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Abstract. We prove the following result:

Theorem. Let K be a countable Hilbertian field, S a finite set of local primes of K, and e ≥ 0 an

integer. Then, for almost all � ∈ G(K)e, the field Ks[�] ∩Ktot,S is PSC.

Here a local prime is an equivalent class p of absolute values of K whose completion is a local

field, K̂p. Then Kp = Ks ∩ K̂p and Ktot,S =
T
p∈S

T
σ∈G(K) Kσ

p . G(K) stands for the absolute

Galois group of K. For each � = (σ1, . . . , σe) ∈ G(K)e we denote the fixed field of σ1, . . . , σe in Ks

by Ks(�). The maximal Galois extension of K in Ks(�) is Ks[�]. Finally “almost all” means “for

all but a set of Haar measure zero”.

Introduction

The main goal of our work is to prove the following result:

Theorem A. Let K be a countable separably Hilbertian field, let S be a finite set of
local primes of K, and let e be a nonnegative integer. Then, for almost all σ ∈ G(K)e,
the field Ks[σ] ∩Ktot,S is PSC.

0.1. Notation in Theorem A

For an arbitrary field K we denote the separable (resp., algebraic) closure of K
by Ks (resp., K̃). Let G(K) = G(Ks/K) be the absolute Galois group of K. If
σ1, . . . , σe ∈ G(K), then Ks(σ) is the fixed field of σ1, . . . , σe in Ks. The field Ks[σ]
is the maximal Galois extension of K which is contained in Ks(σ). In particular, if
e = 0, then Ks[σ] = Ks(σ) = Ks.

The absolute Galois group of K is compact with respect to the Krull topology. So,
for each e, G(K)e is a probability space with respect to the normalized Haar measure
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[FJ2, Chap. 16]. Accordingly, the clause “for almost all σ ∈ G(K)e” means “for all
σ ∈ G(K)e but for a set of measure 0”.

Suppose now that K is a countable separably Hilbertian field [FJ2, Chap. 11]. By
[JR1, Prop. 3.1], the field Ks(σ) is PAC over K, for almost all σ ∈ G(K)e. In general,
for a field M and a subset A of M , we say that M is PAC over A if for each dominant
separable rational function ϕ:V → Ar of absolutely irreducible varieties of dimension
r over M there exists x ∈ V (M) such that ϕ(x) ∈ Ar. A weaker possible property of
M is to be PAC. This means that each absolutely irreducible variety over M has an
M -rational point. In other words, M is PAC over M . By [Ja4, Lemma 1.2], Ks[σ] is
PAC for almost all σ ∈ G(K)e. However, we don’t know if Ks[σ] is PAC over K for
almost all σ ∈ G(K)e.

A local prime of K is an equivalence class p of absolute values such that the
completion K̂p is a local field. Thus, K̂p is a locally compact field with respect to the
p-adic topology. The field Kp = Ks ∩ K̂p is then well defined up to a K-isomorphism.

Suppose that S is a finite set of local primes of K. Let

Ktot,S =
⋂

p∈S

⋂

σ∈G(K)

Kσ
p

be the field of totally S-adic numbers. It is the largest Galois extension of K
in which each p ∈ S totally splits. An algebraic extension M of K is PSC if each
absolutely irreducible variety V over M which has a simple Mq-rational point for each
p ∈ S and for each extension q of p to M also has an M -rational point. This concludes
the explanation of the terminology of Theorem A.

0.2. Historical remarks

In [Po1], Pop proves that if char(K) = 0, then Ktot,S is PSC. If char(K) > 0, [Po1]
replaces Ktot,S by its maximal purely inseparable extension. In the case that K is a
global field, Moret-Bailly [MoB, Thm. 1.3] and later Green, Pop, and Roquette [GPR,
p. 47] sharpen this result. They fix a local prime p0 of K not in S. Then they prove
that if V is an absolutely irreducible affine variety over K, and if for each local prime
p 6= p0 of K there exists xp ∈ V (Kp) such that |x|p ≤ 1, and, in addition, xp is simple
if p ∈ S, then there exists x ∈ V (Ktot,S) such that |x|p ≤ 1 for all p 6= p0. This is
Rumely’s local-global principle for Ktot,S .

[JR2, Thm. 1.5] proves that if K is a number field and M is an algebraic extension
of K which is PAC over the ring of integers of K and S consists of ultrametric primes,
then M ∩Ktot,S satisfies Rumely’s local-global principle (where instead of excluding
one prime p0, one has to exclude all metric primes). This implies that M is PSC [JR2,
Remark 8.3(a)]. In particular, K̃(σ) ∩ Ktot,S is PSC for almost all σ ∈ G(K)e. If,
however, K is a function field of one variable over a finite field, then [JR2, Thm. 1.5]
proves Rumely’s local global principle, like [Po1], only for the maximal purely insep-
arable extension of M ∩Ktot,S and not for M ∩Ktot,S itself. We explain the reason
for this failure below.

Since we do not know whether Ks[σ] is PAC over K for almost all σ ∈ G(K), we
can not use the results of [JR2] in order to prove Theorem A, even in the case where
K is a number field. So, we must supply a direct proof for it.
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It turns out that the only property of almost all fields Ks(σ) that we use in order to
prove Theorem A is that they are PAC over K. In other words, we prove the following
result:

Theorem B. Let S be a finite set of local primes of a field K. Let M be a field
which is PAC over K. Denote the maximal Galois extension of K which is contained
in M ∩Ktot,S by N . Then N is PSC.

0.3. Ingredients of the proof

Intersecting an arbitrary variety by a suitable hyperplane reduces the check for
the PSC property of a field to that of curves. Indeed, in order to prove that a field
N between K and Ktot,S is PSC it suffices to prove that each curve C over N is
birationally equivalent over N to a curve Γ with the following property:

PSC Condition: If Γsimp(Kp) 6= ∅ for each p ∈ S, then Γ(N) is infinite.

If the function field of C over K is conservative, then C is birationally equivalent
to a smooth projective curve Γ. In this case, the proof of the PSC condition for Γ
relies on a combination of the theorem about the existence of a stabilizing element for
regular extensions of transcendence degree 1 [FJ1, p. 654 and GeJ, p. 336, Thm. F],
and Rumely’s existence theorem with rationality conditions [Po1, Thms. 1.1 and 3.1]:

Proposition C. Let S be a finite set of local primes of a field K. Consider a smooth
projective curve Γ over K and let F be the function field of Γ. For i = 1, 2 and for each
p ∈ S let Ui,p be a nonempty p-open subset of Γ(Kp). Write Ui =

⋂
p∈S

⋂
σ∈G(K) Uσ

i,p,
i = 1, 2. Let d0 ∈ N. Then F/K has a separating transcendental element t such that

(a) all geometric zeros of t belong to U1 and each of them has multiplicity 1; and

(b) all geometric poles of t belong to U2 and each of them has multiplicity 1.

(c) Moreover, let F̂ be the Galois closure of F/K(t). Then F̂ /K is a regular exten-
sion and G(F̂ /K(t)) ∼= Sd with d > d0.

Here is the version of Rumely’s existence theorem which we use in the proof of
Proposition C. It incorporates a theorem about the continuity of geometric zeros of a
curve.

Proposition D. Let S be a finite set of local primes of a field K. Consider a smooth
projective curve Γ over K and let F be the function field of Γ. Let a0 be a positive
divisor of F/K. For each p ∈ S let Up be a nonempty p-open subset of Γ(Kp) and let
U =

⋂
p∈S

⋂
σ∈G(K) Uσ

p .
Then there exists a positive integer k0 such that for each multiple k of k0, for a =

ka0, and for each basis y0, y1, . . . , yn of LK(a) there exists a nonempty intersection
A ⊆ Kn+1 of p-open sets, p ∈ S, such that for each a ∈ A, t =

∑n
i=0 aiyi is a

Rumely element with respect to S, a,U . This means that div(t) = p1 + · · ·+pd− a,
where p1, . . . ,pd are distinct points of Γ(K̃) which belong to U rSupp(a).

To achieve t of Proposition C, suppose that Γ is embedded in Pn. We project Γ
from a point on ∈ Pn(K) down to Pn−1, and then from a point on−1 ∈ Pn−1 down



4 Math. Nachr. (1995)

to Pn−2 until we reach a plane node curve, which we further project to P1. This is
done by choosing a rational function t = t1/t2 such that ti is a Rumely element with
respect to S, a,Ui, i = 1, 2. The poles of t1 and t2 cancel each other and we have
div(t) = div0(t1)− div0(t2).

The proof of Proposition D takes advantage of the Jacobian variety J of the smooth
curve Γ and the compactness of J(K̂p).

In addition to Proposition D, we use the following classical result:

Proposition E. Let Γ be a smooth projective curve over K and let F be the function
field of Γ over K. Then there exists a positive integer d0 such that each divisor a
of F/K of degree at least d0 is very ample. That is, each basis of L(a) defines an
embedding of Γ into the appropriate projective space.

If the function field F of C is not conservative (so, char(K) > 0), then C is not
birationally equivalent to a smooth curve over K any more. This forces us to use
heavier tools in order to sharpen and generalize Propositions C, D, and E.

First of all we extend the classical proof of Proposition E to an arbitrary projective
curve Γ over K. The main ingredient in this generalization is the Riemann-Roch the-
orem for a semilocal ring O of the function field F of Γ. The striking phenomena here
is that, unlike the genus of Γ which may decrease under purely inseparable extensions
of the base field K, the genus of O does not change under arbitrary change of the base
field K.

The generalized Riemann-Roch theorem is due to Rosenlicht [Ro1] who uses it in
[Ro2] to construct a generalized Jacobian variety J of Γ. This variety is not an abelian
variety, as it is in the case where Γ is smooth. It is rather an extension of Γ by a linear
algebraic group Λ. In particular, for p ∈ S, J(K̂p) need not be compact. This presents
a severe obstruction to the proof of Rumely’s existence theorem. Nevertheless, in the
case where Γ is K-normal and K̂p/K is separable, Green, Pop, and Roquette [GPR]
overcome this difficulty by replacing K̂p with a purely inseparable extension L̂ and
observing that the group Λ(L̂) is annihilated by a power of char(K). As a result, one
may find a Rumely element as in Proposition D. Then it is possible to find an element
t that satisfies Conditions (a) and (b) of Proposition C.

This is not good enough, since t has to satisfy Condition (c) of Proposition C as
well. Fortunately, Neumann [Neu] establishes this condition in the case where, in our
terminology, Γ is a special cusp curve. It is a lucky coincidence that the generalized
Jacobian variety of such a curve is an extension of an abelian variety by a linear group
Λ such that Λ(K̂p) is annihilated by a power of char(K). So, we are able to use the
method of [GPR] to prove the analog of Proposition C for special cusp curves.

Acknowledgement: The authors are indebted to Aharon Razon for critical reading
of earlier versions of this work.

1. Pseudo S-adically closed fields
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Consider a field K and an equivalence class p of absolute values of K (see [CaF,
Chap. II] or [Art, Chap. 1] for the definition and the basic properties of absolute
values). Choose a completion, K̂p, of K at p. Choose a representative | |p for p and
extend it to K̂p in the unique possible way. We call the induced topology on K and
on K̂p the p-adic topology. A basic open neighborhood of a ∈ K̂p in the p-adic
topology is the set {x ∈ K̂p | |x− a|p < ε} for some positive real number ε.

We say that p is a local prime of K if K̂p is locally compact in the p-adic topology.
If | |p is ultra-metric (i.e., |x + y|p ≤ max(|x|p, |y|p) for all x, y ∈ K), then K̂p is
either a finite extension of Qp for a certain prime number p, or K̂p is a formal power
series Fq((t)) for some power q of a prime number [Kow]. If | |p is metric (i.e., can be
chosen to satisfy |x + y|p ≤ |x|p + |y|p for all x, y ∈ K and |n| = n for all n ∈ N), then
K̂p = R (in this case we call p real) or K̂p = C (in which case we call p complex).

We assume that all completions of K as well as their algebraic closures are embedded
in a universal field Ω which is algebraically closed. We call Kp = Ks∩K̂p the p-closure
of K at p. In the ultra-metric case Kp is the Henselization of K with respect to p.
In the metric case Kp is either a real closure of K with respect to the p-ordering or
Kp = K̃. In each case Kp depends on the embeddings of K̃ and K̂p in Ω only up to
K-conjugation.

Let S be a set of local primes of K. Then

Ktot,S =
⋂

p∈S

⋂

σ∈G(K)

Kσ
p

is the field of totally S-adic elements of K̃. By definition, Ktot,S is the maximal
Galois extension of K in which for each p ∈ S and for each prime P of Ktot,S above
p, we have (K̂tot,S)P = K̂p.

Remark 1.1. The S-topology. For each algebraic extension L of K we denote the
set of all extensions of the primes in S to L by SL. A basic S-open subset of K̃ is
a set of the form

U =
⋂

p∈SL

⋂

p̃|p
{x ∈ K̃ | |x− ap|p̃ < εp},

where L is a finite extension of K, for each p ∈ SL the element ap belongs to L, εp > 0,
and p̃ ranges over all extensions of p to K̃. By the weak approximation theorem [CaF,
p. 48], U contains elements of L, in particular U is nonempty.

Each nonempty finite intersection of basic S-open subsets of K̃ contains a basic
S-open subset of K̃. Hence, the unions of basic S-open subsets of K̃ form a topology
on K̃ which we call the S-topology.

For each positive integer n, equip K̃n with the product topology. It is a Hausdorff
topology. Each polynomial in K̃[X1, . . . , Xn] induces an S-continuous map K̃n → K̃.
So, if A is an affine K̃-algebraic set, then A(K̃) is closed. Hence, the S-topology
naturally extends to a topology of the sets A(K̃) for each quasi-projective set A over
K̃.

For each algebraic extension L of K the S-topology of A(K̃) induces a topology on
A(L). Thus, we call a subset of A(L), S-open, if it is the intersection of an S-open
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subset of A(K̃) with A(L). 2

If L ⊆ Ktot,S , p ∈ S, and q is an extension of p to L, then each extension of q to
Ktot,S is conjugate over K to the prime of Ktot,S which is induced by Kp. It follows
that q is a local prime of L and each closure Lq of L at q is isomorphic to Kp over K.

Remark 1.2. Local primes.
(a) If K is a number field, then each absolute value of K defines a local prime p of

K. In case p is a metric prime, one also says that p is infinite or archimedean. If p
is a finite prime (in our terminology, ultra-metric prime) and p is the prime number
under p, then K̂p is a finite extension of the field Q̂p of p-adic numbers.

(b) If K is a finite extension of Fp(t), then each absolute value of K defines an
ultra-metric prime p. The residue field K̄p is Fpm , for some positive integer m, and
K̂p = Fpm((x)), where x is a prime element of K at p [Che., p. 46].

(c) Let S be a set of rational primes. For each p ∈ S the field Q̂p has cardinality 2ℵ0

and hence also transcendence degree 2ℵ0 over Q. Choose a transcendence base Xp for
Q̂p/Q. Let T be a set of cardinality ≤ 2ℵ0 and let K = Q(T ). Then we may embed T

into Xp and extend this embedding to an embedding of K into Q̂p. It induces a local
prime p on K such that K̂p = Q̂p. Another embedding into Q̂p may induce another
local prime on K. In this way we get sets of local primes of K which may have large
cardinalities.

(d) If K is as in (b), then K̂p is a separable extension of K [Ja3, Lemma 2.2]. We
give an example where the latter conclusion does not hold.

Consider the field Fp((t)) of formal power series in t over Fp. There are 2ℵ0 elements
of the form

∑∞
n=0 antpn with an ∈ Fp. Since the algebraic closure of Fp(t) is countable,

we may choose x of that form which is not algebraic over Fp(t). Let K = Fp(t, x) and
let p be the local prime of K that the t-adic valuation of Fp((t)) induces. Then
K̂p = Fp((t)).

Now observe that x1/p =
∑∞

n=0 antn is in K̂p while K(x1/p) is a purely inseparable
extension of K(x) of degree p. Conclude that K̂p/K is not a separable extension. 2

Definition 1.3. PSC fields. Let S be a set of local primes of a field K and let N
be an algebraic extension of K. We say that N is pseudo S-adically closed, and
abbreviate it by PSC, if every variety V over N satisfies the following local global
principle for N :

(2.1) If Vsimp(Nq) 6= ∅ for each q ∈ SN , then V (N) 6= ∅.
Here, and in the sequel, whenever we speak about a variety over K, we mean a

separated scheme V of finite type over K such that V ×K K̃ is reduced and irreducible.
In particular, V is nonempty. In the terminology of Weil’s Foundation [Wei], V is a
nonvoid abstract variety defined over K (in particular V is absolutely irreducible).
Likewise a curve over K is a variety over K of dimension 1. As usual, Vsimp denotes
the Zariski-open subset of V of all simple points of V . Also, V (N) is the set of all
N -rational points of V . Usually, we take V affine and embedded in An or projective
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and embedded in Pn for some positive integer n. Then we view each N -rational point
of V as an n-tuple of elements of N or as an equivalence class of nonzero (n+1)-tuples
of N modulo multiplication by elements of N . 2

Remark 1.4. Comparison with other definitions. Consider a field K, a set S of
local primes of K, and an algebraic extension N of K.

(a) By definition, N is PSC if and only if N is PSNC.
(b) Suppose that V is a variety over K with a simple Kp-rational point for each

p ∈ S. Then it has a simple Kσ
p -rational point for each p ∈ S and each σ ∈ G(K).

(c) Let K be a family of field extensions of K. We say that K is PKC if every
variety V over K with a simple K̄-rational point for each K̄ ∈ K has a K-rational
point [Ja2, §7]. In particular, N is PSC if and only if N is PNC with N being the
set {Nσ

p | p ∈ SN , σ ∈ G(N)}.
(d) In particular, suppose that S is the empty set. Then for N to be PSC means

that every variety V over N has an N -rational point. So, N is PSC if and only if N
is PAC.

(e) Let S0 be the set obtained from S by removing all complex local primes. Since
each variety has simple K̃-rational points, N is PSC if and only if N is PS0C.

(f) One says that N is PRC if N is PNC with respect to the family N of all real
closures of N . Suppose that S consists of all real metric absolute values of K. Then,
the corresponding completions are R. Hence, if in this case N is PSC, then it is also
PRC.

The converse is not true. Indeed, take K = N to be a real closed field which can
not be embedded in R (e.g., take K to be a nonprincipal ultrapower of R). Then K
is PRC but not PAC [FJ2, Thm. 10.12]. Since S is empty, this means, by (d), that K
is not PSC.

(g) Consider a prime number p. Take now S to be the set of all local primes p of
a field K such that K̂p = Q̂p. For such p, char(K) = 0, the residue field, K̄p, of Kp

is Fp, and vp(p) is the smallest positive integer of vp(K×
p ). In other words vp is a

p-adic valuation of Kp. Also, [E : Kp] = [Ēp : K̄p](vp(E×) : vp(K×
p )) for each finite

extension E of Kp [Ja3, Lemma 2.2(a)]. Thus if [E : Kp] > 1, then either the residue
field of E is larger than Fp, or vp(p) is not the smallest positive element of vp(E×).
So, the unique extension of vp to E is not a p-adic valuation. Conclude that Kp is a
p-adic closure of K.

It follows that if N is a subextension of Ktot,S/K and N is PSC, then N is also
PpC. That is, N is PNC with respect to the set N of all p-adic closures of N .

The converse is not true. Suppose, for example, that K is a p-adically closed field
such that the value group of the unique p-adic valuation v of K [HJ1, Prop. 6.3] is
not isomorphic to Z (e.g., K is a nonprincipal ultrapower of Q̂p). Then K is PpC
and G(K) ∼= G(Q̂p) [HJ1, Cor. 6.6]. In particular cd(G(K)) = 2 [Rib, p. 281] and
therefore G(K) is not projective. Hence, K is not PAC [FJ2, Thm. 10.17]. Since S is
empty, this implies that K is not PSC.

(h) Let p be a local prime of K. If K̂p/Kp is a separable extension, then it is also
a regular extension. It follows from [Ja3, Lemma 2.3] that Kp is existentially closed
in K̂p. In particular, if a variety V over Kp has a simple K̂p-rational point, then V
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also has a simple Kp-rational point. If K̂p/Kp is not separable, then char(K) > 0.
Nevertheless, Kp is Henselian. So, the implication “Vsimp(K̂p) 6= ∅ =⇒ Vsimp(Kp) 6= ∅”
is still valid.

Indeed, the function field F of V over Kp is a regular extension of Kp. Let t =
(t1, . . . , tr) be a separating transcendence basis for F/Kp, let y be a primitive element
for F/Kp(t), and let f ∈ Kp[t, Y ] be a monic irreducible polynomial such that f(t, y) =
0. Then ∂f

∂Y (t, y) 6= 0. The equation f(T,Y) = 0 defines a variety W over Kp which
is birationally equivalent to V . Thus Vsimp has a nonempty Zariski-open subset V0, W

has a nonempty Zariski-open subset W0 on which ∂f
∂Y does not vanish, and there exists

an isomorphism ϕ: V0 → W0 which is defined over Kp. As Vsimp(K̂p) 6= 0, the density
theorem 8.2(b) gives a point p̂ ∈ V0(K̂p). Then (â, b̂) = ϕ(p̂) ∈ W0(K̂p). In particular,
f(â, b̂) = 0 and ∂f

∂Y (â, b̂) 6= 0. Since Kp is p-dense in K̂p, we may approximate â by
a ∈ Kr

p . Then, we may use the Henselian property of K̂p in order to find b ∈ K̂p

such that f(a, b) = 0 and ∂f
∂Y (a, b) 6= 0. Thus, b is separable over Kp and therefore

belongs to Kp. It follows that (a, b) ∈ W0(Kp). The point p = ϕ−1(a, b) belongs then
to Vsimp(Kp).

Note that indeed, the assumption “K̂p/K is separable” does not appear in any of
the theorems of this work.

(i) Suppose that S is a finite set of local primes of K, let N = Ktot,S , and let Nins

be the maximal purely inseparable extension of N . The main theorem of [Po1] states:

(2.2) If V is a K̃-normal variety over Nins (i.e., V ×Kins K̃ is normal) and V has a
simple N̂ins,q-rational point for each q ∈ SNins , then V has an Nins-rational point.

One knows that every variety V over Nins is birationally equivalent over Nins to a
K̃-normal variety. Moreover, under this equivalence, simple N̂ins,q-rational points are
mapped onto simple N̂ins,q-rational points. Hence, by (2), Nins is PSC.

(j) In [GPR, §1.4], Green, Pop, and Roquette consider a global field K and a finite
set of local primes S of K. Let N = Ktot,S and let ON be the ring of all elements
a ∈ N which are q-integral for each q ∈ SN . For each p ∈ S let Ôp be the ring of
integers of K̂p. The Main Theorem of [GPR] implies that each affine variety W over
K satisfies the following local-global principle:

(2.3) If Wsimp(Ôp) 6= ∅ for each p ∈ S, then W (ON ) 6= ∅.
We claim that this result implies that N is PSC. Indeed, suppose that V is a variety

over N with a point aq ∈ Vsimp(Nq), for each q ∈ SN . Then V is already defined over
a finite subextension K ′ of N/K. For each p ∈ SK′ , let Op be the ring of p-integers
of K ′

p. Further, choose q ∈ SN over p and let ap = aq. By Proposition 8.2(b), we
may assume that V is affine and is embedded in An. Next choose c ∈ K× such that
cap ∈ On

p for each p ∈ SK′ . Multiplication with c gives an automorphism of An which
maps V onto an affine variety W over K ′ and ap onto the point cap ∈ Wsimp(Op). By
(2.3), applied to K ′ instead of to K, W (ON ) 6= ∅. Hence, applying c−1, we get that
V (N) 6= ∅. Conclude that N is PSC.

(k) Suppose again that K is a global field and that S is a finite set of ultra-metric
local primes of K. [JR2, Thm. 1.5 and Cor. 1.9] proves that for almost all σ ∈ G(K)e,
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each affine variety W which is defined over N = (Ks(σ)∩Ktot,S)ins satisfies (2.3). As
in (j), this implies that N is PSC. 2

Once a variety V over a PSC field N has a simple N -rational point, it has many
N -rational points:

Proposition 1.5. Let S be a set of local primes of a field K and let N be a
subextension of Ktot,S/K. Suppose that N is PSC. Let V be a variety over K such
that Vsimp(Kp) 6= ∅ for each p ∈ S. Then V (N) is Zariski-dense in V . In particular,
Vsimp(N) is not empty.

Proof. Let W be a nonempty Zariski-open subset of V . In particular, W itself
is a variety over K. By Proposition 8.2(b), Wsimp(Kp) 6= ∅ for each p ∈ S. Hence,
W (N) 6= ∅. 2

The following lemma reduces the check for PSC to curves, indeed to only one curve
out of each birationally equivalence class.

Lemma 1.6. Let S be a finite set of local primes of a field K and let N be a
subextension of Ktot,S/K. Suppose that each curve C over K is birationally equivalent
to a curve Γ over K that satisfies the

PSC Condition: If Γsimp(Kp) 6= ∅ for each p ∈ S, then Γ(N) is Zariski-dense in Γ.

Then N is PSC.

Proof. The proof splits into three parts.

Part A: Varieties over K. We prove that if W is an arbitrary affine variety over
K and Wsimp(Kp) 6= ∅ for each p ∈ S, then W (N) 6= ∅.

Indeed, for each p ∈ S choose ap ∈ Wsimp(Kp). Since all Kp are separable over K,
there exists an affine curve C on W over K which goes through each of the points
ap [JR2, Lemma 10.1]. By assumption, there exists a curve Γ which is birationally
equivalent to C over K and which satisfies the PSC-Condition. Then there exist
nonempty affine Zariski-open subsets Γ0 and C0 of Γsimp and Csimp respectively, and
there exists an isomorphism Γ0 → C0 over K. By the density theorem 8.2(b), we may
assume that for each p ∈ S we have ap ∈ C0(Kp). Hence, Γ0(Kp) 6= ∅. So, by the
PSC-condition, Γ0(N) 6= ∅. Hence C(N) 6= ∅. So, W (N) 6= ∅, as claimed.

Part B: Descent. Let U be an affine variety over N with a simple Nq-rational
point for each q ∈ SN . We prove that U(N) 6= ∅.

Indeed, U is already defined over a subextension K ′ of N/K of a finite degree d.
Choose σ1, . . . , σd ∈ G(K) whose restrictions to K ′ are the d K-embeddings of K ′

into Ks. Weil’s descent gives an affine variety W over K and a K ′-isomorphism
ϕ: W → ∏d

i=1 σiU [FJ2, Prop. 9.34]. Let p ∈ S and let 1 ≤ i ≤ d. Then N ⊆ Ktot,S ⊆
σ−1

i Kp, and therefore σ−1
i Kp is Nq for some q ∈ SN . Choose ai ∈ Usimp(σ−1

i Kp).
Then σiai ∈ (σiU)simp(Kp). Hence, ϕ−1(σ1a1, . . . , σdad) ∈ Wsimp(Kp). By Part A,
W (N) 6= ∅. Hence, U(N) 6= ∅.
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Part C: Conclusion of the proof. Consider an arbitrary variety V over N such
that Vsimp(Nq) 6= ∅ for each q ∈ SN . Let U be an open affine subset of V . By
Proposition 8.2(b), Usimp(Nq) 6= ∅ for each q ∈ SN . Hence, by Part B, U(N) 6= ∅ and
therefore V (N) 6= ∅. Conclude that N is PSC. 2

The local-global theorem for varieties that a PKC field satisfies gives a local-global
theorem for the corresponding Brauer groups.

Proposition 1.7. Let K be a field and let K be a family of separable algebraic field
extensions of K such that K is PKC. Then

(a) the natural map ι: Br(K) → ∏
K̄∈K Br(K̄) is injective.

(b) If G(K̄) is projective for each K̄ ∈ K, then G(K) is projective.

Proof of (a). Starting from a central simple K-algebra A, one may use the properties
of the Brauer-Severi variety associated with A (as stated in [Jac, §§3.5–3.8]) to prove
(a). We prefer however to use the notion of the reduced norm in order to give a more
elementary proof of (a).

We are using Br(K) to denote the Brauer group of K. Each nontrivial element of
Br(K) may be represented by a central division algebra D over K such that dimK D =
n2 and n > 1. Assume that for each K̄ ∈ K the algebra D ⊗K K̄ represents the
trivial element of Br(K̄). This means that there exists a K̄-algebra isomorphism
α: D ⊗K K̄ → Mn(K̄). Choose a K-basis {eij | 1 ≤ i, j ≤ n} for D and let Eij =
α(eij). Then {Eij | 1 ≤ i, j ≤ n} is a K̄-basis for Mn(K̄). Write each a ∈ D as∑n

i,j=1 aijeij with aij ∈ K. The matrix a = (aij)1≤i,j≤n ∈ Mn(K) then satisfies
α(a) =

∑n
i,j=1 aijEij = (λkl(a))1≤k,l≤n, where λkl are linearly independent linear

forms over K̄ in the n2 variables Xij . Let X = (Xij)1≤i,j≤n. By a theorem of Skolem
and Noether [Deu, p. 43, Satz 5], each automorphism of Mn(K̄) is inner. This implies
that p(X) = det(λkl(X)) is a polynomial of degree n over K which is independent of
K̄ and α. The element red.norm(a) = p(a) = det(α(a)) = det(λkl(a)) is the reduced
norm of a. It satisfies the formula red.norm(ab) = red.norm(a) · red.norm(b) for all
b ∈ D. In particular, if a ∈ D and a 6= 0, then there exists a′ ∈ D such that aa′ = 1.
So, red.norm(a) 6= 0.

The change of variables Ykl = λkl(X) maps p(X) onto det(Y), which is an absolutely
irreducible polynomial. Hence, p(X) is also absolutely irreducible. Let b be the matrix
in Mn(K̄) which has a zero entries everywhere except in the first n − 1 places along
the diagonal matrix. Then b is a simple zero of det(Y) = 0. It follows that also p(X)
has a simple K̄-rational zero. Since K is PKC, there exists a ∈ Mn(K) which is a
simple nontrivial zero of p(X) = 0. Then a =

∑n
i,j=1 aijeij is a nonzero element of D

whose reduced norm is 0. This contradiction proves that the map ι is injective.

Proof of (b). Let K ′ be a finite separable extension of K. Let K′ = {K̄K ′ | K̄ ∈ K}.
By [Ja2, Lemma 7.2], K ′ is PK′C. Since G(K̄) is projective, Br(K̄K ′) = 0 [Rib,
p. 261, Cor. 3.7]. Hence, by (a), Br(K ′) = 0. It follows from [Rib, p. 261] that G(K)
is projective. 2



Geyer, Jarden, PSC Galois Extensions of Hilbertian Fields 11

Remark 1.8. Part (b) of Proposition 1.7 generalizes the second part of Theorem
3.2 of [Po2], which is proved by different methods. 2

2. Ample divisors of curves

The theory of very ample divisors for smooth curves over algebraically closed fields
is well documented in various text books. Here we prove the existence of very ample
divisors for singular curves over arbitrary fields.

2.1. Points on curves versus prime divisors of function fields

Let K be a field. Consider the m-dimensional projective space Pm = Pm
K over a field

K. For each field extension L of K the points of Pm(L) are the equivalence classes
(p0:p1: · · · :pm) of (m + 1)-tuples of elements of L, not all zero, modulo multiplication
by elements of L×. We write K(p0: · · · :pm) for the field K(p0

pj
, p1

pj
, . . . , pm

pj
), where j is

chosen such that pj 6= 0.
Consider a projective curve Γ ⊂ Pm over K (which is, by our convention, absolutely

irreducible). Let F be the function field of Γ over K. Denote the genus of F/K
by g. Denote the set of all prime divisors of F/K by PrimDiv(F/K). For each
P ∈ PrimDiv(F/K) let vP be the normalized discrete valuation associated with P .
Also, let OP (resp., MP ) be the valuation ring (resp., its maximal ideal) of P . Then
choose a place ϕP : F → K̃ ∪ {∞} that represents P . Note that ϕP is determined by
P only up to conjugation over K. For each f ∈ OP write ϕP (f) also as f(P ).

Now choose a generic point x = (x0:x1: · · · :xm) for Γ over K with homogeneous
coordinates x0, x1, . . . , xm in F such that K(x0: · · · :xm) = F . For each prime divisor
P of F/K choose y ∈ F× such that xi

y ∈ OP for each i and xj

y /∈ MP for at least
one j (e.g., y = xj with vP (xj) = min(vP (x0), . . . , vP (xm)). Then the prime ideal
K[x0

y , . . . , xm

y ]∩MP of K[x0
y , . . . , xm

y ] gives a closed point p of Γ called the center of
P at Γ. The point (x0

y (P ): · · · :xm

y (P )) of Γ(K̃), with homogeneous coordinates xi

y (P ),
lies over p and we sometimes abuse notation and call it also the center of P at Γ
(although it is determined by P only up to K-conjugation). We will also say that P
lies over p.

Conversely, let p be a closed point of Γ. Denote the local ring of p in F by OΓ,p and
let MΓ,p be its maximal ideal. There are finitely many K-homomorphisms ϕp: OΓ,p →
K̃ with kernel MΓ,p, all conjugate over K. Nevertheless, we abuse notation and for
f ∈ OΓ,p we write ϕp(f) also as f(p) remembering that f(p) is determined by p only
up to K-conjugation. Next, extend ϕp to a K-place ϕ: F → K̃ ∪ {∞}. Let P be the
corresponding prime divisor of F/K that ϕ determines. Then P lies over p. That is,
OΓ,p ⊆ OP and OΓ,p ∩MP = MΓ,p.

There are only finitely many prime divisors P of F/K that lie over each point p of
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Γ. If p is simple1, then OΓ,p is a valuation ring and P is unique2. So, we identify p
in this case with P and write vp instead of vP .

2.2. Semilocal rings

Let O be a subring of F which contains K and with quotient field F . We say O is
a similocal ring of F/K if O has only finitely many maximal ideals, say Q1, . . . , Qn.
In this case O =

⋂n
i=1 OQi

.
Conversely, let O1, . . . , On be local rings of F that contain K. Write O =

⋂n
i=1 Oi

and suppose F is the quotient field of O. Denote the maximal ideal of Oi by Mi,
i = 1, . . . , n. Like every ring between K and F , the ring O is Noetherian. Indeed, let
A be a nonzero ideal of O and choose b ∈ A, b 6= 0. Then dimK O/Ob < ∞ [Ro1,
Thm. 1]. As A/Ob is a subspace of O/Ob, it has a finite basis, say a1+Ob, . . . , am+Ob.
It follows that A = Oa1 + · · · + Oam + Ob is finitely generated. Conclude that O is
Noetherian. Since the transcendence degree of F/K is 1, the dimension of O is at
most 1. That is, each nonzero prime ideal of O is maximal.

For each i between 1 and n consider the prime ideal Pi = Mi ∩ O of O, which, by
what we have just said, is maximal (but it is possible that Pi = Pj for i 6= j). Then,
O ⊆ ⋂n

i=1 OPi ⊆
⋂n

i=1 Oi = O. So, O =
⋂

i∈I OPi . Hence, by [Bou, p. 93, Cor.], the
Pi’s are all maximal ideals of O. Conclude that O is a semilocal ring of F/K.

Let S̄ be the set of all P ∈ PrimDiv(F/K) that lie over O, that is O ⊆ OP . By
[Ro1, Thm. 3], S̄ is also the set of all prime divisors of F/K that lie over at least one
of the rings Oi. Moreover, S̄ is finite [Ro1, Cor. 2]. Let Ō =

⋂
P∈S̄ OP . By [Lan,

p. 12, Prop. 4], Ō is the integral closure of O in F . It is a Dedekind domain with
finitely many maximal ideals (hence a principal ideal domain), namely M̄P = Ō∩MP ,
with P ∈ S̄ [FJ2, Prop. 2.12]. By [Ro1, p. 170, Thm. 1] dimK Ō/O < ∞. Let
C = {a ∈ O | aŌ ⊆ O} be the conductor of O in Ō. It is the largest ideal of O which
is also an ideal of Ō. In particular, C =

∏
P∈S̄ M̄kP

P for some nonnegative integers kP

(see also [Ro1, p. 171, Cor. 2]). It follows that

(1) if a ∈ O, x ∈ F , and vP (x− a) ≥ kP for each P ∈ S̄, then x ∈ O.

By [ZaS, p. 269, Cor.],

(2) kP > 0 if and only if the local ring of O at O ∩MP is not integrally closed.

We call c =
∑

P∈S̄ kP P the conductor divisor of O.
For each divisor a of F/K we consider the K-vector space

L(a) = LF/K(a) = {x ∈ F | div(x) + a ≥ 0}.
1Following Weil [Wei, p. 99] and Lang [Lan, p. 198] we call p simple if it satisfies the Jaco-

bian criterion. That is, we take an affine open neighborhood Γ0 ⊂ Am for p, let f1, . . . , fr be
generators for the ideal of all polynomials in K[X1, . . . , Xm] that vanish on Γ0 and demand that

rank

�
∂fi
∂Xj

(p)

�
= m − 1. If p is not simple, we call it singular. We denote the set of all singular

points of Γ by Γsing.
2Moreover, if Γ̃ = Γ ×K K̃ and p̃ is a point of Γ̃ that lies over p, then OΓ̃,p̃ is still a valuation

ring. So, one may also say that p is geometrically simple.
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A divisor a =
∑m

i=1 aiPi of F/K is O-smooth if none of the Pi’s is in S̄. In this case
we also consider the subspace LO(a) = LO/K(a) = L(a) ∩O. By (1) (with a = 0),

(3) L(a− c) ⊆ LO(a).

Indeed, if x ∈ L(a−c) and P ∈ S̄, then vP (a) = 0 and so vP (x) = vP (x)+vP (a) ≥ kP .
The Riemann-Roch theorem for Γ controls the dimension of LO(a):

(4) There exists a nonnegative integer genus(O/K) and for each O-smooth divisor
a of F/K there exists a nonnegative integer i(a) such that

(4a) dim(LO(a)) = deg(a) + 1− genus(O/K) + i(a) [Ro1, Thm. 7];

(4b) if deg(a) > 2g − 2 + deg(c), then dim(LO(a)) = deg(a) + 1 − genus(O/K)
[Ro1, Thm. 9].

2.3. The map associated with a Γ-smooth divisor

Let S be the (finite) set of singular points of Γ. Let S̄ be the set of all prime divisors
of F/K that lie over S. Let

O =
⋂

p∈S

OΓ,p, Ō =
⋂

P∈S̄

OP .

We call O the semilocal ring of singularities of Γ. If Γ is smooth, then O = F
and genus(F/K) = g is the usual genus of Γ (or of F/K) [Ro1, Thm. 8].

A Γ-smooth divisor is a formal sum a =
∑n

i=1 aipi, with pi simple points of Γ.
By our identification, it is also an O-smooth divisor. Suppose that n = dim(LO(a))−
1 ≥ 2. Choose a K-basis f0, . . . , fn for LO(a). Then K(f0 : · · · : fn) ⊆ F and
therefore f = (f0 : · · · : fn) generates an absolutely irreducible projective curve ∆ in
Pn over K (∆ is the closure of f in Pn). Moreover, the map x 7→ f defines a rational
map ψ: Γ → ∆. The map ψ is defined at a point p of Γ if there exists y ∈ F×

such that each fi

y belongs to OΓ,p and not all of them are in MΓ,p. In this case
f
y (p) =

(
f0
y (p): · · · : fn

y (p)
)

is a well defined point of ∆(K̃) which does not depend on
the choice of y but depends on the choice of the place ϕ over p up to K-conjugation.
So, the point q of ∆ which lies below f

y (p) is well defined and ψ(p) = q. In particular,
O∆,q ⊆ OΓ,p. We abuse notation and write in this case also ψ(p) = f

y (p). We add
the subscript a to ψ whenever we want to emphasize the dependence of ψ on a.

Another choice of the basis changes ∆ and ψ by a linear isomorphism of Pn. We say
that the map ψ: Γ → ∆ is associated with a. Let p be a point of Γ. We say that the
divisor a is very ample at p if ψ is biregular at p, i.e., O∆,q = OΓ,p. The divisor a
is very ample on Γ if it is very ample at each p ∈ Γ. That is, ψ is an isomorphism.

Lemma 2.1. Suppose that K is algebraically closed. Let a be a Γ-smooth divisor
and let p ∈ Γ(K). Then a is very ample at p in each of the following two cases:

(A) p is simple and deg(a) ≥ 2g + 1 + deg(c).

(B) p ∈ S and deg(a) ≥ 2g − 1 + 2 deg(c).
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Proof. Let ψ: Γ → ∆ be the rational map associated with a.

Case A: In this case OΓ,p is a valuation ring of F/K. We proceed along classical
lines.

Claim A1: ψ is defined at p and OΓ,p is the integral closure of O∆,ψ(p). Indeed,
let P ′ be a prime divisor of F/K which is not p. Since K is algebraically closed,
deg(p) = deg(P ′) = 1. Hence, by assumption, deg(a − c − p − P ′) ≥ 2g − 1. By
Riemann-Roch, L(a − c − p − P ′) is properly contained in both L(a − c − p) and
L(a − c − P ′). By definition, L(a − c − p) ∩ L(a − c − P ′) = L(a − c − p − P ′). As
both L(a − c − p) and L(a − c − P ′) are contained in L(a − c), (3) implies that they
are contained in LO(a). Moreover, both dim(L(a− c−p)) and dim(L(a− c−P ′)) are
greater than dim(L(a− c− p− P ′)) by 1.

So, we may choose a K-basis g0, . . . , gn for LO(a) such that gl ∈ L(a−c−P ′)rL(a−
c − p − P ′) and gl+1 ∈ L(a − c − p)rL(a − c − p − P ′) for some l between 0 and
n−1. In particular vp(gi) ≥ −vp(a) for i = 0, . . . , n, vp(gl) = −vp(a), and vp(gl+1) ≥
−vp(a) + 1. Similarly, vP ′(gi) ≥ −vP ′(a), for i = 0, . . . , n, vP ′(gl) ≥ −vP ′(a− c) + 1,
and vP ′(gl+1) = −vP ′(a− c).

It follows that gi

gl
∈ OΓ,p, i = 0, . . . , n. Also, gl

gl
= 1 /∈ MΓ,p. Hence, ψ can be defined

at p as ψ(p) = g
gl

(p). Let q = ψ(p). Since vP ′
(gl+1

gl

) ≤ −1, we have gl+1
gl

/∈ OP ′ . On
the other hand, g0

gl
, . . . , gn

gl
generate the coordinate ring of the affine open subset of ∆

where the lth coordinate is nonzero. Since q belongs to this set, gl+1
gl

∈ O∆,q. Hence,
O∆,q 6⊆ OP ′ .

Thus, OΓ,p is the only valuation ring of F that contains O∆,q. Conclude that OΓ,p

is the integral closure of O∆,q.

Claim A2: ψ is biregular at p. By Claim A1, OΓ,p is finitely generated as
an O∆,q-module [GeJ, Lemma 9.3]. Since K is algebraically closed, we have K =
O∆,q/M∆,q ⊆ OΓ,p/MΓ,p = K. Hence, OΓ,p = O∆,q + MΓ,p. If we find a prime
element t for MΓ,p in O∆,q, then t will belong to M∆,q. Hence, MΓ,p = tOΓ,p =
M∆,qOΓ,p and therefore OΓ,p = O∆,q + M∆,qOΓ,p. By Nakayama’s lemma [Mat1,
p. 11], this will imply that OΓ,p = O∆,q and we will be done.

To find t, observe that deg(a−c) > deg(a−c−p) > deg(a−c−2p) ≥ 2g−1. Hence,
by Riemann-Roch, dim(L(a − c)) = dim(L(a − c − p)) + 1 and dim(L(a − c − p)) =
dim(L(a− c− 2p)) + 1. So, by (3), LO(a) ⊇ L(a− c) ⊃ L(a− c− p) ⊃ L(a− c− 2p).

Choose a K-basis h0, . . . , hn for LO(a) such that hr ∈ L(a−c−p)rL(a−c−2p) and
hr+1 ∈ L(a− c)rL(a− c−p) for some r between 0 and n− 1. Then vp(hi) ≥ −vp(a)
for each i, vp(hr) = −vp(a) + 1, and vp(hr+1) = −vp(a).

The (n + 1)-tuple ( h0
hr+1

, . . . , hn

hr+1
) generates the coordinate ring of an affine open

neighborhood of ψ(p). In particular, t = hr

hr+1
belongs to O∆,q. By our choice,

vp(t) = 1, as desired.

Case B: As p is singular, we have to use special considerations.

Part B1: Lifting a basis of O/C2 to LO(a). The ideal C2 of O satisfies

dimK O/C2 ≤ dimK Ō/C2 = deg(2c) < ∞.
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Choose y0, . . . , yl ∈ O such that y0, . . . , yk modulo C2 form a K-basis for C/C2 and
y0, . . . , yl modulo C2 form a K-basis for O/C2.

Next we change the yi’s such that they will belong to LO(a). To do this let A be
the ring of adèles of F/K. Let Λ(a − 2c) be the vector space over K consisting of
all α ∈ A such that vP (αP ) + vP (a − 2c) ≥ 0 for all P ∈ PrimDiv(F/K). Since
deg(a−2c) ≥ 2g−1, the Riemann-Roch theorem implies that A = Λ(a−2c)+F [FJ2,
p. 20]. For each i let αi be the adèle defined by αi,P = yi if P ∈ S̄ and αi,P = 0 else.
Then there exist βi ∈ Λ(a − 2c) and zi ∈ F such that αi = βi + zi. If P ∈ S̄, then
vP (a) = 0 and vP (yi − zi) = vP (βi) ≥ vP (2c) = 2kP . Since yi ∈ O, (1) implies that
zi ∈ O. In particular, vP (zi) + vP (a) ≥ 0. Also,

(5) zi ≡ yi mod C2.

If P /∈ S̄, then zi = −βi,P and vP (c) = 0. Hence, vP (zi)+vP (a) = vP (βi)+vP (a−2c) ≥
0. Conclude that div(zi) + a ≥ 0 and that therefore zi ∈ LO(a).

Claim B2: In the notation of §2.2, kP > 0 for each P ∈ S̄. Indeed, by assump-
tion, each p ∈ S is singular. Since K is algebraically closed, OΓ,p is not integrally
closed. As the local ring of O at O∩MΓ,P is contained in OΓ,P , it is also not integrally
closed. So, by (2), kP > 0.

Part B3: Another application of Nakayama’s lemma. Observe that C, as an ideal
of the Noetherian ring O, is a finitely generated O-module. Moreover, by Claim B2,
C is contained in

⋂
q∈S(O∩MΓ,q), which is the Jacobson radical of O. By (5) and by

the choice of y0, . . . , yk, we have C =
∑k

i=0 Kzi + C2 =
∑k

i=0 Ozi + C2. Hence, by
Nakayama’s lemma,

(6) C =
k∑

i=0

Ozi.

The choice of y0, . . . , yl and (5) implies that

(7) O =
l∑

i=0

Kzi + C2.

Let R = K[z0, . . . , zl]. Then, by (7), O = R + C2 and therefore O = R + C. Suppose
by induction that O = R + Ck for some k ≥ 2. Then, by (6), C =

∑k
i=0(R + Ck)zi ⊆

R + Ck+1. Hence, O = R + C ⊆ R + R + Ck+1 = R + Ck+1 ⊆ O and therefore
O = R + Ck+1. Thus,

(8) O = R + Cr

for each r ≥ 1.
Consider the multiplicative subset U =

⋂
p′∈S(RrMΓ,p′) of R. The maximal ideals

of the quotient ring U−1R belong to the set {U−1R ∩ MΓ,p′ | p′ ∈ S} [Bou, p. 93,
Prop. 17]. In particular there are only finitely many of them. Hence, U−1R is a
semilocal ring (by §2.2). By [Ro1, Thm. 2], there exists r ≥ 2 such that U−1R
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contains all y ∈ F such that vP (y) ≥ r for all P ∈ S̄. Since kP > 0 for each P ∈ S̄
(Claim B2), Cr ⊆ U−1R. Since U ⊆ O×, (8) implies that O = U−1R. It follows that
RR∩MΓ,p = OΓ,p.

Part B4: Conclusion of the proof. By (5) and by the choice of y0, . . . , yl, the
elements z0, . . . , zl of LO(a) are linearly independent over K modulo C2. Extend
z0, . . . , zl to a K-basis z0, . . . , zn of LO(a). Then assume without loss that z0, . . . , zn

define ψ.
Next observe by Claim B2 that f(p) = 0 for each f ∈ C. Hence, by (7), there exists

j between k + 1 and l such that zj(p) 6= 0. Also, for each i, zi ∈ O ⊆ OΓ,p. Hence, ψ
is defined at p and q = ψ(p) = (z0(p) : · · · : zn(p)). Let R′ = K[z0, . . . , zn]. By Part
B3, O∆,q = R′R′∩MΓ,p

= OΓ,p. Conclude that ψ is biregular at p. 2

The next result will enable us to descend from K̃ to K.

Lemma 2.2. Let K ′ be a field extension of K which is linearly disjoint from F , let
F ′ = FK ′, and let Γ′ = Γ ×K K ′. Consider a finite subset T of Γ and let T′ be the
set of all points of Γ′ that lie over T. Let R =

⋂
p∈T OΓ,p and let R′ =

⋂
p′∈T′ OΓ′,p′ .

Then R′ = RK ′ and R = F ∩R′. Moreover, for each p′ ∈ T′, OΓ′,p′ is the local ring
of R′ at R′ ∩MΓ′,p′ .

Proof. If p ∈ T, p′ ∈ T′, and p′ lies over p, then OΓ,p ⊆ OΓ′,p′ . Hence, with
A′ = RK ′, we have A′ ⊆ R′. Since Γ is projective, T is contained in an affine open
subset Γ0 of Γ. Let A0 be the coordinate ring of Γ0. Then A0 ⊆

⋂
p∈T OΓ,p = R.

Moreover, A′0 = A0K
′ is the coordinate ring of Γ′0 = Γ0 ×K K ′, which is an affine

open neighborhood in Γ′ of each p′ ∈ T′. In particular, OΓ′,p′ is the local ring of A′0
at A′0 ∩MΓ′,p′ . Since A′0 ⊆ A′, this implies that OΓ′,p′ = A′A′∩MΓ′,p′

.
By [Ro1, p. 181, Thm. 11], A′ is a semilocal ring of F ′/K ′. Moreover, the prime

divisors of F ′/K ′ with nonzero centers in A′ are extensions of the prime divisors of
F/K with nonzero centers at R. Hence, by the second paragraph of §2.2, as p′ ranges
over T′, A′∩MΓ′,p′ ranges over all maximal ideals of A′. It follows from the preceding
paragraph that

A′ =
⋂

p′∈T′
A′A′∩MΓ′,p′

=
⋂

p′∈T′
OΓ′,p′ = R′.

Finally, R = F ∩R′ follows from [Ro1, Thm. 11]. 2

Lemma 2.3. Let a be a Γ-smooth divisor of F/K. Let K ′ be an extension of K
which is linearly disjoint from F , let F ′ = FK ′, and let Γ′ = Γ×K K ′. Identify a as
a Γ′-smooth divisor a′ of FK ′/K ′. Denote the semilocal ring of singularities of Γ′ in
F ′ by O′. Then

(a) O′ = OK ′ and F ∩O′ = O;

(b) each K-basis of LO(a) is also a K ′-basis of LO′(a′);

(c) ψa′(Γ′) is obtained from ψa(Γ) by extension of scalars from K to K ′;

(d) a is very ample if and only if a′ is very ample; and
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(e) genus(O′/K ′) = genus(O/K).

Proof of (a). Let S′ be the set of all points of Γ′ that lie over points of S. By
definition O′ =

⋂
p′∈S′ OΓ′,p′ . By Lemma 2.2, O′ = OK ′ and O = F ∩O′.

Proof of (b). Suppose that f0, . . . , fn form a K-basis of LO(a). By the linear
disjointness, f0, . . . , fn are linearly independent over K ′. So, it suffices to prove that
LO′(a′) = LO(a)K ′. Indeed, it suffices to prove that each g′ ∈ LO′(a′) belongs to
LO(a)K ′. To that end choose a basis {wi | i ∈ I} for K ′/K. By the linear disjointness,
the wi are linearly independent over F . As g′ ∈ O′ and O′ = OK ′, we can write
g′ =

∑
i∈I giwi, with gi ∈ O and almost all of them are 0. It suffices to prove that all

gi are in LO(a).
Consider therefore a Γ-smooth prime divisor p of F/K. Our convention identifies p

with a smooth point of Γ such that OΓ,p = Op. Hence, by Lemma 2.2, OpK ′ is the
intersection of all valuation rings Op′ of F ′, where p′ ranges over all prime divisors of
F ′/K ′ which lie over p. Let πp be an element of F such that vp(πp) = 1. Since p is
simple, vp′(πp) = 1 for each p′ as above and np = vp(a) = vp′(a′). By assumption,
vp′(g′)+np ≥ 0. Hence, vp′(π

np
p g′) ≥ 0 for all p′ over p. So,

∑
i∈I π

np
p giwi = π

np
p g′ ∈

OpK ′. It follows that π
np
p gi ∈ Op and therefore vp(gi) + vp(a) ≥ 0 for all i ∈ I. Since

a is Γ-smooth, this implies that the gi are indeed in LO(a).

Proof of (c). Apply (b).

Proof of (d). Let p be a point of Γ and let p′ be a point of Γ′ over p. By (c), ψa is
defined at p if and only if ψa′ is defined at p′. So, assume that this is the case. Let
q = ψa(p) and let q′ = ψa′(p′). By assumption, O∆,q ⊆ OΓ,p and O∆′,q′ ⊆ OΓ′,p′ .
Also, OΓ,p ⊆ OΓ′,p′ and O∆,q ⊆ O∆′,q′ .

Suppose first that ψ′ is very ample at p′. Then O∆′,q′ = OΓ′,p′ . By [Lan, p. 92],
F ∩ O∆′,q′ = O∆,q. Hence, O∆,q ⊆ OΓ,p ⊆ F ∩ OΓ′,p′ = F ∩ O∆′,q′ = O∆,q and
therefore O∆,q = OΓ,p. Conclude that ψa is very ample at p.

Conversely, suppose that ψa is very ample at p, i.e., OΓ,p = O∆,q. Then, OΓ,pK ′ =
O∆,qK ′. By Lemma 2.2, OΓ′,p′ (resp., O∆′,q′) is the local ring of OΓ,pK ′ (resp.,
O∆,qK ′) at OΓ,pK ′ ∩MΓ′,p′ (resp., O∆,qK ′ ∩M∆′,p′). Since the intersections are the
same, so are the corresponding local rings. Conclude that ψ′ is very ample at p′.

Proof of (e). (See also [Ro1, Thm. 11].) Let c (resp., c′) be the conductor of O
(resp., O′). Take a positive Γ-smooth divisor a of F/K such that

deg(a) > max
(
2genus(F/K)− 2 + deg(c), 2genus(F ′/K ′)− 2 + deg(c′)

)
.

By (4b), dimK LO(a) = deg(a) + 1− genus(O/K) and dimK′ LO′(a′) = deg(a′) + 1−
genus(O′/K ′). By (b), dimK LO(a) = dimK′ LO′(a′). Also, deg(a) = deg(a′). Hence,
genus(O′/K ′) = genus(O/K). 2

Proposition 2.4. Let Γ be a projective curve over a field K. Then there is a
positive integer n0 such that each Γ-smooth divisor a with deg(a) ≥ n0 is very ample
with respect to Γ.
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Proof. Let Γ̃ = Γ ×K K̃, let c̃ be the conductor of Γ̃, and let g̃ = genus(Γ̃). We
claim that n0 = max{2g̃ + 1 + deg(c̃), 2g̃− 1 + 2 deg(c̃)} satisfies the conclusion of the
proposition.

Indeed, let a be a Γ-smooth divisor with deg(a) ≥ n0. Let ã be the extension of a to
a Γ̃-smooth divisor. Observe that deg(ã) = deg(a). Denote the ring of singularities of
Γ̃ by Õ. Choose a K-basis f0, . . . , fn for LO(a) and let ψa be the associated rational
map of Γ. Since F is a regular extension of K, it is linearly disjoint from K̃ over
K. So, by Lemma 2.3, f0, . . . , fn is also a K̃-basis of LÕ(ã). Hence, the associated
rational map ψã of Γ̃ is the extension of ψa. By Lemma 2.1, ã is very ample on Γ̃.
Hence, by Lemma 2.3, a is very ample on Γ. 2

Example 2.5. We show that the lower bound given in Lemma 2.1(b) is optimal.
Let K be an algebraically closed field and let t be a transcendental element over K.

For an integer n ≥ 2 consider the rings S = K[t] and R = K[tn, . . . , t2n−1]. Thus R
consists of all sums a0 +

∑∞
i=n ait

i, where ai ∈ K and almost all of them are 0. Let
Γ0 = Spec(R).

Observe that tnS ⊆ R. Hence, S is the integral closure of R in K(t). Let p0 = tS
and q0 = tnS. Then q0 = p0 ∩R ∈ Γ0 and Sp0 is the integral closure of Rq0 . Since t
is in Sp0 but not in Rq0 , the latter ring is not integrally closed.

If q ∈ Γ0 and q 6= q0, choose p ∈ Spec(S) above q. Since tn ∈ Rrq, we have
t = tn+1

tn ∈ Rq. Hence, Rq = Sp is integrally closed. In other words, q is simple.
Let O = Rq0 and let Ō = Sp0 . Then O is a local ring and Ō is its integral closure.

Moreover, tnŌ is the conductor of O in Ō. Also, Ō/tnŌ = S/tnS has 1, t, . . . , tn−1 as
a K-basis.

By [Ro1, p. 174, Thm. 5], there exists a projective curve Γ whose function field is
K(t) and whose ring of singularities is O. In particular, Γ is birationally equivalent
to A1 and has genus 0. (Note that Γ is a projective completion of the affine curve
Γ0 which has a natural embedding in An.) If we denote the zero divisor of t by P0,
we find by the preceding paragraph that c = nP0 is the conductor divisor of Γ and
that deg(c) = n. Lemma 2.1 therefore asserts that if a is a divisor of K(t)/K which
is relatively prime to P0 and deg(a) ≥ 2n − 1, then a is very ample on Γ. We show
below that this is not the case any more if deg(a) = 2n− 2.

To this end denote the pole divisor of t by ∞. Then a = (2n − 2)∞ is a Γ-smooth
divisor of degree 2n− 2. If f ∈ LO(a), then f ∈ O and div(f) + a ≥ 0. In particular,
f has no poles except ∞. Hence, f ∈ S ∩ O = R. Moreover, deg(f) ≤ 2n − 2.
Conversely, the two latter conditions suffice for an f ∈ K(t) to belong to LO(a).
Hence, 1, tn, tn+1, . . . , t2n−2 is a basis of LO(a). Let ψ be the rational map of Γ into
Pn−1 defined by this basis and let ∆ = ψ(Γ). We claim that ψ is not an isomorphism.
More precisely, ψ is not biregular at q0.

Indeed, let r0 = ψ(q0). Since 2n−1 is not a linear combination of n, n+1, . . . , 2n−2
with non-negative integral coefficients, t2n−1 ∈ RrK[tn, . . . , t2n−2]. Hence, t2n−1 is
in OΓ,q0 = O but not in O∆,r0 . So, the latter local ring is a proper subring of the
former one, which proves our claim.

One observes directly that for m ≥ 2n− 1, the Γ-smooth divisor m∞ is very ample
at P0, as Lemma 2.1 asserts. 2
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3. Iteration of projections from points

Consider a set of m + 1 linearly independent linear forms

(1) li(X) =
n∑

j=0

aijXj , i = 0, . . . , m,

with coefficients aij in a field K. Consider the linear variety L in Pn of dimension
n−m− 1 defined by the following system of equations:

(2)
n∑

j=0

aijXj = 0, i = 0, . . . ,m.

Let A = (aij) be the matrix of coefficients. Let π = πA:PnrL → Pm be the morphism

(3) π(x0:x1: · · · :xn) = (l0(x):l1(x): · · · :lm(x)).

If we abuse notation and write x also for the (n + 1)-tuple (x0, x1, . . . , xn), we may
rewrite (3) as π(x) = Axt, where the exponent t is the transpose operation of matrices.
The morphism π is uniquely defined by L up to a linear isomorphism of Pm. Hence,
as far as geometric properties are concerned, π depends only on L. So, we abuse
notation, denote π also by πL, and call πL the projection from L. For each closed
subvariety V of Pn over K which is disjoint from L, the restriction πL,V of πL to V is
a finite morphism onto a closed subvariety V ′ of Pm [Mum, p. 174]. In particular, if
V is linear, then so is V ′ and πL,V : V → V ′ is an isomorphism.

Denote the space of r × s matrices by Mr,s. It is naturally isomorphic to Ars. If
r ≤ s, let M∗

r,s be the set of all matrices in Mr,s of rank r, i.e., with independent rows.
Thus M∗

r,s is a nonempty Zariski-open subset of Mr,s.
In particular, A ∈ M∗

m+1,n+1(K) acts on Kn+1 by multiplication from the left and
gives a surjective map onto Km+1. Similarly, each B ∈ M∗

l+1,m+1 gives a surjective
map Km+1 → Kl+1. Hence, C = BA gives a surjective map Kn+1 → Kl+1. So,
C ∈ M∗

l+1,n+1. By definition, πC = πB ◦ (πA|PnrL′), where L′ is the linear variety of
Pn defined by Cxt = 0.

Note that the map µl,m,n: M∗
l+1,m+1(K)×M∗

m+1,n+1(K) → M∗
l+1,n+1(K) defined by

µl,m,n(B, A) = BA is surjective. Indeed, denote the unit (resp., zero) matrix in Mr,r

(resp., in Mr,s) by Ir (resp., Or,s) and let C ∈ M∗
l+1,n+1. Let also D be an arbitrary

matrix in Mm−l,n+1. Then

( Il+1 Ol+1,m−l )
(

C
D

)
= C.

Moreover, rank(Il+1 Ol+1,m−l) = l + 1 and we may choose D such that rank
(

C
D

)
=

m + 1.
In particular, for each k ≥ 1 let M∗

k = M∗
k,k+1 be the Zariski-open subset of Mk,k+1

that consists of all matrices of rank k. Let M = M∗
2 ×M∗

3 × · · · ×M∗
n and define a

morphism µ:M→ M2,n+1 by multiplication:

µ(A2, A3, . . . , An) = A2A3 · · ·An.
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Since multiplication of matrices is associative, µ maps M(K) onto M∗
2,n+1(K).

If A = (aij)0≤i≤n−1, 0≤j≤n ∈ M∗
n, then L becomes a point o whose homoge-

neous coordinates can be obtained by solving (2) according to Cramer’s rule. The
map ϕn: M∗

n → Pn, given by ϕn(A) = o, is a morphism. Observe that a point
(a0:a1: · · · :an) ∈ Pn(K) with, say, a0 6= 0 is the unique solution of the system of
equations a0Xi − aiX0 = 0, i = 1, . . . , n. Hence, ϕn maps M∗

n(K) onto Pn(K). Let

(4) P = P2 × · · · × Pn, ϕ = ϕ2 × · · · × ϕn:M→ P.

Then ϕ is a morphism that maps M(K) onto P(K).

4. Stabilizing elements

By a function field of one variable over K we mean a finitely generated regular
extension F of K of transcendence degree 1. Thus F has a transcendental element t
over K such that F/K(t) is a finite separable extension. Let F̂ be the Galois closure
of F/K(t). We say that t symmetrically stabilizes F/K if G(F̂ K̃/K̃(t)) ∼= Sd,
where d = [F : K(t)]. In this case, G(F̂ K̃/K̃(t)) ∼= G(F̂ /K(t)) [FJ2, Lemma 16.40]
and therefore F̂ /K is a regular extension.

Given a curve Γ over K, we denote the curve Γ×K K̃ obtained from Γ by extending
the field of constants to K̃ by Γ̃. If the function field of Γ is F , then the function field
of Γ̃ is FK̃. Let p̃ be a point of Γ̃. Then, for all large n, dimK̃(Mn

Γ̃,p̃
/Mn+1

Γ̃,p̃
) is a fixed

positive integer, called the multiplicity of p̃. See [Ful, p. 7, Thm. 2] for the case
where Γ̃ is a plane curve. The general case follows from the definition of multiplicity
of a prime ideal of an arbitrary Noetherian local ring [Mat2, p. 108]. We say that p̃ is
a cusp of Γ̃ if it is singular and if OΓ̃,p̃ is contained in a unique valuation ring of FK̃.
We say that Γ is a cusp curve if

(1a) the only singular points of Γ̃ are cusps; and

(1b) Γ̃ has at least one cusp.

We say that Γ is a special cusp curve if there exists an odd prime number q ≥
genus(F/K) + 1 such that

(2a) the only singular points of Γ̃ are cusps of multiplicity at most q; and

(2b) Γ̃ has at least one cusp of multiplicity q.

Suppose now that Γ is a plane curve. A point p̃ of Γ̃ is a node if Γ̃ has two simple
tangents at p̃ [Ful, p. 66]. In particular, p̃ has multiplicity 2 on Γ̃. We say that Γ
is a node curve if the singular points of Γ̃ are nodes. We say that Γ is a cusp-
node curve if it satisfies (1), except that in addition to cusps we allow also nodes as
singularities for Γ̃. We say that Γ is a special cusp-node curve if it satisfies (2),
where in addition to cusps, we allow also nodes.



Geyer, Jarden, PSC Galois Extensions of Hilbertian Fields 21

Suppose again that Γ is a curve in Pn with a generic point y = (y0:y1: · · · :yn) over
K with y0, y1, . . . , yn ∈ F . A strange point of Γ̃ is a point of Pn through which
infinitely many tangents to Γ̃ pass.

Let p be a simple point of Γ̃. Following [GeJ, p. 360], we say that p is an inflection
point of Γ̃ if

rank(y(p) y′(p) y[2](p)) = 2,

where we now consider y, y′, and y[2] as columns of height n + 1, and y′ and y[2] are
the first and the second derivatives of y, respectively, à la F. K. Schmidt [GeJ, §2]. In
the case n = 2, this definition agrees with the classical one [GeJ, Lemma 4.1].

Finally, we say that Γ is an ordinary curve if Γ̃ has only finitely many inflection
points, finitely many double tangents, and no strange points.

Lemma 4.1. Let Γ be a projective ordinary node plane curve over a field K. Let
F be the function field of Γ and let y0, y1, y2 be elements of F such that (y0:y1:y2) is
a generic point of Γ over K. Then there is a nonempty Zariski-open subset U of P2

such that if o ∈ U(K) and (x0:x1) = πo(y0:y1:y2), then x0
x1

symmetrically stabilizes
F/K. Here πo is the projection from o defined in §3.

Proof. Let L be the set of all double tangents of Γ̃, tangents at inflection points,
lines through two distinct singular points, and tangents that pass through a singular
point of Γ̃. By assumption, L is a finite set. Let A be the union of Γ̃ with all lines in
L. Then U = P2rA is a nonempty Zariski-open subset of P2.

Consider now o ∈ U(K). Let n = deg(Γ). By Bezout’s theorem (see also [FJ1,
Lemma 3.3]), finitely many lines in P2 through o intersect Γ̃ at exactly n − 1 points
and all others intersect Γ̃ by exactly n points. (Although [FJ1, Lemma 3.3] is stated
only in characteristic 0, its proof applies almost verbatim to our case.) The proof of
[FJ1, Lemma 2.1] implies now that if (x0:x1) = πo(y0:y1:y2), then x0

x1
symmetrically

stabilizes F/K. 2

In the following two lemmas we use the notation of §3.

Lemma 4.2. Let K be an infinite field and let n ≥ 2 be an integer. Consider
a projective curve ∆ in Pn over K with a function field F . Let y0, y1, . . . , yn be
elements of F such that y = (y0:y1: · · · :yn) is a generic point of ∆ over K and F =
K(y0:y1: · · · :yn). Suppose that

(a) ∆ is an ordinary curve;

(b) ∆̃ is contained in no hyperplane of P̃n;

(c) if n ≥ 3, then ∆ is a smooth curve or a special cusp curve; and

(d) if n = 2, then ∆ is a node curve or a special cusp-node curve.

Then there exists a nonempty Zariski-open subset Ui of Pi, i = 2, 3, . . . , n, such that
with U = U2 × U3 × · · · × Un and for each A ∈ ϕ−1(U(K)) and with µ(A) =

(
b
c

)
, the

element t =
∑n

i=0 biyi/
∑n

i=0 ciyi symmetrically stabilizes F/K.
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Proof. Suppose first that n = 2. Lemma 4.1, in case ∆ is a node curve, and [Neu,
Prop. 2.12], in case ∆ is a cusp-node curve, gives a nonempty Zariski-open subset U2 of
P2 such that if o ∈ U2(K) and (x0:x1) = πo(y0:y1:y2), then x0

x1
symmetrically stabilizes

F/K. Let therefore o ∈ U2(K) and let A =
(

b0 b1 b2
c0 c1 c2

) ∈ M∗
2 (K) be a matrix such that o

is the unique solution of the system of two equations:
∑2

j=0 bjXj = 0,
∑2

j=0 cjXj = 0.
Then πo(y0:y1:y2) =

(∑2
j=0 bjyj :

∑2
j=0 cjyj

)
. Hence,

∑2
j=0 bjyj/

∑2
j=0 cjyj symmet-

rically stabilizes F/K.
Assume therefore that n ≥ 3. By (b), ∆̃ is contained in no hyperplane. Use [Neu,

Lemma 2.35] to find a nonempty Zariski-open subset Un of Pn such that for each
o ∈ Un(K) the projection πo:Pnr{o} → Pn−1 maps ∆ onto a curve Γ with the
following properties:

(3a) Γ is an ordinary curve.

(3b) If n ≥ 4 and ∆ is smooth, then so is Γ.

(3c) If n ≥ 4 and ∆ is a special cusp curve, then so is Γ.

(3d) If n = 3 and ∆ is smooth, then Γ is a node curve.

(3e) If n = 3 and ∆ is a special cusp curve, then Γ is a special cusp-node curve.

Consider o ∈ Un(K). Suppose that o = ϕn(An) with An = (aij) ∈ M∗
n(K). Then Γ

is generated over K by z = (z0:z1: · · · :zn−1), where zi =
∑n

j=0 aijyj , i = 0, . . . , n− 1.

Claim: Γ̃ is contained in no hyperplane of P̃n−1. Indeed, if Γ̃ were contained in a
hyperplane, then there would exist c0, . . . , cn−1 ∈ K̃ not all zero such that

∑n−1
i=0 cizi =

0. Thus,
∑n

j=0

(∑n−1
i=0 ciaij

)
yj = 0. Since ∆̃ is contained in no hyperplane of P̃n,

the elements y0, y1, . . . , yn are linearly independent over K̃. Hence,
∑n−1

i=0 ciaij = 0,
j = 0, . . . , n. But this means that rank(An) < n. This contradiction to the assumption
that An ∈ M∗

n(K) proves our claim.

End of proof: An induction hypothesis gives for each i between 0 and n − 1 a
nonempty Zariski-open subset Ui of Pi such that if Ai ∈ Mi(K) and ϕi(Ai) ∈ Ui(K),
then, with

(
b
c

)
= A2A3 · · ·An−1, the element

(4) t =
∑n−1

i=0 bizi∑n−1
i=0 cizi

symmetrically stabilizes F/K.
Let U = U2 ×U3× · · · ×Un. Consider a point A = (A2, . . . , An) of M(K) such that

ϕ(A) ∈ U(K). Then An = (aij) ∈ M∗
n(K) and o = ϕn(An) ∈ Un(K). Hence, πo sat-

isfies (3) and the Claim. Use the notation of the Claim and substitute zi =
∑n

j=0 aijyj

in (4) to get a new presentation of t: t =
∑n

j=0 b′jyj/
∑n

j=0 c′jyj , where
(
b′

c′
)

=
(
b
c

)
An.

Thus, µ(A) = A2 · · ·An−1An =
(
b′

c′
)
, and the induction step is complete. 2
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Remark 4.3. The Veronese curve. Consider the projective line P1 with a generic
point (x0:x1) over a field K. The Veronese map of degree n is an isomorphism of
P1 onto a smooth projective curve Vn in Pn with generic point (xn

0 :xn−1
0 x1: · · · :xn

1 )
[Sha. p. 40] which can also be written as (1:t: · · · :tn) where t = x1

x0
. Since 1, t1, . . . , t

n

are linearly independent over K, the Veronese curve Vn is contained in no hyperplane
of Pn.

If char(K) 6= 2, then V2 is an ordinary curve. But if char(K) = 2, then (0:1:0) is a
strange point for V2. So, we rather look at V3. 2

Lemma 4.4. V3 is an ordinary curve.

Proof. In the notation of Remark 4.3, t = (1:t:t2:t3) is a generic point of V3 over
K. One checks that the following homogeneous equations define V3 in P3:

(5)

Y1Y2 − Y0Y3 = 0

Y 2
1 − Y0Y2 = 0

Y 2
2 − Y1Y3 = 0

The curve V3 has a unique infinite point ∞ = (0:0:0:1). Each finite point has the form
a = (1:a:a2:a3). Computing the partial derivatives of the left hand sides of (5) one
finds that the following system of linear equations defines the tangent Ta to V3 at a:

(6)

−a3Y0 + a2Y1 + aY2 − Y3 = 0

−a2Y0 + 2aY1 − Y2 = 0

− a3Y1 + 2a2Y2 − aY3 = 0

Of course, the third equation of (6) is redundant. If we take another point b =
(1:b:b2:b3) on V3(K̃) with b 6= a, then Ta and Tb do not intersect. Indeed,

∣∣∣∣∣∣∣

−a3 a2 a −1
−a2 2a −1 0
−b3 b2 b −1
−b2 2b −1 0

∣∣∣∣∣∣∣
= (a− b)4 6= 0.

Similarly one computes the equation of T∞ to be given by the equations Y0 = 0 and
Y1 = 0. One observes that T∞ does not intersect Ta. It follows that V3 has no double
tangents nor there exists a strange point for V3.

Finally we prove that the point o = (1:0:0:0) of V3 is not an inflection point.
Indeed, t is a uniformizing parameter at o. Rule (1f) of [GeJ, §2] says that (tj)[i] =(

j
i

)
tj−i for each j ≥ i. Hence,

(t t′ t[2]) =




1 0 0
t 1 0
t2 2t 1
t3 3t2 3t



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In particular,

(
t(o) t′(o) t[2](o)

)
=




1 0 0
0 1 0
0 0 1
0 0 0




is a matrix of rank 3. Hence, o is not an inflection point of V3. Since the set of
inflection points is Zariski-closed in V3, this means that V3 has only finitely many
inflection points. Conclude that V3 is an ordinary curve. 2

Lemma 4.5. Let F be a function field of one variable over an infinite field K. Let
Γ be a projective ordinary model for F/K which is either a smooth curve or a special
cusp curve. Let O be the ring of singularities of Γ. Then F/K has a positive divisor a0

which is O-smooth such that the following statement holds for each O-smooth divisor
a ≥ a0:

There exists a basis y0, y1, . . . , yn for the linear space LO(a) and there exists a
nonempty Zariski-open subset Ui of Pi, i = 2, 3, . . . , n such that with U = U2 ×
U3 × · · · × Un, for each A ∈ ϕ−1(U(K)), and with µ(A) =

(
b
c

)
, the element

t =
∑n

i=0 biyi/
∑n

i=0 ciyi symmetrically stabilizes F/K.

Proof. If Γ is a line, use Remark 4.3 and Lemma 4.4 to replace it by V3 (or by V2

if char(K) 6= 2). Thus, in any case, we may embed Γ in Pm for some m ≥ 2 such that
Γ is contained in no hyperplane of Pm. Let x = (x0:x1: · · · :xm) be a generic point
for Γ with x0, x1, . . . , xm ∈ F such that F = K(x). Then x0, x1, . . . , xm are linearly
independent over K.

Use the notation of §2. By the weak approximation theorem there exists u ∈ F such
that vP (u) ≥ kP − min0≤i≤m vP (xi) for each P ∈ PrimDiv(F/K) which lies over a
singular point of Γ and where kP satisfies (1) of §2. Then replace xi by uxi, if necessary,
to assume that xi ∈ O, i = 0, 1, . . . ,m. In particular, div∞(xi) is relatively prime to
the conductor c of O, i = 0, 1, . . . , m. Let n0 be the positive integer that appears in
Proposition 2.4. Then a0 =

∑m
i=0 n0div∞(xi) is a positive O-smooth divisor of F/K

with deg(a0) ≥ n0.
Let a be a divisor of F/K such that a ≥ a0. Let yi = xi, i = 0, 1, . . . ,m.

Then div(yi) + a ≥ −div∞(xi) + n0div∞(xi) ≥ 0 and therefore yi ∈ LO(a). Since
y0, y1, . . . , ym are linearly independent over K, they extend to a basis y0, y1, . . . , yn

of LO(a). By Proposition 2.4, a is very ample on Γ. Thus, the map ψ associated
with a is an isomorphism of Γ onto the projective curve ∆ generated over K in Pn by
y = (y0:y1: · · · :yn). In particular, if Γ is smooth, so is ∆; if Γ is a special cusp curve,
so is ∆. Since y0, y1, . . . , yn are linearly independent over K and F/K is regular, ∆̃ is
contained in no hyperplane of P̃n.

Consider now the linear variety L in Pn defined by the equations Yi = 0, i =
0, 1, . . . , m. The projection πL:PnrL → Pm maps each point q = (q0:q1: · · · :qn) of
(PnrL)(K̃) onto the point (q0: · · · :qm) of Pm(K̃). If q ∈ ∆(K̃), then q = ψ(p), with
p = (p0: · · · :pm) ∈ Γ(K̃). In particular pi 6= 0 for at least one i and (q0: · · · :qm) =
(p0: · · · :pm). Thus, πL projects ∆ isomorphically onto the ordinary curve Γ. By [Neu,
Lemma 2.29], ∆ is an ordinary curve. Note that [Neu, Lemma 2.29] is actually stated
only in the case where L is a point. In the general case, πL can be factored into
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successive projections, first onto the first n coordinates, then onto the first n − 1
coordinates, and so on. So, we may apply [Neu, Lemma 2.29] n−m times.

With this, ∆ satisfies conditions (a), (b), (c), and (d) of Lemma 4.2. So, Lemma 4.2
supplies the Zariski-open subsets Ui of Pi with the desired properties. 2

5. Local existence theorem

Let Γ be a projective curve over a field K with a function field F . In [Ro2], Maxwell
Rosenlicht constructs an algebraic group JΓ over K, known as the generalized Jaco-
bian variety of Γ, which coincides with the usual Jacobian variety of Γ if Γ is smooth.
As in the latter case, there is an intimate connection between divisors of F/K and the
group JΓ(K). We survey this connection as well as the properties of JΓ that we need
in the proof of the local existence theorem. In this survey we use the terminology of
§2.

Let O be a semilocal ring of F/K which is contained in the ring of singularities of
Γ in F . A priori, the algebraic group that Rosenlicht constructs depends on O (and
not only on Γ). So, we denote it by JO or also by J until we change O. Rosenlicht’s
construction depends on the following assumption:

(1) Γ(K) is infinite.

Let h = genus(O/K). If h = 0, then J is a point [Ro2, p. 519]. We therefore assume
throughout that h > 0.

Choose a point o ∈ Γsimp(K). Then J = JO has the following properties:

(2a) J is a commutative group variety over K of dimension h [Ro2, Thm. 7].

(2b) There is a morphism ϕ: Γsimp → J over K such that ϕ(o) is the zero point of
J(K) [Ro2, Thm. 7].

(2c) For each extension L of K which is linearly disjoint from F let DivO(FL/L)
(resp., DivO,0(FL/L) ) be the group of all OL-smooth divisors (resp., divisors
of degree 0) of FL/L. Then ϕ: Γsimp(K̃) → J(K̃) extends to an epimorphism
ϕ̃: DivO(FK̃/K̃) → J(K̃) by the rule

ϕ̃
( m∑

i=1

nipi

)
=

m∑

i=1

niϕ(pi),

where the sum on the right hand side is addition on the group variety.

(2d) Symmetric products: Consider the direct product Γh
simp of h copies of Γsimp.

It is a variety over K of dimension h. The symmetric group Sh acts on Γh
simp by

permuting the coordinates. The factor variety Γ(h) = Γh
simp/Sh is the symmet-

ric product of Γsimp with itself h times. It is a variety over K and there is a
Galois cover ρ: Γh

simp → Γ(h) over K with Galois group Sh [Ser, p. 48, Prop. 18].
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By the generalized Riemann-Roch theorem, ϕ induces a birational map
σ: Γ(h) → J over K. In particular, there are nonempty Zariski-open subsets
Bh, J0 of Γ(h), J , respectively, such that the restriction of σ to Bh is an isomor-
phism onto J0. Moreover, the dominant rational map ψ = σρ of Γh

simp to J
satisfies

(2d1) ψ(p1, . . . ,ph) =
h∑

i=1

ϕ(pi)

for all p1, . . . ,ph ∈ Γsimp. In particular, the function field of Γh
simp is a Galois

extension of the function field of J with Galois group Sh.

(2e) Abel’s theorem. In the notation of (2c) let L be an algebraic extension of K.
Let PrinO(FL/L) = {div(f) | f ∈ (OL)×} be the group of all principal divisors
of FL/L coming from units of OL. It fits into the following short exact sequence

(2e1) 1 −→ L× −→ (OL)× div−→ PrinO(FL/L) → 0.

Let ϕL be the restriction of ϕ̃ to DivO,0(FL/L). By [Ro2, p. 517 and p. 519],
Ker(ϕL) = PrinO(FL/L) and Im(ϕL) ⊆ J(L). By (2d), Im(ϕL) contains a
nonempty Zariski-open subset of J(L). But as Im(ϕL) is a subgroup of J(L), it
is all of J(L). In other words, the following short sequence is exact:

(2e2) 0 −→ PrinO(FL/L) −→ DivO,0(FL/L)
ϕL−→ J(L) −→ 0.

(2f) Changing O: Intersecting O with finitely many valuation rings of prime divi-
sors of F/K does not change J0. We may therefore use JΓ instead of JO. Indeed,
it suffices to consider a prime divisor q of F/K which does not lie over O, to
write R = O ∩ Oq, and to prove that JO = JR. This follows from (2e2) (with
L = K̃), (2f1), and (2f2):

(2f1) PrinO(FK̃/K̃) ∩DivR,0(FK̃/K̃) = PrinR(FK̃/K̃) and

(2f2) PrinO(FK̃/K̃) + DivR,0(FK̃/K̃) = DivO,0(FK̃/K̃).

In order to prove (2f1), we apply our convention from §2.1 to q and identify it
with a simple point of Γ such that OΓ,q = Oq. Then we prove that OK̃∩OqK̃ =
RK̃. To this end let {wi | i ∈ I} be a basis for K̃/K. Each g ∈ OK̃ ∩OqK̃ can
be written as g =

∑
i∈I giwi with gi ∈ O and g =

∑
i∈I g′iwi with g′i ∈ Oq. So,

gi = g′i belongs to R and therefore g ∈ RK̃.

Consider now f ∈ (OK̃)× such that div(f) ∈ DivR,0(FK̃/K̃). Then, vq̃(f) = 0
for each prime divisor q̃ of FK̃/K̃ that lies over q. By Lemma 2.2, OqK̃ is the
intersection of all valuation rings of FK̃ that lie over Oq. So, by the preceding
paragraph, f, f−1 ∈ OK̃ ∩ OqK̃ = RK̃. In other words, f ∈ (RK̃)×. It follows
that div(f) ∈ PrinR(FK̃/K̃).
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In order to prove (2f2) consider b ∈ DivO,0(FK̃/K̃). Use the weak approxima-
tion theorem to find f ∈ FK̃ such that vQ̃(f) = vQ̃(b) for each prime divisor
Q̃ of FK̃/K̃ over q and vP̃ (f − 1) is sufficiently large for all P̃ which lie over
OK̃. By (1) of §2, applied to the semilocal ring OK̃, f ∈ (OK̃)×. Also,
b1 = −div(f) + b ∈ DivR,0(FK̃/K̃), as needed.

(2g) Comparing two curves: Let π: Γ′ → Γ be a birational morphism of projective
curves over K. By (1), Γ′(K) is infinite. For each object associated with Γ add a
tag on the letter denoting it to denote the corresponding object associated with
Γ′. If π(p′) = p, then OΓ,p ⊆ OΓ′,p′ . Moreover, if p′ is singular, then so is p. Let
O (resp., O′) be the ring of singularities of Γ (resp., Γ′) and let R = O′ ∩⋂

P OP

where P ranges over all prime divisors of F/K that lie over singular points of
Γ. Then O ⊆ R ⊆ O′ and a divisor of F/K is O-smooth if and only if it is
R-smooth. In particular, by Lemma 2.2, DivOK̃,0(FK̃/K̃) = DivRK̃,0(FK̃/K̃).
By (2f), J ′ = JR. By [Ro2, Thm. 8], there exists a surjective homomorphism
θ:J → J ′ over K of the corresponding group varieties. Let H = Ker(θ) and
let θ̃:J(K̃) → J ′(K̃) be the homomorphism induced by θ. The short exact
sequences (2e1) and (2e2) for L = K̃ yield a commutative diagram

0

²²

0

²²
0 // PrinO(FK̃/K̃) //

²²

PrinRK̃(FK̃/K̃) //

²²

(RK̃)×/(OK̃)×→ 1

DivO,0K̃(FK̃/K̃)
ϕK ²²

DivRK̃,0(FK̃/K̃)
ϕK̃²²

1 → H(K̃) // J(K̃)
θ̃ //

²²

J ′(K̃) //

²²

1

0 0

An application of the snake lemma [Eis, p. 640] to the vertical short exact se-
quences proves that H(K̃) ∼= (RK̃)×/(OK̃)×. This gives the following short
exact sequence

(2g1) 1 −→ (RK̃)×/(OK̃)× −→ J(K̃) θ̃−→ J ′(K̃) −→ 0.

(2h) The genera satisfy the inequality genus(F/K) ≤ h′ ≤ h. Indeed, choose a Γ-
smooth divisor a of large degree. Let g = genus(F/K). Then, the Riemann-Roch
theorem and the generalized Riemann-Roch theorem (4) of §2. give the following
relations:

dim
(LF/K(a)

)
= deg(a) + 1− g,

dim
(LO′/K(a)

)
= deg(a) + 1− h′,

dim
(LO/K(a)

)
= deg(a) + 1− h.

Since O ⊆ O′ ⊆ F , we have LO/K(a) ⊆ LO′/K(a) ⊆ LF/K(a). Hence, g ≤ h′ ≤
h.
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(2i) The map θ: J → J ′ of (2g) is separable. Indeed, by (2h), h′ ≤ h. This gives
rise to the following commutative diagram:

Γh
simp

pr //

ψ

²²

Γh′
simp Γ′h

′
simp

ψ′

²²

πh′
oo

J
θ // J ′

In this diagram pr is a regular map (i.e., the extension of the corresponding
function fields is regular), πh′ is a birational map, and ψ′ is a Galois map (by
(2d)). Hence, ψ′ ◦ (πh′)−1 ◦ pr is a separable map. It follows that θ is also a
separable map.

Remark 5.1. At the beginning of [Ro2, §3], Rosenlicht considers a smooth projec-
tive curve C and a semilocal ring O of the function field F of C. Then he constructs
the generalized Jacobian variety of C with respect to the equivalence relation defined
by O. However, the construction works even if one allows singularities and only de-
mands that O is contained in the ring of singularities of C. This comes into evidence
in [Ro2, Thm. 12], where Rosenlicht explicitly allows singularities on C. The only
result which possibly depends on the smoothness of C is [Ro2, Thm. 10] (see the top
of p. 523 of [Ro2]).

We are using the letter Γ instead of C. Our only application of Theorem 10 of [Ro2]
appears in (2g1) which we have been careful to reprove directly. 2

Assumption 5.2.

(3a) K has a local prime divisor p with respect to which it is either Henselian or real
closed. Let K̂ = K̂p.

(3b) The curve Γ has a simple K-rational point.

(3c) Γ is K-normal or char(K) > 0 and Γ is a cusp curve. 2

Conditions (3a) and (3b) imply, by the density theorem 8.2(b), that Γ(K) is Zariski-
dense in Γ, which means that Γ(K) is infinite (Condition (1)). This adds an additional
information to (2a)-(2i):

(4) By (2d), Γh
simp has a Zariski-open subset D such that ψ|D:D → J is an étale

map [Hrt, p. 271, Lemma 10.5]. (Note that Hartshorne states the lemma only
in characteristic 0. However, the proof makes use only of the separability of
the map.) Hence, by Proposition 8.2(c), ψ|D(K):D(K) → J(K) is a local p-
homeomorphism.

Lemma 5.3. Make Assumption 5.2 and let b ∈ J(K). Then, for each p-open
neighborhood A of 0 in J(K) there exist infinitely many positive integers n such that
nb ∈ A.
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Proof. Suppose first that the theorem holds for K̂. Then there exist infinitely many
positive integers n such that nb ∈ A(K̂). For each of these n we also have nb ∈ J(K).
Hence, nb ∈ A. So, we have to prove the theorem only in the case where K is locally
compact.

Under this assumption consider first the case that Γ is K-normal. In this case the
lemma coincides with [GPR, Lemma 2.2].

Suppose therefore that char(K) = p > 0 and that Γ is a cusp curve. Let π: Γ′ →
Γ be the normalization of Γ over K. Let θ: J → J ′ be the homomorphism of the
corresponding generalized Jacobians which is introduced in (2g).

Part A: There is a power q of p such that q · Ker(θ̃) = 0, where Ker(θ̃) = {a ∈
J(K̃) | θ̃(a) = 0}. Indeed, let O be the ring of singularities of Γ. Then, in the
terminology of (2g1), Ker(θ̃) ∼= (RK̃)×/(OK̃)×. By Lemma 2.2, OK̃ is the intersection
of the local rings OΓ̃,p, where p ranges on Γsing. Each p ∈ Γ̃sing is a cusp and
therefore OΓ̃,p is contained in a valuation ring OP of some unique prime divisor P of
FK̃/K̃. The ring RK̃ is contained in the intersection of all those OP . It follows that
(RK̃)×/(OK̃)× ⊆ ∏

p O×P /O×
Γ̃,p

, where, again, p ranges on Γ̃sing. Hence, it suffices to

prove that for each p ∈ Γ̃sing there is a power q of p such that
(
O×P /O×

Γ̃,p
)q = 1.

Since OP is the unique valuation ring of FK̃/K̃ over OΓ̃,p, it is the integral closure of
OΓ̃,p in FK̃. Hence there exists a positive integer k such that Mk

P ⊆ MΓ̃,p (as follows
for example from (1) of §2). Let q ≥ k be a power of p. Then Mq

P ⊆ MΓ̃,p. Also,
OP /MP = K̃ = OΓ̃,p/MΓ̃,p, i.e., OP = OΓ̃,p +MP . In particular, each x ∈ (OP )× has
the form x = a + m where a ∈ OΓ̃,p

rMΓ̃,p and m ∈ MP . So, xq = aq + mq ∈ O×
Γ̃,p

,
as desired.

Part B: A p-open map. Since θ: J → J ′ is defined over K, it defines a map
θK :J(K) → J ′(K). We claim that this map is p-open. Indeed, since, by (2i), θ: J → J ′

is a separable map, J and J ′ have nonzero Zariski-open subsets J0 and J ′0 such that the
restriction of θ to J0 is a smooth map onto J ′0 [Hrt, p. 271, Lemma 10.5]. By the open
map theorem (Proposition 8.2(c)), θK :J(K) → J ′(K) is p-open in a neighborhood
of each point a ∈ J0(K). Since translations by points of J(K) and of J ′(K) are p-
isomorphisms, θK : J(K) → J ′(K) is p-open in a neighborhood of each point of J(K)
(see also [GPR, p. 51, J5]). So, θK :J(K) → J ′(K) is a p-open map.

Consider now a p-open neighborhood A of 0 in J(K). Let A0 be a p-open neigh-
borhood of 0 in A such that qA0 ⊆ A. Then θ(A0) is a p-open neighborhood of 0 in
J ′(K). By [GPR, Lemma 2.2] there exist infinitely many positive integers l such that
lθ(b) ∈ θ(A0). Thus lb ∈ A0 + Ker(θ). Conclude from Part A that qlb ∈ A. 2

Lemma 5.4. [GPR, Lemma 2.3] Let G be a topological additive commutative
group, let k ≥ 3, and let x1, . . . , xk be elements of G. For each j let Wj be a neigh-
borhood of xj and for each i 6= j let ∆ij be a subset of Wi ×Wj whose complement is
open and dense in Wi ×Wj. Then there are yj ∈ Wj such that

∑k
j=1 xj =

∑k
j=1 yj

and (yi, yj) /∈ ∆ij if i 6= j.

The following result gives an element of O× with control on both its pole divisor
and its zero divisor.
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Lemma 5.5. (Local existence theorem for normal curves and cusp curves) Under
Assumption 5.2 let U be a nonempty p-open subset of Γsimp(K). Let a be a Γ-smooth
positive divisor of F/K. Let O be the ring of singularities of Γ. Then there exists
a positive integer r0 such that for each positive integer k there exists f ∈ O× such
that div(f) =

∑s
i=1 pi− kr0a, where p1, . . . ,ps are distinct points in U r Supp(a). In

particular, each of them belong to Γ(K).

Proof. We follow the proof of [GPR, Thm. 2.1] which handles the case where Γ is
K-normal. Our unified proof handles both the case where Γ is K-normal and the case
where Γ is a cusp curve.

By shrinking U , if necessary, we may assume that U contains no point that belongs
to the support of a. By assumption, Uh is a nonempty p-open subset of Γh

simp(K).
By (4), Γh

simp has a nonempty Zariski-open subset D such that ψ|D(K) is a local
p-homeomorphism into J(K). By Proposition 8.2(b), Uh is Zariski-dense in Γh

simp.
Hence, Uh∩D(K) has a nonempty p-open subset V which ψ maps p-homeomorphically
onto a p-open subset W of J(K). Choose (q1, . . . ,qh) ∈ V. Then qi ∈ Γsimp(K)
and W0 = W − ψ(q1, . . . ,qh) is a p-open neighborhood of 0 in J(K). Also, b =
ha − deg(a)

∑h
j=1 qj is a divisor of F/K of degree 0. Hence b = ϕ̃(b) ∈ J(K) (by

(2e) ).
By Lemma 5.3 there exists an integer n such that nb ∈ W0 and n deg(a) ≥

3. In other words, there exists (q′1, . . . ,q
′
h) ∈ V such that nb = ψ(q′1, . . . ,q

′
h) −

ψ(q1, . . . ,qh). Hence, nhϕ̃(a)−n deg(a)
∑h

j=1 ϕ(qj) = nϕ̃(b) = nb = ψ(q′1, . . . ,q
′
h)−

ψ(q1, . . . ,qh) =
∑h

j=1 ϕ(q′j)−
∑h

j=1 ϕ(qj) (use (2d1) ). Hence

(5) nhϕ̃(a) =
h∑

j=1

ϕ(q′j) +
h∑

j=1

(n deg(a)− 1)ϕ(qj).

Let k be a positive integer. Then m = kn deg(a) ≥ 3. Multiply (5) by k:

(6) knhϕ̃(a) =
h∑

j=1

kϕ(q′j) +
h∑

j=1

k(n deg(a)− 1)ϕ(qj).

Thus, with a = knhϕ̃(a), there exist qij ∈ Γsimp(K), i = 1, . . . , m, j = 1, . . . , h, such
that

(7) a =
m∑

i=1

h∑

j=1

ϕ(qij)

and

(8) (qi1, . . . ,qih) ∈ V, i = 1, . . . , m.

Indeed, we may take qij = q′j for i = 1, . . . , k and qij = qj for i = k + 1, . . . ,m.
For each pair (i, r) of distinct integers between 1 and m let

∆′
ir = {(pi1, . . . ,pih,pr1, . . . ,prh) ∈ Γh × Γh | pij 6= prs for j, s = 1, . . . , h and

pij 6= pij′ and prj 6= prj′ if j 6= j′}.
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As ∆′
ir is a nonempty Zariski-open subset of Γh × Γh, the density theorem (Proposi-

tion 8.2(b)) implies that ∆′
ir(K) ∩ (V × V) is p-open and p-dense in V × V. Hence,

ψ
(
∆′

ir(K) ∩ (V × V)
)

is p-open and p-dense in W × W. By (7) and by (2d1),∑m
i=1 ψ(qi1, . . . ,qih) = a. Lemma 5.4 gives (q′i1, . . . ,q

′
ih) ∈ V, i = 1, . . . ,m, such

that (q′i1, . . . ,q
′
ih,q′r1, . . . ,q

′
rh) ∈ ∆′

ir(K) and such that

m∑

i=1

h∑

j=1

ϕ(q′ij) =
m∑

i=1

ψ(q′i1, . . . ,q
′
ih) = a.

Replace qij by q′ij , if necessary, to assume that the qij are distinct. Rewrite (7) in
the form

ϕ̃(−knha +
m∑

i=1

h∑

j=1

qij) = 0.

By Abel’s theorem (2e), there exists f ∈ O× such that

div(f) = −knha +
m∑

i=1

h∑

j=1

qij .

By assumption, a > 0. Hence, div∞(f) = knha, the geometric zeros of f are qij , they
are distinct and belong to U . Thus, r0 = nh satisfies the conclusion of the proposition.
2

6. Rumely elements

Let S be a finite set of local primes of a field K. Consider a projective curve Γ over
K. Let F be the function field of Γ. Denote the ring of singularities of Γ in F by O.
Let a be a positive divisor of F/K. Denote the support of a by Supp(a). For each
p ∈ S let Up be a nonempty p-open subset of Γsimp(Kp) and let U =

⋂
p∈S

⋂
σ∈G(K) Uσ

p .

Lemma 6.1. U is an S-open subset of Γsimp(Ktot,S).

Proof. By the definition of Ktot,S (beginning of §1), U is a subset of Γsimp(Ktot,S).
In order to prove that U is S-open in Γsimp(Ktot,S) we may assume that Γ has an
affine part Γ0, say embedded in An, such that Up ⊆ Γ0(Kp) for each p ∈ S. Similarly,
we may as well assume that Up is a basic p-open set:

Up = {p ∈ Γ0(Kp) | |p− ap|p < εp},

where ap ∈ Γ0(Kp) and εp > 0. Let L be a finite normal extension of K such that
ap is L-rational for each p ∈ S. For each p ∈ S choose an extension of | |p to
an absolute value of K̃. Then choose a′p ∈ Kn such that |a′p − ap|p < εp and let
Vp = {p ∈ K̃n | |p− a′p|p < εp}. Then V =

⋂
p∈S

⋂
σ∈G(K) Vσ

p is an S-open subset of
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K̃n (Remark 1.1) and U = V∩Γ0(Ktot,S). Conclude that U is S-open in Γsimp(Ktot,S).
2

A separating transcendental element t of F/K is said to be a Rumely element
with respect to S, a,U if

(1) div(t) =
∑m

k=1 bk − a, where b1, . . . ,bm are distinct points in U rSupp(a).

The existence of Rumely elements implies that U is nonempty. This is assured by the
following criterion.

Proposition 6.2. Let K,S,Γ, F,O, and U be as above. Suppose that Γ is K-normal
or char(K) > 0 and Γ is a cusp curve. Let a0 be a positive Γ-smooth divisor of F/K.
Then there exists a positive integer k0 such that for each multiple k of k0, for a = ka0,
and for each basis u0, . . . , un of LO(a) there exists a nonempty S-open set A ⊆ Kn+1

such that for each a ∈ A,
∑n

i=0 aiui is a Rumely element with respect to S, a,U .

Proof. The proof naturally breaks up into two parts.

Part A: The local case. Consider p ∈ S. Let Γp = Γ ×K Kp be the projective
curve obtained from Γ by extending K to Kp. Since F , as a regular extension of K,
is linearly disjoint from Kp over K, FKp is the function field of Γp and we may view
a0 also as a divisor of FKp/Kp. By [Mum, p. 158], Γp(Kp) = Γ(Kp). By Lemma 2.3,
OKp is the ring of singularities of Γp in FKp.

By Proposition 5.5 there exists a positive integer kp such that for each multiple k of
kp there exists a function fp ∈ OKp with the following property:

(2) div(fp) =
∑m

i=1 bp,i − ka0, where bp,1, . . . ,bp,m are distinct points in
UprSupp(a0).

Suppose now that u0, . . . , un is a basis of LOKp(ka0). Write fp =
∑n

j=0 ap,juj with
ap,j ∈ Kp. Let ap = (ap,0, . . . , ap,n). By Proposition 8.3

(3) there exists a p-open neighborhood Ap of ap in Kn+1
p such that if a′ ∈ Ap and

f ′p =
∑n

j=0 a′juj , then (2) remains valid if we replace fp by f ′p.

Part B: The global case. Let k0 be the least common multiple of all kp from
Part A with p ∈ S. Consider a multiple k of k0 and let a = ka0. Let u0, . . . , un be a
basis of LO(a). By Lemma 2.3, u0, . . . , un is also a basis of LOKp(a). For each p ∈ S
let fp ∈ OKp be a function as in (2). Condition (3) gives a p-open neighborhood Ap

of ap in Kn+1
p such that if a = (a0, . . . , an) ∈ Ap and f =

∑n
j=0 ajuj , then

(4) div(f) =
∑m

k=1 bk − a with distinct b1, . . . ,bm ∈ Upr Supp(a).

To conclude the proof use the p-density of K in Kp and the weak approximation
theorem [CaF, p. 48] to choose a nonempty S-open subset A of Kn+1 which is con-
tained in Ap for each p ∈ S. Consider a ∈ A and let f =

∑n
j=0 ajuj . Then (4) holds

for each p ∈ S. In particular, b1, . . . ,bm ∈ Up for each p ∈ S.
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Since F/K is regular, we may extend each σ ∈ G(K) to an automorphism of
FK̃/F . Since f ∈ F , σ permutes b1, . . . ,bm. Hence, b1, . . . ,bm ∈ Uσ

p . Conclude
that b1, . . . ,bm ∈ U . 2

The combination of Proposition 6.2 and Lemma 4.5 yields a stabilizing element for
F/K with control on the location of its zeros and poles.

Theorem 6.3. Let K, S,Γ, F , and O be as above. Suppose that Γ is smooth or
char(K) > 0 and Γ is an ordinary special cusp curve. For i = 1, 2 and for each p ∈ S
let Ui,p be a nonempty p-open subset of Γsimp(Kp). Write Ui =

⋂
p∈S

⋂
σ∈G(K) Uσ

i,p,
i = 1, 2. Let d0 be a positive integer. Then there exists d ≥ d0 and F/K has a
stabilizing element t such that

(a) div0(t) =
∑d

i=1 zi, where z1, . . . , zd are distinct points in U1; and

(b) div∞(t) =
∑d

i=1 pi, where p1, . . . ,pd are distinct points in U2.

(c) Moreover, let F̂ be the Galois closure of F/K(t). Then G(F̂ /K(t)) ∼= Sd.

Proof. Let a0 be the positive divisor of F/K that Lemma 4.5 gives. For i = 1, 2,
Proposition 6.2 gives a positive integer ki such that for each multiple k of ki, for
a = ka0, and for each basis y0, y1, . . . , yn of LO(a)

(5) there exists a nonempty S-open set Ai ⊆ Kn+1 such that for each b ∈ Ai,∑n
j=0 bjyj is a Rumely element with respect to S, a,Ui.

Let k be a common multiple of k1 and k2 and let a = ka0. Section 3 defines two
morphisms of varieties over K:

P ϕ←−M µ−→ M∗
2,n+1.

In particular, M∗
2,n+1 consists of all 2 × (n + 1) matrices of rank 2. By Lemma 4.5,

LO(a) has a basis y0, y1, . . . , yn and there exists a nonempty Zariski-open subset U of
P such that

(6) for each A ∈ ϕ−1(U(K)) and with µ(A) =
(
b1
b2

)
the element

t =

∑n
j=0 b1jyj∑n
j=0 b2jyj

symmetrically stabilizes F/K.

Make Ui,p smaller, if necessary, to assume that U1 and U2 are disjoint. For i = 1, 2 let
Ai be the set that (5) gives. Then A1×A2 is a nonempty S-open subset of M∗

2,n+1(K).
Since µ(M(K)) = M∗

2,n+1(K) (by §3), the S-open subset µ−1(A1 × A2) of M(K) is
not empty.

Since M is a Zariski-open subset of an affine space, µ−1(A1 × A2) is Zariski-dense
in M (by the weak approximation theorem). In particular, there exists

A ∈ µ−1(A1 ×A2) ∩ ϕ−1(U(K)).
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Let µ(A) =
(
b1
b2

)
. Then bi ∈ Ai, i = 1, 2. By (5), ti =

∑n
j=0 bijyj is a Rumely

element with respect to S, a,Ui. Thus, div∞(ti) = a and div0(ti) =
∑d

j=1 pij , where
pi1, . . . ,pid are distinct points of Ui, i = 1, 2. Let t = t1/t2. Then div(t) = div0(t1)−
div∞(t1)−div0(t2)+div∞(t2) = div0(t1)−div0(t2). Since U1∩U2 = ∅, the positive di-
visors div0(t1) and div0(t2) are relatively prime. Hence div0(t) = div0(t1) =

∑d
j=1 p1j .

Similarly, div∞(t) = div0(t2) =
∑d

j=1 p2j . So both (a) and (b) hold.
Finally, since ϕ(A) ∈ U(K), (6) implies that the element t symmetrically stabilizes

F/K. For the Galois closure F̂ of F/K(t), this means that G(F̂ K̃/K̃(t)) ∼= Sd, where
d = [F : K(t)] = deg(div0(t)) = deg(div0(t1)) = deg(div∞(t1)) = deg(a) = k deg(a0).
Hence, G(F̂ /K(t)) ∼= Sd. Taking k large, d becomes large. This proves (c) and
concludes the proof of the theorem. 2

7. The main result

Let A be a subset of a field M . We say that M is PAC over A if for each dominant
separable rational map ϕ:V → Ar of varieties of dimension r over M there exists
x ∈ V (M) such that ϕ(x) ∈ Ar.

Proposition 7.1. (Razon [Ra1, Thm. 2.3]) Let S be a finite set of local primes
of a field K such that none of them is complex. Let M be a field which is PAC over
K. Then M is PAC over each nonempty S-open subset of K.

Lemma 7.2. ([Ra1, Lemma 3.6]) Let S be a finite set of local primes of an
infinite field K. Let τ : Γ → P1 be a rational map of degree d of projective curves over
K. Suppose that there exists p ∈ P1(K) such that τ−1(p)(K̃) consists of d distinct
points which are in Γsimp(Ktot,S). Then P1(K) has a nonempty S-open set A such
that for each p′ ∈ A, the fibre τ−1(p′)(K̃) consists of d distinct points which are in
Γsimp(Ktot,S).

Remark 7.3. Sections 1–2 and 3.1–3.6 of [Ra1] are independent of our work. The
use of Theorem 2.3 and Lemma 3.6 of [Ra1] here is therefore valid.

Likewise, Sections 1–6 and 8 of our work are independent of [Ra1]. Hence, the use of
Proposition 7.2(b) and Proposition 7.2 of our work in [Ra1, Lemma 3.7 and Prop. 3.8]
is justified. 2

Theorem 7.4. ( = Theorem B) Let S be a finite set of local primes of a field
K. Let M be a field which is PAC over K. Denote the maximal Galois extension of
K which is contained in M ∩Ktot,S by N . Then N is PSC.

Proof. Omitting the complex primes from S does not change Ktot,S . So, assume
S contains no complex primes. Let C be a curve over K. If char(K) = 0, take Γ
to be the projective K-normal curve which is birationally equivalent over K to C.
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Then Γ is smooth. If char(K) > 0, then C is birationally equivalent over K to an
ordinary special cusp curve Γ [Neu, Prop. 2.22]. Suppose that for each p ∈ S there
exists ap ∈ Γsimp(Kp). By Lemma 1.6, it suffices to prove that Γ(N) is Zariski-dense
in Γ. So, consider a nonempty Zariski-open subset Γ0 of Γ. We have to prove that
Γ0(N) 6= ∅.

By Proposition 8.2(a), ap has a p-open neighborhood Up in Γsimp(Kp). Then U =⋂
p∈S

⋂
σ∈G(K) Uσ

p is an S-open subset of Γsimp(Ktot,S) (Lemma 6.1).
Let F be the function field of Γ over K. Theorem 6.3 with U1,p = U2,p = Up gives a

stabilizing element t for F/K such that all geometric zeros of t belong to U and each
of them has multiplicity 1. In other words, let d = [F : K(t)] = [FK̃ : K̃(t)]. Let F̂
be the Galois closure of F/K(t). Then the following holds:

(1a) F̂ is a regular extension of K.

(1b) If we consider t as an element of FK̃, then div0(t) =
∑d

i=1 p0i, where p01, . . . ,p0d

are distinct and each of them is in U , hence in Γsimp(Ktot,S).

As an element of F , t may be identified with a separable rational map τ : Γ → P1

over K, where

deg(τ) = [F : K(t)] = [FK̃ : K̃(t)] = deg(div0(t)) = d.

Moreover, denote the zero of t, when considered as a rational function of P1, by p0.
Then τ−1(p0)(K̃) = {p01, . . . ,p0d} ⊆ Γsimp(Ktot,S).

Let Γ̂ be a model of F̂ /K. Since F̂ /K is regular, Γ̂ is a curve (i.e., absolutely
irreducible). Also, there exist separable rational maps π: Γ̂ → Γ and τ̂ : Γ̂ → P1 over
K such that τ ◦ π = τ̂ . In addition, there exists a nonempty Zariski-open subset A of
P1 such that if q̂ ∈ Γ̂(K̃) and τ̂(q̂) ∈ A(K), then K(q̂)/K is a Galois extension, π is
defined at q̂, and π(q̂) ∈ Γ0(K̃).

Let A be as in Lemma 7.2. By Proposition 7.1 there exists q̂ ∈ Γ̂simp(M) such that
p = τ̂(q̂) ∈ A∩A(K). By Lemma 7.2, τ−1(p)(K̃) ⊆ Γ(Ktot,S). Let q = π(q̂). Then q
is in τ−1(p)(K̃) and therefore also in Γ0(Ktot,S). Moreover, K(q) ⊆ K(q̂) ∩Ktot,S ⊆
M ∩ Ktot,S . Since K(q̂) is Galois over K, so is K(q̂) ∩ Ktot,S . Hence, K(q) ⊆ N .
Conclude that q ∈ Γ0(N). 2

Let S be a set of local primes of a field K. Let N be a field between K and Ktot,S .
We say that N has the S-density property if it satisfies the following condition:
Let V be a variety over K. For each p ∈ S let Up be a nonempty p-open subset of
Vsimp(Kp). Then

(2) V (N) ∩
⋂

p∈S

⋂

σ∈G(K)

Uσ
p 6= ∅.

Corollary 7.5. (S-density property) Let K, S, M , and N be as in Theorem 7.4.
Suppose S contains no complex primes. Then N has the S-density property.

Proof. Since N is PSC, the corollary follows from Theorem 7.4 and from Razon’s
density theorem [Ra1, Thm. 3.9]. Alternatively, one can use the arguments of the
proof of Theorem 7.4 to prove the corollary directly. 2
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Corollary 7.6. Let K be a field and let S be a finite set of local primes of K.
Then Ktot,S is PSC. Moreover, if S contains no complex primes, then Ktot,S has the
S-density property.

Proof. By the Hilbert Nullstellensatz, the field M = Ks is PAC over K. Moreover,
in the notation of Theorem 7.4, N = Ktot,S . So, Corollary 7.6 is a special case of
Theorem 7.4 and Corollary 7.5. 2

Note that the first statement of Corollary 7.6 is the main result of [Po1] (if char(K) =
0). So, Theorem 7.4 is a generalization of Pop’s result.

Corollary 7.7.(= Theorem ) Let K be a countable separably Hilbertian field and let
S be a finite set of local primes of K. Let e be a positive integer. Then, for almost
all σ ∈ G(K)e, the field N = Ks[σ] ∩Ktot,S is PSC. Moreover, N has the S-density
property.

Proof. Recall that for each σ ∈ G(K)e the field Ks[σ] is the maximal Galois
extension of K which is contained in Ks(σ). Hence, N is the maximal Galois extension
of K which is contained in Ks(σ) ∩Ktot,S . By [JR1, Prop. 3.1], Ks(σ) is PAC over
K for almost all σ ∈ G(K)e. The corollary is therefore a special case of Theorem 7.4
and Corollary 7.5. 2

Recall that a field N is ample if every curve C over N with a simple N -rational
point has infinitely many N -rational points [Po2, p. 2 or HJ2, Def. 6.3]. If N is PSC
and C is a curve over N with a simple N -rational point, then this point is also Np-
rational for each p ∈ S. By Proposition 1.5, C(N) is infinite. Thus N is ample. As an
ample field, N has several nice properties, which we may apply to the field appearing
in Corollary 7.7.

Corollary 7.8. Let K be a countable separably Hilbertian field and let S be a finite
set of local primes of K. Let e be a positive integer. Then, for almost all σ ∈ G(K)e,
the field N = Ks[σ] ∩Ktot,S has the following properties:

(a) N is ample; in particular, N is existentially closed in the field of formal power
series N((x)).

(b) Let E be a finitely generated regular extension of N of transcendence degree 1.
Then every finite split embedding problem over E is solvable (even in a regular
way).

Proof of (a). Note that the statement about the field of formal power series is
actually equivalent to N being ample [Po2, Prop. 1].

Proof of (b). We refer the reader to [HJ3, Thm. B] for an exact formulation of a
split embedding problem and for an algebraic proof of the statement. Alternatively,
see [Po3] for a proof which uses methods of rigid analytical geometry. 2

Another application of the main result is motivated by a peculiar result of Razon. He
proves in [Ra2, Thm. 4.8] that for each finite set S of prime numbers and for almost
all σ ∈ G(Q)e the absolute Galois group of each field between (Q̃(σ) ∩ Qtot,S)cycl
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and Q̃(σ)cycl is isomorphic to F̂ω. (Here Lcycl denotes the field obtained from L by
adjoining all roots of unity.) The proof of this result relies, among others, on the
property of Q̃(σ) being PAC over Q. We do not know whether Q̃[σ] is PAC over Q.
Nevertheless, we can substitute the latter property of Q̃(σ) by Q̃[σ]/Q being Galois
and by a result of Haran:

Corollary 7.9. Let K be an infinite field which is finitely generated over its prime
field. Let S be a finite set of local primes of K. Let e be a positive integer. Then, for
almost all σ ∈ G(K)e and for each field E between (Ks[σ] ∩Ktot,S)cycl and Ks[σ]cycl

we have: G(E) ∼= F̂ω.

Proof. By [FJ2, Cor. 12.8 and Thm. 12.10], K is Hilbertian. By Corollaries 7.7
and 7.8, for almost all σ ∈ G(K)e the field N = Ks[σ] ∩Ktot,S is PSC and therefore
ample. Since Kcycl is an infinite extension of K, we may assume, in addition, that
Kcycl 6⊆ Ks[σ].

Let E be a field between Ncycl and Ks[σ]cycl. As a separable algebraic extension of
an ample field, E is ample [Po2, Prop. 1.2]. In addition, let E = {EKσ

p | p ∈ S, σ ∈
G(K)}. By [Ja2, Lemma 8.2], E is PEC.

We prove below that since E contains Kcycl, the absolute Galois group G(EKσ
p ) is

projective for each p ∈ S and all σ ∈ G(K). It will follow from Proposition 1.7(b)
that G(E) is projective. As Kp is, any way, determined only up to K-conjugation, we
may as well assume that σ = 1.

Suppose first that K̂p is a finite extension of Qp for some prime number p. Since
E contains all roots of unity, l∞ divides [EK̂p : E] for each prime number l. By
[Rib, p. 291, Cor. 7.4], G(EK̂p) is projective. Since restriction maps G(K̂p) bijectively
onto G(Kp) (by Krasner’s Lemma), it maps G(EK̂p) bijectively onto G(EKp). Hence,
G(EKp) is projective.

If K̂p is R or C, then EKp is algebraically closed and therefore G(EKp) is projective.
The third possibility is that K̂p is a finite extension of Fp((t)). Then EK̂p is a

separable algebraic extension of F̃p((t)). The latter field is complete with respect to a
discrete valuation and with residue field F̃p of cohomological dimension 0. Hence, by
[Rib, p. 277, Thm. 6.1], G(F̃p((t))) is projective. Let L = Ks ∩ F̃p((t)). Then G(L) is
isomorphic to G(F̃p((t))) and is therefore also projective. Finally, as EKp contains L,
its absolute Galois group is also projective.

Finally, a result of Haran [Har, Thm. 4.1] says that if L1 and L2 are Galois extensions
of a Hilbertian field L and F is a field between L and L1L2 which is not contained in
L1 or in L2, then F is Hilbertian. In our case, K is Hilbertian and both Kcycl and
Ks[σ] are Galois extensions of K. By the choice of σ, E is not contained in Ks[σ].
Hence, if E is also not contained in Kcycl, then, by Haran’s result, E is Hilbertian.

By avoiding another set of measure 0, one may choose σ such that Ks[σ]∩Ktot,S 6⊆
Kcycl and hence E 6⊆ Kcycl. We do not prove this fact here and instead note that if
E = Kcycl, then E is Hilbertian (by a theorem of Kuyk [FJ2, Thm. 15.6]).

In any case, it follows now from [HJ2, Thm. 6.5] that G(E) ∼= F̂ω. 2

Remark 7.10.
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(a) It is interesting to note that, in the setup of Corollary 7.8, G(E) ∼= F̂ω for each
field E between Ks[σ] and Ks[σ]cycl.

Indeed, for almost all σ ∈ G(K)e, Ks[σ] is PAC and G(Ks[σ]) ∼= F̂ω [Ja4, Thm. 2.7],
Kcycl 6⊆ Ks[σ], and Ks[σ] 6⊆ Kcycl (because Ks[σ]/K has Galois subextensions L/K
with G(L/K) ∼= Sn, as follows e.g. from [JR1, Prop. 6.2]). If Ks[σ] ⊂ E ⊆ Ks[σ]cycl =
Kcycl ·Ks[σ], then, by Haran’s result, E is Hilbertian. As E is an algebraic extension
of a PAC field, E is itself PAC [FJ2, Cor. 10.7]. By [HJ2, Thm. A], G(E) ∼= F̂ω.

(b) If we take K = Q in Corollary 7.9 and let S be the set whose only element is
the ordering of Q, then Qtot,S = Qtr is the maximal totally real extension of Q. For
almost all σ ∈ G(Q)e Corollary 7.7 asserts that E = Q̃[σ] ∩ Qtr is PRC (Remark
1.4(f)). Hence, F = (Q̃[σ] ∩ Qtr)(

√−1) is a PRC field [Pre, Thm. 3.1] and therefore
PAC. By a result of Weissauer [FJ2, Cor. 12.15] (which preceded that of Haran),
F = E(

√−1) is Hilbertian. So, again by [HJ2, Thm. 6.5], G(F ) ∼= F̂ω. This is an
analog of a result of Pop which says that G

(
Qtr(

√−1)
) ∼= F̂ω. 2

8. Appendix — Generalized local fields

A generalized local field is a pair (K, p) which satisfies one of the following three
conditions:

(1a) K is a field and p is an equivalence class of Henselian valuations of K. In this
case we choose a valuation vp representing p.

(1b) K is a real closed field and p is the unique ordering < of K. The latter defines a
generalized metric absolute value | | of K by |x| = x if x ≥ 0 and |x| = −x
if x ≤ 0.

(1c) K is the algebraic closure of a real closed field R and p is the corresponding
generalized metric absolute value | |. Thus, if z = x + y

√−1 with x, y ∈ R, then
|z| =

√
x2 + y2.

In particular, each local field is a generalized local field.
In each case p defines a topology on K. A basic p-open neighborhood of an element

a ∈ K is {x ∈ K | vp(x− a) > α} for some α in the value group of p in the Henselian
case, and {x ∈ K | |x− a| < ε} for some positive ε ∈ R in the generalized metric case.

Two of the main tools that we use in the proof of the main result of this work are the
density theorem and the open map theorem for varieties over local fields. In addition,
we use the continuity of zeros of algebraic functions. Proofs of these theorems for
Henselian valuations appear in [GPR]. However, they are also true for generalized
metric absolute values. Here we reduce the proof of the latter case to the Henselian
case. The reduction depends on the following construction.

Remark 8.1. (Ultrapowers) Let (K, | |) be a generalized metric absolute valued
field. Choose a nonprincipal ultrafilter D of N and let (K∗, | |∗) = (K, | |)N/D be
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the corresponding ultrapower. (See [FJ2, §6.7] for definition and basic properties of
ultrapowers.) Then (K∗, | |∗) is an elementary extension of (K, | |) [FJ2, Prop. 6.15].
In particular K∗ is real (resp., algebraically) closed if K is real (resp., algebraically)
closed and | |∗ is a generalized metric absolute value. Let

O = {x ∈ K∗ | ∃n ∈ N: |x| ≤ n} and M =
{
x ∈ K∗ | ∀n ∈ N: |x| ≤ 1

n

}
.

Then O is a valuation ring of K∗ and M is the maximal ideal of O. In particular,
the equivalence class in K∗ of (1, 2, 3, 4, . . .) is not in O. Denote the corresponding
valuation by v.

If K∗ is real closed, then, by [Ja1, Lemma 16.2], v is Henselian. Alternatively note
that if x ∈ OrM , then x2 + 1 6≡ 0 mod M . Thus, O/M is not algebraically closed.
Now use the inequality efg ≤ [K̃∗ : K∗] for extensions of valuations [Rbn, p. 228] to
conclude that v has a unique extension to K̃∗. In other words, (K∗, v) is Henselian.

Claim: The v-topology of K∗ coincides with the | |∗-topology. It suffices to prove
that each v-open neighborhood of 0 in K∗ is contained in an | |∗-open neighborhood
of K∗ and vica versa.

Indeed, if a ∈ K∗, a 6= 0, then v(x) > v(a) implies that v
(
x
a

)
> 0, hence x

a ∈ M ,
hence |xa | < 1 and therefore |x| < |a|.

Conversely, choose b ∈ M , b 6= 0. If |x| < |a|, then |xa | < 1, hence |xb
a | < |b| < 1

n for
all n ∈ N. It follows that xb

a ∈ M and therefore v(x) > v
(
a
b

)
. 2

As usual, each of the above field topologies induce compatible topologies on the sets
of rational points of varieties [Mum, p. 81]. Recall that rational functions f1, . . . , fr

of a variety V of dimension r are local parameters at a simple point a of V if they
generate the maximal ideal of the local ring OV,a.

Proposition 8.2. Let (K, p) be a generalized local field. Let V be a variety over K
and let a ∈ Vsimp(K).

(a) Local parameters: Let t1, . . . , tr be a system of local parameters of V at a. View
t = (t1, . . . , tr) as a rational map of V into Ar. Then a has a p-open neighborhood
V in V (K) which t maps p-homeomorphically onto a p-open neighborhood of 0
in Kr.

(b) Density theorem: Each p-open neighborhood of a in V (K) is Zariski-dense in
V . In particular, V (K) is Zariski-dense in V .

(c) Open map theorem: Let ϕ:V → W be a dominant morphism of varieties over
K. Suppose that ϕ is smooth at a simple point a of V (K). Then a has a p-open
neighborhood V in V (K) such that ϕ|V is a p-open map onto a p-open subset W
of W (K). In particular, if dim(V ) = dim(W ), then V and W can be chosen
such that ϕ maps V p-homeomorphically onto W.

Proof. As all parts of the theorem are of Zariski-local nature, we may assume that
both V and W are affine.
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Proof of (a): The case where (K, p) is Henselian is [GPR, Thm. 9.2]. So, suppose
that (K, p) is a generalized metric absolute valued field.

Take a non-principal ultrapower (K∗, | |∗) of (K, | |). By Remark 8.1, K∗ has a
valuation v such that the v-topology of K∗ coincides with the | |∗-topology of K∗.
Moreover, K∗ is Henselian with respect to v.

The point a belongs also to Vsimp(K∗) and we can view t1, . . . , tr as local parameters
of V over K∗ (i.e., of V ×K K∗) at a. By the Henselian case, a has a v-open neighbor-
hood V in V (K∗) which t maps v-homeomorphically onto a v-open neighborhood W
of 0 in (K∗)r. Since the | |∗-topology of K∗ coincides with its v-topology, V and W
are also | |∗-open sets and t is an | |∗-homeomorphism. In other words, the following
statement holds:

(2) There exists ε > 0 such that t maps the set E = {x ∈ V (K∗) | |x − a|∗ <∗ ε}
injectively into (K∗)r, 0 ∈ t(E), and for each a′ ∈ E and for each ε′ > 0 there
exists δ > 0 such that for all y ∈ (K∗)r we have

{y ∈ (K∗)r | |y − t(a′)|∗ < δ} ⊆ t
({x ∈ E | |x− a′|∗ < ε′}).

Since (K∗, | |∗) is an elementary extension of (K, | |) and (2) is an elementary state-
ment on K∗ (in the language of ordered fields) with parameters in K, (2) is also true
if we replace (K∗, | |∗) by (K, | |). Conclude that a has an | |-open neighborhood in
V (K) which t maps | |-homeomorphically onto an | |-open neighborhood of 0 in Kr.

Proof of (b): Let V be a p-open neighborhood of a in V (K). By (a) we can
make V smaller, if necessary, to assume that t induces a p-homeomorphism of V onto
a p-open neighborhood W of 0 in Kr. Suppose that V is a Zariski-closed subset of An

and let x = (x1, . . . , xn) be a generic point of V over K. Then t can be also considered
as a separating transcendence base of K(x)/K.

Let now g(x) be a nonzero element of K[x]. Then h(t) = NormK(x)/K(t)g(x) is a
nonzero element of K(t). Since K is infinite and W contains a p-ball, h(t) does not
vanish on W. Hence, g(x) does not vanish on V. Conclude that V is Zariski-dense in
V .

Proof of (c): The case where (K, p) is Henselian is [GPR, Thm. 9.4]. Assume
again that (K, p) is a generalized metric absolute valued field and, as in the proof of
(a), consider a non-principal ultrapower (K∗, | |∗) of (K, | |).

We may consider ϕ: V → W as a morphism of the corresponding varieties over K∗.
By the Henselian case, a has a v-open neighborhood V in V (K∗) such that ϕ|V is a
v-open map into W (K∗). Since ϕ is defined by polynomials, with coefficients in K,
we may proceed as in (a) to conclude that ϕ induces an | |-open map of a | |-open
neighborhood of a in V (K) into W (K). 2

Proposition 8.3. (Continuity of zeros of algebraic functions) Let a be a positive,
Γ-smooth divisor of F/K. Let (K, p) be a generalized local field. Let Γ be a projective
curve over K. Denote its function field (resp., semilocal ring of singularities) by F
(resp., O). Let a be a positive Γ-smooth divisor of F/K. Let f be an element of O such
that div(f) =

∑m
i=1 bi−a, where b1, . . . ,bm are distinct points in Γsimp(K)r Supp(a).
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For each i let Ui be a p-open neighborhood of bi in Γsimp(K). Let u0, . . . , un be a
K-basis of LO(a). Write f =

∑n
j=0 ajuj with aj ∈ K. Then (a0, . . . , an) has a

p-open neighborhood A in Kn+1 such that for each (a′0, . . . , a
′
n) ∈ A the function

f ′ =
∑n

j=0 a′juj satisfies div(f ′) =
∑m

i=1 b′i−a, where b′i ∈ Uir Supp(a), i = 1, . . . , m.
Moreover, b′1, . . . ,b

′
m are distinct.

Proof. The case where (K, p) is Henselian follows from [GPR, Cor. 7.2]. So, suppose
that (K, p) = (K, | |) is a generalized metric absolute valued field. Let (K∗, p∗) and v
be as in the second paragraph of the proof of Proposition 8.2(a). Shrink U1, . . . ,Um,
if necessary, to assume that they are mutually disjoint and also disjoint from Supp(a).
Moreover, suppose that Γ ⊆ Pr, choose a generic point x = (x0: . . . :xr) for Γ over
K with x0, . . . , xr ∈ F and choose homogeneous polynomials of the same degree
gj , hj ∈ K[X0, . . . , Xr] such that hj(x) 6= 0 and uj = gj(x)

hj(x) for j = 0, . . . , n. Since
none of the points b1, . . . ,bm is a pole of uj , we may choose hj such that hj(bi) 6= 0
for all i and j. Then shrink U1, . . . ,Um further until hj(X) does not vanish on Ui for
all i and j.

Note that OK∗ is the semilocal ring of singularities of Γ×K K∗ and u0, . . . , un is also
a K∗-basis for LOK∗(a) (Lemma 2.3). Each of the sets Ui(K∗) is p∗-open and therefore
also v-open. Hence, by the Henselian case, (a0, . . . , an) has a v-open neighborhood A∗
in (K∗)n+1 such that for each (a∗0, . . . , a

∗
n) ∈ A∗ the element f∗ =

∑n
j=0 a∗juj of FK∗

has for each i exactly one zero b∗i in each Ui(K∗). Thus
∑n

j=0 a∗j
gj(b

∗
i )

hj(b∗i ) = f∗(b∗i ) = 0.
Since the v-topology coincides with the p∗-topology, we may assume that A∗ is a

basic p∗-open neighborhood of (a0, . . . , an) in (K∗)n+1. As (K∗, p∗) is an elementary
extension of (K, p), the point (a0, . . . , an) has a p∗-open neighborhood A in Kn+1 such
that if (a′0, . . . , a

′
n) ∈ A and f ′ =

∑n
j=0 a′juj , then for each i there exists a unique b′i ∈

Ui such that f ′(b′i) =
∑n

j=0 a′j
gj(b

′
i)

hj(b′i)
= 0. Thus

∑m
i=1 b′i ≤ div0(f ′). Since uj ∈ LO(a),

div∞(f ′) ≤ a. By assumption, deg(a) = deg(div∞(f)) = deg(div0(f)) = m. It follows
that m ≤ deg(div0(f ′)) = deg(div∞(f ′)) ≤ deg(a) = m. Hence, div(f ′) =

∑m
i=1 b′i−a,

as desired. 2

References

[Art] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.

[Bou] N. Bourbaki, Commutative Algebra, Chapters 1–7, Springer, Berlin, 1989.
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