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Introduction

A field K is 0-Hilbertian if K 6=
⋃n

i=1 ϕi(K) for any collection of rational functions ϕi of

degree at least 2, i = 1, . . . ,m. Corvaja and Zannier [CoZ] give an elementary construc-

tion for a 0-Hilbertian field that isn’t Hilbertian. There is an obvious generalization of

the notion of 0-Hilbertian to g-Hilbertian.

Guralnick-Thompson and Liebeck-Saxl have given a partial classification of mon-

odromy groups of genus g covers of the projective line over C. We use this to construct,

for each nonnegative integer g, a PAC field K of characteristic 0 which is g-Hilbertian

but not Hilbertian.

1. Σ-groups

Let Σ be a set of finite simple groups. A finite group G is said to be a Σ-group, if each

composition factor of G belongs to Σ. An inverse limit of Σ-groups is a pro-Σ-group.

Consider a short exact sequence of profinite groups:

(1) 1 - C - B -α A - 1

Then B is a pro-Σ-group if and only if both A and C are pro-Σ-groups. If G = B1×AB2

is a fiber product of Σ-groups [FrJ, p. 288], then Ker(G → B2) ∼= Ker(B1 → A) is a

Σ-group. Hence, G is a Σ-group.

For each cardinal number m there exists a unique (up to an isomorphism) free

pro-Σ-group F̂m(Σ) of rank m. This group has a subset X of cardinality m which

converges to 1 such that each continuous map ϕ0 of X into a pro-Σ group G uniquely

extends to a homomorphism ϕ: F̂m(Σ) → G. By Melnikov [Mel, Lemma 2.2], F̂m(Σ)

has the embedding property [FrJ, p. 353]. In particular,

(2) if m is infinite, then each finite embedding problem for F̂m(Σ) where the kernel is

a Σ-group is solvable.

If Σ is the set of all finite simple groups, then F̂m(Σ) is the free profinite group

F̂m of rank m. In this case F̂m is projective. This is also true in other cases:

Lemma 1: Suppose each finite simple group in Σ is generated by m0 elements. If

m ≥ m0, then F̂m(Σ) is projective if and only if the following holds:
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(3) If a prime p divides the order of one of the groups in Σ, then Z/pZ ∈ Σ.

Proof: Write F̂ for F̂m(Σ). Suppose first that Σ satisfies (3). In order to prove that

F̂ is projective, it suffices (and is necessary) to prove that for each prime p, each finite

embedding problem for F̂ with an abelian p-elementary kernel has a weak solution [FrJ,

Lemma 20.8 or Rib, p. 211].

Indeed, assume that in the short exact sequence (1), C ∼= (Z/pZ)n for some

positive integer n. Let ϕ: F̂ → A be an epimorphism. Choose b1, . . . , bk ∈ B such that

〈α(b1), . . . , α(bk)〉 = A and k ≤ m if m is finite. Let B0 = 〈b1, . . . , bk〉 and let α0 be the

restriction of α to B0. Then C0 = Ker(α0) = C ∩ B0 is also an abelian p-elementary

group. If p does not divide the order of A, then α0 has a section [Hup, p. 122, Satz

17.5]. If p divides the order of A, then Z/pZ ∈ Σ (by (3)). Therefore, both A and C0

are Σ-groups. Hence, so is B0. Since B0 is generated by k elements and k ≤ m, it is a

quotient of F̂m(Σ). It follows that in each case there exists an epimorphism γ: F̂ → B0

such that α0 ◦γ = ϕ. This is a weak solution to the embedding problem. Conclude that

F̂ is projective.

Conversely, suppose that F̂ is projective. Let S be a simple group in Σ and let p

be a prime divisor of the order of S. We have to prove that Z/pZ ∈ Σ.

Indeed, since S is finite, cdp(S) = ∞ [Rib, p. 209, Cor. 205]∗. In particular, by

[Rib, p. 211], there exists a nonsplit short exact sequence 1 - C - G -α S - 1.

where C is a finite elementary p-abelian group. Replace G by a subgroup of G if

necessary, to assume that α is a Frattini cover [FrJ, p. 299].

Since m ≥ m0, this gives an epimorphism ϕ: F̂ → S. As F̂ is projective, there is

a homomorphism γ: F̂ → G such that α ◦ γ = ϕ. Since α is Frattini, γ is surjective.

Thus Z/pZ is a composition factor of a Σ-group. Conclude that Z/pZ is in Σ.

Remark 2:

(a) If m0 is the minimal integer such that all groups in Σ have rank m0, then

Lemma 1 is false with m < m0. For example, it is false for m = 1. Indeed, suppose

that Σ consists of the group A5 only. Then F̂1(Σ) is the trivial group, hence projective.

* This has a typo. Instead of “p does not divide #G” it should say “p divides #G”.
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But, Z/2Z in not in Σ, although 2 divides the order of A5.

(b) The classification of finite simple groups implies that any simple group S is

generated by two elements [AsG, Thm. B]. That is, we may take m0 = 2 in Lemma 1.

We do not use the “if” part of Lemma 1 in the construction of a g-Hilbertian field which

is not Hilbertian. In particular, the latter construction does not use the classification

theorem for simple groups.

2. Σ-Hilbertian fields

Let Σ be a set of finite simple groups and let t be a transcendental over K. We say

K is Σ-Hilbertian if the following holds for each finite Galois extension F/K(t) with

G(F/K(t)) a Σ-group. There are infinitely many a ∈ K such that each decomposition

subgroup of G(F/K(t)) over the specialization t→ a coincides with the whole group.

In particular, if Σ is the set of all finite simple groups, then K is Σ-Hilbertian if

and only if it is separably Hilbertian [FrJ, p. 147]. (Separable Hilbertian in characteristic

0 is the same as Hilbertian.) In many other cases this conclusion is false:

Lemma 3: Let Σ be a set of finite simple groups such that F̂ω(Σ) is projective. Let

K0 be a countable separably Hilbertian field. Suppose there exists a finite nonabelian

simple group which does not belong to Σ. Then K0 has a separable algebraic extension

K which is PAC, Σ-Hilbertian, but not separably Hilbertian. Moreover, G(K) ∼= F̂ω(Σ).

Proof: Since F̂ω(Σ) has countable rank, K0 has a separable algebraic extension K

which is PAC such that G(K) ∼= F̂ω(Σ) [FrJ, Thm. 20.22].

Claim A: K is Σ-Hilbertian. Indeed, let F/K(t) be a finite Galois extension such

that G(F/K(t)) is a Σ-group. Let L be the algebraic closure of K in F . By (2), the

embedding problem res: G(F/K(t)) → G(L/K) is solvable over K. Now continue with

the proof of Claim A exactly as in the proof of [FrJ, Prop. 23.2] (for E = K(t) and

H = G(F/E)) and obtain infinitely many a ∈ K such that each decomposition group

over the specialization t→ a coincides with G(F/K(t)).

Claim B: K is not separably Hilbertian. Let S be a finite simple nonabelian group

which is not in Σ. Since K is PAC, K(t) has a Galois extension F ′ with Galois group
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S [FrV, Thm. 2, for characteristic 0, and Pop, Thm. 1 or HaJ, Thm. A in general]. If

K were separably Hilbertian, we could specialize t to an element of K and realize S

over K. Then S would be a quotient of F̂ω(Σ) and therefore would be a Σ-group. This

would contradict the assumption we have made on S.

Remark 4: The assumption that F̂ω(Σ) is projective is redundant. Suppose that F̂ω(Σ)

is not projective. Let ϕ: F̃ω(Σ) → F̂ω(Σ) be its universal Frattini cover. Then F̃ω(Σ) is

projective [FrJ, Prop. 20.33]. Since F̂ω(Σ) has the embedding property, so does F̃ω(Σ)

[FrJ, Prop. 23.9]. Moreover, Ker(ϕ) is contained in the Frattini subgroup of F̃ω(Σ),

which is nilpotent [FrJ, Lemma 20.2]. It follows that Ker(ϕ) itself is nilpotent. Suppose

S is not a quotient of F̂ω(Σ) and S is a simple nonabelian group. Then S is not a

quotient of F̃ω(Σ). The proof of Lemma 3 remains therefore valid if we replace F̂ω(Σ)

throughout by F̃ω(Σ).

Indeed, in this case we may prove Claim B in another way: Ker(ϕ) is a nontrivial

closed normal subgroup of G(K) and it is pro-nilpotent. By [FrJ, Thm. 15.10], K is not

separably Hilbertian.

3. g-Hilbertian fields

Let K be a field and let g be a nonnegative integer. Call a separable rational map of

absolutely irreducible curves, ϕ: Γ → A1, over K admissible if it has degree at least

2. We say that K is g-Hilbertian if K is not the union of finitely many sets of the

form ϕ(Γ(K)) with ϕ admissible and Γ of genus at most g. Each a ∈ K belongs to

a set of the form ϕ(Γ(K)) with ϕ admissible and Γ of genus at most g with a point

a′ ∈ ϕ(Γ(K)). Then ϕ′ = ϕ+ a− a′ is also admissible and a′ ∈ ϕ′(Γ(K)). [FrJ, Lemma

12.1 or Ser, Cor. 3.2.4 for char(K) = 0] shows that K is separably Hilbertian if and

only if K is g-Hilbertian for each g ≥ 0.

Observe that K is 0-Hilbertian if and only if K has the following property:

(4) K 6=
⋃m

i=1 ϕi(K) for each collection {ϕ ∈ K(t) | deg(ϕ) ≥ 2 and ϕi separable , i =

1, . . . , t}.

Indeed, suppose thatK satisfies Condition (4). Assume thatK =
⋃n

i=1 ϕi(Γi(K)),

with ϕi: Γi → A1 admissible and the genus of Γi is 0, i = 1, . . . , n. Renumber ϕ1, . . . , ϕn,
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if necessary, to assume that Γi(K) is infinite for i = 1, . . . ,m and Γi(K) is finite for

i = m + 1, . . . , n. In particular, for each i between 1 and m, Γi(K) contains a simple

K-rational point. Hence, Γi is birationally equivalent to A1 over K, [Art, p. 304,

Thm. 7] and ϕi can be considered as an element of K(t). Moreover, K r ⋃m
i=1 ϕi(K)

is a finite set, say {a1, . . . , ar}. For each j between 1 and r let ψj = t2 + aj . Then

K =
⋃m

i=1 ϕi(K) ∪
⋃r

j=1 ψj(K). This contradicts Condition (4).

Corvaja and Zannier [CoZ, Thm. 1] give an example of an algebraic extension K

of Q which is 0-Hilbertian but not Hilbertian.

The example of Theorem 5 generalizes that of Corvaja-Zannier and proves that

for each g there are g-Hilbertian fields which are not Hilbertian.∗

Let C be an algebraically closed field of characteristic p (which may be 0). Let

G be a finite group. We say that G has genus g (in characteristic p) if there exists a

finite separable extension F/C(t), with F of genus g, such that G ∼= G(F̂ /C(t)). Here

F̂ is the Galois closure of F/C(t). In particular, each cyclic group is a group of genus

0 in each characteristic.

Remark 5: Omission of Chevalley groups. A combination of works of Aschbacher, Fro-

hardt, Guralnick, Liebeck, Magaard, Neubauer, Saxl, and Thompson, proves that for

each g there are finite simple groups that are not composition factors of groups of genus

g in characteristic 0. Indeed, there are only finitely many — depending on g — Cheval-

ley groups defined over a field with more than 113 elements that occur as composition

factors of groups of genus g in characteristic 0 [GuN, Thm. A].

We don’t know, for p > 0 and a given g, if there is any finite simple group which

does not occur as a composition factor of a group of genus at most g in characteristic p.

This restricts the proof of Theorem 6 to characteristic 0. Thus, it is not clear if there

exists a non-Hilbertian field K of characteristic p which is g-Hilbertian.

Theorem 6: Let g be a nonnegative integer and let K0 be a countable Hilbertian field

of characteristic 0. Then, K0 has an algebraic extension K which is PAC, g-Hilbertian,

but not Hilbertian.

* The [CoZ] example is a quotient field of a unique factorization domain R with infinitely
many prime ideals. Our example does not have this property.
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Proof: Denote the set of all finite simple groups that occur as composition factors of

groups of genus at most g in characteristic 0 by Σ. Then Σ contains all groups Z/lZ,

with l prime, but not all finite simple groups. For example, if p > 113 is a large prime,

then Σ does not contain PSL(2,Fp) (Remark 5).

By Lemma 1, F̂ω(Σ) is projective. Lemma 3 therefore gives an algebraic extension

K of K0 which is PAC, Σ-Hilbertian but not Hilbertian. Moreover, G(K) ∼= F̂ω(Σ).

Claim: K is g-Hilbertian. For i = 1, . . . ,m let Γi be an absolutely irreducible curve

over K of genus at most g. Let ϕi: Γi → A1 be a rational function of degree at least

2. Use primitive elements if necessary to assume that Γi is a plane curve defined by

the equation hi(T,X) = 0, where hi ∈ K[T,X] is an absolutely irreducible polynomial

of degree at least 2 in X. Moreover, assume that ϕi is the projection on the first

coordinate.

Now choose xi ∈ K̃(t) such that hi(t, xi) = 0. Let F̂i be the Galois closure of

K(t, xi)/K(t), and let Li be the algebraic closure of K in F̂i. Since K(t, xi) is linearly

disjoint from Li(t) over K(t), xi has the same conjugates over Li(t) as over K(t).

Hence, F̂i is the Galois closure of Li(t, xi)/Li(t) and therefore F̂iK̃ is the Galois closure

of K̃(t, xi)/K̃(t). Moreover, G(F̂i/Li(t)) ∼= G(F̂iK̃/K̃(t)) and the genus of F̂iK̃/K̃ is at

most g [Deu, p. 136]. Hence, G(F̂i/Li(t)) is a group of genus at most g and therefore also

a Σ-group. In addition, G(Li/K) as a quotient of F̂ω(Σ) is also a Σ-group. Conclude

from the short exact sequence

1 - G(F̂i/Li(t)) - G(F̂i/K(t)) - G(Li/K) - 1

that G(F̂i/K(t)) is a Σ-group.

Let F̂ = F̂1 · · · F̂m. Take successive fiber products of G(F̂1/K(t)), . . . ,G(F̂m/K(t))

to obtain G(F̂ /K(t)). By §1, G(F̂ /K(t)) is a Σ-group. Since, K is Σ-Hilbertian, it is

possible to specialize t in infinitely many ways to an element a ∈ K such that G(F̂ /K(t))

is preserved. For infinitely many of these a, each of the polynomials hi(a,X) is irre-

ducible of degree at least 2. In particular, hi(a, b) 6= 0 for all b ∈ K. So, a /∈
⋃m

i=1 ϕi(K)

for infinitely many a ∈ K. This concludes the proof of the Claim and of the theorem.

6



References

[Art] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and Breach, New York,

1967.

[AsC] M. Aschbacher and R. Guralnick, Some applications of the first cohomology group,

Journal of Algebra 90 (1984), 446-460.

[CoZ] P. Corvaja and U. Zannier, Values of rational functions on non-Hilbertian fields and a

question of Weissauer, Israel Journal of Mathematics

[Deu] M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lecture

Notes in Mathematics 314, Springer, Berlin, 1973.

[FrJ] M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik (3) 11,

Springer, Heidelberg, 1986.

[FrV] M. D. Fried and H. Völklein, The inverse Galois problem and rational points on moduli

spaces, Mathematische Annalen 290 (1991), 771–800.

[GuN] R. Guralnick and M. Neubauer, Monodromy groups of branched coverings: The generic

case, Contemporary Mathematics 186 (1995), 325–352.

[HaJ] Dan Haran and M. Jarden, Regular split embedding problems over complete valued

fields, Manuscript, Heidelberg, 1996

[Hup] B. Huppert, Endliche Gruppen I, Die Grundlehren der mathematischen Wissenschaften

in Einzeldarstellungen 134, Springer, Berlin, 1967.

[Pop] F. Pop, Embedding problems over large fields, Annals of Mathematics 144 (1996),

1–35.

[Mel] O. V. Melnikov, Normal subgroups of free profinite groups, Math. USSR Izvestija 12

(1978), 1–20.

[Rib] L. Ribes, Introduction to Profinite Groups and Galois Cohomology, Queen’s papers in

Pure and Applied Mathematics 24, Queen’s University, Kingston, 1970.

[Ser] J.-P. Serre, Topics in Galois Theory, Jones and Barlett, Boston 1992.

7


