ON Σ -HILBERTIAN FIELDS

by

Michael D. Fried

Department of Mathematics, University of California, Irvine, Ca. 92717, USA e-mail: mfried@math.uci.edu

and

Moshe Jarden

School of Mathematical Sciences, Tel Aviv University Ramat Aviv, Tel Aviv 69978, Israel. e-mail: jarden@math.tau.ac.il

Abstract

For each nonegative integer g, we construct a PAC field K which is g-Hilbertian but not Hilbertian.

31 January, 1997

Introduction

A field K is 0-Hilbertian if $K \neq \bigcup_{i=1}^{n} \varphi_i(K)$ for any collection of rational functions φ_i of degree at least 2, i = 1, ..., m. Corvaja and Zannier [CoZ] give an elementary construction for a 0-Hilbertian field that isn't Hilbertian. There is an obvious generalization of the notion of 0-Hilbertian to g-Hilbertian.

Guralnick-Thompson and Liebeck-Saxl have given a partial classification of monodromy groups of genus g covers of the projective line over \mathbb{C} . We use this to construct, for each nonnegative integer g, a PAC field K of characteristic 0 which is g-Hilbertian but not Hilbertian.

1. Σ -groups

Let Σ be a set of finite simple groups. A finite group G is said to be a Σ -group, if each composition factor of G belongs to Σ . An inverse limit of Σ -groups is a **pro-\Sigma-group**. Consider a short exact sequence of profinite groups:

$$(1) 1 \longrightarrow C \longrightarrow B \xrightarrow{\alpha} A \longrightarrow 1$$

Then B is a pro- Σ -group if and only if both A and C are pro- Σ -groups. If $G = B_1 \times_A B_2$ is a fiber product of Σ -groups [FrJ, p. 288], then $\operatorname{Ker}(G \to B_2) \cong \operatorname{Ker}(B_1 \to A)$ is a Σ -group. Hence, G is a Σ -group.

For each cardinal number m there exists a unique (up to an isomorphism) free pro- Σ -group $\hat{F}_m(\Sigma)$ of rank m. This group has a subset X of cardinality m which converges to 1 such that each continuous map φ_0 of X into a pro- Σ group G uniquely extends to a homomorphism $\varphi: \hat{F}_m(\Sigma) \to G$. By Melnikov [Mel, Lemma 2.2], $\hat{F}_m(\Sigma)$ has the embedding property [FrJ, p. 353]. In particular,

(2) if m is infinite, then each finite embedding problem for $\hat{F}_m(\Sigma)$ where the kernel is a Σ -group is solvable.

If Σ is the set of all finite simple groups, then $\hat{F}_m(\Sigma)$ is the free profinite group \hat{F}_m of rank m. In this case \hat{F}_m is projective. This is also true in other cases:

LEMMA 1: Suppose each finite simple group in Σ is generated by m_0 elements. If $m \ge m_0$, then $\hat{F}_m(\Sigma)$ is projective if and only if the following holds:

(3) If a prime p divides the order of one of the groups in Σ , then $\mathbb{Z}/p\mathbb{Z} \in \Sigma$.

Proof: Write \hat{F} for $\hat{F}_m(\Sigma)$. Suppose first that Σ satisfies (3). In order to prove that \hat{F} is projective, it suffices (and is necessary) to prove that for each prime p, each finite embedding problem for \hat{F} with an abelian p-elementary kernel has a weak solution [FrJ, Lemma 20.8 or Rib, p. 211].

Indeed, assume that in the short exact sequence (1), $C \cong (\mathbb{Z}/p\mathbb{Z})^n$ for some positive integer n. Let $\varphi: \hat{F} \to A$ be an epimorphism. Choose $b_1, \ldots, b_k \in B$ such that $\langle \alpha(b_1), \ldots, \alpha(b_k) \rangle = A$ and $k \leq m$ if m is finite. Let $B_0 = \langle b_1, \ldots, b_k \rangle$ and let α_0 be the restriction of α to B_0 . Then $C_0 = \operatorname{Ker}(\alpha_0) = C \cap B_0$ is also an abelian p-elementary group. If p does not divide the order of A, then α_0 has a section [Hup, p. 122, Satz 17.5]. If p divides the order of A, then $\mathbb{Z}/p\mathbb{Z} \in \Sigma$ (by (3)). Therefore, both A and C_0 are Σ -groups. Hence, so is B_0 . Since B_0 is generated by k elements and $k \leq m$, it is a quotient of $\hat{F}_m(\Sigma)$. It follows that in each case there exists an epimorphism $\gamma: \hat{F} \to B_0$ such that $\alpha_0 \circ \gamma = \varphi$. This is a weak solution to the embedding problem. Conclude that \hat{F} is projective.

Conversely, suppose that \hat{F} is projective. Let S be a simple group in Σ and let p be a prime divisor of the order of S. We have to prove that $\mathbb{Z}/p\mathbb{Z} \in \Sigma$.

Indeed, since S is finite, $\operatorname{cd}_p(S) = \infty$ [Rib, p. 209, Cor. 205]^{*}. In particular, by [Rib, p. 211], there exists a nonsplit short exact sequence $1 \longrightarrow C \longrightarrow G \xrightarrow{\alpha} S \longrightarrow 1$. where C is a finite elementary *p*-abelian group. Replace G by a subgroup of G if necessary, to assume that α is a Frattini cover [FrJ, p. 299].

Since $m \ge m_0$, this gives an epimorphism $\varphi: \hat{F} \to S$. As \hat{F} is projective, there is a homomorphism $\gamma: \hat{F} \to G$ such that $\alpha \circ \gamma = \varphi$. Since α is Frattini, γ is surjective. Thus $\mathbb{Z}/p\mathbb{Z}$ is a composition factor of a Σ -group. Conclude that $\mathbb{Z}/p\mathbb{Z}$ is in Σ .

Remark 2:

(a) If m_0 is the minimal integer such that all groups in Σ have rank m_0 , then Lemma 1 is false with $m < m_0$. For example, it is false for m = 1. Indeed, suppose that Σ consists of the group A_5 only. Then $\hat{F}_1(\Sigma)$ is the trivial group, hence projective.

^{*} This has a typo. Instead of "p does not divide #G" it should say "p divides #G".

But, $\mathbb{Z}/2\mathbb{Z}$ in not in Σ , although 2 divides the order of A_5 .

(b) The classification of finite simple groups implies that any simple group S is generated by two elements [AsG, Thm. B]. That is, we may take $m_0 = 2$ in Lemma 1. We do not use the "if" part of Lemma 1 in the construction of a g-Hilbertian field which is not Hilbertian. In particular, the latter construction does not use the classification theorem for simple groups.

2. Σ -Hilbertian fields

Let Σ be a set of finite simple groups and let t be a transcendental over K. We say K is Σ -Hilbertian if the following holds for each finite Galois extension F/K(t) with G(F/K(t)) a Σ -group. There are infinitely many $a \in K$ such that each decomposition subgroup of $\mathcal{G}(F/K(t))$ over the specialization $t \to a$ coincides with the whole group.

In particular, if Σ is the set of all finite simple groups, then K is Σ -Hilbertian if and only if it is separably Hilbertian [FrJ, p. 147]. (Separable Hilbertian in characteristic 0 is the same as Hilbertian.) In many other cases this conclusion is false:

LEMMA 3: Let Σ be a set of finite simple groups such that $\hat{F}_{\omega}(\Sigma)$ is projective. Let K_0 be a countable separably Hilbertian field. Suppose there exists a finite nonabelian simple group which does not belong to Σ . Then K_0 has a separable algebraic extension K which is PAC, Σ -Hilbertian, but not separably Hilbertian. Moreover, $G(K) \cong \hat{F}_{\omega}(\Sigma)$.

Proof: Since $\hat{F}_{\omega}(\Sigma)$ has countable rank, K_0 has a separable algebraic extension K which is PAC such that $G(K) \cong \hat{F}_{\omega}(\Sigma)$ [FrJ, Thm. 20.22].

CLAIM A: K is Σ -Hilbertian. Indeed, let F/K(t) be a finite Galois extension such that $\mathcal{G}(F/K(t))$ is a Σ -group. Let L be the algebraic closure of K in F. By (2), the embedding problem res: $\mathcal{G}(F/K(t)) \to \mathcal{G}(L/K)$ is solvable over K. Now continue with the proof of Claim A exactly as in the proof of [FrJ, Prop. 23.2] (for E = K(t) and $H = \mathcal{G}(F/E)$) and obtain infinitely many $a \in K$ such that each decomposition group over the specialization $t \to a$ coincides with $\mathcal{G}(F/K(t))$.

CLAIM B: K is not separably Hilbertian. Let S be a finite simple nonabelian group which is not in Σ . Since K is PAC, K(t) has a Galois extension F' with Galois group S [FrV, Thm. 2, for characteristic 0, and Pop, Thm. 1 or HaJ, Thm. A in general]. If K were separably Hilbertian, we could specialize t to an element of K and realize S over K. Then S would be a quotient of $\hat{F}_{\omega}(\Sigma)$ and therefore would be a Σ -group. This would contradict the assumption we have made on S.

Remark 4: The assumption that $\hat{F}_{\omega}(\Sigma)$ is projective is redundant. Suppose that $\hat{F}_{\omega}(\Sigma)$ is not projective. Let $\varphi: \tilde{F}_{\omega}(\Sigma) \to \hat{F}_{\omega}(\Sigma)$ be its universal Frattini cover. Then $\tilde{F}_{\omega}(\Sigma)$ is projective [FrJ, Prop. 20.33]. Since $\hat{F}_{\omega}(\Sigma)$ has the embedding property, so does $\tilde{F}_{\omega}(\Sigma)$ [FrJ, Prop. 23.9]. Moreover, $\operatorname{Ker}(\varphi)$ is contained in the Frattini subgroup of $\tilde{F}_{\omega}(\Sigma)$, which is nilpotent [FrJ, Lemma 20.2]. It follows that $\operatorname{Ker}(\varphi)$ itself is nilpotent. Suppose S is not a quotient of $\hat{F}_{\omega}(\Sigma)$ and S is a simple nonabelian group. Then S is not a quotient of $\tilde{F}_{\omega}(\Sigma)$. The proof of Lemma 3 remains therefore valid if we replace $\hat{F}_{\omega}(\Sigma)$ throughout by $\tilde{F}_{\omega}(\Sigma)$.

Indeed, in this case we may prove Claim B in another way: $\text{Ker}(\varphi)$ is a nontrivial closed normal subgroup of G(K) and it is pro-nilpotent. By [FrJ, Thm. 15.10], K is not separably Hilbertian.

3. *g*-Hilbertian fields

Let K be a field and let g be a nonnegative integer. Call a separable rational map of absolutely irreducible curves, $\varphi \colon \Gamma \to \mathbb{A}^1$, over K admissible if it has degree at least 2. We say that K is g-Hilbertian if K is not the union of finitely many sets of the form $\varphi(\Gamma(K))$ with φ admissible and Γ of genus at most g. Each $a \in K$ belongs to a set of the form $\varphi(\Gamma(K))$ with φ admissible and Γ of genus at most g with a point $a' \in \varphi(\Gamma(K))$. Then $\varphi' = \varphi + a - a'$ is also admissible and $a' \in \varphi'(\Gamma(K))$. [FrJ, Lemma 12.1 or Ser, Cor. 3.2.4 for char(K) = 0] shows that K is separably Hilbertian if and only if K is g-Hilbertian for each $g \geq 0$.

Observe that K is 0-Hilbertian if and only if K has the following property:

(4) $K \neq \bigcup_{i=1}^{m} \varphi_i(K)$ for each collection $\{\varphi \in K(t) \mid \deg(\varphi) \ge 2 \text{ and } \varphi_i \text{ separable }, i = 1, \ldots, t\}.$

Indeed, suppose that K satisfies Condition (4). Assume that $K = \bigcup_{i=1}^{n} \varphi_i(\Gamma_i(K))$, with $\varphi_i \colon \Gamma_i \to \mathbb{A}^1$ admissible and the genus of Γ_i is $0, i = 1, \ldots, n$. Renumber $\varphi_1, \ldots, \varphi_n$, if necessary, to assume that $\Gamma_i(K)$ is infinite for i = 1, ..., m and $\Gamma_i(K)$ is finite for i = m + 1, ..., n. In particular, for each *i* between 1 and *m*, $\Gamma_i(K)$ contains a simple *K*-rational point. Hence, Γ_i is birationally equivalent to \mathbb{A}^1 over *K*, [Art, p. 304, Thm. 7] and φ_i can be considered as an element of K(t). Moreover, $K \setminus \bigcup_{i=1}^m \varphi_i(K)$ is a finite set, say $\{a_1, \ldots, a_r\}$. For each *j* between 1 and *r* let $\psi_j = t^2 + a_j$. Then $K = \bigcup_{i=1}^m \varphi_i(K) \cup \bigcup_{i=1}^r \psi_j(K)$. This contradicts Condition (4).

Corvaja and Zannier [CoZ, Thm. 1] give an example of an algebraic extension K of \mathbb{Q} which is 0-Hilbertian but not Hilbertian.

The example of Theorem 5 generalizes that of Corvaja-Zannier and proves that for each g there are g-Hilbertian fields which are not Hilbertian.*

Let C be an algebraically closed field of characteristic p (which may be 0). Let G be a finite group. We say that G has **genus** g (in characteristic p) if there exists a finite separable extension F/C(t), with F of genus g, such that $G \cong \mathcal{G}(\hat{F}/C(t))$. Here \hat{F} is the Galois closure of F/C(t). In particular, each cyclic group is a group of genus 0 in each characteristic.

Remark 5: Omission of Chevalley groups. A combination of works of Aschbacher, Frohardt, Guralnick, Liebeck, Magaard, Neubauer, Saxl, and Thompson, proves that for each g there are finite simple groups that are not composition factors of groups of genus g in characteristic 0. Indeed, there are only finitely many — depending on g — Chevalley groups defined over a field with more than 113 elements that occur as composition factors of groups of genus g in characteristic 0 [GuN, Thm. A].

We don't know, for p > 0 and a given g, if there is any finite simple group which does not occur as a composition factor of a group of genus at most g in characteristic p. This restricts the proof of Theorem 6 to characteristic 0. Thus, it is not clear if there exists a non-Hilbertian field K of characteristic p which is g-Hilbertian.

THEOREM 6: Let g be a nonnegative integer and let K_0 be a countable Hilbertian field of characteristic 0. Then, K_0 has an algebraic extension K which is PAC, g-Hilbertian, but not Hilbertian.

^{*} The [CoZ] example is a quotient field of a unique factorization domain R with infinitely many prime ideals. Our example does not have this property.

Proof: Denote the set of all finite simple groups that occur as composition factors of groups of genus at most g in characteristic 0 by Σ . Then Σ contains all groups $\mathbb{Z}/l\mathbb{Z}$, with l prime, but not all finite simple groups. For example, if p > 113 is a large prime, then Σ does not contain $PSL(2, \mathbb{F}_p)$ (Remark 5).

By Lemma 1, $\hat{F}_{\omega}(\Sigma)$ is projective. Lemma 3 therefore gives an algebraic extension K of K_0 which is PAC, Σ -Hilbertian but not Hilbertian. Moreover, $G(K) \cong \hat{F}_{\omega}(\Sigma)$.

CLAIM: K is g-Hilbertian. For i = 1, ..., m let Γ_i be an absolutely irreducible curve over K of genus at most g. Let $\varphi_i \colon \Gamma_i \to \mathbb{A}^1$ be a rational function of degree at least 2. Use primitive elements if necessary to assume that Γ_i is a plane curve defined by the equation $h_i(T, X) = 0$, where $h_i \in K[T, X]$ is an absolutely irreducible polynomial of degree at least 2 in X. Moreover, assume that φ_i is the projection on the first coordinate.

Now choose $x_i \in \widetilde{K(t)}$ such that $h_i(t, x_i) = 0$. Let \hat{F}_i be the Galois closure of $K(t, x_i)/K(t)$, and let L_i be the algebraic closure of K in \hat{F}_i . Since $K(t, x_i)$ is linearly disjoint from $L_i(t)$ over K(t), x_i has the same conjugates over $L_i(t)$ as over K(t). Hence, \hat{F}_i is the Galois closure of $L_i(t, x_i)/L_i(t)$ and therefore $\hat{F}_i\tilde{K}$ is the Galois closure of $\tilde{K}(t, x_i)/\tilde{K}(t)$. Moreover, $\mathcal{G}(\hat{F}_i/L_i(t)) \cong \mathcal{G}(\hat{F}_i\tilde{K}/\tilde{K}(t))$ and the genus of $\hat{F}_i\tilde{K}/\tilde{K}$ is at most g [Deu, p. 136]. Hence, $\mathcal{G}(\hat{F}_i/L_i(t))$ is a group of genus at most g and therefore also a Σ -group. In addition, $\mathcal{G}(L_i/K)$ as a quotient of $\hat{F}_{\omega}(\Sigma)$ is also a Σ -group. Conclude from the short exact sequence

$$1 \longrightarrow \mathcal{G}(\hat{F}_i/L_i(t)) \longrightarrow \mathcal{G}(\hat{F}_i/K(t)) \longrightarrow \mathcal{G}(L_i/K) \longrightarrow 1$$

that $\mathcal{G}(\hat{F}_i/K(t))$ is a Σ -group.

Let $\hat{F} = \hat{F}_1 \cdots \hat{F}_m$. Take successive fiber products of $\mathcal{G}(\hat{F}_1/K(t)), \ldots, \mathcal{G}(\hat{F}_m/K(t))$ to obtain $\mathcal{G}(\hat{F}/K(t))$. By §1, $\mathcal{G}(\hat{F}/K(t))$ is a Σ -group. Since, K is Σ -Hilbertian, it is possible to specialize t in infinitely many ways to an element $a \in K$ such that $\mathcal{G}(\hat{F}/K(t))$ is preserved. For infinitely many of these a, each of the polynomials $h_i(a, X)$ is irreducible of degree at least 2. In particular, $h_i(a, b) \neq 0$ for all $b \in K$. So, $a \notin \bigcup_{i=1}^m \varphi_i(K)$ for infinitely many $a \in K$. This concludes the proof of the Claim and of the theorem.

References

- [Art] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York, 1967.
- [AsC] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group, Journal of Algebra **90** (1984), 446-460.
- [CoZ] P. Corvaja and U. Zannier, Values of rational functions on non-Hilbertian fields and a question of Weissauer, Israel Journal of Mathematics
- [Deu] M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lecture Notes in Mathematics 314, Springer, Berlin, 1973.
- [FrJ] M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 1986.
- [FrV] M. D. Fried and H. Völklein, The inverse Galois problem and rational points on moduli spaces, Mathematische Annalen 290 (1991), 771–800.
- [GuN] R. Guralnick and M. Neubauer, Monodromy groups of branched coverings: The generic case, Contemporary Mathematics **186** (1995), 325–352.
- [HaJ] Dan Haran and M. Jarden, Regular split embedding problems over complete valued fields, Manuscript, Heidelberg, 1996
- [Hup] B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin, 1967.
- [Pop] F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996), 1–35.
- [Mel] O. V. Melnikov, Normal subgroups of free profinite groups, Math. USSR Izvestija 12 (1978), 1–20.
- [Rib] L. Ribes, Introduction to Profinite Groups and Galois Cohomology, Queen's papers in Pure and Applied Mathematics 24, Queen's University, Kingston, 1970.
- [Ser] J.-P. Serre, Topics in Galois Theory, Jones and Barlett, Boston 1992.