition 1.2) there is an

exact sequence

(3) 0 −→ H1(G(K),Pic(FK̃/K̃)) −→ Br(F ) res−→
⊕

p∈P(F/K)

Br(Fp),
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where Pic(FK̃/K̃) is, as usual, the quotient group of all divisors of FK̃/K̃ modulo prin-

cipal divisors [Efr, Prop. 2.3]. Denote the Jacobian of F/K by J . By [Efr, Lemma 1.4]

there is a natural epimorphism H1(G(K), J(Ks)) 7→ H1(G(K),Pic(FK̃/K̃)). Each el-

ement of H1(G(K), J(Ks)) may be represented by a variety V over K such that Ṽ ∼= J̃ .

Since K is weakly-PAC, V has a K-rational point. Hence, V represents the trivial ele-

ment of H1(G(K), J(Ks)) [LaT, Prop. 4]. It follows that H1(G(K), J(Ks)) = 0. Hence,

H1(G(K),Pic(FK̃/K̃) = 0. Conclude from (3) that res: Br(F ) →
∏

p∈P(F/K) Br(Fp))

is injective.

Proof of (b): Let v be a valuation of K. Denote the unique extension of v to Kins

by vins. Let vs be an extension of v to Ks and let ṽ be the unique extension of vs

to K̃. Then the isomorphism res: G(Kins) → G(K) maps the decomposition group

D(ṽ) = {σ ∈ G(Kins) | ṽ ◦ σ = ṽ} of ṽ onto the decomposition group D(vs) = {σ ∈

G(K) | vs ◦ σ = vs} of v. So, if we denote the fixed field of D(vs) by Kv, we find that

the fixed field of D(ṽ) is KvKins, which is (Kv)ins. So, Kv is a Henselian closure of

(K, v) and KvKins is a Henselian closure of (Kins, vins). By Lemma 1.1, Kins is weakly

PAC. Hence, replacing K by Kins, if necessary, we may assume that K is perfect.

Since the Henselian closure of K with respect to v is also weakly PAC (Lemma

1.1), we may as well assume that (K, v) is Henselian. By (a) and by [Efr, Thm. 4.1]

the residue field K̄v is separably closed and the value group Γv is divisible. As [Efr,

Thm. 4.1] points out, if char(K̄v) = 0, this implies that char(K) = 0 and that K is

algebraically closed. We prove that for an arbitrary v, K is separably closed.

Suppose first that rank(v) = 1. Then v is in the terminology of [Fre], a real non-

Archimedean valuation. If K were not separably closed we could choose a nontrivial

element σ of G(K) and use Lemma 1.1 again to replace K by the fixed field of σ in Ks.

Thus, we could assume without loss that G(K) is procyclic. But then, by [Fre, p. 205,

Lemma], there would exist a curve E over K of genus 1 without K-rational points. As

Ẽ is an elliptic curve, that is, an abelian variety of dimension 1, this would contradict

the assumption that K is a weakly PAC field.

In the general case we consider the set of all nontrivial valuation rings that contain

Ov. It is indexed by a totally ordered set I such that if i ≤ j, then Oj ⊆ Oi and mi ⊆ mj ,
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where mi is the maximal ideal of Oi [Rib, Chap. C]. By [Rib, p. 210, Prop. 9], each Oi is

a Henselian valuation ring. Hence, by Efrat’s result mentioned in the second paragraph,

its residue field K̄i is separably closed.

The ring O =
⋃

i∈I Oi is either a valuation ring or O = K. If O is a valuation

ring, then it is a maximal one. In other words, O has rank 1. By Frey’s lemma, K is

separably closed.

Assume therefore that O = K. Let f ∈ K[X] be a monic irreducible separable

polynomial. Then its discriminant d is nonzero. Also, there exists j such that f ∈ Oj [X].

Hence, f ∈ Oi[X] and d ∈ Oi for all i ≤ j. Since in our case,
⋂

i≤j mi = 0, there exists

k ≤ i such that d /∈ mk. Then the residue of d modulo mk is not zero. This means

that f has no multiple roots modulo mk. As Ok/mk is separably closed (by the first

paragraph), f has a simple zero modulo mk. Since Ok is Henselian, this zero can be

lifted to a zero of f in Ok. Conclude that K is separably closed.

Proof of (c): Assume without loss that char(K) = 0. Consider the conic C defined

over K by the equation X2 + Y 2 + 1 = 0. Its extension C̃ to K̃ is a rational curve [Art,

p. 304]. Hence C is of type 0 and therefore has a K-rational point. It follows that K

has no ordering. In other words, K is not formally real (Indeed, its level is at most 2.)

2. Examples

We construct weakly PAC fields which are not PAC. By Proposition 1.3(b,c), this gives a

negative answer to Problem C. By Proposition 1.3(d), this also solves Problem A. The

construction depends on a lemma which handles varieties of somewhat more general

types than those of Section 1. We say that a variety V over a field K is of type i′,

i = 1, 2, if the following conditions hold.

(Type 0′) There exists a dominating rational map α: An → Ṽ , for some positive integer

n. That is, Ṽ is unirational.

(Type 1′) There exists an algebraic group H over K̃ and a dominating rational map

α: H → Ṽ .
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In particular, if V is of type i, then it is of type i′. The following lemma justifies

the terminology.

Lemma 2.1: Let C be a curve over a field K and let V be a variety over K. Denote

the function field of V over K by F . Suppose that C(F ) 6= C(K).

(a) If V is of type 0′, then genus(C̃) = 0.

(b) If Ṽ of type 1′, then genus(C̃) ≤ 1.

Proof: We choose a point p ∈ C(F ) r C(K). It is a generic point of C over K. The

rest of the proof breaks up into two parts.

Proof of (a): Suppose that Ṽ is unirational. Then FK̃ is contained in a purely

transcendental extension K̃(x1, . . . , xn) of K̃. Hence K̃(p) ⊆ K̃(x1, . . . , xn). Since

trans.deg(K̃(p)/K̃) = 1, a theorem of Lüroth-Gordan-Igusa implies that K̃(p) = K̃(t),

with t transcendental over K [Sch, p. 9]. It follows that genus(C̃) = 0.

Proof of (b): Suppose there exists an algebraic group H and a dominating rational

map α: H → Ṽ . The inclusion K(p) ⊆ F defines a dominating rational map β: V → C

over K. Assume that genus(C̃) > 0 and let γ: C̃ → J be an embedding of C̃ into its

Jacobian J . Then θ = γ ◦ β̃ ◦ α is a rational map from H into J which is defined over

K̃. By [Lan1, p. 24, Thm. 4], J has an abelian subvariety Γ and there is a ∈ A(K̃) such

that θ(H(K̃)) = a + Γ(K̃). On the other hand, γ is a birational map between C̃ and

θ(H). It follows that dim(Γ) = 1. Conclude that genus(C̃) = genus(Γ) = 1.

Corollary 2.2: Let V = V1×V2×· · ·×Vn be a direct product of varieties over a field

K. Suppose that each Vi is either of type 0′ or of type 1′. Denote the function field of

V over K by F . Then C(FL) = C(L) for each algebraic extension L of K and for each

curve C over L with genus(C̃) ≥ 2.

Proof: If L is an algebraic extension of K, then FL is the function field of C ×K L.

So, without loss, we may consider a curve C over K such that genus(C̃) ≥ 2 and prove

that C(F ) = C(K).

Indeed, F = K(x1,x2, . . . ,xn), where xi is a generic point of Vi over K, i =

1, . . . , n and K(x1),K(x2), . . . ,K(xn) are algebraically independent (i.e, free) over K.
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For each m between 0 and n let Fm = K(x1, . . . ,xm). Let m < n and inductively

assume that C(Fm) = C(K). Then Fm+1 = Fm(xm+1) is the function field of the

variety Vm+1 ×K Fm which is either of type 0′ of type 1′. Hence, by Lemma 2.1,

C(Fm+1) = C(Fm). So, C(Fm+1) = C(K). Conclude by induction that C(F ) = C(K).

Lemma 2.3: Let K0 ⊆ K1 ⊆ K2 ⊆ · · · be an ascending sequence of fields such that Kj

is (separably) Hilbertian and Kj+1 is a regular extension of Kj , j = 1, 2, 3, . . . . Then

K =
⋃∞

j=0 Kj is a (separably) Hilbertian field.

Proof: Consider irreducible (separable) polynomials f1, . . . , fm ∈ K[T,X]. Then there

exists j ≥ 1 such that f1, . . . , fm ∈ Kj [T,X]. Hence, there exists a ∈ Kj such that for

each i the polynomial fi(a,X) is irreducible over Kj . Let xi be a root of fi(a,X). By

assumption K is a regular extension of Kj . In particular, K is linearly disjoint from

Kj(x1, . . . , xm) over Kj . Hence, fi(a,X) is irreducible over K, i = 1, . . . ,m. Conclude

that K is (separably) Hilbertian.

A finite embedding problem over a field K is an epimorphism

(1) β: B → G(L/K),

where L/K is a finite Galois extension and B is a finite group. If K ′ is a regular

extension of K and L′ = LK ′, then restriction ρ = resL′/L: G(L′/K ′) → G(L/K) is an

isomorphism. So, ρ−1◦β: B → G(L′/K ′) is an embedding problem over K ′. A solution

of β over K ′ is an isomorphism γ: G(M ′/K ′) → B, where M ′ is a Galois extension of

K ′ which contains L′ such that β ◦ γ = resM ′/L. We call M ′ a solution field of β over

K ′.

M ′ M ′′

L L′ L′′

K K ′ K ′′

G(M ′/K ′)

γ

����
��

��
��

��
��

��
��

�

��

G(M ′′/K ′′)oo

��
G(L′/K ′)

ρ

��

G(L′′/K ′′)oo

��
B

β // G(L/K) G(L/K)
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If K ′′ is a regular extension of K ′, L′′ = LK ′′, and M ′′ = M ′K ′′, then γ ◦ resM ′′/M ′ is

a solution of β over K ′′.

Finally, let βi: Bi → G(Li/K), i = 1, . . . , n be finite embedding problems over K.

Construct the compositum L = L1 · · ·Ln and the fiber product

B = {(b1, . . . , bn, σ) ∈ B1 × · · · ×Bn × G(L/K) | βi(bi) = resL/Li
σ, i = 1, . . . , n}.

Let β: B → G(L/K) be the projection on the last coordinate and for each i between 1

and n let πi: B → Bi be the projection on the ith coordinate. Observe that both πi

and β are surjective. So, β is an embedding problem over K which dominates each

of the problems βi. Let γ: G(M/K) → B be a solution of β. Let Mi be the fixed field

in M of Ker(πi ◦ γ) and let γi: G(Mi/K) → Bi be the isomorphism induced by πi ◦ γ.

Then γi is a solution of βi, i = 1, . . . , n.

Lemma 2.4: Let β: B → G(L/K) be a finite embedding problem over K. Then K has

a finitely generated regular extension K ′ over which β has a solution γ: G(M ′/K ′) → B

such that M ′ is a finitely generated purely transcendental extension of L.

Proof: Choose a set {xb | b ∈ B} of algebraically independent elements over K labeled

by the elements of B. Construct the purely transcendental extension M ′ = L(xb | b ∈ B)

of L. Let B act on M ′ by the following rule: ab′
= aβ(b′) and (xb)b′

= xbb′
for a ∈ L and

b, b′ ∈ B. Denote the fixed field of B under this action by K ′. Let L′ = LK ′. By Galois

theory, M ′/K ′ is a Galois extension with Galois group B. Moreover, the identification

of G(M ′/K ′) with B is a solution of β over K. In particular, L∩K ′ = K. Since L′/L is

a subextension of a purely transcendental extension, it is regular. Hence, K ′/K is also

a regular extension. Finally, by [Lan2, p. 64], K ′/K is finitely generated.

Denote the free profinite group of rank ℵ0 by F̂ω. If K is a countable field over

which every finite embedding problem is solvable, then, by Iwasawa’s criterion, G(K) ∼=

F̂ω [FrJ, Cor. 24.2].

Lemma 2.5: Every countable field K0 has a regular countable extension K with the

following properties:

(a) K is weakly PAC.
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(b) C(K) = C(K0) for each curve C over K0 with genus(C̃) ≥ 2.

(c) K is Hilbertian.

(d) G(K) ∼= F̂ω.

Proof: By induction we construct an ascending sequence K0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · of

countable fields. For each m we list the varieties over Fm which are either of type 0 or

of type 1 as Vm1, Vm2, Vm3, . . . . Also, we list the finite embedding problems over Fm as

βm1, βm2, βm3, . . . . These objects should have the following properties:

(2a) Fm+1 is the function field over Fm of a direct product of varieties which are defined

over Fm and are either of type 0′ or of type 1.

(2b) Vij(Fm+1) 6= ∅ for 1 ≤ i, j ≤ m.

(2c) βij has a solution over Fm+1 for 1 ≤ i, j ≤ m.

Indeed, if Fm has already been constructed, we choose an embedding problem β

over Fm which dominates βij for 1 ≤ i, j ≤ m. Lemma 2.4 gives a finitely generated

regular extension F ′
m of Fm over which β is solvable. Moreover, F ′

m is contained in a

finitely generated purely transcendental extension of F̃m. Thus, F ′
m is the function field

of a variety U of type 0′ over Fm.

Next let V =
∏m

i,j=1 Vij ×Fi
Fm, choose a generic point x for V ×Fm

F ′
m and let

Fm+1 = Fm(x). Then Fm+1 is a finitely generated regular extension of F ′
m, therefore

also of Fm. Moreover, Fm+1 is the function field of U × V . The projection of x on

the ijth coordinate is an Fm+1-rational point of Vij , 1 ≤ i, j ≤ m. Finally, βij has a

solution over Fm for 1 ≤ i, j ≤ m.

The union K of all Fi is a countable regular extension of K0. If W is a variety

of type 0 or of type 1 over K, then there exist i and j such that W ∼= Vij ×Fi
K. Let

m = max(i, j). By (2b), Vij(Fm+1) 6= ∅. Hence, W (K) 6= ∅. Conclude that K is weakly

PAC.

If β: B → G(L/K) is a finite embedding problem, then it is induced by βij for

some i and j. Again, let m = max(i, j). By (2c), βij is solvable over Fm+1. Hence, βij

and therefore β is solvable over K. Conclude from Iwasawa’s criterion that G(K) ∼= F̂ω.

By (2a) and by [FrJ, Thm. 12.10] each Fm is Hilbertian. Conclude from Lemma
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2.3 that K is Hilbertian.

Finally, let C be a curve over K0 with genus(C̃) ≥ 2. By (2a) and by Corollary

2.2, C(Fm+1) = C(Fm) for m = 1, 2, 3 . . . . Conclude that C(K) = C(K0).

Recall that a field K is ample if every curve C over K with a simple K-rational

point has infinitely many K-rational points. In particular every PAC field is ample.

(For more about ample fields see [HaJ, §6].)

Theorem 2.6: Let K0 be a finite field or a finitely generated extension of Q. Then K0

has a countable regular extension K with the following properties:

(a) K is weakly-PAC.

(b) C(K) is finite for each curve C over K0 of genus at least 2.

(c) K is not PAC and even not ample; Kins is not ample.

(d) Each extension of Kins of transcendence degree 1 satisfies the Hasse principle for

Brauer groups.

(e) All Henselian closures of K are separably closed.

(f) K is not formally real.

(g) K is Hilbertian.

(h) G(K) ∼= F̂ω.

Proof: Let K be the extension of K0 which Lemma 2.5 provides. In particular, K

satisfies (g) and (h). Consider a curve C over K0 of genus at least 2. Since K0 is

perfect, genus(C̃) = genus(C) ≥ 2. If K0 is finite, then C(K0) is also finite. If K0 is

a finitely generated extension of Q, then by Faltings [FaW, p. 205, Thm. 3], C(K0) is

finite. As C(K) = C(K0) (by (b) of Lemma 2.5), C(K) is finite. This proves (b). In

particular, K is not PAC [FrJ, Prop. 10.1].

Moreover, if char(K0) 6= 2, 5, the hyperelliptic curve H defined over K0 by the

equation Y 2 = X5 − 1 has genus 2 [Art, p. 317]. For char(K0) = 5 take Y 2 = X5 −X,

for char(K0) = 2 take Y 2 +Y = X5−1. By (b), H(K) is finite although it has a simple

K-rational point, namely (1, 0). Conclude that K is not ample.

If K0 is a finite field and (a, b) ∈ H(Kins), then there exists a power q of char(K)

such that aq, bq ∈ K. Hence (aq, bq) ∈ H(K) = H(K0). As K0 is perfect, a, b ∈ K0. It
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follows that H(Kins) is finite. Conclude that Kins is not ample.

Finally statements (d), (e), and (f) are consequences of (a), by Proposition 1.3.

Remark 2.7: (a) The proof of Proposition 1.3(b) shows that if K is a field and all

Henselizations of Kins are separably closed, then so are all Henselizations of K. In

particular, this is the case when Kins is PAC. This situation may indeed occur without

that K is PAC as Hrushovsky proved in [Hru]. We have therefore been careful in

Theorem 2.6 to construct K such that Kins is not PAC.

(b) An arbitrary countable field K0 has a countable extension K which satisfies

(a) and (c)–(h) of Theorem 2.6. Indeed, choose a transcendental element t over K0.

Then use Lemma 2.5 to find a countably generated extension K of K0(t) such that K

is weakly PAC, Hilbertian, and C(K) = C(K0(t)) for each curve C over K0(t) with

genus(C̃) ≥ 2. Next choose a curve C over K0(t) with genus(C̃) ≥ 2 such that C(K0(t))

is finite and has a simple point. Then (c) of Theorem 2.6 holds. Statements (d)–(h) of

Theorem 2.6 hold as in the proof of that theorem.

(c) If in the proof of Lemma 2.5 we construct the field K out of K0 by adjoining

only generic points of varieties of type 0 and omit the construction of F ′
m, then G(K)

will be projective, C(K) = C(K0) for each curve C over K0 with genus(C̃) ≥ 1, and K

will be Hilbertian and not formally real.

In view of Theorem 2.6 we may reformulate Problem 10.16(b) of [FrJ] in the

following way:

Problem 2.8: Find an infinite field K of a finite transcendence degree over its prime

field such that K is not PAC but each Henselian closure of K is separably closed and

K is not formally real.
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réal, 1964.

[Sch] A. Schinzel, Selected Topics on Polynomials, The University of Michigan Press, 1982.

[Ser] J.-P. Serre, Corps locaux, Actualités scientifiques et industrielles 1296, Hermann, Paris

1968.

14


