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Abstract

Let S be a finite set of rational primes. We denote the maximal Galois extension of Q in

which all p ∈ S totally decompose by N . We also denote the fixed field in N of e elements

σ1, . . . , σe in the absolute Galois group G(Q) of Q by N(σ). We denote the ring of integers

of a given algebraic extension M of Q by ZM . We also denote the set of all valuations of M

(resp., which lie over S) by VM (resp., SM ). If v ∈ VM , then OM,v denotes the ring of integers

of a Henselization of M with respect to v.

We prove that for almost all σ ∈ G(Q)e, the field M = N(σ) satisfies the following local

global principle: Let V be an affine absolutely irreducible variety defined over M . Suppose that

V (OM,v) 6= ∅ for each v ∈ VM rSM and Vsim(OM,v) 6= ∅ for each v ∈ SM . Then V (OM ) 6= ∅.

We also prove two approximation theorems for M .
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Introduction

Hilbert’s tenth problem asks for the existence of an algorithm to solve diophantine

equations, that is equations with coefficients in Z whose solutions are sought in Z. The

development of recursion theory since 1930 and works of Martin Davis, Hilary Putnam,

and Julia Robinson finally led Juri Matijasevich in 1972 to a negative answer to that

problem. This invoked Julia Robinson to ask whether Hilbert’s tenth problem has a

positive solution over the ring Z̃ of all algebraic integers. Indeed, on page 367 of her

joint paper [DMR] with Davis and Matijasevich she guessed that there should be one.

Using capacity theory, Rumely [Ru1, and Ru2] proved in 1987 a local global

principle for Z̃: If an absolutely irreducible affine variety V over Q̃ has an integral point

over every completion of Q̃, then V has a point with coordinates in Z̃. This led Rumely

to an algorithm for solving diophantine problems over Z̃.

Moret-Bailly [MB1, MB2, MB3] reproved Rumely’s theorem in 1988-89 with meth-

ods of algebraic geometry.

In a conference on model theory in Oberwolfach, 1990, Roquette et al. [Ro2]

presented a proof of Rumely’s local global principle which uses results from algebraic

number theory, the theory of algebraic functions of one variable, but not the theory of

analytic functions as in Rumely’s original proof.

A predecessor to [Ro2] and indeed an important ingredient in the proof of [Ro2]

is the density theorem of Cantor and Roquette [CaR]. The latter theorem generalizes

and strengthens a theorem of Skolem from 1934: Let f be a primitive polynomial

in Z̃[X1, . . . , Xn] (i.e., the coefficients of f generate Z̃). Then, there exists x ∈ Z̃n

such that f(x) is a unit of Z̃. Cantor and Roquette handled several rational functions

simultaneously, and proved, under appropriate conditions, not only the existence of x,

but also that the set of such x’s is dense in Z̃n, in an appropriate topology.

This density gave the first author enough flexibility to generalize the theorem of

Skolem-Cantor-Roquette to rings of integers of other algebraic fields. To explain the

latter objects recall that the absolute Galois group G(Q) of Q is equipped with a Haar

measure. For each σ = (σ1, . . . , σe) ∈ G(Q)e we denote the fixed field of σ1, . . . , σe by

Q̃(σ). Let Z̃(σ) be the ring of integers of Q̃(σ). It is known that Q̃(σ) is a PAC field for

1



almost all σ ∈ G(Q)e. That is, every nonempty absolutely irreducible variety defined

over Q̃(σ) has a Q̃(σ)-rational point [Ja1 or FrJ, Thm. 16.18]. A combination of the

technique used to prove the latter theorem with the technique of Cantor-Roquette, then

proves the density theorem, hence Skolem’s theorem, for almost all rings Z̃(σ) [Ja2].

In his closing remarks to the series of talks in Oberwolfach about Rumely’s local

global principle, Roquette mentioned the manuscript [Ja2], and challenged the first

author to generalize Rumely’s local global principle from the ring Z̃ to almost all the

rings Z̃(σ).

The keystone to the local global principle is Rumely’s existence theorem. Given a

smooth irreducible curve Γ over Q̃p and a p-adic open subset U of Γ(Q̃p), this principle

gives a rational function f on Γ, all of its zeros belong to U . Moreover, one can

control the divisor of poles of f . In an unpublished manuscript [Pop] Pop amended

Rumely’s existence theorem with a rationality condition. Then Pop took a finite set S

of prime numbers and let N = Qtot,S be the maximal Galois extension of Q in which

all p ∈ S totally decompose. He proved that N satisfies a local global principle for

absolutely irreducible normal varieties (See Remark 8.3(a)). Green, Pop, and Roquette

have integrated [Pop] and [Ro2] into [GPR] and proved the local global principle for the

ring of integers ZN of N . This implies both Rumely’s and Pop’s earlier results.

The present work is an answer to the challenge of Roquette. It is the third

article in a series of three articles of the two authors which were based on the master

thesis of the second author. Indeed given σ ∈ G(Q)e, we consider the field N(σ) =

Q̃(σ) ∩N and denote its ring of integers by ZN(σ). In [JR2] we generalize the theorem

of Skolem-Cantor-Roquette. In the present work we prove the local global principle and

an approximation theorem for almost all rings ZN(σ). We then derive an affirmative

solution of Hilbert’s tenth problem for these rings.

It turns out that the crucial property of almost all fields Q̃(σ) which is responsible

for the density property and the local global principle of ZN(σ) is a certain strengthening

of the PAC property, namely “PAC over Z” [JR1, Def. 1.1]. In [JR2] we consider an

algebraic extension M0 of Q and let M = M0 ∩ N . We prove that if M0 is PAC over

ZM , then M is “weakly PSC over ZM” (Data 1.1(n)). Hence, both in [JR2] and in the
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present work, we take an axiomatic approach and prove all our results for an arbitrary

subfield M of N which is weakly PSC over ZM .

Since “M0 is PAC over Z” implies “M0 is PAC over ZM”, all results hold for

M0 = Q̃(σ), excluding a set of σ ∈ G(Q)e of measure zero. Moreover, Q̃ is PAC over Z.

So, we may take M0 to be Q̃. Then M = N and we recover the local global principle

[GPR, Main Theorem] of Green, Pop, and Roquette ([GPR] does not include a global

approximation theorem.)

Note also, that if S is an empty set, then N = Q̃ and M = M0. In particular,

this proves the local global principle and the approximation theorem for almost all rings

Z̃(σ). The approximation theorem in its stronger form is an essential ingredient in a

primitive recursive decision procedure for the theory of all elementary statements which

are true in almost all rings Z̃(σ) (forthcoming thesis [Raz] of the second author).

The exact formulation of our results appears in Section 1. As is usually the case,

we formulate and prove them over a Dedekind domain whose quotient field is a basic

global field K.

Acknowledgement: The authors thank Joachim Schmid for useful remarks.
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1. Statements of the main results

The objects of our results are defined over global fields rather than over Q. To explain

the results in detail, we first set the general framework for the whole work.

Data 1.1: We will use the following data and notation and keep the assumptions we

make for the rest of this work:

(a) K is a global field.

(b) O is a Dedekind domain with quotient field K.

(c) K̃ is the algebraic closure of K; Ks is the separable closure of K.

(d) G(K) = G(Ks/K) is the absolute Galois group of K, which we identify with

Aut(K̃/K).

(e) V is the set of all valuations of K which correspond to the nonzero prime ideals of

O.

(f) For each v ∈ V, Ktv is the maximal Galois extension of K in which v totally splits.

If Kv is a Henselian closure of K with respect to v, then Ktv =
⋂

σ∈G(K) Kσ
v .

(g) S is a finite subset of V.

(h) Ktot,S =
⋂

v∈S Ktv. This is the maximal Galois extension of K in which each

v ∈ S totally splits.

(i) N = Ktot,S,ins is the maximal purely inseparable extension of Ktot,S . It is a

perfect field and a normal algebraic extension of K. If char(K) = 0, then N = Ktot,S .

If S = ∅, then N = K̃.

(j) For each algebraic extension L of K let OL be the integral closure of O in L. For

each subset R of V, let RL be the set of all extensions of the valuations in R to

L. In particular, O = OK and V = VK . If L is a normal extension of K and

σ ∈ Aut(L/K), then σ naturally acts on VL by vσ(aσ) = v(a) for v ∈ VL and

a ∈ L. If [L : K] < ∞, then OL is a Dedekind domain and VL is the set of all

valuations of L which correspond to the nonzero prime ideals of OL. In the general

case OL = {x ∈ L‖v(x) ≥ 0 for all v ∈ VL}.

(k) Õ = OK̃ and Ṽ = VK̃ .

(l) For each w ∈ VN choose a Henselian closure Nw of N at w. This choice fixes an

extension w̃ of w to K̃ such that Nw is the fixed field in K̃ of the decomposition
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group DN (w̃) = {τ ∈ G(N) | w̃τ = w̃}. For each subextension L of N/K let Lw

be the fixed field in Ls of DL(w̃) = {τ ∈ G(L) | w̃τ = w̃}. Then Lw is a Henselian

closure of L at w|L which is contained in Nw. Let OL,w be its valuation ring. Note

that the residue field of Nw is a finite field, in particular it is not separably closed.

Hence, by a theorem of F.K. Schmidt [Ja3, Prop. 14.5], each σ ∈ Aut(N/K) uniquely

extends to an isomorphism of Nw onto Nwσ , which we also denote by σ. It maps

Lw (resp., OL,w) onto Lσ
wσ (resp., OLσ,wσ ).

(m) For an abstract absolutely irrecucible variety W defined over a field K and for each

extension L of K we let W (L) (resp., Wsim(L)) be the set of all L-rational (resp.,

simple L-rational) points of W . Whenever we say that W is an affine absolutely

irreducible variety we also mean that W is embedded in some affine space. Then, if

R is a subring of L, an R-rational point of W is an L-rational point of W whose

coordinates lie in R. We denote the set of all R-rational points of W by W (R).

Similar notation is imposed for closed subsets of W .

(n) M is a subextension of N/K. We assume that M is perfect and M is weakly

PSC over OM . This means that for each absolutely irreducible polynomial

h ∈ M [T,X] which is monic in X such that the roots of h(0, X) are distinct and

in N , and for each g ∈ M [T ] such that g(0) 6= 0 there exists (a, b) ∈ OM ×M such

that h(a, b) = 0 and g(a) 6= 0 [JR2, Def. 1.3].

(o) W0 is a finite subset of V and W = W0,N . In particular, wσ ∈ W for each

w ∈ W and σ ∈ Aut(N/K). We assume that S ⊆ W0.

(p) Let V be an affine absolutely irreducible variety defined over K. Then VK,S,W is

the set of all points (zw)w∈W ∈
∏

w∈W Vsim(Nw) for which

(1) there exists a finite subextension L of M/K such that zwσ = zσ
w for each

w ∈ W and σ ∈ Aut(N/L).

Each (zw)w∈W that satisfies (1) is said to be L-rational (Remark 1.3(d)).

(q) VO,S,W is the set of all points (zw)w∈W ∈
∏

w∈W Vsim(ON,w) that satisfy (1).

We will extend this data in the sequel by more data and assumptions, as necessary.

Here is our main theorem.
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Theorem 1.2 (Strong approximation theorem): Let V be an affine absolutely irre-

ducible variety defined over K. Consider (zw)w∈W ∈ VK,S,W and a positive integer

γ.

(a) There exists z ∈ V (M) such that w(z− zw) > γ for each w ∈ W.

(b) If V (ON,v) 6= ∅ for each v ∈ VN rW, then there exists z ∈ V (M) such that

w(z− zw) > γ for each w ∈ W and v(z) ≥ 0 for each v ∈ VN rW.

(c) If V (ON,v) 6= ∅ for each v ∈ VN rW, and w(zw) ≥ 0 for each w ∈ W, then there

exists z ∈ V (OM ) such that w(z− zw) > γ for each w ∈ W.

Part (c) is an interesting special case of Part (b). In §8 we first prove (c), and

then conclude (b) and (a).

Remark 1.3: (a) We may replace K in Data 1.1 by any finite subextension L of M/K

and extend all the objects that have been defined over K to L. Then the assumptions

made on them remain true and N does not change. It follows that Theorem 1.2 for K

implies it also for L. Also, we may start from a variety V which is defined over M and

then replace K by a finite subextension of M/K over which V is already defined.

(b) It suffices to prove theorem 1.2 only for points (zw)w∈W which are K-rational.

Indeed, if (zw)w∈W is L-rational for some finite subextension L of M/K, then we may

apply the theorem in its restricted form to L instead of to K and approximate (zw)w∈W

by a point in V (M) as (a), (b), and (c) of the theorem require.

(c) Let w ∈ SN . Since M is perfect, Kw,ins ⊆ Mw ⊆ Nw ⊆ Kw,ins. Hence,

Mw = Nw = Kw,ins. If w /∈ SN , then Mw = Nw = K̃ [JR2, Prop. 1.9].

(d) Suppose that (zw)w∈W ∈ VK,S,W is L-rational for some finite subextension

L of M/K. Note that N ∩ Lw is the decomposition field of w in N/L. That is,

N ∩ Lw is the fixed field in N of all σ ∈ Aut(N/L) such that wσ = w. Note also that

Nw/Lw is a normal extension and that Aut(N/N ∩ Lw) ∼= Aut(Nw/Lw). Hence, if

σ ∈ Aut(N/N ∩ Lw), then zw = zwσ = zσ
w. It follows that zw ∈ V (Lw,ins).

(e) We use that SN ⊆ W (Data 1.1(o)) only to simplify notation. In applications

that do not make this assumption we use Lemma 8.1 to restore it.

The strong approximation theorem yields a weak one, which we prove in §8.
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Theorem 1.4 (Weak approximation theorem): Let T be a finite subset of VM and let

V be an affine absolutely irreducible variety defined over M .

(a) If Vsim(OM,v) 6= ∅ for each v ∈ SM and V (OM,v) 6= ∅ for each v ∈ VM rSM , then

each point in ∏
v∈T ∩SM

Vsim(OM,v)×
∏

v∈T rSM

V (OM,v)

can be approximated by a point in V (OM ).

(b) If Vsim(Mv) 6= ∅ for each v ∈ SM , then Vsim(M) is dense in

∏
v∈T ∩SM

Vsim(Mv)×
∏

v∈T rSM

V (Mv).

Taking T in Theorem 1.4 to be nonempty gives a local global principle.

Theorem 1.5 (Local global principle): Let V be an affine absolutely irreducible variety

defined over M . Suppose that V (OM,v) 6= ∅ for each v ∈ VM rSM and Vsim(OM,v) 6= ∅

for each v ∈ SM . Then V (OM ) 6= ∅.

Remark 1.6: It is possible to replace Mv in Theorems 1.4 and 1.5 by its completion M̂v.

Indeed, M̂v/Mv is a separable extension [Ja4, Lemma 2.2]. Now, in general, let

(L, v) be a Henselian valued field and (L̂, v) its completion. Assume that L̂/L is a

separable extension. Let A ⊆ An be a Zariski L-closed set. Then A(L) is v-dense in

A(L̂).

Indeed, if x ∈ A(L̂), then L(x)/L is a separable extension. So, L(x) = L(t, y),

where t = (t1, . . . , tr) is a separating transcendence base for L(x)/L and y is integral

over L[t]. Let f = irr(y, L(t)). Use the Henselianity of L to approximate (t, y) by an

L-rational zero of f . This will give a point of A(L) which is v-close to x.

Corollary 1.7: Let V be an affine absolutely irreducible variety defined over M . If

Vsim(ON ) is nonempty, then so is V (OM ).

If S = ∅, then N = K̃, VN = Ṽ, and the assumption that M is weakly PSC over

OM simplifies to the assumption that M is ‘PAC over OM ’ (see definition after Theorem

1.8). We reformulate Theorem 1.4 for this case.
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Theorem 1.8: Let T be a finite subset of VM and let V be an affine absolutely irre-

ducible variety defined over M .

(a) If V (OM,v) 6= ∅ for each v ∈ VM , then V (OM ) is dense in
∏

v∈T V (OM,v). In

particular, if V (Õ) 6= ∅, then V (OM ) 6= ∅.

(b) V (M) is dense in
∏

v∈T V (Mv).

The only examples we know for fields M which are weakly PSC over OM arise by

[JR2, Lemma 1.4]. To this end consider a field M0 and a subset R. We say that M0 is

PAC over R if it has the following property: For every absolutely irreducible variety

V of dimension r ≥ 0 and for each dominating separable rational map ϕ: V → Ar over

M0 there exists a ∈ V (M0) such that ϕ(a) ∈ Rr.

It follows that if R ⊆ R′ ⊆ M0 and M0 is PAC over R, then M0 is also PAC over

R′. Let now M0 be an algebraic extension of K and let M = M0 ∩ N . Lemma 1.4 of

[JR2] says that if M0 is PAC over OM , then M is weakly PSC over OM .

In Section 8 we define what does it mean for M to be “PSC over OM”. We prove

that the strong approximation theorem for M implies that M is “PSC over OM” and

note that the latter implies that M is weakly PSC over OM .

The first example for a perfect field M0 which is PAC over OM is K̃. So, we may

take M0 = K̃ and M = N in Theorems 1.2, 1.4, and 1.5. For example, if V is an affine

absolutely irreducible variety defined over N and T is a finite subset of VN , then each

point in
∏

v∈T ∩SN
Vsim(ON,v)×

∏
v∈T rSN

V (ON,v) can be approximated by a point in

V (ON ). In particular, for S = ∅, if an affine absolutely irreducible variety V defined

over K̃ has a v-integral K̃-rational point for each v ∈ Ṽ, then V (Õ) 6= ∅. In view of

Remark 1.6, this is essentially Rumely’s local global principle.

More examples for M0 arise in a probabilistic way. For each σ = (σ1, . . . , σe) ∈

G(K)e let K̃(σ) be the fixed field in K̃ of the unique extensions of σ1, . . . , σe to K̃. Let

Õ(σ) = OK̃(σ) and N(σ) = K̃(σ) ∩N . By [JR1, Prop. 3.1], for almost all σ ∈ G(K)e,

the field M0 = K̃(σ) is PAC over O, hence also over OM . We may therefore apply

Theorems 1.2, 1.4, and 1.5 to these fields.

Corollary 1.9 (The fields K̃(σ)): In the above notation, for almost all σ ∈ G(K)e,
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the field M = K̃(σ)∩Ktot,S,ins satisfies the consequences of Theorems 1.2, 1.4, and 1.5.

Theorem 1.5 and Corollary 1.9 combine with A. Robinson’s local decidability to

a solution for Hilbert’s tenth problem for Õ and almost all Õ(σ):

Corollary 1.10 (Decidability of Diophantine equations): Suppose that S is empty

and thus M is PAC over OM . Let A be a given Zariski closed subset of An over K.

(a) If A is absolutely irreducible, then we can decide whether A has an OM -rational

point.

(b) For each positive integer e we can compute the Haar measure of all σ ∈ G(K)e

such that A has an Õ(σ)-rational point.

In his forthcoming thesis [Raz], the second author will use Theorem 1.2 to streng-

then Corollary 1.10 and prove that the theory of all elementary statements on rings

which are true in Õ(σ) for almost all σ ∈ G(K)e is primitive recursive. He will also

generalize Corollary 1.10(b) to elementary formulas.

The assumptions we made in Data 1.1 have some consequences which we formulate

as Propositions 1.11 and 1.12. They may be considered as the hypothesis under which

the local global principle and the approximation theorem hold.

Proposition 1.11 (Consequences of Assumptions 1.1(a),(b)): Let L be a finite exten-

sion of K.

(a) The completion of L under each v ∈ VL is a local field, that is, a finite extension of

Qp or a finite extension of Fp((t)) for some prime p.

(b) For each a ∈ L, a 6= 0, there exist only finitely many v ∈ VL such that v(a) 6= 0.

(c) (Strong approximation) LetW1 be a finite subset of VL. For each w ∈ W1 let aw ∈ L

and let γ be a positive integer. Then there exists x ∈ L such that w(x − aw) > γ

for each w ∈ W1 and v(x) ≥ 0 for each v ∈ VL rW1.

(d) The class group of OL is finite.

Any book on algebraic number theory can be used as a reference to Proposition 1.11.

We use vector notation. Given a valuation v of K̃ and a vector a = (a1, . . . , an) ∈

K̃n we write v(a) for min1≤i≤n v(ai). If T is a subset of VN , we let T̃ = TK̃ and
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VT (a) = minv∈T̃ v(a). We say that an element a ∈ K̃ is T -integral (resp. T -unit) if

v(a) ≥ 0 (resp. v(a) = 0) for each v ∈ Ṽ r T̃ .

Proposition 1.12: Assumption 1.1(n) has the following consequences for Data 1.1.

(a) (Remark 1.3(c)) For each v ∈ VN we have Mv = Nv. In particular M is v-dense in

Nv. If v /∈ SN , then Mv = Nv = K̃.

(b) [JR2, Lemma 1.8] Let T be a finite subset of V. For each x ∈ N and for each

positive integer γ there exists a finite subset B of M such that for each v ∈ T and

each valuation w of N which lies over v there exists b ∈ B with w(b− x) > γ.

(c) [JR2, Thm. 4.3] Let T be a K-rational small subset of VN (Definition 2.8) which

contains SN . Consider polynomials fi ∈ K̃[X1, . . . , Xn], i = 1, . . . ,m, let a ∈ Mn,

and let γ be a positive integer. Suppose that each of the coefficients of the fi’s is a

T -unit. Then there exists x ∈ Mn such that VT (x− a) > γ and fi(x) is a T -unit,

i = 1, . . . ,m.

(d) [JR2, Lemma 1.7] Let F be a regualr extension of M of transcendence degree 1 and

let Γ be its unique nonsingular projective model. Let t be an element in F r M

whose zeros are simple and each of them belongs to Γ(N). Finally, let A be a finite

subset of M×. Then there exists p ∈ Γ(M) such that t(p) ∈ OM r A.

The main bulk of this work proves Theorem 1.2(c) for curves. Section 8 then

proves Theorem 1.2(c) for an arbitrary absolutely irreducible variety and deduce parts

(b) and (a) of Theorem 1.2. Section 9 proves Corollary 1.10.
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2. Restatement of the approximation theorem for integral points on curves

This section starts the long proof of the strong approximation theorem for integral

points on a curve (Theorem 1.2(c) for dim(V ) = 1), from which all the other results

follow. We first reformulate the theorem in this case in terms of function fields, state a

somewhat stronger result and finally describe the five steps needed to prove the stronger

result. To fix notation we add additional data to Data 1.1.

Data 2.1: The following data and notation remains in force until the end of Section 7.

C is an absolutely irreducible affine curve in An defined over K

x = (x1, . . . , xn) is a generic point of C over K and over each completion K̂v

F0 = K(x) is the function field of C over K

F = MF0 = M(x) is the function field of C, considered as a curve over M

genus(F/M) is the genus of F/M

s = 2 genus(F/M) + 2 is a useful constant

Γ is the unique nonsingular projective model of F/M

M ′ is a field that contains M and is linearly disjoint from F

F ′ = M ′F is the function field obtained by extensions of scalars to M ′

Γ(M ′) is the set of all M ′-rational points of Γ

Γ(F ′/M ′) is the set of all prime divisors of F ′/M ′

Div(F ′/M ′) is the group of divisors of F ′/M ′

p∗1, . . . , p
∗
e are the distinct poles of x1, . . . , xn in Γ(F/M)

p∗i1, . . . , p
∗
i,di

are the distinct prime divisors of K̃F/K̃ which lie over p∗i

d = p∗1 + · · ·+ p∗e

γ0 is a positive integer

Remark 2.2: (a) The existence of Γ uses the hypothesis that M is perfect (or more

accurately, that F/M is conservative).

(b) For each divisor a of F ′/M ′ we consider the vector space

LM ′(a) = {f ∈ F ′‖(f) + a ≥ 0}

over M ′. It has a finite dimension, which is denoted by dimM ′(a). The group Div(F/M)

naturally embeds in Div(F ′/M ′). As M is perfect, a basis of LM (a) is also a basis of
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LM ′(a), and genus(F/M) = genus(F ′/M ′) [De1, p. 132]. Thus dimM (a) = dimM ′(a)

and we can drop the reference to the ground field from the dimension of a. The same

rule applies for the degree of a. Also, each prime divisor of F/M is unramified in K̃F

[De1, p. 113]. In particular p∗i = p∗i1 + · · ·+ p∗i,di
and hence deg(p∗i ) = di

Remark 2.3: We identify each point of Γ(M ′) with a prime divisor p of F ′/M ′ of degree

1. If f ∈ F ′, then f(p) is the value of the rational function f of Γ at p, if we view p as

a point on the curve, or the value of the place associated with p at the element f of F ′,

if we view p as a prime divisor of F ′/M ′. In both cases f(p) is an element of M ′∪{∞}.

This element is ∞ exactly when p is a pole of f . Thus, if p ∈ Γ(K̃) does not belong to

{p∗ij‖i = 1, . . . , e; j = 1, . . . , di}, then x(p) = (x1(p), . . . , xn(p)) is a point in C(K̃).

Now suppose that M ′ is equipped with a valuation v. The v-adic topology of M ′

induces a topology on Γ(M ′) whose basis consists of the sets

{p ∈ Γ(M ′)‖v(f1(p)) ≥ 0, . . . , v(fm(p)) ≥ 0}

with f1, . . . , fm ∈ F ′. Here we make the convention that v(∞) = −∞. This is actually

the weakest topology on Γ(M ′) such that each f ∈ F ′ defines a continuous function

f : Γ(M ′) → M ′ ∪ {∞}, p 7→ f(p),

where the neighborhoods of ∞ are, as usual, the complements of the neighborhoods of

0.

Suppose now that for each v ∈ VN we are given a point zv ∈ C(ON,v) such

that (zw)w∈W ∈ CO,S,W (Data 1.1(q)). Our goal is to approximate (zw)w∈W by an

element of C(OM ). If v ∈ W, then zv ∈ Csim(ON,v). Hence, there exists a unique

pv ∈ Γ(Nv) such that x(pv) = zv [JaR, p. 457, Cor. A3]. If v ∈ VN rW, then Nv = K̃

(Proposition 1.12(a)) and we may choose pv ∈ Γ(Nv) such that v(x(pv)) = zv. In all

cases, v(x(pv)) ≥ 0.

By definition, there exists a finite subextension L of M/K such that zwσ = zσ
w

for each w ∈ W and each σ ∈ Aut(N/L). By Data 2.1, LwF0 is a regular extension of

Lw and therefore it is linearly disjoint from Nw over Lw. Hence, each σ ∈ Aut(N/L)
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uniquely extends to an isomorphism σ: NwF0 → NwσF0 that maps Lw onto Lwσ and

fixes each element of F0 (Use Data 1.1(l)). It follows that x(pwσ ) = zwσ = zσ
w =

x(pw)σ = x(pσ
w). Conclude that pwσ = pσ

w.

By remark 1.3(b), we may assume that L = K and conclude that Theorem 1.2(c)

for V = C is equivalent to the following theorem:

Theorem 2.4 (Approximation theorem for function fields of one variable): Suppose

that for each v ∈ VN there exists pv ∈ Γ(Nv) such that v(x(pv)) ≥ 0. Assume that

pwσ = pσ
w for each w ∈ W and σ ∈ Aut(N/K). Then, there exists p ∈ Γ(M) such that

v(x(p)) ≥ 0 for all v ∈ VN and w(x(p) − x(pw)) ≥ γ0 for each w ∈ W. In particular,

p /∈ {p∗1, . . . , p∗e}.

Our method of proof will force us to prove a stronger theorem than Theorem 2.4.

Theorem 2.5: Suppose that for each v ∈ VN there exists pv ∈ Γ(Nv) such that v(x(pv))

≥ 0. Assume that pwσ = pσ
w for each w ∈ W and each σ ∈ Aut(N/K). Then there

exists a function f ∈ F with the following properties:

(1a) There exists a positive integer k (which can be chosen to be arbitrarily large) such

that (f)∞ = kd.

(1b) Each of the zeros of f is N -rational and simple, that is (f)0 =
∑m

i=1 pi with

distinct pi ∈ Γ(N).

(1c) For all v ∈ VN we have v(x(pi)) ≥ 0, i = 1, . . . ,m, and

(1d) w(x(pi)− x(pw)) ≥ γ0, i = 1, . . . ,m, if w ∈ W.

Moreover, one of the zeros of f is M -rational.

We note that (1a) is a technical condition which is necessary to carry out the

proof of Theorem 2.5.

To prove Theorem 2.5 we fix the data of the assumption of the theorem:

Data and Assumption 2.6: For each v ∈ VN we fix a point pv of Γ(Nv) such that

v(x(pv)) ≥ 0. We assume that pwσ = pσ
w for each w ∈ W and each σ ∈ Aut(N/K).

This data will remain in force until the end of Section 7.

The function f of Theorem 2.5 will be said to be “VN -admissible”:

13



Definition 2.7: Admissible functions. Let v ∈ VN . A function f ∈ NF is v-admissible

if

(2a) there exists a positive integer k such that (f)∞ = kd (we say that f is of level k),

(2b) all the zeros of f are simple and belong to Γ(Nv),

(2c) v(x(p)) ≥ 0 for each zero p ∈ Γ(Nv) of f , and

(2d) if v ∈ W, then v(x(p)− x(pv)) ≥ γ0 for each zero p ∈ Γ(Nv) of f .

Let T be a subset of VN . We say that f is T -admissible if f is v-admissible for

each v ∈ T . In this case we also say that f is admissible along T .

Definition 2.8: Small sets. A subset T of VN is small if it satisfies one of the following

equivalent conditions:

(3a) T |K is a finite set.

(3b) T |L is a finite set for each finite subextension L of N/K.

(3b) T is contained in a set T ′ = {v ∈ VN |
∨

a∈A v(a) < 0} for some nonempty finite

subset A of N .

Thus for each finite subextension L of N/K there is a finite subset T0 of T which

contains exactly one extension of each element of T |L. So, T ⊆ {wσ | w ∈ T0 and σ ∈

G(L)}. We say that T0 represents T |L. If T = {wσ | w ∈ T0 and σ ∈ G(L)}, we say

that T is L-rational.

Starting with an arbitrary small set T as above, we may enlarge A to a finite set

which is invariant under G(K). Then T ′ becomes K-rational. Thus, each small subset

of VN is contained in a K-rational small subset of VN .

Finally, a (L-rational) big subset of VN is the complement of a L-rational small

set.

The proof of Theorem 2.5 constructs f in five steps. In each of them f is admissible

along a set T which is larger than the set of the preceding step. Of course, f is changed

from one step to the next step. So, in each step we actually construct not only one

function, but a family of functions, which are close to each other in the ‘T -topology’.

Our construction follows the construction of Roquette et al. [Ro2] over K̃. We use

Proposition 1.12(a) to approximate functions in NF by admissible functions in F .
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The headings of the steps below describe the set T along which f is admissible.

1. A single valuation. To construct a function f ∈ NF which is v-admissible

for a single valuation v ∈ VN we use Rumely-Jacobi’s existence theorem for algebraic

functions and the theorem about the continuity of the zeros of algebraic functions. The

former forces us to assume that the completion of K at v|K is a local field. The latter

holds over Nv. We prove that if f ′ is v-close enough to f , then it is also v-admissible.

Then we use the v-density of M in N to choose f ∈ F .

2. Finitely many valuations. We use the weak approximation theorem.

3. Small sets. An essential tool in this step is Proposition 1.12(b).

4. A big set of valuations. We use here the theory of good reduction.

5. The whole set VN . In order to combine the big set of valuations with its com-

plement (which is small) we use Proposition 1.12(c).

Finally we use Proposition 1.12(d) in order to choose f with an M -rational zero.
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3. Finitely many valuations

The existence of an admissible function at a single valuation is a consequence of Jacobi-

Rumely-Pop’s existence theorem. We then use the principle of variation of constants

(Corollary 3.3) to approximate several functions, each admissible at a single valuation,

by a function which is admissible at each of these valuations.

Before we do that, we fix further data and make more assumptions on the top of

those already made in Data 1.1, Data 2.1, and Data 2.6.

Data and Assumption 3.1: We choose a finite extension K1 of K which is contained

in M and over which Γ is defined. Then F1 = K1(x) is the function field of C and of

Γ over K1 and F = MF1. Since M is perfect and d is M -rational, we may assume in

addition that

(a) genus(F1/K1) = genus(F/M) (in particular F1/K1 is conservative), and

(b) d is K1-rational.

Let σ ∈ G(K1). Since K̃ and F1 are linearly disjoint over K1, σ extends uniquely

to an element of Aut(K̃F/F1) which we also denote by σ. This σ acts on the points

p ∈ Γ(K̃) such that fσ(pσ) = f(p)σ for each f ∈ K̃F . Extend the action of σ to group of

divisors of K̃F/K̃ by linearity. Then (f)σ = (fσ), for each f ∈ K̃F . Also, Assumption

3.1(b) implies that dσ = d.

Let (M ′, v) be a valued field which contains K1 and let F ′ = M ′F1. The following

result appears in [Pop, Thm. 1.1] and in [GPR, Cor. 7.2].

Proposition 3.2 (Continuity of zeros of algebraic functions): Suppose that (M ′, v) is

Henselian. Consider an element 0 6= f ∈ F ′, let (f)∞ = a, and suppose that (f)0 =∑m
i=1 pi, where pi are distinct prime divisors of F ′/M ′. Write f =

∑d
j=1 cjuj with

cj ∈ M ′ and u1, . . . , ud being a basis for the M ′-vector space LM ′(a). For each 1 ≤ i ≤ m

let Ui ⊆ Γ(M ′) be a v-open neighborhood of pi. Then there exists γ > 0 such that if

c′1, . . . , c
′
d ∈ M ′ satisfy v(c′j − cj) > γ, j = 1, . . . , d and f ′ =

∑d
j=1 c′juj , then (f ′)∞ = a

and (f ′)0 =
∑m

i=1 p′i with p′i ∈ Ui.

Corollary 3.3 (Principle of variation of constants): Let f ∈ NF be a v-admissible

function for a valuation v ∈ VN . Set a = (f)∞, let u1, . . . , ud ∈ NF be a basis for
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LN (a) and write f =
∑d

j=1 cjuj with cj ∈ N . Then there exists γ > 0 such that if

c′1, . . . , c
′
d ∈ N satisfy v(c′j − cj) > γ, j = 1, . . . , d and f ′ =

∑d
j=1 c′juj , then f ′ is

v-admissible and (f ′)∞ = a.

Proof: By assumption, (f)0 =
∑m

i=1 pi, with pi ∈ Γ(Nv) distinct and v(x(pi)) ≥ 0.

Also, v(x(pi) − x(pv)) ≥ γ0 if v ∈ W, i = 1, . . . ,m. Apply Proposition 3.2 to the case

where M ′ = Nv. Also, choose Ui to be disjoint v-open neighborhoods of pi which are

contained in the v-open subset {p ∈ Γ(Nv)‖v(x(p)) ≥ 0 and v(x(p)−x(pv)) ≥ γ0 if v ∈

W}.

Proposition 3.4 (Existence theorem for a single valuation): Let v ∈ VN . Then there

exists a positive integer kv such that for each multiple k of kv there exists a v-admissible

function f ∈ F such that (f)∞ = kd.

Proof: Recall that pv ∈ Γ(Nv) = Γ(Mv) (Data 2.6 and Proposition 1.12(a)). Choose a

finite subextension L of M/K1 such that pv is Lv-rational. Let L̂ be the completion of

Lv.

As L is a global field, L̂ is a local field. Since v(x(pv)) ≥ 0 the open subset

U = {p ∈ Γ(L̂)‖v(x(p)) ≥ 0 and v(x(p)− x(pv)) ≥ γ0 if v ∈ W}

of Γ(L̂) is not empty. Theorem 2.1 of [GPR] improves the existence theorem of Jacobi-

Rumely and gives a nonconstant function g ∈ L̂F1 whose pole divisor is a multiple of

d. (Note that by Assumption 3.1(b), d is L̂-rational.) Moreover, the zeros, p1, . . . , pm

of g are L̂-rational, simple, and belong to U . By [GPR, Remark 2.5], there exists a

positive integer kv such that for each multiple k of kv the function g can be chosen with

(g)∞ = kd∗.

* The proof of [GPR, Theorem 2.1] uses an embedding ϕ of Γ into its Jacobian variety J .
For c = genus(Γ) and d = deg(d), one chooses q1, . . . , qc ∈ U and considers the divisor
b = cd − d

∑c
j=1 qj of degree 0. Then ϕ(b) is a point of J(L̂). Since J(L̂) is v-compact,

there exists a positive integer kv such that for each multiple k of kv the point kϕ(b) is
v-close to 0. Thus there exist points q′

j in U such that ϕ(kcd −
∑kcd

j=1 q′
j) = 0 in J(L̂).

Moreove, it is possible (but not easy) to choose the q′
j as distinct. By Abel’s theorem,

there exists a function g ∈ L̂F1 such that (g) =
∑

q′
j − kcd. This is the desired function.
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Let u1, . . . , ud ∈ LF1 be a basis for LL(kd). Assume without loss that L̂ is linearly

disjoint from LF1 over L. Since L̂/L is separable (because L is a function field of one

varible, hence defectless at v [Ja4, p. 269]), u1, . . . , ud also form a basis for LL̂(kd). So,

there exist b1, . . . , bd ∈ L̂ such that g =
∑d

j=1 bjuj . Use the density of L in L̂ to choose

c ∈ Ld ⊆ Md which is v-close to b. Let f =
∑d

j=1 cjuj . Apply Proposition 3.2 to g, f ,

and L̂ instead of to f, f ′, and M ′ (choose Ui disjoint and contained in U) and conclude

that (f)∞ = kd, each of the zeros of f is simple and belongs to U . In particular, f is

v-admissible.

Lemma 3.5: Let L be an extension of K1 which is contained in M , let v ∈ VN , and

let σ ∈ Aut(N/L). Suppose that a function f ∈ NF is v-admissible. Then fσ is

vσ-admissible. In particular, if f ∈ LF1, then f is vσ-admissible.

Proof: By assumption (f) =
∑m

j=1 pj−kd, where the pj are distinct elements of Γ(Nv),

k is a positive integer, v(x(pj)) ≥ 0 and v(x(pj) − x(pv)) ≥ γ0 if v ∈ W. Apply σ to

get (fσ) =
∑m

j=1 pσ
j − kd, vσ(x(pσ

j )) ≥ 0, and vσ(x(pσ
j ) − x(pσ

v )) ≥ γ0 if v ∈ W. Also,

pσ
1 , . . . , pσ

m are distinct. So, fσ is vσ-admissible.

Proposition 3.6 (Existence theorem for finitely many valuations): Let T be a finite

subset of VN . Then, for each k0, there exists a T -admissible function f ∈ F of level

≥ k0.

Proof: Let T0 be a subset of T which represents T |M (Definition 2.8). For each v ∈ T0

let kv be the positive integer that Proposition 3.4 gives. Choose a common multiple

k ≥ k0 of the kv’s. For each v ∈ T0 take fv ∈ F which is v-admissible of level k. Let

u1, . . . , ud be a basis for LM (kd) and write fv =
∑d

j=1 cvjuj with cvj ∈ M .

Apply the weak approximation theorem to T0|M and choose c ∈ Md which is

v-close to cv for each v ∈ T0. By Corollary 3.3, f =
∑d

j=1 cjuj is v-admissible for each

v ∈ T0 and (f)∞ = kd. By Lemma 3.5, with M replacing L, f is v-admissible for each

v ∈ T .
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4. Small sets

We use Proposition 3.6 and the weak approximation theorem to prove an existence and

density theorem for admissible functions in F along a given small set. An essential tool

in this application is Theorem 1.12(b).

Lemma 4.1: Let E/L be a function field of one variable and let k be an integer ≥

2 genus(E/L)+1. Consider distinct prime divisors q1, . . . , qm of E/L with deg(qi) = di.

Then

(1) dim(LL(kqi)/LL((k − 1)qi)) = di, i = 1, . . . ,m.

Let yi1, . . . , yi,di be a basis for LL(kqi) modulo LL((k − 1)qi) and let a = q1 +

· · · + qm. Then (yij)∞ = kqi, i = 1, . . . ,m, j = 1, . . . , di and the yij together form a

basis for LL(ka) modulo LL((k − 1)a).

Proof: By the Riemann-Roch theorem (1) and (2) below are true:

(2) dim(LL(ka)/LL((k − 1)a)) = deg(a).

Hence, as yij ∈ LL(ka), it suffices to prove that they are linearly independent modulo

LL((k − 1)a). Indeed, suppose that

(3)
m∑

i=1

di∑
j=1

aijyij ≡ 0 mod LL((k − 1)a)

with aij ∈ L. Denote the normalized valuation of E/L which corresponds to qi by vi.

Then vi(yij) = −k and vi(yi′j) ≥ 0 for i 6= i′. It follows from (3) that vi(
∑di

j=1 aijyij) ≥

−k + 1. Hence
∑di

j=1 aijyij belongs to LL((k − 1)qi). By the choice of the yij , this

implies that aij = 0 for j = 1, . . . , di. This concludes the proof of the lemma.

We use Lemma 4.1 to construct a basis for LM (kd) modulo LM ((k − 1)d) which

will belong to a finitely generated subgroup of F× that does not depend on k. This

requires more data.
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Data 4.2: Write each k ≥ s = 2genus(F/M) + 2 as k = qs + r with q ≥ 0 and

s ≤ r ≤ 2s− 1. Let

Bir = {uijr‖j = 1, . . . , di} be a basis for LM (rp∗i ) modulo LM ((r − 1)p∗i )

(Note that Bir does not depend on k.)

uijk = uq
i1suijr

Bik = {uijk‖j = 1, . . . , di}

Bk = B1k ∪ · · · ∪Bek

B0 = basis for LM ((s− 1)d) which contains 1

K2 = a finite subextension of M/K1 such that B0 ∪Bs ∪ · · · ∪B2s−1 ⊆ K2F1

F2 = K2F1

Lemma 4.3: Let k ≥ s. Then:

(a) (uijk)∞ = kp∗i and Bik is a basis for LM (kp∗i ) modulo LM ((k − 1)p∗i ), i = 1, . . . , e,

j = 1, . . . , di.

(b) Bk is a basis of LM (kd) modulo LM ((k − 1)d).

(c) F2 contains a basis for LM (kd).

Proof of (a): Let k = qs + r as in Data 4.2. Then uq
i1suijr, j = 1, . . . , di, belong to

LM (kp∗i ) and are linearly independent over M modulo LM ((k − 1)p∗i ). Conclude from

(1) applied to p∗i instead of to qi that these elements form a basis for LM (kp∗i ) modulo

LM ((k − 1)p∗i ).

Proof of (b): Apply Lemma 4.1 to d = p∗1 + · · ·+ p∗e instead of to a = q1 + · · ·+ qm.

Proof of (c): Combine (a) and (b).

Notation 4.4: Following Lemma 4.3, let for each k ≥ s− 1

ek = dim(LM (kd))

By the theorem of Riemann-Roch, ek ≥ 2. Then list the elements of B0 ∪ Bs ∪

Bs+1 ∪ Bs+2 ∪ · · · as u1, u2, u3, . . . such that u1 = 1, B0 = {u1, . . . , ues−1}, and

Bk = {uek−1+1, . . . , uek
} for k ≥ s. By Data 4.2, all ui belong to F2 and {u1, . . . , uek

}

is a basis for LM ′(kd) for each algebraic extension M ′ of M , which we fix for the rest

of this work.

20



Proposition 4.5: Let T be a small subset of VN . Then, for each k0 there exists a

T -admissible function f ∈ F of level k ≥ k0.

Moreover, write f =
∑ek

i=1 ciui with ci ∈ M . Then there exists γ > 0 such that if

c′ ∈ Nek satisfies VT (c′ − c) > γ, then f ′ =
∑ek

i=1 c′iui is also a T -admissible function

of level k.

Proof: Let T2 be a finite subset of T which represents T |K2 (Definition 2.8). By

Proposition 3.6, there exists a T2-admissible function g ∈ F of level k ≥ max{k0, s− 1}.

Write g =
∑ek

i=1 aiui with ai ∈ M . By Corollary 3.3 there exists ε > 0 such that for

each w ∈ T2 if a′ ∈ Nek satisfies w(a′ − a) > ε, then g′ =
∑ek

i=1 a′iui is w-admissible of

level k.

Let K ′
2 be a finite normal subextension of N/K2 which contains a1, . . . , aek

. Then

A = {aσ‖σ ∈ Aut(N/K2)} = {aσ‖σ ∈ Aut(K ′
2/K2)} is a finite subset of N . We have

not assumed M to be normal over K. Hence, A need not be a subset of M . However,

by Proposition 1.12(b), Mek has a finite subset B with the following property: For

each w ∈ T2, each τ ∈ Aut(N/K2), and each a′ ∈ A there exists bwτ ,a′ ∈ B such that

wτ (bwτ ,a′ − a′) > ε. Choose a finite subextension K3 of M/K2 such that B ⊆ Kek
3 .

Let now v ∈ T . Then there exists σ ∈ Aut(N/K2) and w ∈ T2 such that v = wσ.

Since a′ = aσ belongs to A, we have wσ(bv,a′−aσ) > ε. Hence w(bσ−1

v,a′ −a) > ε. Hence,

by the first paragraph,
∑ek

i=1 bσ−1

v,a′,iui is a w-admissible function of level k. As ui ∈ F2

(Notation 4.4), we have uσ
i = ui, i = 1, . . . , ek. Hence, by Lemma 3.5, with K2 instead

of L, fv =
∑ek

i=1 bw,a′,iui is a v-admissible function in K3F1 of level k.

Choose now a finite subset T3 of T which represents T |K3 . By the preceding

paragraph, for each w ∈ T3 there exists a w-admissible function fw =
∑ek

i=1 cw,iui of

level k with cw,i ∈ K3. By Corollary 3.3, there exists γ > 0 such that if w ∈ T3 and

c′ ∈ Nek satisfy w(c′− cw) > γ, then f ′ =
∑ek

i=1 c′iui is a w-admissible function of level

k.

Use the weak approximation theorem to choose c ∈ Kek
3 such that w(c− cw) > γ

for each w ∈ T3. Then f =
∑ek

i=1 ciui is w-admissible of level k for each w ∈ T3. For

each σ ∈ Aut(N/K3) we have fσ = f . Hence, by Lemma 3.5, f is wσ-admissible. It

follows that f is T -admissible.

21



Finally suppose that c′ ∈ Nek and v(c′ − c) > γ for each v ∈ T . Write v = wσ

with w ∈ T3 and σ ∈ Aut(N/K3). Then w((c′)σ−1 − c) > γ and hence
∑ek

i=1(c
′
i)

σ−1
ui is

w-admissible of level k. Conclude from Lemma 3.5 that f ′ =
∑ek

i=1 c′iui is v-admissible

of level k.
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5. Good reduction

Consider a valuation v of K̃F such that v|K ∈ V rS. Denote the reduction with respect

to v of objects associated with F by a bar over these objects. Thus F̄ (resp., M̄) is

the residue field of F (resp., M). By Proposition 1.12(a), M̄ is algebraically closed and

therefore coincides with the residue field of K̃ at v. It follows that the residue field of

K̃F is F̄ . We will use these facts only to simplify our notation.

The function field K̃F/K̃ has good reduction at v if the following conditions

hold:

(1a) There exists f ∈ K̃F which is v-regular. That is, v(f) = 0, f̄ ∈ F̄ is transcen-

dental over M̄ , and [K̃F : K̃(f)] = [F̄ : M̄(f̄)]. Thus F̄ is a function field of one

variable over M̄ .

(1b) genus(F/M) = genus(F̄ /M̄).

In this case we also say that v is a good extension to K̃F of v|K̃ . Note that if g ∈ K̃F

and ḡ is transcendental over M̄ , then g is v-regular if and only if deg(g)0 = deg(ḡ)0 or,

equivalently, deg(g)∞ = deg(ḡ)∞.

The support of a divisor a is the set p1, . . . , pm of distinct prime divisors such

that a =
∑m

i=1 kipi with nonzero integers ki.

Corollary 5.2 connects regularity and admissibility of functions. It relies on a sort

of reciprocity lemma:

Lemma 5.1 ([Ro1, Cor. 3.9]): Suppose that K̃F/K̃ has a good reduction at a valuation

v. Let f, g ∈ K̃F such that f is v-regular and v(g) = 0. Then, for each p ∈ Γ(K̃)

Supp(g)∞ ⊆ Supp(f)∞ and f(p) = 0 implies v(g(p)) ≥ 0.

We extend each valuation v ∈ VN rW to the Henselian closure Nv = K̃ (recall

that by Data 1.1(o), SN ⊆ W). In this way we regard v also as a valuation of K̃.

Corollary 5.2: Let v ∈ VN rW be a valuation with a good extension to K̃F . Sup-

pose that v(xi) = 0 if xi 6= 0, for i = 1, . . . , n. Let f ∈ NF be a v-regular function

of level k (Definition 2.7). Suppose that each of the zeros of f is simple. Then f is

v-admissible.
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Proof: Since Nv = K̃, we have to verify only Condition (2c) of Definition 2.7. By

assumption (f)∞ = kd. Hence, by Data 2.1, Supp(f)∞ =
⋃n

i=1 Supp(xi)∞. So, if

p ∈ Γ(K̃) is a zero of f and xi 6= 0, then v(xi) = 0 and therefore v(xi(p)) ≥ 0 (Lemma

5.1). If xi = 0, then v(xi(p)) = ∞ > 0. Conclude that f is v-admissible.

In the remaining of this section we explore when functions are regular. This de-

pends on the following extension of the reduction map of elements modulo v to divisors.

Proposition 5.3 ([Ro1, p. 247]): Suppose that K̃F/K̃ has a good reduction at v.

Then there is a natural homomorphism a 7→ ā of Div(K̃F/K̃) into Div(F̄ /M̄) with the

following properties:

(a) deg(a) = deg(ā).

(b) a ≥ 0 implies ā ≥ 0.

(c) v(f) = 0 implies (f) = (f̄).

Lemma 5.4: Suppose that K̃F/K̃ has a good reduction at v and let f be an element

of K̃F such that f̄ is transcendental over M̄ . Then (f̄)0 ≤ (f)0 (resp., (f̄)∞ ≤ (f)∞).

Equality holds if and only if f is v-regular.

Proof: By Proposition 5.3(c), (f̄)0− (f̄)∞ = (f̄) = (f) = (f)0− (f)∞. Since (f)∞ ≥ 0

(Proposition 5.3(b)) and since (f̄)0 and (f̄)∞ are relatively prime, (f̄)0 ≤ (f)0. Simi-

larly, (f̄)∞ ≤ (f)∞.

Now, f is v-regular if and only if deg(f)0 = deg(f̄)0. Since by Proposition 5.3(a)

deg(f)0 = deg (f)0, the preceding paragraph implies that the latter condition is equiv-

alent to (f̄)0 = (f)0. Similarly, f is v-regular if and only if (f̄)∞ = (f)∞.

Lemma 5.5: Suppose that K̃F/K̃ has a good reduction at v. Let a be a positive divisor

of K̃F/K̃. For each i between 1 and m let ki be a positive integer and let fi ∈ K̃F be

a v-regular function such that (fi)∞ = kia. Let k = k1 + · · ·+ km. Then f = f1 · · · fm

is also v-regular and (f)∞ = ka.

Proof: By assumption, (fi)0 is relatively prime to a. Hence (f)∞ = ka.

As fi is v-regular, (f̄i)∞ = kiā (Lemma 5.4). Hence, as before, (f̄)∞ = kā. Thus

f̄ is transcendental over M̄ and (f̄)∞ = (f)∞. Conclude from Lemma 5.4 that f is
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v-regular.

Lemma 5.6: Let E/L be a function field of one variable and let k be a positive integer.

Consider distinct prime divisors p1, . . . , pm of degree 1. For each i let yi ∈ E with

(yi)∞ = kpi and let ci ∈ L. Let a = p1 + · · ·+ pm. Let also f be an element of E such

that

f ≡
m∑

i=1

ciyi mod LL((k − 1)a).

Then (f)∞ = ka if and only if c1, . . . , cm 6= 0.

Proof: Suppose first that ci 6= 0 for i = 1, . . . ,m. Let g = f −
∑m

i=1 ciyi. For each i

denote the normalized valuation of E/L associated with pi by wi. Then −k = wi(yi) <

min{wi(yj), wi(g)‖j 6= i}. Hence, wi(f) = −k. Conclude that (f)∞ = ka.

To prove the other direction note that if ci = 0, then (f)∞ ≤ ka− pi.

The following result is a well known consequence of the Bertini-Noether theorem.

For example, it appears in [Ro2] without a proof. So, we give here only a sketch of the

proof.

Proposition 5.7: Let t1, . . . , tl be nonconstant functions of K̃F and let p1, . . . , pm be

distinct primes in Γ(K̃). Then there exists a finite subset A of K× such that if v ∈ Ṽ

satisfies v(a) = 0 for each a ∈ A, then v has a good extension to K̃F which we also

denote by v such that ti is v-regular, i = 1, . . . , l, and the reduced primes p̄1, . . . , p̄m are

distinct.

Proof: (Sketch) Let E = K̃F . Choose a separating transcendence element t for E/K̃.

Use Section 7 of [De2] to find a finite subset A′
0 of (K̃)× such that if v ∈ Ṽ satisfies

v(a) = 0 for each a ∈ A′
0, then v has a unique good extension to E which we also denote

by v such that t is v-regular (Note that the valuations in [De2] are discrete. So, one has

first to replace K̃ by a finite extension of K, or argue directly.)

Now choose f ∈ E such that f(p1), . . . , f(pm) are finite and distinct. Add f to

{t1, . . . , tl}, if necessary, to assume that f is one of the ti’s. Also choose an irreducible

polynomial hi ∈ K̃[Ti, T ] such that hi(ti, t) = 0, i = 1, . . . , l. By Bertini-Noether [FrJ,

Prop. 9.29], there exists a finite subset A′ of (K̃)× which contains A′
0 such that if v ∈ Ṽ
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satisfies v(a) = 0 for each a ∈ A′, then h̄i(Ti, T ) is irreducible of the same degree in Ti

and in T as h(Ti, T ), i = 1, . . . , l, and f(p1), . . . , f(pm) are distinct.

It is now convenient to denote K̃ by L. By the choice of A′
0, [Ē : L̄(t̄)] = [E : L(t)].

By the choice of A′, [L̄(t̄, t̄i) : L̄(t̄)] = [L(t, ti) : L(t)] and [L̄(t̄, t̄i) : L̄(t̄i)] = [L(t, ti) :

L(ti)]. Hence, [Ē : L̄(t̄i)] = [E : L(ti)]. It follows that ti is regular at v for i = 1, . . . , l.

In particular, f is regular at v. Hence f̄(p̄) = f(p) for every prime divisor p of

E/L [Ro1, Prop. 3.8]. It follows from the choice of A′ that f̄(p̄1), . . . , f̄(p̄m) are distinct.

Conclude that p̄1, . . . , p̄m are distinct.

Finally replace each a ∈ A′ by the set of all nonzero coefficients of irr(a,K) and

irr(a−1,K) to obtain the desired set A.
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6. Criteria for regularity

We give here two criteria for regularity of functions of K̃F . The first one is formulated

in terms of a basis of LK̃(kp∗ij) modulo LK̃((k− 1)p∗ij) (Data 2.1). Here it is important

that deg(p∗ij) = 1. The second one, which is built on the first one, is formulated in

terms of a basis of LM (kp∗i ) modulo LM ((k − 1)p∗i ). In both criteria k has to be large.

Lemma 6.1 (First criterion for regularity): Let k be an integer ≥ 2 genus(F/M) + 1,

and let tij be an element of K̃F such that (tij)∞ = kp∗ij , i = 1, . . . , e, j = 1, . . . , di.

Suppose that K̃F/K̃ has good reduction at a valuation v such that the reduced primes

p∗ij are distinct and the tij are v-regular. Let

(1) f =
e∑

i=1

di∑
j=1

cijtij + g

with cij ∈ K̃ such that v(cij) = 0 and g ∈ LK̃((k − 1)d) with v(g) ≥ 0. Then

(a) {tij‖i = 1, . . . , e; j = 1, . . . , di} is a basis for LK̃(kd) modulo LK̃((k − 1)d), and

(b) f is v-regular of level k.

Proof of (a): As K̃ is algebraically closed, deg(p∗ij) = 1. Hence, tij form a basis for

LK̃(kp∗ij) modulo LK̃((k − 1)p∗ij). Conclude from Lemma 4.1 that the tij form a basis

for LK̃(kd) modulo LK̃((k − 1)d).

Proof of (b): By Lemma 5.6, (f)∞ = kd.

Now reduce (1) modulo v to obtain f̄ =
∑e

i=1

∑di

j=1 c̄ij t̄ij + ḡ. By assumption

a = (g)+(k−1)d ≥ 0. If v(g) > 0, then ḡ = 0. Otherwise, v(g) = 0 and (ḡ)+(k−1)d̄ =

ā ≥ 0 (Proposition 5.3). Hence, in both cases ḡ ∈ LM̄ ((k − 1)d̄). Since tij is v-regular,

(t̄ij)∞ = kp∗ij (Lemma 5.4). By assumption, c̄ij 6= 0 for all i and j. Hence, we may

apply Lemma 5.6 to F̄ /M̄ instead of to E/L and conclude that (f̄)∞ = kd̄ = (f)∞.

Thus, by Lemma 5.4, f is v-regular of level k.

Data 6.2: Write each k ≥ s = 2 genus(F/M) + 2 as k = qs + r with q ≥ 0 and

s ≤ r ≤ 2s− 1.

(a) Use the Riemann-Roch theorem to choose tijr ∈ K̃F such that (tijr)∞ = rp∗ij ,

i = 1, . . . , e, j = 1, . . . , di, r = s, . . . , 2s− 1.
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(b) Let tijk = tqijstijr, i = 1, . . . , e, j = 1, . . . , di.

(c) By Remark 2.2(b), p∗i = p∗i1 + · · ·+ p∗idi
. Hence, by Lemma 4.1, ti1r, . . . , tidir form

a basis for LK̃(rp∗i ) modulo LK̃((r − 1)p∗i ). According to Data 4.2, (uijr)∞ = rp∗i

and in particular uijr ∈ LK̃(rp∗i ). Thus there exist unique bijlr ∈ K̃ such that

(2) uijr ≡
di∑

l=1

bijlrtilr mod LK̃((r − 1)p∗i )

By Lemma 5.6, bijlr 6= 0.

(d) Set Yi = (Yi1, . . . , Yi,di), i = 1, . . . , e and consider the linear form

λilr(Yi) =
di∑

j=1

Yijbijlr, l = 1, . . . , di

Lemma 6.3 (Second criterion for regularity): Let k be an integer≥ s = 2genus(F/M)+

2 and let aij , aµ ∈ K̃, i = 1, . . . , e, j = 1, . . . , di, µ = 1, . . . , ek−1. Consider the element

(3) f =
e∑

i=1

di∑
j=1

aijuijk +
ek−1∑
µ=1

aµuµ

of K̃F . Suppose that K̃F has a good reduction at v such that the following conditions

are satisfied:

(a) The p∗ij are distinct,

(b) tijr is v-regular,

(c) v(uµ) ≥ 0 (Notation 4.4),

(d) v(bijlr) = 0,

(e) v(aµ′) ≥ 0 and v(aij) ≥ 0, and

(f) v(λilr(ai)) = 0, where ai = (ai1, . . . , ai,di
),

for µ = 1, . . . , e2s−1, µ′ = 1, . . . , ek−1, i = 1, . . . , e, j, l = 1, . . . , di, and r = s, . . . , 2s−1.

Then f is v-regular of level k.

Proof: Write k = qs + r with q ≥ 0 and s ≤ r ≤ 2s − 1. By (b) and Data 6.2(a),

tijs is v-regular with (tijs)∞ = sp∗ij and tijr is v-regular with (tijr)∞ = rp∗ij . Hence,

by Lemma 5.5, tijk = tqijstijr is v-regular with (tijk)∞ = kp∗ij , for i = 1, . . . , e and

j = 1, . . . , di.
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By Data 4.2 and by (2)

(4) uijk = uq
i1suijr ≡

( di∑
l=1

bi1lstils
)q( di∑

l=1

bijlrtilr
)

mod LK̃((k − 1)p∗i ).

A general term of the expansion of the right hand side of (4) has the form bt, where

b = bi,1,l1,s · · · bi,1,lq,sbi,j,lq+1,r and t = ti,l1,s · · · ti,lq,sti,lq+1,r and 1 ≤ l1, . . . , lq+1 ≤ di.

For each l between 1 and di denote the normalized valuation of K̃F/K̃ associated with

p∗il by wil. Then, wij(tijk) = −k and wil(tijk) = 0 if l 6= j. Hence,

wil(bt) = wil(til1s) + · · ·+ wil(tilqs) + wil(tilq+1r) ≥ −(qs + r) = −k

and equality holds if and only if l1 = · · · = lq+1 = l. If the condition l1 = · · · = lq+1 is

not satisfied, then wil(bt) ≥ −(k−1) for l = 1, . . . , di. As p∗i = p∗i1+· · ·+p∗idi
, this implies

that bt belongs to LK̃((k − 1)p∗i ) and therefore to LK̃((k − 1)d). If l1 = · · · = lq+1 = l

for some l between 1 and di, then bt = bq
i1lsbijlrtilk (Data 6.2(b)). It follows that

uijk ≡
di∑

l=1

bq
i1lsbijlrtilk mod LK̃((k − 1)d).

Hence

f ≡
e∑

i=1

di∑
j=1

aijuijk ≡
e∑

i=1

di∑
j=1

di∑
l=1

aijb
q
i1lsbijlrtilk(5)

≡
e∑

i=1

di∑
l=1

bq
i1ls

( di∑
j=1

aijbijlr

)
tilk ≡

e∑
i=1

di∑
l=1

bq
i1lsλilr(ai)tilk

≡
e∑

i=1

di∑
l=1

ciltilk mod LK̃((k − 1)d),

with cil = bq
i1lsλilr(ai). By (d) and (f), v(cil) = 0. By (c), v(uµ) ≥ 0, µ = 1, . . . , e2s−1.

Hence, by Notation 4.4, v(uijr) ≥ 0 for i = 1, . . . , e, j = 1, . . . , di, and r = s, . . . , 2s−

1. By Data 4.2 and Notation 4.4, for each κ ≥ s the function uκ is a product of

functions which belong to the set {uijs, . . . , uij,2s−1‖i = 1, . . . , e; j = 1, . . . , di}. Hence

v(uκ) ≥ 0. In particular v(uijk) ≥ 0. Hence, by (3) and (e), v(f) ≥ 0. So, by (5),

g = f −
∑e

i=1

∑di

l=1 ciltilk belongs to LK̃((k − 1)d) and satisfies v(g) ≥ 0. Conclude

from Lemma 6.1 that f is v-regular of level k.
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7. Admissible functions along VN

To create a VN -admissible function we first use Proposition 5.7 to define a big subset

U of VN which takes into account all conditions of Lemma 6.3 which do not concern

a. Then, for T = VN rU , we select f of the form (3) of Section 6, such that f is T -

admissible. The final step is to use Proposition 1.12(c), Lemma 6.3, and Corollary 5.2

to change the aij ’s such that f also becomes U-admissible (and hence VN -admissible)

and then to use Proposition 1.12(d) to change the aµ’s such that in addition f has an

M -rational zero.

Data 7.1: We extend each valuation v ∈ VN rW to a valuation of the Henselian

closure Nv = K̃ (Proposition 1.12(a)) with the same name. We use Proposition 5.7

to choose a big subset U of VN rW (which may be empty if V is finite) such that the

following statements hold for each v ∈ U and for s = 2genus(F/M) + 2, i = 1, . . . , e,

r = s, . . . , 2s− 1, j, l = 1, . . . , di, µ = 1, . . . , e2s−1, and ν = 1, . . . , n:

(1a) v has a good extension to K̃F named v,

(1b) The p∗ij are distinct,

(1c) tijr is v-regular,

(1d) v(uµ) ≥ 0 (Notation 4.4),

(1e) v(bijlr) = 0,

(1f) v(xν) = 0 if xν 6= 0.

Note that bijlr 6= 0 (Data 6.2(c)). So, we may achieve condition (1e). Make U smaller,

if necessary, to assume that U is K-rational (Definition 2.8). Then, T = VN rU is a

K-rational small subset of VN which contains W.

Notation 7.2: For each positive integer k ≥ s = 2genus(F/M) + 2 we denote the

space Aek−1 × Ad1 × · · · × Ade by Ak. The zero coordinate of a point a ∈ Ak is an

ek−1-tuple a0 = (a1, . . . , aek−1) and for each i ≥ 1 the ith coordinate is a di-tuple

ai = (ai1, . . . , ai,di).

Proposition 7.3 (Density of admissible functions): Let k0 ≥ s = 2 genus(F/M)+2.

Then there exists k ≥ k0, a point c ∈ Ak(M), and a positive integer γ with the following

property: If a ∈ Ak(N) satisfies
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(2a) VT (a− c) > γ and

(2b) v(a) ≥ 0 and v(λilr(ai)) = 0 for each v ∈ U , for i = 1, . . . , e, r = s, . . . , 2s− 1, and

l = 1, . . . , di,

then the function

(3) f =
e∑

i=1

di∑
j=1

aijuijk +
ek−1∑
µ=1

aµuµ

is VN -admissible of level k.

Proof: Rename the function f that Proposition 4.5 supplies as h and rewrite h in the

form

h =
e∑

i=1

di∑
j=1

cijuijk +
ek−1∑
µ=1

cµuµ,

with c ∈ Ak(M). Retain also the role of k and γ from Proposition 4.5.

Suppose now that a ∈ Ak(N) satisfies condition (2) and f is as in (3). By

Proposition 4.5, f is T -admissible of level k. By Data 7.1, (2b), and Lemma 6.3, f is

v-regular of level k for each v ∈ U . In particular, each of the zeros of f is N -rational

and simple. By Data 7.1, K̃F/K̃ has a good reduction at each v ∈ U . Since f is of level

k and v(xi) = 0 if xi 6= 0 for i = 1, . . . , n, Corollary 5.2 implies that f is v-admissible.

Conclude that f is VN -admissible.

Proposition 7.4 (Existence of admissible functions): For each k0 there exists a VN -

admissible function f ∈ F of level k ≥ k0 which has an M -rational zero.

Proof: Let k1 be an integer which is greater than k0 and 2 genus(F/M) + 2. Now let

k ≥ k1, c ∈ Ak(M) and γ be as in Proposition 7.3. Then ek−1 = dim((k − 1)d) ≥ 2

(Notation 4.4).

By (1e), the coefficients of the λilr(Yi) (Data 6.2(d)) are T -units. The same holds

for the polynomials Yij . Also, by Data 7.1, T is a K-rational small subset of VN which

contains SN . Thus we may apply Proposition 1.12(c) to choose for each i between 1

and e a point ai ∈ Mdi such that VT (ai − ci) > γ, and v(aij) = 0 and v(λilr(ai)) = 0

for each v ∈ U and for r = s, . . . , 2s− 1, j, l = 1, . . . , di.
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The field L = K(c1, . . . , cek−1) is a finite subextension of M/K. As T is K-

rational, we may apply the strong approximation theorem to L (Proposition 1.11(c))

and find c′0 ∈ Lek−1 such that VT (c′0 − c0) > γ and v(c′0) ≥ 0 for each v ∈ U . Choose

0 6= m ∈ O such that VT (m) > γ (recall that T |K is a finite set).

Let g =
∑e

i=1

∑di

j=1 aijuijk and f ′ = g +
∑ek−1

µ=1 c′µuµ. Since the uµ and the uijk

are linearly independent over M , u1 = 1, and aij 6= 0, we have f ′ ∈ F r M . Let

t = − 1
mf ′. By Proposition 7.3, f ′ is VN -admissible of level k. In particular, all the

zeros of f ′ (hence, also of t) are simple and in Γ(N). By Proposition 1.12(d), there

exits p ∈ Γ(M) which is a pole of none of the functions t, g, u1, . . . , uek−1 such that

t(p) ∈ OM . Let a1 = mt(p) + c′1, a2 = c′2, . . . , aek−1 = c′ek−1
, and a0 = (a1, . . . , aek−1).

Then VT (a0 − c0) > γ and v(a0) ≥ 0 for each v ∈ U . Since u1 = 1, we have

mt + f ′ = g + (mt + c′1) + c′2u2 + · · ·+ c′ek−1
uek−1 = 0.

Hence, p is a zero of the function

f = mt(p) + f ′ = g +
ek−1∑
µ=1

aµuµ.

Thus a = (a0,a1, . . . ,ae) ∈ Ak(M) satisfies (2) and f has the form (3). By

Proposition 7.3, f is VN -admissible of level k.

Proposition 7.4 is a reformulation of Theorem 2.5. The latter implies Theorem

2.4, which is a reformulation of Theorem 1.2(c) for curves. We state the latter one for

the record.

Proposition 7.5 (Approximation theorem for integral points on curves): Let C be an

absolutely irreducible affine curve defined over K. Suppose that C(ON,v) 6= ∅ for each

v ∈ VN rW. Consider (zw)w∈W ∈ CO,S,W and a positive integer γ. Then there exists

z ∈ C(OM ) such that w(z− zw) > γ for each w ∈ W.
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8. The approximation theorems and the local global principle for arbitrary

affine varieties

In this section we use the approximation theorem for integral points on curves to prove

the approximation theorem for integral points on arbitrary varieties. We then prove all

other theorems of Section 1.

Lemma 8.1: Let V be an absolutely irreducible variety defined over K. Let R1 be a

finite subset of VN whose elements are mutually nonconjugate over K. For each v ∈ R1

let zv ∈ V (Nv). Let R = {vσ | v ∈ R1, σ ∈ Aut(N/K)}. Then we can find a finite

extension L of M/K and extend the point (zv)v∈R1 into a point (zw)w∈R such that

zw ∈ V (Lw) and zwσ = zσ
w for each w ∈ R and each σ ∈ Aut(N/L).

Proof: We first prove that M/K has a finite subextension L such that zσ
v ∈ V (Lvσ ) for

each v ∈ R1 and each σ ∈ Aut(N/K). It suffices to do it in the case that R1 consists

of one valuation v.

First choose a finite normal subextension E of N/K such that zv ∈ V (Ev). Let

K ′ = E∩Kins. Since M is perfect, K ′ ⊆ M . Then E/K ′ is a finite Galois extension, and

as such it has a primitive element y. Let γ be an integer which is larger than v(y − y′)

for all conjugates y′ of y over K ′ with y′ 6= y. By Proposition 1.12(b) applied to all

conjugates of y instead of to x, there exists a finite subset B of M with the following

property: For each w ∈ VN which lies over v|K and each conjugate y′ of y over K ′ there

exists b ∈ B such that w(b−y′) > γ. Then L = K ′(B) is a finite subextension of M/K.

Consider σ ∈ Aut(N/K) and let w = vσ, y′ = yσ. Choose b ∈ B such that

w(b−y′) > γ. By Krasner’s lemma [Lan, p. 43], K ′
w(yσ) ⊆ K ′

w(b) ⊆ LKw = Lw. Hence

zσ
v ∈ V (K ′

w(yσ)) ⊆ V (Lvσ ), as asserted.

Now choose a finite subset R2 of R that contains R1 and represents R|L (Defi-

nition 2.8). For each w ∈ R2 rR1 there exists a unique v ∈ R1 such that w|K = v|K .

Choose λ ∈ Aut(N/K) such that w = vλ and define zw = zλ
v . Then zw ∈ V (Lw).

If σ ∈ Aut(N/L) satisfies wσ = w, then σ ∈ Aut(N/N ∩ Lw). Hence, the unique

extension of σ to Nw (Data 1.1(l)) fixes the elements of Lw. In particular zσ
w = zw. It

follows that if for arbitrary w ∈ R2 and τ ∈ Aut(N/L) we define zwτ = zτ
w, then zv
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is well defined for each v ∈ R, it coincides with the original zv if v ∈ R1, and satisfies

zvσ = zσ
v for each v ∈ R and σ ∈ Aut(N/L).

We return now to the notation of Data 1.1, copy over Theorem 1.2, and prove it.

Theorem 8.2 (Strong approximation theorem): Let V be an absolutely irreducible

affine variety defined over K. Consider (zw)w∈W ∈ VK,S,W and a positive integer γ.

(a) There exists z ∈ V (M) such that w(z− zw) > γ for each w ∈ W.

(b) If V (ON,v) 6= ∅ for each v ∈ VN rW, then there exists z ∈ V (M) such that

w(z− zw) > γ for each w ∈ W and v(z) ≥ 0 for each v ∈ VN rW.

(c) If V (ON,v) 6= ∅ for each v ∈ VN rW, and w(zw) ≥ 0 for each w ∈ W, then there

exists z ∈ V (OM ) such that w(z− zw) > γ for each w ∈ W.

Proof: By assumption zw ∈ Vsim(Nw). Also, there exists a finite subextension L of

M/K such that zσ
w = zwσ for each w ∈ W and σ ∈ Aut(N/L). Our goal is to find a

point z ∈ V (M) such that w(z− zw) > γ for each w ∈ W.

Proof of (c): Here we assume in addition that V (ON,v) 6= ∅ for each v ∈ VN rW

and zw ∈ Vsim(ON,w) for each w ∈ W. We have to approximate the points zw with

z ∈ V (OM ).

Choose a point z0 ∈ V (K̃) and recall that Nv = K̃ for each v ∈ VN rW. Let

U = {v ∈ VN rW‖v(zσ
0 ) ≥ 0 for each σ ∈ G(L)}, T = VN rU .

Then T is an L-rational small set which contains W. Choose a finite subset W1 of

W which represents W|L and a finite subset R1 of R = T rW which represents R|L
(Definition 2.8). Let T1 = W1 ∪R1.

For each v ∈ R1 choose zv ∈ V (ON,v). Now use Lemma 8.1, for L instead of K,

extend L (hence, also W1, R1, and T1), if necessary, and extend the point (zv)v∈T1 to a

point (zv)v∈T such that zv ∈ V (Lv) and zvσ = zσ
v for all v ∈ T and σ ∈ Aut(N/L). In

particular, each zv belongs to V (OL,v), hence to V (ON,v), and is separable over L. Now

extend L again to assume that z0 is separable over L. Finally, if v ∈ U , then Nv = K̃.

So, let zv = z0.
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In an appendix to this work we show that there exists an affine absolutely ir-

reducible curve C which is defined over L, hence also over M , which lies on V and

passes through z0 and through zv for each v ∈ T1. Moreover, zv is simple on C for

each v ∈ W1. For an arbitrary v′ ∈ VN the point zv′ is conjugate over L to a point

zv for some v ∈ T1 ∪ U . Hence zv′ belongs to C(ON,v′) and is simple if v′ ∈ W. So,

(zw)w∈W ∈ CO,S,W .

By Proposition 7.5 and Remark 1.3(a), there exists z ∈ C(OM ) such that w(z −

zw) > γ for each w ∈ W. This is a point of V we have been looking for.

Proof of (b): Here we only assume that V (ON,v) 6= ∅ for each v ∈ VN rW. We have

to approximate the points zw with a W-integral point z ∈ V (M).

Since (zw)w∈W is L-rational, the set {w(zw) | w ∈ W} is finite. Hence, k =

max{0,−w(zw)}w∈W is a well defined nonnegative integer. By Proposition 1.12(c)

applied to X instead of to fi there exists a ∈ M such that w(a) ≥ k for each w ∈ W

and v(a) = 0 for each v ∈ VN rW.

Consider the automorphism λ of An defined by λ(x) = ax. It maps V onto an

absolutely irreducible variety V ′ which is defined over K(a). For each v ∈ VN rW we

have V ′(ON,v) 6= ∅. If w ∈ W, then z′w = azw ∈ V ′
sim(ON,w). Moreover, if σ ∈ G(L(a)),

then z′wσ = (z′w)σ.

Since W|K is finite, the set {w(a) | w ∈ W} is bounded. Hence, by (c), there

exists z′ ∈ V ′(OM ) such that w(z′ − z′w) > γ + w(a) for each w ∈ W. It follows that

z = a−1z′ ∈ V (M) and w(z − zw) > γ for each w ∈ W. Finally, as a is a W-unit, we

have v(z) ≥ 0 for each v ∈ VN rW.

Proof of (a): Choose z0 ∈ V (K̃) and recall that Nv = K̃ for each v ∈ VN rW. Then

U = {v ∈ VN rW | v(zσ
0 ) ≥ 0 for all σ ∈ G(K)} is a well defined K-rational big subset

of VN . Hence, T = VN rU and R = T rW are K-rational small subsets of VN .

As in the proof of (b), k = max{0,−v(z0)}v∈R is a well defined nonnegative

integer. By Proposition 1.11(c), there exists a ∈ M such that v(a) ≥ k for each v ∈ R

and v(a) = 0 for each v ∈ VN rR. Consider the automorphism λ of An defined

by λ(x) = ax. It maps V onto an absolutely irreducible variety V ′ which is defined
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over K(a). If w ∈ W, then z′w = azw ∈ V ′
sim(Nw). Moreover, if σ ∈ G(L(a)), then

z′wσ = (z′w)σ. If v ∈ R, then Nv = K̃ and hence, z′v = az0 ∈ V ′(Nv) and satisfies

v(z′v) ≥ 0. Similarly, if v ∈ U , then z′v = az0 ∈ V ′(Nv) and v(z′v) ≥ 0.

By (b), there exists z′ ∈ V ′(M) such that w(z′− z′w) > γ + w(a) for each w ∈ W.

Hence z = a−1z′ belongs to V (M) and satisfies w(z− zw) > γ for each w ∈ W.

This concludes the proof of the theorem.

Next we show how to deduce the weak approximation theorem from the strong

approximation theorem.

Proof of Theorem 1.4(a): There exists a finite subextension K ′ of M/K over which V

is defined and such that the map res: T → T |K′ is injective. Assume without loss that

K ′ = K. Extend each v ∈ T to a valuation of N , if necessary, to assume that T ⊂ VN .

Recall that OM,v = ON,v for each v ∈ VN (Proposition 1.12(a)).

For each v ∈ T ∩SN let zv ∈ Vsim(ON,v) and for each v ∈ T rSN let zv ∈ V (ON,v).

Also, let γ be a positive integer. We have to find z ∈ V (OM ) such that v(z − zv) > γ

for each v ∈ T .

Let T ′ = {vσ | v ∈ T , σ ∈ Aut(N/K)}. Then W = SN ∪ T ′ and R = SN r T ′

are K-rational small sets. Choose a finite subset R1 of R that represents R|K . Then

W1 = R1 ·∪ (T ∩ SN ) ·∪ (T rSN ) represents W|K .

If v ∈ T rSN , then Nv = K̃ (Proposition 1.12(a)). Since Vsim(K̃) is Zariski open

in V (K̃), it is v-dense in V (K̃) [Mum, p. 82]. Hence, we can assume without loss that

zv is simple. Finally, for each v ∈ R1 we choose zv ∈ Vsim(ON,v).

By Lemma 8.1, the point (zw)w∈W1 extends to a point (zw)w∈W of VK,S,W . So,

Theorem 8.2(c) gives a point z ∈ V (OM ) such that w(z− zw) > γ for each w ∈ W and

in particular for each w ∈ T .

Proof of Theorem 1.4(b): Replace the use of Theorem 8.2(c) in the proof of (a) by a

use of Theorem 8.2(a).

The assumption we made on M to be weakly PSC over OM is not intrinsic because

it involves the field N . We show below that, as a consequence of the strong approxima-

tion theorem, M has the more elegant property of being ‘PSC over OM ’. The stronger
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condition implies the weaker one and therefore eventually implies the strong approxi-

mation theorem. However, starting from an algebraic extension M0 of K which is PAC

over O (e.g., K̃(σ), for almost all σ ∈ G(K)e), all we could prove for M = M0 ∩N at

the beginning of the long proof is that M is weakly PSC over OM . So, we had to start

with the latter condition.

Remark 8.3: PSC fields. (a) A perfect algebraic extension L of K is said to be PSC if

every absolutely irreducible variety V defined over L has an L-rational point provided

it has a simple Lv-rational point for each v ∈ SL. Theorem 1.4(b) with T = ∅ implies

that M is PSC. This generalizes a result of Pop [Pop] that N is PSC.

(b) The actual results of our paper depend however on the notion of a PAC field

over a ring. Generalizing this concept, consider a perfect algebraic extension L of K.

We say that L is PSC over OL if for every absolutely irreducible variety V of dimension

r and every dominating separable rational map ϕ: V → Ar over L there exists z ∈ V (L)

such that ϕ(z) ∈ Or
L provided that for each v ∈ SL there exists zv ∈ Vsim(Lv) such that

ϕ(zv) ∈ Or
L,v.

(c) Let U be a nonempty Zariski-open affine subvariety of V over L and let v ∈ SL.

Then, Or
L,v is v-open in Lr

v and ϕ: V (Lv) → Lr
v is v-continuous. Also, each v-open

neighborhood of a point of Vsim(Lv) is Zariski dense in V [GPR, Cor. 9.5]. Hence, if

there exists zv ∈ Vsim(Lv) such that ϕ(zv) ∈ Or
L,v, then there exists yv ∈ Usim(Lv) such

that ϕ(yv) ∈ Or
L,v. It follows that in order for L to be PSC (resp., PSC over OL) it

suffices to consider only affine absolutely irreducible varieties.

If L is a perfect subextension of N/K which is PSC over OL, then L is also weakly

PSC over OL. Indeed, in the notation of Data 1.1(n) for L instead of M , we may take

V as the affine plane curve h(T,X) = 0 (with finitely many points deleted) and ϕ as the

projection on the first coordinate. Note that this observation, as well as the definitions

and the comments of Remark 8.3 do not depend on the assumtion that K is a global

field. The next result is however a consequence of the strong approximation theorem

and therefore relies on the assumption that K is a global field.

Theorem 8.4: M is PSC over OM .
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Proof: Let V , ϕ, and zv be as in Remark 8.3(b) with M instead of L and with V

affine. We have to find z ∈ V (M) such that ϕ(z) ∈ Or
M .

Assume without loss that V is defined over K. As ϕ: V → Ar is dominating,

we can choose z0 ∈ Vsim(K̃) such that ϕ(z0) ∈ Õr. Consider the K-rational big set

U = {v ∈ VN rSN | v(zσ
0 ) ≥ 0 for each σ ∈ Aut(N/K)} and let W = VN rU . Make

U somewhat smaller, if necessary, to assume that W rSN is nonempty. For each w ∈

W rSN let zw = z0.

Let now W be the graph of ϕ. That is, W is the Zariski closure of the set of all

points (z, ϕ(z)) with z ∈ V (K̃) at which ϕ is defined. The Jacobian criteria implies that

(zw, ϕ(zw)) ∈ Wsim(Nw) for each w ∈ W. Let γ be a large positive integer. By Lemma

8.1, we can redefine the points zw such that (zw, ϕ(zw))w∈W ∈ WK,S,W . Theorem

8.2(b) then supplies (z,y) ∈ W (M), such that w((z,y) − (zw, ϕ(zw))) > γ for each

w ∈ W and v(z,y) ≥ 0 for each v ∈ VN rW. In particular z ∈ V (M). Also, z is Zariski

close to z0, hence ϕ is defined at z, and therefore y = ϕ(z). Finally, w(y) ≥ 0 for each

w ∈ W. Conclude that ϕ(z) ∈ Or
M , as desired.

Remark 8.5: Algebraic extensions. Let M0 be a perfect algebraic extension of K. Let

M = M0 ∩ N and suppose that M0 is PAC over OM . Consider a subextension M ′

of N/M and let M ′
0 = M0M

′. Then M ′
0 ∩ N = M ′ and M ′

0 is PAC over OM ′ [JR1,

Corollary 2.5]. Hence, the approximation theorems and the local global principle hold

also for M ′.

Combining the methods of proof of [Ja5, Lemma 7.2] and [JR1, Lemma 2.1], it

is possible to prove that if M ′ is an algebraic extension of M which is unramified over

SM , and in particular if M ′ ⊆ N , then M ′ is PSC over OM ′ . But we do not elaborate

on this.
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9. Decidability

In this section we assume that S is empty, therefore N = K̃, and M is a perfect algebraic

extension of K which is PAC over OM . The local global principle allows us in this case

to develop a decision procedure for diophantine problems of M with coefficients in K

which is independent of M . Thus, Hilbert’s tenth problem with coefficients in K is

uniformly solvable for all algebraic extensions M of K which are perfect and which are

PAC over OM .

Our basic auxiliary tool in this procedure is a lemma which uniformizes the

decomposition-intersection procedure for Zariski K-closed affine sets [FrJ, Sec. 19.1].

In this lemma K and M do not denote any more the fields which Data 1.1 fixed.

Lemma 9.1 (Uniform decomposition-intersection procedure): Let K be a field. Let A

be a Zariski K-closed subset of An. Then there exists a finite normal extension Q of

K and for each subfield L of Q such that Q/L is Galois there exists an L-closed subset

A∗
L of A which decomposes into a union of absolutely irreducible varieties which are

defined over L such that if M is a perfect field which contains K and Q∩M = L, then

A(M) = A∗
L(M).

Moreover, if K has elimination theory in the sense of [FrJ, Def. 17.9], then we can

effectively construct Q, and for each L as above we can effectively construct A∗
L and

decompose it into its absolutely irreducible components over L.

Proof: We use the notation E ≤ Q for two fields E and Q to denote that Q is a Galois

extension of E.

Decompose A into its absolutely irreducible components, A =
⋃

i∈I Vi and con-

struct a finite normal extension Q0 of K over which each Vi is defined. Let K ⊆ E ≤ Q0.

Then G(Q0/E) permutes the Vi’s. Consider a decomposition

{Vi‖i ∈ I} =
⋃
·

j∈JE

{Vi‖i ∈ Ij}

into G(Q0/E)-orbits. For each j ∈ JE , Uj =
⋂

i∈Ij
Vi is invariant under G(Q0/E) and is

therefore an E-closed subset of A. If Ij consists of only one element i, then Uj = Vi is an

absolutely irreducible variety which is defined over E. Otherwise, dim(Vi) = dim(Vi′)
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and Vi 6= Vi′ for distinct i, i′ ∈ Ij . Hence, dim(Uj) < mini∈Ij dim(Vi) ≤ dim(A) [FrJ,

Lemma 9.19]. Let

AE =
⋃

j∈JE

|Ij |=1

Uj and BE =
⋃

j∈JE

|Ij |>1

Uj .

Then AE is a union of absolutely irreducible varieties which are defined over E and

dim(BE) < dim(A).

Claim: If M is a perfect field which contains K and Q0 ∩ M = E, then A(M) =

AE(M) ∪ BE(M). Indeed, let x ∈ A(M). Then, there exist j ∈ JE and i ∈ Ij such

that x ∈ Vi(M). If |Ij | = 1, then x ∈ AE(M). Otherwise, consider i′ ∈ Ij . By

definition, there exists σ ∈ G(Q0/E) such that Vi′ = V σ
i . Since Q0/E is Galois, σ

extends to an element of G(Q0M/M). Hence, x ∈ Vi′(M). It follows that x ∈ Uj(M)

and therefore x ∈ BE(M), as was to be shown.

If BE is nonempty, use induction on the dimension to obtain a finite normal

extension QE of E, and to construct for each E ⊆ F ≤ QE an F -closed subset A′
F such

that all absolutely irreducible components of A′
F are defined over F and such that if M

is a perfect field which contains E and QE ∩M = F , then BE(M) = A′
F (M).

Let now Q be a finite normal extension of K which contains Q0 and all fields QE

for which K ⊆ E ≤ Q0. Consider a field K ⊆ L ≤ Q. Then E = Q0 ∩ L satisfies

K ⊆ E ≤ Q0 and F = QE ∩ L satisfies E ⊆ F ≤ QE . By the above, A∗
L = AE ∪ A′

F

is an L-closed subset of A that decomposes into absolutely irreducible varieties each of

which is defined over L.

Let M be a perfect field which contains K such that L = Q ∩M . Then L ≤ Q.

Hence, in the notation of the preceding paragraph A(M) = AE(M)∪BE(M) = AE(M)∪

A′
F (M) = A∗

L(M), as desired.

Finally, if K has elimination theory, then Chapter 17 of [FrJ] shows how to make

all the above constructions effective.

We return now to the notation of Data 1.1.

Theorem 9.2 (Decidability of diophantine equations): Let A be a given Zariski closed

subset of An over K.
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(a) If A is absolutely irreducible, then we can effectively decide whether A has an Õ-

rational point, and therefore, by Theorem 1.8(a), also an OM rational point for each

algebraic extension M of K which is perfect and which is PAC over OM .

(b) We can compute a finite normal extension Q of K and the maximal purely insep-

arable extension K ′ of K in Q, and for each field K ′ ⊆ L ⊆ Q we can effectively

assign an integer ν(L) ∈ {0, 1} such that if an algebraic extension M of K is perfect

and is PAC over OM and Q∩M = L, then A(OM ) = ∅ if ν(L) = 0 and A(OM ) 6= ∅

if ν(L) = 1.

(c) For each positive integer e we can compute the Haar measure of all σ ∈ G(K)e such

that A has an Õ(σ)-rational point. This measure is a rational number.

Proof of (a): By the local global principle, it suffices to check if for each v ∈ Ṽ there

exists z ∈ A(K̃) such that v(z) ≥ 0. To this end choose a ∈ A(K̃), if possible [FrJ,

Thm. 8.4]. Let L be a finite extension of K which contains the coordinates of a. Then

find a finite set T of VL such that v(a) ≥ 0 for all v ∈ VL r T . For each v ∈ T use

Abraham Robinson’s decision procedure ([Rob, p. 54] or Weispfening’s procedure [Wei,

Cor. 3.3]) for the theory of algebraically closed valued fields to decide whether A(K̃)

has a point av such that ṽ(av) ≥ 0 for some (hence for all) extensions ṽ of v to K̃. If

one of these checkups is negative, then A(Õ) is empty, otherwise it is nonempty.

Proof of (b): Use the notation of Lemma 9.1. Decompose A∗
L into its absolutely

irreducible components, A∗
L =

⋃
WL,i. Lemma 9.1 says that each of them is defined

over L. For each i check, by (a), whether WL,i(Õ) is empty. If this is the case for all i

put ν(L) = 0, otherwise let ν(L) = 1.

Let now M be a perfect field which is PAC over OM and let L = Q ∩ M . By

Lemma 9.1, A(M) = A∗
L(M) =

⋃
WL,i(M). Hence A(OM ) = ∅ if and only if ν(L) = 0.

Proof of (c): Use the notation of (b). For each σ0 ∈ G(Q/K ′)e let Q(σ0) be the fixed

field of σ0 in Q. Let k be the number of all σ0 ∈ G(Q/K ′)e for which ν(Q(σ0)) = 1.

For almost all σ ∈ G(K)e, the field M = K̃(σ) is perfect and is PAC over O [JR1,

Prop. 3.1] and hence also over OM . Hence, by (b), the desired measure is k/[Q : K ′]e.
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10. Appendix: Drawing a curve through points of a variety

The reduction of the aproximation theorem for arbitrary affine varieties over K to the

same theorem for curves uses an essentially known result from algebraic geometry. We

thank Ron Livne for his help in the proof.

Lemma 10.1: Let V ⊆ An (resp., V ⊆ Pn) be an affine (resp., projective) absolutely

irreducible variety of dimension r ≥ 1 which is defined over an infinite field L. Let P

be a finite subset of V (Ls). Then there exists an absolutely irreducible curve C ⊆ An

(resp., C ⊆ Pn) over L which lies on V and passes through each of the points of P .

Moreover, if p ∈ P is simple on V , then it is also simple on C.

Proof: The affine case follows from the projective one. So, we assume that V is

projective. For r = 1 there is nothing to prove. So we assume that r ≥ 2. Add a point

of Vsim(Ls) to P , if necessary, to assume that Psim = P ∩ Vsim(Ls) is nonempty. Add

all L-conjugates of points in P , if necessary, to assume that P is invariant under the

action of the Galois group G(L).

Consider a positive integer d. Order the set of monomials in X0, . . . , Xn of degree

d as m0, . . . ,mq. Let h(X) =
∑q

j=0 ajmj(X) in L̃[X0, . . . , Xn] be a form of degree d. It

defines a hypersurface H in Pn such that H(L̃) is the set of zeros of h in Pn(L̃). Identify

H with the point a = (a0 : · · · : aq) of Pq. In this way we identify the set H = Hd of all

these hypersurfaces with Pq and equip H with the Zariski topology of Pq.

Let P = Pd be the closed subset of H consisting of all H which pass through each

point of P . It is isomorphic to a linear subspace which is isomorphic to Pm for some

m ≤ q. In particular, P is absolutely irreducible. Since P is invariant over L and each

point in P is separable algebraic, P is defined over L.

Let I = Id be the set of all H ∈ H such that H ∩ V is absolutely irreducible.

Let J = Jd be the set of all H ∈ H which do not contain V . For each p ∈ Psim let

Ep = Ep,d be the set of all H ∈ J such that p is simple on H ∩ V .

We prove that I, J , and Ep are open in H. We also prove for d ≥ |P | that Ep ∩P

are nonempty. Finally we prove that for infinitely many d’s the set I ∩ P is nonempty.

As P is irreducible, this will imply for some large d that U = I ∩
⋂

p∈Psim
Ep ∩ P is a
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nonempty open subset of P. Since L is infinite and P is linear, there exists H ∈ U(L).

By the dimension theorem, H ∩V is an absolutely irreducible variety of dimension r−1

which is defined over L, goes through each point of P , and p is simple on H ∩ V for

each p ∈ Psim. Now use induction on r to find the desired curve C.

We have therefore to prove the above claims.

Claim A: I and J are open. The Veronese mapping [Sha, p. 40] (also called the

d-uple embedding [Har, p. 13]) ν maps each point x = (x0 : · · · : xn) in Pn(L̃) to

the point y = (m0(x) : · · · : mq(x)) of Pq(L̃). It is an isomorphism of Pn onto a

subvariety of Pq, called the Veronese variety, which is defined over the prime field

of L. In particular, ν maps V isomorphically to an absolutely irreducible subvariety

V ∗ of Pq. For each hypersurface H of degree d in Pn which is defined by a form

h(X) =
∑q

j=0 ajmj(X) the map ν attaches the hyperplane H∗ in Pq which is defined

by the linear form h∗(Y) =
∑q

j=0 ajYj . The intersection V ∩H is absolutely irreducible

if and only if V ∗ ∩H∗ is absolutely irreducible. We identify H∗ with the same point a

of Pq to which we have already identified H. By [HoP, p. 79, Lemma 1], the set of all

hyperplanes H∗ in Pq such that H∗ ∩ V ∗ is absolutely irreducible is open. Hence, I is

open.

Similarly, the set of all H∗ which do not contain V ∗ is open. Hence, so is J .

Claim B: For p ∈ Psim the set Ep is open. Let f1, . . . , fk be forms in L[X0, . . . , Xn]

which generate the ideal of all polynomials in L̃[X0, . . . , Xn] that vanish on V . For each

form h ∈ L̃[X] of degree d consider the (k + 1)× (n + 1) matrix

Dh =

(
∂fi

∂pj

∂h
∂pj

)

with i = 1, . . . , k and j = 0, . . . , n. Here ∂fi

∂pj
= ∂fi

∂xj
(p) and ∂h

∂pj
= ∂h

∂xj
(p). If the

hypersurface H that h defines belongs to J , then each absolutely irreducible component

of H ∩ V has dimension r − 1. Hence, p is simple on H ∩ V if and only if Dh has a

nonzero subdeterminant of order n− r + 1. So, Ep is open.

Claim C: Suppose that d ≥ |P | and let p ∈ Psim. Then Ep ∩ P is nonempty.
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Indeed, let Tp be the tangent space to V at p. Let T̂p be the dual space consisting

of all linear forms
∑n

i=0
∂f
∂pi

Xi with f ∈ L̃[X] a form which vanishes on V . Then

dim(Tp) = r and dim(T̂p) = n−r < n−1. On the other hand, the space Λp of all linear

forms in X which vanish at p is of dimension n − 1. Hence Λp 6⊆ T̂p. Also, if q 6= p,

then Λp 6⊆ Λq. Choose c ∈ V (L̃) r P . Choose λ(X) =
∑n

i=0 biXi ∈ Λp r(T̂p ∪ Λc).

For each q ∈ P r{p} choose λq(X) ∈ Λq r(Λp ∪ Λc). Finally choose an extra linear

form µ(X) in L̃[X] r(Λp ∪ Λc). Then h(X) = λ(X)
∏

q∈P r{p} λq(X)µ(X)d−|P | is a

form of degree d which vanishes at each point of P but not at c. Moreover, ∂h
∂pi

=

bi

∏
q∈P r{p} λq(p)µ(p)d−|P | and therefore

n∑
i=0

∂h

∂pi
Xi = λ(X)

∏
q∈P r{p}

λq(p)µ(p)d−|P |.

As a multiple of λ(X) by a constant the latter form does not belong to T̂p. It follows

that the rank of Dh is n − r + 1. Conclude that the hypersurface H that h defines

belongs to Ep ∩ P, as claimed.

Claim D: There exist infinitely many d’s for which I ∩P is nonempty. Blow up Pn at

the points of P to obtain a birational morphism π: P̃n → Pn over L with the following

properties [Mum, pp. 219–225]:

(1a) P̃n ⊆ Pk is an absolutely irreducible variety of dimension n defined over L (we

have assumed that each point in P is separable over L) for some positive integer

k.

(1b) The restriction of π to P̃n r π−1(P ) is an isomorphism onto Pn r P .

(1c) The Zariski closure of π−1(V r P ) is an absolutely irreducible subvariety Ṽ of P̃n

of dimension r and the restriction of π to Ṽ is a birational morphism onto V .

(1d) For each p ∈ P the fiber π−1(p) is of dimension n− 1.

By (1c), Ṽ 6⊆ π−1(p), and hence, by (1d) and the dimension theorem

(1e) dim(π−1(p) ∩ Ṽ ) = r − 1 for each p ∈ P .

We have already mentioned that the set of all hyperplanes in Pk which intersect a

given absolutely irreducible variety of dimension m in an absolutely irreducible variety

of dimension m − 1 is Zariski open. Moreover, it is nonempty [HoP, p. 78]. Since L

44



is infinite, Pk has a hyperplane H ′ over L such that H∗ = H ′ ∩ P̃n is an absolutely

irreducible variety of dimension n − 1 and H ′ ∩ Ṽ , which is equal to H∗ ∩ Ṽ , is an

absolutely irreducible variety of dimension r−1. Moreover, we can choose H ′ such that

for each p ∈ P it does not contain π−1(p) ∩ Ṽ .

It follows that for each p ∈ P , H∗ does not contain π−1(p)∩Ṽ . Hence H = π(H∗)

is an absolutely irreducible subvariety of Pn of dimension n − 1 which is defined over

L. Let h(X) ∈ L[X] be a form which defines H. Then H ∈ Hd with d = deg(h). Note

that H(L̃) is the set of zeros of any power of h. So, we may assume that d is large. In

order to complete the proof of the theorem we have to prove that H ∩ V is absolutely

irreducible and contains P .

Indeed, by the dimension theorem for projective spaces, and since r− 1 ≥ 1, each

of the sets π−1(p)∩H∗ is nonempty. Hence W = π(H∗∩ Ṽ ) is an absolutely irreducible

subvariety of V of dimension r − 1 which contains P and is defined over L.

Obviously W (L̃) ⊆ H(L̃) ∩ V (L̃). Conversely, let a ∈ H(L̃) ∩ V (L̃) r P . Then

there exist b ∈ H∗(L̃) and c ∈ Ṽ (L̃) such that π(b) = a = π(c). Both b and c do

not belong to π−1(P ). Since π is bijective on P̃n(L̃) r π−1(P ), we have b = c. Hence,

a ∈ W (L̃). Conclude that W = H ∩ V .

This completes the proof of the last claim.
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