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ABSTRACT

We prove that for almost all σσσ ∈ G(Q)e the field Q̃(σσσ) has the following

property: For each absolutely irreducible affine variety V of dimension r

and each dominating separable rational map ϕ: V → Ar there exists a

point a ∈ V (Q̃(σσσ)) such that ϕ(a) ∈ Zr. We then say that Q̃(σσσ) is PAC

over Z. This is a stronger property then being PAC. Indeed we show that

beside the fields Q̃(σσσ) other fields which are algebraic over Q and are known

in the literature to be PAC are not PAC over Z.

Introduction
J. Ax observed in [Ax] that every nonprincipal ultraproduct K of finite fields has
the following property, which later on Frey [Fre] called PAC: Every absolutely
irreducible variety defined over K has a K-rational point. Ax asked in [Ax]
whether there exists a PAC field which is algebraic over Q besides the algebraic
closure Q̃ of Q. The first author [Ja1] gave a host of examples for such fields.
Indeed, he proved that if e is a positive integer, then Q̃(σσσ) is PAC for almost all
σσσ ∈ G(Q)e. Here G(Q) is the absolute Galois group of Q, ‘almost all’ is used
in the sense of the Haar measure of G(Q)e, and Q̃(σσσ) is the fixed field in Q̃ of
σσσ = (σ1, . . . , σe). Later on more examples of algebraic extensions of Q which are
PAC were given. Thus, [FJ1] constructs a Galois extension N of Q which is PAC
such that G(N/Q) is a direct product of symmetric groups. Recently Pop proved
for the maximal totally real extension Qtr of Q that Qtr(

√
−1) is PAC [Pop].
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Almost all fields Q̃(σσσ) mentioned above have a ‘density property’ which has
not yet been proven for any other PAC field: For each valuation w of Q̃ and each
absolutely irreducible variety V defined over Q̃(σσσ) the set V (Q̃(σσσ)) is w-dense in
V (Q̃).

The present work adjusts the proof of the first author to prove that almost
all fields Q̃(σσσ) have a stronger property than being PAC: For each absolutely
irreducible affine variety V of dimension r and each dominating separable rational
map ϕ: V → Ar there exists a point a ∈ V (Q̃(σσσ)) such that ϕ(a) ∈ Zr. We then
say that Q̃(σσσ) is PAC over Z.

This stronger PAC property of almost all fields Q̃(σσσ) is responsible for the
density property of the Q̃(σσσ) (Theorem 9.2) and for Rumely’s local global prin-
ciple of their rings of integers. We prove the latter result in a subsequent work.
Moreover, we prove in that work that this property also implies a weak and a
strong approximation theorems for absolutely irreducible varieties over Q̃(σσσ).

In this work we use Faltings’ theorem to prove that the PAC Galois extension
N of Q mentioned above is PAC over no number field. We prove further that the
field Qtr(

√
−1) is PAC over no totally real number field. It is an open question

if Qsol is a PAC field. Nevertheless, the same method shows that it is certainly
PAC over no number field. Thus, the fields Q̃(σσσ) appear to be ‘more pseudo
algebraically closed than other PAC fields’. We don’t know of any other example
of an algebraic extension of Q which is PAC field over Z or over Q.

Fried and Völklein [FrV] prove that if K is a PAC field of characteristic 0 and
G is a finite group, then there are infinitely many positive integers r such that G
can be realized over K(t), regularly over K, with exactly r branch points. This
result applies also for almost all fields Q̃(σσσ). We observe here that since almost
all Q̃(σσσ) are PAC over Z, the branch points of the cover that realizes G can be
taken to be finite and Z-rational.

Acknowledgement: We are indebted to Wulf-Dieter Geyer for his valuable
contributions to Sections 4 and 8. We also thank Dan Haran, for suggestions
that have improved the presentation of Section 4.

1. Definitions and basic properties

Recall that a fieldM is pseudo algebraically closed (PAC) if every absolutely
irreducible variety V defined over M has an M -rational point. If O is a subring
of M , then M may have a stronger property:

Definition 1.1: Let O be a subset of a field M . We say that M is PAC over O
if for every affine absolutely irreducible variety V of dimension r ≥ 0 and for each
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dominating separable rational map ϕ: V → Ar over M there exists a ∈ V (M)
such that ϕ(a) ∈ Or.

If x = (x1, . . . , xn) is a generic point of V over M , then the assumption that
ϕ is dominating means that trans.degM M(ϕ(x)) = r, and being separable then
means that M(x)/M(ϕ(x)) is a finite separable extension.

Remark 1.2: By definition, each PAC field is PAC over itself. Conversely, the
following statements hold for a PAC field M over a subset O:

(a) M is PAC. Indeed, if V and x are as above, then M(x) is a separable
extension of M of transcendence degree r. Let t1, . . . , tr be a separating tran-
scendence basis for M(x)/M . Then M(x)/M(t) is a finite separable extension
and t1, . . . , tr are rational functions in x1, . . . , xn with coefficients in M . So, the
map x 7→ t defines a dominating separable rational map ϕ: V → Ar over M . By
definition, V (M) is nonempty. So, M is PAC.

(b) O is infinite. Apply the definition on the absolutely irreducible poly-
nomial X2 + T 2 + 1 to conclude that O is nonempty. If O were finite consider
the curve defined by 1 +

∏
a∈O(T − a)X = 0 and let ϕ be the projection on

the T -coordinate. Any solution (t, x) of this equation with t ∈ O will lead to a
contradiction 1 = 0.

(c) Suppose that V0 is in definition 1.1 an M -open nonempty subset of V .
Then we may use Rabinovich trick [FJ2, Proof of Prop. 10.1] and choose a to be
in V0(M).

(d) More generally, let ϕ: V → W be a dominating separable rational map of
absolutely irreducible quasi projective varieties of dimension r over M . Suppose
that W has an M -open subset W0 which is M -isomorphic to an open subset of
Ar. Take affine nonempty M -open subset V0 of V which is contained in ϕ−1(W0).
Then, there exists a ∈ V0(M) such that ϕ(a) ∈W0(O).

(e) If S is a subset of M that contains O, then M is also PAC over S.

As in the case of PAC fields, it suffices to check the condition of Definition 1.1
only for plane curves:

Lemma 1.3: Let O be a subring of a fieldM . A necessary and sufficient condition

for M to be PAC over O is

(1) For each absolutely irreducible polynomial f ∈M [T,X] such that ∂f
∂X 6= 0

and for each 0 6= g ∈M [T ] there exists (a, b) ∈ O×M such that f(a, b) = 0
and g(a) 6= 0.

Proof: Condition (1) is obviously necessary for M to be PAC over O. So assume
(1). Then the following statement is true for r = 1.
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(2) For each absolutely irreducible polynomial f ∈M [T1, . . . , Tr, X] such that
∂f
∂X 6= 0 and each 0 6= g ∈ M [T1, . . . , Tr] there exist a1, . . . , ar ∈ O and
b ∈M such that f(a, b) = 0 and g(a) 6= 0.

Assume inductively that r ≥ 2 and that (2) is true for r−1. Let u0, u1 be alge-
braically independent elements overM . By [FJ2, Prop. 9.33], f(T1, . . . , Tr−1, u0+
u1T1, X) is an absolutely irreducible polynomial with coefficients in M(u0, u1).
Use the Bertini-Noether theorem [FJ2, Prop. 9.29] to find c0, c1 ∈ O such that the
polynomial f(T1, . . . , Tr−1, c0 +c1T1, X) is absolutely irreducible, g(T1, . . . , Tr−1,

c0+c1T1) 6= 0 and ∂f
∂X (T1, . . . , Tr−1, c0+c1T1, X) 6= 0. By the induction hypothe-

sis there exist a1, . . . , ar−1 ∈ O and b ∈M such that f(a1, . . . , ar−1, c0+c1a1, b) =
0 and g(a1, . . . , ar−1, c0 + c1a1) 6= 0. So (2) holds also for r.

Now let V , ϕ, and x be as in Definition 1.1. Then t = ϕ(x) is a separating
transcendence basis for M(x)/M . Choose a primitive element y for M(x)/M(t)
which is integral over M [t] and let f ∈M [T, Y ] be a monic polynomial in Y such
that f(t, Y ) = irr(M(t), y). Then f is absolutely irreducible and ∂f/∂Y 6= 0.
Denote the hypersurface in Ar+1 defined by f(T, Y ) = 0 over M by W . Let
π: W → Ar be the projection on the first r coordinates. The map (t, y) 7→ x
defines a birational map θ: W → V over M such that ϕ ◦ θ = π. Find 0 6=
g ∈ M [T], an M -open subset V0 of V and an M -open subset W0 of W such
that ϕ|V0 : V0 → Ar is a morphism, θ|W0 : W0 → V0 is an isomorphism and
W0 = π−1(Ar − V (g)). By (2) there exist a1, . . . , ar ∈ O and b ∈ M such that
f(a, b) = 0 and g(a) 6= 0. Then (a, b) ∈ W0. Let c = θ(a, b). Then c ∈ V (M)
and ϕ(c) = a ∈ Or. Conclude that M is PAC over O.

Lemma 1.3 supplies the first example of a PAC field over a subring.

Example 1.4: If M is a separably closed field and O is an infinite subring, then
M is PAC over O.

Corollary 1.5: Let M be a PAC field over a subring O with a quotient field

K. Then Ks ∩M is PAC over O.

Proof: Let f ∈ (Ks ∩M)[T,X] be an absolutely irreducible polynomial and let
0 6= g ∈ (Ks ∩M)[T ]. Then there exist h0, h1 ∈ (Ks ∩M)[T ] and 0 6= h2 ∈
(Ks ∩M)[T ] such that

(3) h0(T,X)f(T,X) + h1(T,X)
∂f

∂X
(T,X) = h2(T ).

Since M is PAC over O, there exists (a, b) ∈ O ×M such that f(a, b) = 0 and
g(a)h2(a) 6= 0. By (3), ∂f

∂X (a, b) 6= 0. Hence b ∈ Ks. Thus, Ks ∩M is PAC over
O.



Vol. 86, 1994 PAC FIELDS OVER RINGS 5

Example 1.6: Suppose that M is a PAC field over a subring O. Let f1, . . . , fd ∈
M [X] with d ≥ 2 be polynomials which have no root in common and such that
df1/dX 6= 0. Let a1, . . . , ad ∈ M with a2 6= 0 and let m ∈ M , m 6= 0. Then
h∗(T,X) = (mT+a1)f1(X)+a2f2(X)+· · ·+adfd(X) is an absolutely irreducible
polynomial with ∂h∗

∂X 6= 0. Hence, by Lemma 1.3, there exists (a, b) ∈ O ×M

such that (ma+ a1)f1(b) + a2f2(b) + · · ·+ adfd(b) = 0.

If M is perfect, then the condition on ϕ to be separable is redundant.

Lemma 1.7: Let M be a perfect field which is PAC over a subring O.

(a) For each absolutely irreducible variety V of dimension r ≥ 0, for each

nonempty Zariski open subset V0 of V and for each dominating rational

map ϕ: V → Ar over M there exists a ∈ V0(M) such that ϕ(a) ∈ Or.
(b) Let F/M be a regular extension of transcendence degree 1, let t ∈ F rM ,

and let A be a finite subset of M . Then F has an M -rational place π such

that π(t) ∈ OrA.

Proof of (a): Let x be a generic point of V over M , let F = M(x), and let
t = ϕ(x). Then F/M(t) is a finite algebraic extension. Let E = M(x′) be the
maximal separable extension of M(t) in F . Then x′ generates an absolutely
irreducible variety V ′ over M of dimension r and the map x′ 7→ t extends to a
separable rational map ϕ′: V ′ → Ar.

Each of the coordinates xi of x satisfies an equation xqi = fi(x′) for some power
q of char(M) and a rational function fi of V ′. Since M is PAC over O, there
exists a′ ∈ V ′(M) such that ϕ′(a′) ∈ Or, each of the functions fi is well defined
at a′ and the unique point a of V (M̃) which lies over a′ belongs to V0(M̃). The
coordinates of a satisfy aqi = fi(a′). Since M is perfect, a ∈ V0(M), as desired.

Proof of (b): Let x1, . . . , xn be generators of the integral closure of M [t] in F

[La1, p. 120, Thm. 2]. The curve C which x defines over M is normal, hence
smooth [Sha, p. 112]. Let ϕ: C → A1 be the epimorphism which is defined by
ϕ(x) = t. By (a), there exists a ∈ C(M) which does not belong to ϕ−1(A) such
that ϕ(a) ∈ O. Since a is simple on C, the specialization x → a extends to an
M -rational place π of F [JaR, Cor. A2]. It satisfies π(t) = ϕ(a) ∈ OrA.

2. Algebraic extensions

Each algebraic extension of a PAC field is also PAC [FJ2, Cor. 10.7]. The proof
of this result is done first for separable extensions, using Weil’s descent, and then
for purely inseparable extensions, using Roquette’s descent. The application of
Weil’s descent to PAC over subrings forces extensions of the subrings:
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Lemma 2.1: Let N/M be a finite separable extension. Suppose that M is a

PAC field over a subring O. Let w1, . . . , wd be a basis for N/M and let S =
O[w1, . . . , wd]. Then N is PAC over S.

Proof: Let V be an absolutely irreducible variety in An of dimension r and let
ϕ: V → Ar be a dominating separable rational map defined over N . Replace
V by the graph V ′ of ϕ in V × Ar and ϕ by the projection of V ′ on the last
r coordinates, if necessary, to assume that ϕ is the projection on the first r
coordinates.

Let σ1, . . . , σd, with σ1 = 1, be the d distinct M -isomorphisms of N into Ms.
Denote the coordinates of An by xk, k = 1, . . . , n and those of And by yik,
i = 1, . . . , d, and k = 1, . . . , n. Let λ: And → An be the linear map over N given
by

(1) λ(y) = x and xk =
d∑
i=1

wiyik, k = 1, . . . , n,

and let
Φ = σ1(ϕ)× · · · × σd(ϕ): σ1(V )× · · · × σd(V ) → (Ar)d.

Then Φ is a dominating separable morphism over N .
By [FJ2, Prop. 9.34] there exists an absolutely irreducible variety W ⊆ And

defined over M such that the restriction of σ1(λ) × · · · × σd(λ) to W is an iso-
morphism Λ: W → σ1(V )× · · · × σd(V ) (which is defined over the Galois closure
of N/M). Consider the projection ψ: W → Ard given by

(2) ψ(y) = y0, where y0 = (yik)1≤i≤d; 1≤k≤r.

Finally, let λ0: Ard → Ar be the linear map over N given as in (1), where now
k = 1, . . . , r and let Λ0 = σ1(λ0) × · · · × σd(λ0). Then the following diagram is
commutative:

W -Λ σ1(V )× · · · × σd(V ) -π V

?
ψ

?
Φ

?
ϕ

Ard -Λ0 Ar × · · · × Ar -π0 Ar

where π and π0 are the projections on the first components. Also, π ◦ Λ = λ|W
and π0 ◦ Λ0 = λ0.

Since both Λ and Λ0 are isomorphisms, and Φ is a dominating separable
morphism over N , so is ψ. Thus N(W )/N(ψ(W )) is a finite separable exten-
sion. Since the extension N(ψ(W ))/M(ψ(W )) is also finite and separable, so is
M(W )/M(ψ(W )).
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Thus, ψ is a separable dominating morphism over M . Since M is PAC over
O, there exists b ∈W (M) such that ψ(b) ∈ Ord. Let a = λ(b). By (1) and (2),
and by the commutativity of the diagram, a ∈ V (N) and ϕ(a) ∈ Sr. Conclude
that N is PAC over S.

Contrary to separable extensions, a variant of Roquette’s descent which we
establish here proves that purely inseparable extensions of a PAC over a subring
O are again PAC over O.

Lemma 2.2: Let M ′/M be a purely inseparable extension. Let V be an ab-

solutely irreducible affine variety of dimension r over M ′. Let ϕ: V → Ar be

a dominating separable rational map over M ′. Then there exists an absolutely

irreducible affine variety W of dimension r, a dominating separable rational map

ψ: W → Ar over M , and a birational morphism λ: W → V over M ′ such that

ψ = ϕ ◦ λ.

Proof: Let p = char(M). The variety V and the map ϕ are defined over a
subextension M ′

0 of M ′/M of degree pk. Use induction on k to assume that
k = 1 and therefore that (M ′)p ⊆M .

Choose a generic point x = (x1, . . . , xn) for V over M ′ and let F = M ′(x)
be the function field of V . Then F/M ′ is a regular extension of transcendence
degree r and t = (t1, . . . , tr) = ϕ(x) is a separating transcendence basis for F/M ′.
By [FJ2, second part of the proof of Lemma 9.16], t1, . . . , tr form a p-basis for
F/M ′F p. In particular F = M ′F p(t). Also, N = F (t1/p) is a purely inseparable
extension of F of degree pr and M ′Np = M ′F p(t) = F . This implies that N/M ′

is a separable extension [FJ2, Lemma 9.16].
We claim that M ′ is algebraically closed in N . Indeed, if a ∈ M̃ ∩ N , then

ap ∈ M̃ ∩F = M ′. Since N/M ′ is separable, a ∈M ′. Combined with the former
paragraph, we get that N/M ′ is a regular extension. Hence Np/(M ′)p is also a
regular extension.

Since (M ′)p ⊆ M , the field E = MNp = MF p(t) is a regular extension
of M . As E is contained in F , it is finitely generated over M [FJ2, Lemma
9.30]. Thus there exist y1, . . . , ym such that E = M(y). Note that M ′E =
M ′F p(t) = F . Hence there exist f1, . . . , fm, g ∈M ′[Y1, . . . , Ym] such that g(y) 6=
0 and xi = fi(y)/g(y), i = 1, . . . , n. Let ym+1 = g(y)−1 and let W be the
variety generated over M by (y, ym+1). Its function field is E and therefore it is
absolutely irreducible.

The map λ: W → V defined by

λ(y, ym+1) = (f1(y)ym+1, . . . , fn(y)ym+1) = x
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is a birational morphism over M ′.

Np E F N

(M ′)p(tp) M(t) M ′(t)

(M ′)p M M ′

Observe that E is linearly disjoint from M ′(t) over M(t) and E ·M ′(t) = F .
Hence F/E is a purely inseparable extension of degree [M ′(t) : M(t)]. Since
F/M ′(t) is a separable algebraic extension, so is E/M(t). Thus t1, . . . , tr form
a separating transcendence basis for E/M .

Choose h1, . . . , hr ∈M(Y1, . . . , Ym) such that ti = hi(y) and define a rational
map ψ: W → Ar over M by ψ(y, ym+1) = (h1(y), . . . , hr(y)) = t. It is separable
and dominating and ϕ ◦ λ = ψ, as desired.

Corollary 2.3: Let M be a field with a subring O and let M ′ be a purely

inseparable extension of M . Then M is PAC over O if and only if M ′ is PAC

over O.

Proof: Suppose first that M is PAC over O. Let ϕ: V → Ar be a dominating
separable rational map from an absolutely irreducible affine variety V over M ′.
Let ψ: W → Ar and λ be as in Lemma 2.2. By assumption, there exists b ∈
W (M) such that ψ(b) ∈ Or and ϕ is defined at a = λ(b). Thus a belongs to
V (M ′) and satisfies ϕ(a) = ψ(b) ∈ Or. So M ′ is PAC over O.

Now suppose that M ′ is PAC over O. Consider an absolutely irreducible
polynomial f ∈ M [T,X] which is separable in X. Then there exist a ∈ O and
b ∈M ′ such that f(a, b) = 0 and f(a,X) is separable. In particular b is separable
over M . Hence, b ∈M . Conclude from Lemma 1.3 that M is PAC over O.

Remark 2.4: Note that the analog of Corollary 2.3 for PAC fields is not true.
Indeed, Hrushovski [Hru, Cor. 5] constructs an example of a non-PAC field whose
maximal purely inseparable extension is PAC.

Corollary 2.5: Let M be a PAC field over a subring O with a quotient field

M0. Let N0 be an algebraic extension of M0 and let S be the integral closure of

O in N0. Then N = N0M is PAC over S.

Proof: By Corollary 2.3, it suffices to consider only the case whereN is separable
over M . Also, it suffices to consider the case where N/M is finite. In this case
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there exists a basis w1, . . . , wd for N0/M0 such that wi is integral over O. Then
B = {w1, . . . , wd} generates N over M . Choose a basis B0 ⊆ B for N over M .
By Lemma 2.1, N is PAC over O[B0]. Hence, N is PAC over S.

Let g(X) be a polynomial with coefficients in a field M . We say that g(X)
is Galois over M if g(X) is separable and irreducible over M and the splitting
field of g over M is generated by each of the roots of g.

Proposition 2.6: Let M be a perfect field which is PAC over a subfield K.

Then, the maximal normal extension M0 of K in M is PAC.

Proof: Replace K by its maximal purely inseparable extension, if necessary,
to assume that K is perfect. By Remark 1.2(b), K is infinite. By [FJ2, Thm.
10.4] it suffices to prove that every plane curve C which is defined over K has an
M0-rational point.

Let therefore x = (x1, x2) be a generic point of C over K and let F = K(x).
Then F is a regular extension of K. Since K is infinite and perfect, Theorem
F of [GaJ] gives a separating transcendence element t for F/K such that the
Galois closure F̂ of F/K(t) is regular over K(t). Choose a primitive element y
for F̂ /K(t) which is integral over K[t] and let h(t, Y ) = irr(y,K(t)) ∈ K[t, Y ].
Then h(T, Y ) is absolutely irreducible polynomial which is monic and separable
in Y .

Let y1, . . . , yn be the distinct roots of h(t, Y ) in K(t)s. One of them is y. Thus
y1, . . . , yn ∈ F̂ and there exist polynomials gi, hj ∈ K[T, Y ] and 0 6= g0 ∈ K[T ]
such that xi = gi(t, y)/g0(t), i = 1, 2, and yj = hj(t, y)/g0(t), j = 1, . . . , n.

Since M is PAC over K, there exist a ∈ K and c ∈ M such that h(a, c) = 0,
∂h
∂Y (a, c) 6= 0, and g0(a) 6= 0. The specialization (t, y) → (a, c) extends to a
place π: F̂ →M ∪ {∞} which maps each element of M onto itself. In particular
h(a, Y ) =

∏n
j=1(Y − cj) with cj = π(yj) = hj(a, c)/g0(a) ∈ K(c), j = 1, . . . , n.

Hence K(c) is a Galois extension of K which is contained in M and therefore
also in M0. Also, bi = π(xi) = gi(a, c)/g0(a) ∈ K(c). So, (b1, b2) is the point of
C(M0) we were looking for.

3. Examples of PAC field over subrings

Recall that an integral domain O with a quotient field K is Hilbertian if every
Hilbert set of K contains points whose coordinates are in O. The remark on
page 156 of [FJ2] states that the ring of integers of each global field is Hilbertian.
In particular, so is Z. If K0 is an arbitrary field, n is a positive integer, and
t1, . . . , tn are algebraically independent elements over K0, then K0[t1, . . . , tn] is
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a Hilbertian ring. Finally, the holomorphy ring of finitely many valuations of a
Hilbertian field is Hilbertian.

If we only demand that every separable Hilbert set of K [FJ2, p. 147] contains
points whose coordinates are in O, then we say that O is separably Hilbertian.
If char(K) = p, we let Kins =

⋃∞
m=1K

1/pm

be the maximal purely inseparable
extension of K and let Oins =

⋃∞
m=1O

1/pm

. If O is Hilbertian, then, since the
map x 7→ xp

m

isomorphically maps K1/pm

onto K and O1/pm

onto O, it follows
that Oins is separably Hilbertian.

Recall that if σ1, . . . , σe ∈ G(K), then Ks(σσσ) is the fixed field in Ks of
σ1, . . . , σe. We denote its maximal purely inseparable extension by K̃(σσσ). The
following result strengthen [FJ2, Thm. 16.18].

Proposition 3.1: Let O be a countable separably Hilbertian integral domain

with a quotient field K. Let e be a positive integer. Then, for almost all σσσ ∈
G(K)e the fields Ks(σσσ) and K̃(σσσ) are PAC over O.

Proof: By Corollary 2.3 it suffices to prove the statement for the fields Ks(σσσ).
For each finite separable extension L of K, for each absolutely irreducible

polynomial f ∈ L[T,X] with ∂f
∂X 6= 0 and for each 0 6= g ∈ L[T ] let

S(L, f, g) = {σσσ ∈ G(L)e| there exists (a, b) ∈ O ×Ks(σσσ)

such that f(a, b) = 0 and g(a) 6= 0}.

Denote the normalized Haar measure of G(L)e by µL. We will prove that
µL(S(L, f, g)) = 1. Since K is countable, Lemma 1.3 will then imply that Ks(σσσ)
is PAC over O for almost all σσσ ∈ G(K)e.

To prove the assertion we construct by induction a linearly disjoint sequence
of separable extensions Li of L of degree d = degX(f) for which there exists
a point (a, b) ∈ O × Li such that f(a, b) = 0 and g(a) 6= 0. Indeed, having
constructed L1, . . . , Ln, we use [FJ2, Cor. 11.7] to find a ∈ O such that f(a,X)
is an irreducible polynomial over L1 · · ·Ln and separable in X and g(a) 6= 0.
Then we take b ∈ Ks such that f(a, b) = 0 and define Ln+1 = L(b). Then
L1, . . . , Ln+1 are linearly disjoint over L.

By [FJ2, Lemmas 16.7 and 16.11], almost all Ls(σσσ) contain one of the fields
Li. Hence µL(S(L, f,m)) = 1 as asserted.

Valuations and orderings v1, . . . , vm, <1, . . . , <n of a field K are said to be
independent if the topologies of K induced by them are distinct.
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Proposition 3.2: Let v1, . . . , vm, <1, . . . , <n be independent valuations and or-

derings of a countable separably Hilbertian field K. Denote the topology that

they induce on K by τ . Then, for almost all σσσ ∈ G(K)e, the field Ks(σ) is PAC

over each τ -open subset of K.

Proof: Each set of the basis of τ has the form

A = {x ∈ K| vi(x− ai) > vi(bi), i = 1, . . . ,m and cj <j x <j dj , j = 1, . . . , n}

where ai, bi, cj , dj are elements of K. The intersection of Ar with each separable
Hilbert subset of Kr is nonempty [Ja2, Lemma 19.5]. So, we may repeat the
proof of Proposition 3.1, with a vector (T1, . . . , Tr) of variables instead of T and
with a ∈ Ar instead of a ∈ O in the third paragraph of the proof.

Example 3.3: Non algebraic PAC extension of a ring. For a field K to be PAC
over a subring O is an elementary statement about the pair (K,O). Hence, this
property is preserved by ultraproducts. Let for example, K = Q̃(σσσ) be one of
the fields as in Proposition 3.1 which is PAC over Z and K 6= Q̃. Let (K∗, Z∗)
be a nonprincipal ultrapower of (K,Z). Then, since (K : Q) = ∞, the field K∗

is not algebraic over Q∗ (=the quotient field of Z∗). Indeed, it has an infinite
transcendence degree. On the other hand, K∗ is not algebraically closed. So,
this example does not fall under the scope of Example 1.4.

Remark 3.4: The proof of Proposition 3.1 can be adjusted to yield a stronger
property than “PAC over O”:

Let O be a countable separably Hilbertian integral domain with quotient field
K. Let e be a positive integer. Then, for almost all σσσ ∈ G(K)e the fields Ks(σσσ)
and K̃(σσσ) have the following property: Let V be an absolutely irreducible variety
of dimension r ≥ 0. Let ϕ: V → Ar be a dominating separable rational map over
Ks(σσσ) (resp., K̃(σσσ)). Let H be a separable Hilbert subset of Ks(σσσ)r (resp.,
K̃(σσσ)r). Then there exists a ∈ V (Ks(σσσ)) (resp., K̃(σσσ)) such that ϕ(a) ∈ H ∩Or.

Proposition 5.2 essentially derives a somewhat weaker form of this property
from the Mordell conjecture for infinite finitely generated fields.

4. Covers of curves

Each curve Γ can be covered by another curve ∆ of arbitrarily large genus.
We construct ∆ such that it is not birationally equivalent to a curve which is
already defined over a finite field. The latter condition is necessary in positive
characteristic in order to apply the theorem of Manin-Grauert-Samuel.
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Throughout this section we will be working over a field K that satisfies the
following assumption:

Assumption 4.1: K is a perfect field of characteristic p ≥ 0 which is not an
algebraic extension of a finite field.

Lemma 4.2: Consider elements c1, . . . , cr ∈ K̃, which are pairwise nonconjugate

over K. Let L be a finite Galois extension of K which contains c1, . . . , cr. For

each j let dj = [K(cj) : K], and let cj1, . . . , cj,dj
be the conjugates of cj over K.

Let also m ≥ 4 be an integer.

Then, for each 1 ≤ j ≤ r and 1 ≤ k ≤ dj there exist m distinct elements

xjk1, . . . , xjkm ∈ L and there exists a monic polynomial q ∈ K[X] of degree

e = 2 +m
∑r
j=1 dj such that

(a) q(xjkl) = cjk, l = 1, . . . ,m,

(b) the equation q(X) = cjk has no multiple roots; in particular q(X) is a

separable polynomial, and

(c) if p > 0, then xjk4 /∈ F̃p(xjk1, xjk2, xjk3).

Proof: We break the proof into four parts.

Part A: Construction of xjkl. By assumption, the elements cjk, j = 1, . . . , r,
k = 1, . . . , dj are distinct. Consider first the case where p = 0 and choose
bj1, . . . , bjm ∈ K such that

bjl + cjk 6= 0(1a)

bjl + cjk 6= bj′l′ + cj′k′ if (j, k, l) 6= (j′, k′, l′)(1b)

for all j, k, l. Then let xjkl = bjl + cjk and observe that

xjkl 6= 0(2a)

(j, k, l) 6= (j′, k′, l′) implies xjkl 6= xj′k′l′ , and(2b)

σcjk = cjk′ implies σxjkl = xjk′l(2c)

for all 1 ≤ j ≤ r, 1 ≤ k ≤ dj , 1 ≤ l ≤ m, and σ ∈ G(L/K).
Next suppose that p > 0 and let T be a transcendental basis of K/Fp. By As-

sumption 4.1, T is nonempty and therefore L1 = Fp(T, cjk| j = 1, . . . , r and k =
1, . . . , dj) is an imperfect field which has a finite degree over Fp(T ). In particular,
[L1 : Lp

n

1 ] ≥ pn for each positive integer n. Hence, we may choose n such that
Fp(T ) 6⊆ Lp

n

1 . Since Fp(T ) is infinite, we may choose bj1, . . . , bjm ∈ Fp(T ) such
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that

bjl + cp
n

jk 6= 0(3a)

bjl + cp
n

jk 6= bj′l′ + cp
n

j′k′ if (j, k, l) 6= (j′, k′, l′)(3b)

bj1, bj2, bj3 ∈ Fp(T p
n

) and bj4 ∈ Fp(T ) rLp
n

1(3c)

Now let xjkl = bjl + cp
n

jk and observe that again (2) holds.

Part B: Proof of (c). If p > 0, let L0 be the algebraic closure of Fp in L1. It
satisfies L0 = Lp

n

0 ⊆ Lp
n

1 and therefore L1 is linearly disjoint from F̃pLp
n

1 over
Lp

n

1 . Since by (3c), bj4 ∈ L1 rLp
n

1 , this implies that xjk4 /∈ F̃pLp
n

1 . On the other
hand xjk1, xjk2, xjk3 ∈ F̃pLp

n

1 . Hence xjk4 /∈ F̃p(xjk1, xjk2, xjk3). So, (c) holds.

Part C: Construction of q(X). Let e = 2 +m
∑r
j=1 dj . Consider the matrix

A = (xijkl) of order (e−2)×(e−2) in which to each triple (j, k, l) with 1 ≤ j ≤ r,
1 ≤ k ≤ dj , and 1 ≤ l ≤ m there corresponds a row

(x2
jkl x

3
jkl · · · xe−1

jkl ).

If we factor out x2
jkl from the (j, k, l)th row we get a Van-der-Monde matrix.

Conditions (2a) and (2b) imply that det(A) 6= 0. Hence, for each a ∈ K there
are unique a2, . . . , ae−1 ∈ L such that

(4)
a+ xjkl +

e−1∑
i=2

aix
i
jkl + xejkl = cjk,

j = 1, . . . , r; k = 1, . . . , dj ; l = 1, . . . ,m.

Consider σ ∈ G(L/K), 1 ≤ j ≤ r, and 1 ≤ l ≤ m. For each k between 1 and dj
there exists a unique k′ between 1 and dj such that σcjk = cjk′ , and therefore,
by (2c), σxjkl = xjk′l. Hence, σ permutes the system of linear equations (4):

(5)
a+ xjk′l +

e−1∑
i=2

(σai)xijk′l + xejk′l = cjk′ ,

j = 1, . . . , r; k′ = 1, . . . , dj ; l = 1, . . . ,m.

Since the solution to (4) is unique, σai = ai. As ai ∈ L, this implies that ai ∈ K,
i = 2, . . . , e− 1. Thus

qa(X) = a+X +
e−1∑
i=2

aiX
i +Xe
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is a monic polynomial with coefficients in K which satisfies qa(xjkl) = cjk for all
j, k, l.

In order to complete the proof, we have now only to choose a such that the
polynomial q(X) = qa(X) will satisfy (b). To this end choose a transcendental
element t over K. Then q0(X)− t is a monic, irreducible, and separable polyno-
mial in X over K(t). Hence, q0(X)− t has no multiple roots. So, its discriminant
R(t) = Resultant(q0(X)− t, q′0(X)) is a nonzero polynomial in t. Choose a ∈ K
such that R(cjk − a) 6= 0, j = 1, . . . , r, k = 1, . . . , dj . The identity

Resultant(qa(X)− cjk, (qa(X)− cjk)′) = Resultant(q0(X)− (cjk − a), q′0)

= R(cjk − a)

implies that qa(X) − cjk has no multiple roots, j = 1, . . . , r, k = 1, . . . , dj , as
desired.

Lemma 4.3: Let E0, F0, E, F be function fields of one variable over an alge-

braically closed field K̃. Suppose that genus(E0) = 0, no prime divisor of E0

ramifies both in E and in F0, E is linearly disjoint from F0 over E0, and F = EF0.

Let e = [F0 : E0] and n = [E : E0]. Then

(6) genus(F ) = e(n+ genus(E)− 1) + n(genus(F0)− 1) + 1

Proof: As E and F0 are linearly disjoint over E0, we have [F : E0] = en.
Hence, by the Riemann genus formula 2 · genus(F )− 2 = −2en+ deg(d′), where
d′ = different(F/E0) [FJ2, p. 24]. Similarly 2 · genus(E) − 2 = −2n + deg(d),
where d = different(E/E0) and 2 · genus(F0) − 2 = −2e + deg(d0), where d0 =
different(F0/E0).

By assumption, none of the prime divisors of d ramifies in F . Hence, the
contribution of d to the degree of d′ is edeg(d). Similarly, the contribution of d0

to the degree of d′ is n deg(d0). As each prime divisor of d′ divides either d or
d0, we have deg(d′) = edeg(d) + n deg(d0). Substitute this value in the formula
for genus(F ) of the preceding paragraph to get (6).

Lemma 4.4: Let F0 be a function field of one variable over an algebraically

closed field K̃0, and let F be a function field of one variable over an algebraically

closed field K̃ that contains K̃0 such that K̃F0 = F . Let x ∈ F be a separating

transcendence element for F/K̃. Then there exists x̄ ∈ F0 which is a separating

transcendence element for F/K̃ such that [F0 : K̃0(x̄)] = [F : K̃(x̄)] = [F : K̃(x)].

Proof: Since F/K̃(x) is a finite separable extension, there exists y ∈ F which
is integral over K̃[x] such that F = K̃(x, y). Let f ∈ K̃[X,Y ] be an irreducible
polynomial, monic in Y such that f(x, y) = 0.
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Write F0 = K̃0(u, v) where u is a separating transcendence element for F0/K̃0

and v is a primitive element for F0/K̃0(u). Let h ∈ K̃0[U, V ] be an irreducible
polynomial such that h(u, v) = 0. By assumption F = K̃(u, v). Hence, there
exist polynomials 0 6= k0 ∈ K̃[U ], k1 ∈ K̃[U, V ], 0 6= g0 ∈ K̃[X], g1, g2 ∈ K̃[X,Y ]
such that degV k1 < degV h and

(7) x =
k1(u, v)
k0(u)

, u =
g1(x, y)
g0(x)

, v =
g2(x, y)
g0(x)

.

Since K̃0 is algebraically closed, there exists a place ϕ: K̃ → K̃0 ∪ {∞} which
is the identity on K̃0 such that the images of the coefficients of all the above
polynomials are finite, f̄(X,Y ) is irreducible over K̃0, k̄1(u, V ) 6= ck̄0(u) for all
c ∈ K̃0 (Bertini-Noether), and k̄0ḡ0 6= 0. Here we have put a bar over an element
of K̃ or over a polynomial with coefficients in K̃ in order to denote the image
under ϕ.

Since the transcendence degree of F0 over K̃0 is equal to the transcendence
degree of F over K̃, the fields F0 and K̃ are algebraically independent (=free)
over K̃0. Hence, as F0/K̃0 is regular, it is linearly disjoint from K̃/K̃0 [FJ2,
Lemma 9.9]. Since F = K̃F0, ϕ extends to an F0-place ϕ: F → F0 ∪ {∞}.
Apply ϕ to (7)

(8) x̄ =
k̄1(u, v)
k̄0(u)

, u =
ḡ1(x̄, ȳ)
ḡ0(x̄)

, v =
ḡ2(x̄, ȳ)
ḡ0(x̄)

.

Since k̄1(u, V ) 6= ck̄0(u) for all c ∈ K̃0, degV k̄1 < degV h and h is irreducible
over K̃0, relation (8) implies that x̄ /∈ K̃0. Hence x̄ is transcendental over K̃0

and therefore ḡ0(x̄) 6= 0. Hence, (8) implies that F0 = K̃0(x̄, ȳ).
Since f̄(x̄, Y ) is irreducible and separable over K̃0(x̄), it follows that F0/K̃0(x̄)

is a separable extension of degree degY f = [F : K̃(x)].
Finally, observe that F0 is linearly disjoint from K̃(x̄) over K̃0(x̄). Hence,

[F : K̃(x̄)] = [F0 : K̃0(x̄)] = [F : K̃(x)], as desired.

Remark 4.5: Branch points and Möbius transformations. Let F/K be a regular
extension of transcendence degree 1. Consider a separating transcendence ele-
ment t for F/K. The branch points of F/K(t) are the images of t in K̃ ∪ {∞}
of those places of K(t) which are trivial on K and ramify in F (note that the
branch points depend on t). The set of all branch points of F/K(t) is finite and
invariant under the action of G(K). If x is a primitive element for F/K(t) which
is integral over K[t] and f(t,X) = irr(x,K(t)), then for each finite branch point
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c of F/K(t), the polynomials f(c,X) and ∂f
∂X (c,X) have common roots [La3,

p. 62]; that is f(c,X) has multiple roots.
If t′ is another element of F such that K(t′) = K(t), then there exists a Möbius

transformation τ(X) = (aX + b)/(cX + d) with coefficients in K (which must
satisfy ad − bc 6= 0) such that τ(t) = t′. It maps the branch points of F/K(t)
(with respect to t) to the branch points of F/K(t′) (with respect to t′). Also, if
q(x) = t′ for some nonconstant q ∈ K[X], and τ−1(X) = (a′X + b′)/(c′X + d′),
then u(X) = (a′q(X) + b′)/(c′q(X) + d′) belongs to K(X) and satisfies u(x) = t.

We will use the following basic fact about Möbius transformations: Given two
triples (x1, x2, x3) and (x′1, x

′
2, x

′
3) of elements of K there exists a unique Möbius

transformation τ such that τ(xi) = x′i, i = 1, 2, 3. If K0 is a subfield of K, then
τ is already defined over K0(x,x′).

Lemma 4.6: Let t be a transcendental element over K, let E0 be a finite Galois

extension of K(t), and let g0 > 0. Let E = K̃E0, and set d = [E : K̃(t)].
Then there exist a rational function q ∈ K(X), and an element x ∈ K(t)s which

satisfies q(x) = t, E is linearly disjoint from K̃(x) over K̃(t), and such that the

following holds:

(a) If D0 is a regular extension of K such that K(t) ⊆ D0 ⊆ E0, then K(x)D0

is a regular extension of K.

(b) Let F1 be a proper extension of K̃(x) which is contained in F = E(x).
Then genus(F1) > max{(d− 1)(2d− 1), g0}.

(c) If char(K) = p > 0, then there exists no function field of one variable F0

over F̃p such that K̃(x) ⊂ K̃F0 ⊆ F .

Proof: Assume without loss that d > 1. We break the proof into four parts.

Part A: Construction of q and x. Replace t by a suitable Möbius transforma-
tion of t over K, if necessary, to assume that (t)∞ does not ramify in E. Choose
representatives c1, . . . , cr ∈ K̃ for the conjugacy classes over K of the branch
points of E/K̃(t). Let L be the Galois closure of K(c1, . . . , cr)/K. For each j let
dj = [K(cj) : K]. Since d > 1, E/K̃(t) is a ramified extension [FJ2, Prop. 2.15].
Hence r ≥ 1 and we may choose an integer m ≥ 4 such that

(9) e = 2 +m
r∑
j=1

dj > max{(d− 1)(2d− 1), g0}+ 1.

Finally, let cjk, xjkl ∈ L and q ∈ K[X] be as in Lemma 4.2.
Now choose x ∈ K(t)s such that q(x) = t. Then q(X) − t = irr(x, K̃(t)),

e = [K̃(x) : K̃(t)] and (t)∞ totally ramifies in K̃(x). Indeed, xe + ae−1x
e−1 +
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· · · + a0 = t with ai ∈ K. Let v be a valuation of K̃(x) over K such that
v(t) < 0. Then v(x) < 0 and therefore ev(x) = v(t). So, the ramification index
of K̃(x) over K̃(t) is e. By the choice of t, (t)∞ is unramified in E. Hence
K̃(x) ∩ E = K̃(t). Since E is a Galois extension of K̃(t), it is linearly disjoint
from K̃(x).

Part B: Proof of (a). Let D0 be a regular extension of K such that K(t) ⊆
D0 ⊆ E0. Then D = K̃D0 satisfies [D : K̃(t)] = [D0 : K(t)]. By the preceding
paragraph, [D(x) : K̃(x)] = [D : K̃(t)]. As [K(x)D0 : K(x)] ≤ [D0 : K(t)], we
conclude that [D0(x) : K(x)] = [D(x) : K̃(x)]. Hence, K(x)D0 is linearly disjoint
from K̃ over K, which means that K(x)D0 is a regular extension of K. This
proves (a).

Part C: Proof of (b). For each finite branch point c of K̃(x)/K̃(t) the equation
q(X) = c has multiple roots (Remark 4.5). Hence, by Lemma 4.2(b), none of the
branch points cj of E/K̃(t) is a branch point of K̃(x)/K̃(t). Let F1 be as in (b).
As E/K̃(t) is a Galois extension and K̃(x) ∩ E = K̃(t), there exists a field E1

between K̃(t) and E such that K̃(x)E1 = F1. In particular n = [E1 : K̃(t)] =
[F1 : K̃(x)] > 1. So, we may apply Lemma 4.3 to K̃(t), K̃(x), E1, F1 instead of
to E0, F0, E, F , substitute genus(F0) = 0, and compute from (6) and (9) that
genus(F1) ≥ (e− 1)(n− 1) > max{(d− 1)(2d− 1), g0}. This proves (b).

Part D: Proof of (c). Finally assume that p > 0 and that there exists a func-
tion field F0 of one variable over F̃p such that F1 = K̃F0 satisfies K̃(x) ⊂ F1 ⊆ F .
By Lemma 4.4, there exists x̄ ∈ F0 such that

(10) n = [F0 : F̃p(x̄)] = [F1 : K̃(x̄)] = [F1 : K̃(x)].

Let h ∈ K̃[X,Y ] be an irreducible polynomial such that h(x, x̄) = 0. Then
degX h = [K̃(x, x̄) : K̃(x̄)] ≤ [F1 : K̃(x̄)] = n. Similarly, degY h = [K̃(x, x̄) :
K̃(x)] ≤ n. Hence, deg(h) ≤ 2n. It follows that genus(K̃(x, x̄)) ≤ (2n − 1)(n −
1) ≤ (2d− 1)(d− 1) [FJ2, Cor. 4.8]. (Actually, a theorem of Segre gives a better
estimate, genus(K̃(x, x̄)) ≤ (n − 1)2.) By (b), K̃(x, x̄) = K̃(x). Conclude from
(10) that K̃(x) = K̃(x̄).

It follows that there exists a Möbius transformation τ over K̃ such that τ(x̄) =
x. It transforms branch points of F0/F̃p(x̄) into branch points of F1/K̃(x). The
latter belong to K̃ ∪ {∞}.

On the other hand, the elements cjk are all branch points of E/K̃(t). Let E1

be a field as in Part C. Since E1/K̃(t) is a ramified extension [FJ2, Prop. 2.15]
there exist j and k such that cjk is a branch point of E1/K̃(t).
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Since q(X) − t is irreducible over K̃(t), and since q(xjkl) = cjk, the spe-
cialization t → cjk extends to a place of K̃(x) over K̃ that maps x into xjkl,
l = 1, . . . ,m. By Lemma 4.2(b), cjk is not a branch point of K̃(x)/K̃(t). Hence,
xjkl is a branch point of F1/K̃(x), l = 1, . . . ,m.

Since F1 = F0K̃(x̄), each prime of K̃(x) = K̃(x̄) that ramifies in F1 must
be an extension of a prime of F̃p(x̄) that ramifies in F0. Hence, the branch
points of F1/K̃(x) are the images under τ of the branch points of F0/F̃p(x̄).
In particular there exist x̄1, x̄2, x̄3, x̄4 ∈ F̃p ∪ {∞} such that τ(x̄l) = xjkl for
l = 1, 2, 3, 4. Hence, τ is already defined over F̃p(xjk1, xjk2, xjk3). Consequently,
xjk4 = τ(x̄4) ∈ F̃p(xjk1, xjk2, xjk3). This contradiction to Lemma 4.2(c) proves
that F0 as above does not exist. This proves (c) and concludes the proof of the
lemma.

Proposition 4.7: Let F be a finite set of absolutely irreducible polynomials

f ∈ K[T, Y ] such that f is separable in Y and degT f ≥ 1. Let g0 > 0. Then

there exists a nonconstant rational function q ∈ K(X) such that each f ∈ F
satisfies:

(a) the plane curve ∆ which is defined over K by f(q(X), Y ) = 0 is absolutely

irreducible, and

if degY f ≥ 2, then

(b) the genus of ∆ is at least g0, and

(c) ∆ is birationally equivalent over K̃ to no curve which is defined over a finite

field.

Proof: Let t be a transcendental element over K. Take a finite Galois extension
E0 of K(t) which contains the roots of all f(t, Y ) = 0 with f ∈ F . Let q and x

be as in Lemma 4.6.
To prove the Proposition consider f ∈ F and let y ∈ E0 solve the equation

f(t, y) = 0. As f is absolutely irreducible, D0 = K(t, y) is a regular extension
of K, and [D0 : K(t)] = degY f . Let ∆ be the plane curve defined over K by
f(q(X), Y ) = 0. Then K(x)D0 is the function field of ∆ over K. Since, by
Lemma 4.6(a), K(x)D0 is a regular extension of K, the curve ∆ is absolutely
irreducible. Also, D = K̃(x)D0 is the function field of ∆ over K̃.

Assume now that degY f ≥ 2. Since K̃E0 is linearly disjoint from K̃(x) over
K̃(t) (Lemma 4.6), K̃(x) ⊂ D ⊆ K̃(x)E0. Hence, by Lemma 4.6(b), the genus
of ∆ is at least g0. Also, by Lemma 4.6(c), ∆ is birationally equivalent over K̃
to no curve which is defined over a finite field. This concludes the proof of the
lemma.
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5. Hilbert sets over finitely generated fields

We say that a field K is finitely generated if it is finitely generated over its
prime field. If K is in addition infinite, then K is Hilbertian [FJ2, Cor. 12.8 and
Thm. 12.10].

Our aim in this section is to generalize [Ser, p. 36, Exer. 2] from Q to an
arbitrary finitely generated field K and to prove that each separable Hilbert set
of K contains the image of a rational function. The main tools in the proof
are the theorems of Manin-Grauert-Samuel and of Faltings, that is, Mordell’s
Conjecture over functions fields and over number fields.

Definition 5.1: Absolute genus. If an absolutely irreducible curve Γ is defined
over a perfect field K, then its genus is preserved under extensions of the field of
constants. If K is imperfect, then its genus may drop. The absolute genus of
Γ is its genus over K̃.

The following generalization of Mordell’s Conjecture is well known.

Proposition 5.2 (Mordell’s Conjecture): Let K be a finitely generated field.

Suppose that Γ is an absolutely irreducible curve defined over K such that

(a) the absolute genus g of Γ is at least 2, and

(b) Γ is birationally equivalent over K̃ to no curve which is defined over a finite

field.

Then Γ(K) is a finite set.

Proof: Let K0 be the algebraic closure in K of the prime field of K. Then K0

is a finite field, if char(K) > 0, and a number field if char(K) = 0. Also, K is a
regular extension of K0 of finite transcendence degree. Let L = K̃0K. Then L is
a function field over K̃0 of several variables.

Assume that Γ(K) is an infinite set. Then, so is Γ(L). By a theorem of Manin-
Grauert-Samuel [Sam, p. 107] there exists a curve ∆ which is defined over K̃0

and there exists a birational equivalence ϕ: Γ → ∆ which is defined over L. Take
a finite extension K1 of K0 such that ∆ is defined over K1 and ϕ is defined over
K ′

1 = K1K.
If char(K) > 0, then K1 is a finite field, which is a contradiction to (b). Hence,

char(K) = 0 and K1 is a number field. It follows that genus(∆) = genus(Γ) ≥ 2.
Also, as Γ(K ′

1) is infinite, so is ∆(K ′
1). On the other hand, ∆(L) r ∆(K̃0) is a

finite set [Sam, p. 105]. As ∆(K ′
1)∩∆(K̃0) = ∆(K1), this implies that ∆(K1) is

an infinite set. But this contradicts the famous theorem of Faltings [Fal].

Consider an arbitrary field K. Let hi ∈ K(T )[X] be irreducible with degX(hi)
> 1, i = 1, . . . ,m, and let 0 6= g ∈ K[T ]. We work with two types of Hilbert
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sets:

HK(h1, . . . , hm; g) = {a ∈ K| g(a) 6= 0 and hi(a,X) is irreducible, i = 1, . . . , n}
H ′
K(h1, . . . , hm; g) = {a ∈ K| g(a) 6= 0 and

∏m
i=1 hi(a, b) 6= 0 for each b ∈ K}

If g = 1 we omit g.
The following result strengthens [FJ2, Lemma 12.1].

Lemma 5.3: Let f ∈ K(T )[X] be an irreducible polynomial, separable in X,

with degX(f) > 1. Then there exists a finite Galois extension L of K and there

exist absolutely irreducible polynomials h1, . . . , hm ∈ K[T,X], separable in X,

with degX(hi) > 1, i = 1, . . . ,m, and a polynomial 0 6= r ∈ K[T ] such that for

every algebraic extension K ′ of K which is linearly disjoint from L over K we

have:

f is irreducible over K ′ and H ′
K′(h1, . . . , hm; r) ⊆ HK′(f).

Proof: Write f(T,X) = r1(T )−1f1(T,X) with 0 6= r1 ∈ K[T ] and f1 ∈ K[T,X].
If H ′

K′(h1, . . . , hm; r) ⊆ HK′(f1), then H ′
K′(h1, . . . , hm; rr1) ⊆ HK′(f). So, we

may assume that f ∈ K[T,X]. Let r0(T ) be the leading coefficient of f , viewed
as a polynomial in X. Replace X by r0(T )X, if necessary, to assume that f is
monic in X. We break the rest of the proof into three parts.

Part A: Construction of L. Let f(T,X) =
∏n
i=1(X − xi) be the factorization

of f(T,X) in K(T )s[X]. Since f is irreducible, if I is a nonempty proper subset
of {1, . . . , n}, then fI(X) =

∏
i∈I(X − xi) /∈ K[T,X]. So fI(X) has a coefficient

yI /∈ K(T ), and gI = irr(yI ,K(T )) ∈ K[T,X] is monic and separable in X with
degX(gI) > 1.

Let F be a finite Galois extension of K(T ) that contains x1, . . . , xn and there-
fore each yI . Then the algebraic closure L of K in F is a finite Galois extension
of K. Let K ′ be an algebraic extension of K which is linearly disjoint from L.
If f factors over K ′, then the coefficients of the factors belong to F ∩ K ′ and
therefore to L ∩K ′ = K. So, the factorization is trivial and therefore f(T,X) is
also irreducible over K ′.

Part B: Construction of r and h1, . . . , hm. Let I be a nonempty proper subset
of {1, . . . , n} such that gI is not absolutely irreducible. Since yI ∈ F , all roots
of gI(T,X) belong to F . Hence, gI = gI,1 · · · gI,k, where each gI,j ∈ L[T,X] is
absolutely irreducible and k ≥ 2. Since gI is monic and separable in X the factors
gI,j are relatively prime. By the dimension theorem, WI = V (gI,1, . . . , gI,k) is
a finite set [FJ2, Lemma 9.19]. Also, each two of the gI,j ’s are conjugate by an
element of G(L/K). Hence, if K ′ is an extension of K as above, each two of the



Vol. 86, 1994 PAC FIELDS OVER RINGS 21

gI,j are conjugate by an element of G(LK ′/K ′). If a, b ∈ K ′ and gI(a, b) = 0, then
there exists j, 1 ≤ j ≤ k, such that gI,j(a, b) = 0. It follows that gI,j(a, b) = 0
for j = 1, . . . , k. Hence (a, b) ∈ WI . Denote the projection of WI on the first
coordinate by AI .

Let A be the union of all sets AI and their conjugates over K. It is a finite set.
Then r(T ) =

∏
a∈A(T −a)l, where l is an appropriate power of the characteristic

of K, is a polynomial with coefficients in K. List those gI ’s which are absolutely
irreducible as h1, . . . , hm.

Part C: Conclusion of the proof. Consider an extension K ′ of K which is
linearly disjoint from L over K. Our construction shows that
(1)
H ′
K′(h1, . . . , hm; r) ⊆ H ′

K′(gI | I is a proper nonempty subset of {1, . . . , n}; r).

We prove that the right hand side of (1) is contained in HK′(f).
Assume for a ∈ K ′ that f(a,X) = p(X)q(X) factors nontrivially in K ′[X].

Extend the K ′-specialization T → a to a K ′-specialization (T, x1, . . . , xn) →
(a, c1, . . . , cn) [FJ2, Propositions 2.3 and 2.5] so that f(a,X) =

∏n
i=1(X − ci).

For some nonempty proper subset I of {1, . . . , n}, p(X) =
∏
i∈I(X − ci), the

polynomial fI(X) maps to p(X), and yI maps onto a coefficient b of p(X). Then
b lies in K ′ and satisfies gI(a, b) = 0. Thus a does not belong to the right hand
side of (1).

Proposition 5.4: Let K be an infinite finitely generated field. Let f ∈ K[T, Y ]
be an absolutely irreducible polynomial which is separable in Y . Let g ∈ K[T, Y ]
be an irreducible polynomial which is separable in Y and let 0 6= r ∈ K[T ].
Then, there exist a finite purely inseparable extension K ′ of K, a nonconstant

rational function q ∈ K ′(X), and a finite subset S of K ′ such that f(q(X), Y ) is

absolutely irreducible and q(a) ∈ HK′(g; r) for each a ∈ K ′ rS.

Proof: Lemma 5.3 gives a finite Galois extension L of K and polynomials
h1, . . . , hm ∈ K[T, Y ], which are absolutely irreducible, monic and separable
in Y , with degY (hi) > 1, i = 1, . . . ,m, and a polynomial 0 6= r1 ∈ K[T ] such
that for every algebraic extension K ′ of K which is linearly disjoint from L over
K we have:

g is irreducible over K ′ and H ′
K′(h1, . . . , hm; r1) ⊆ HK′(g; r).

Apply Proposition 4.7 to the maximal purely inseparable extension Kins of K
instead of to K to find a nonconstant rational function q ∈ Kins(X) such that
f(q(X), Y ) and hi(q(X), Y ) are absolutely irreducible, and the curve Γi defined
overKins by hi(q(X), Y ) = 0 has genus at least 2, i = 1, . . . ,m, and is birationally
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equivalent over K̃ to no curve which is defined over a finite field. Let K ′ be a
finite extension of K which is contained in Kins, contains the coefficients of q,
the curve Γi is defined over K ′, and its genus over K ′ equals its genus over Kins,
and therefore to its absolute genus. In particular, K ′ is linearly disjoint from L

over K. By Proposition 5.2, applied to K ′ instead of to K, K ′ has a finite subset
S such that for each a ∈ K ′ rS the function q is defined at a, r1(q(a)) 6= 0,
and none of the polynomials hi(q(a), Y ) has a root in K ′. Thus q(a) belongs to
H ′
K′(h1, . . . , hm; r1) and therefore to HK′(g; r).

Problem 5.5: Is it possible in Proposition 5.4 to choose q in K(X) rather than

in K ′(X)?

The following lemma is a variant of [FJ2, Lemma 12.12].

Lemma 5.6: Let f(T1, . . . , Tr, X) be an absolutely irreducible polynomial over a

field K which is Galois in X. Then, there is an absolutely irreducible polynomial

h ∈ K[T, X] which is separable in X and a nonzero polynomial g ∈ K[T] such

that for each algebraic extension K ′ of K

HK′(h; g) ⊆ {a ∈ (K ′)r| f(a, X) is Galois over K ′ and

G(f(a, X),K ′) is isomorphic to G(f(T, X),K(T))

as permutation groups of the respective roots}

Proof: Let E = K(T) and denote the distinct roots of f(T, X) in Es by
x1, . . . , xn. Then

∏
i 6=j(xi−xj) = g1(T)−1g2(T), where g1, g2 ∈ K[T] are nonzero

polynomials; g1 is a power of the leading coefficient of f to a positive degree. Let
F = E(x) be the splitting field of f over E and choose a primitive element z
for F/E which is integral over K[T]. Then h(T, X) = irr(z,E) ∈ K[T, X] is
absolutely irreducible and Galois in X, and the discriminant g3(T) of z over E
belongs to K[T]. Finally put g = g1g2g3.

Let K ′ be an algebraic extension of K, E′ = K ′(T), and F ′ = E′(x). Then
the isomorphism G(F ′/E′) ∼= G(F/E) is also an isomorphism G(f(T, X), E′) ∼=
G(f(T, X), E) as permutation groups.

Let R = K ′[T, g(T)−1] and S = R[z]. Then S/R is a ring cover for F ′/E′

([FJ2, Lemma 5.3]; note that K[T] is integrally closed).
If a ∈ HK′(h; g), then the specialization T → a extends to a K ′-homomor-

phism ϕ of S onto a Galois extension L = K ′(ϕ(z)) of K ′ such that [L : K ′] =
[F ′ : E′]. By [FJ2, Lemma 5.5], ϕ induces an isomorphism σ 7→ σ̄ of its decom-
position group D(ϕ) onto G(L/K ′). It follows that D(ϕ) = G(F ′/E′). Moreover,
for each x ∈ S and σ ∈ G(F ′/E′) we have σ̄(ϕ(x)) = ϕ(σ(x)). In particular, since
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all roots of f(T, X) belong to S and since f(a, X) has n distinct roots, ϕ maps
the roots of f(T, X) bijectively on the roots of f(a, X) and the isomorphism
G(F ′/E′) ∼= G(L/K ′) is also an isomorphism G(f(T, X), E′) ∼= G(f(a, X),K ′) of
permutation groups.

6. Examples of Non-PAC fields over subrings — symmetric extensions

We show in this section and in the next one that the major examples of algebraic
extensions of Q which are PAC (except for almost all fields Q̃(σσσ)) are not PAC
over Q. The same holds for Fp(t). Actually, we work over each finitely generated
field.

Definition 6.1: Let t be a transcendental element over a field K. We say that a
finite group G is regular over a field K if K(t) has a Galois extension E with
G(E/K(t)) ∼= G such that E/K is a regular extension.

Alternatively, there exists an absolutely irreducible polynomial f ∈ K[T,X]
such that f(t,X) is Galois over K(t) and G(f(t,X),K(t)) ∼= G. It follows that
if t is transcendental over an extension L of K, then G(f(t,X), L(t)) ∼= G.

Proposition 6.2: Let K be a finitely generated field, let M be a PAC field over

K, and let G be a finite group which is regular over K. Then M/K has a Galois

subextension L/K with G(L/K) ∼= G.

Proof: Since M is PAC over K, the field K is infinite (Remark 1.2(b)). By
assumption, there exists an absolutely irreducible polynomial f ∈ K[T, Y ] such
that f(T, Y ) is Galois over K(T ) and G(f(T, Y ),K(T )) ∼= G. By Lemma 5.6,
there is an absolutely irreducible polynomial h ∈ K[T, Y ] which is separable in
Y and a nonzero polynomial r ∈ K[T ] such that for each algebraic extension K ′

of K and for each c ∈ HK′(h; r) the polynomial f(c, Y ) is Galois over K ′ and
G(f(c, Y ),K ′) ∼= G.

By Proposition 5.4, there exist a finite purely inseparable extension K ′ of K,
a nonconstant rational function q ∈ K ′(X) and a finite subset S of K ′ such that
f(q(X), Y ) is absolutely irreducible and K ′ rS ⊆ {a ∈ K ′| q(a) ∈ HK′(h; r)}.

By Corollary 1.5, M0 = Ks ∩M is PAC over K. Hence, by Corollary 2.3,
M ′

0 = K ′M0 is PAC overK. Hence, there exists a ∈ K rS and there exits b ∈M ′
0

such that f(q(a), b) = 0. Then K ′(b)/K ′ is Galois and G(K ′(b)/K ′) ∼= G. Since
G(M0/K) ∼= G(M ′

0/K
′), there is a Galois extension L of K which is contained in

M0, and therefore also in M , such that G(L/K) ∼= G.

Remark 6.3: Regular groups over fields. Let K be a field. Then every abelian
group [FJ2, Lemma 24.46] and each of the groups Sn are regular over K.
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Many more finite groups are known to be regular over Q and hence over every
field of characteristic 0. Among them are An (Hilbert), all sporadic simple groups
(with the possible exception of M23) [Mat, Satz 8.2], and PGLn(Fq), PUn(Fq2)
for q an odd prime power, n ≥ 4 an even integer and n ≥ q [Voe].

Less groups are known to be regular over Fp. If char(K) = p and l is a prime
number that does not divide p − 1 or l = p, then each group G of order lm is
regular over Fp [RCVS, Thm. 6] and hence over every field of characteristic p.
Probably, Shafarevich’s proof goes through also for l|p − 1, but this has yet to
be checked. Incidentally, note that it is not known if each group of order lm is
regular over Q.

In particular, if a finite group G is regular over an infinite finitely generated
field K, then Propositions 3.1 and 6.2 imply that for almost all σσσ ∈ G(K)e there
exists a Galois extension L/K such that L ⊆ Ks(σσσ) and G(L/K) ∼= G. This
result however can be proved directly, without appealing to Faltings’ theorem
or to the Theorem of Manin-Grauert-Samuel. Indeed, there exists a linearly
disjoint sequence L1, L2, L3, . . . of Galois extensions of K with G(Li/K) ∼= G,
i = 1, 2, 3, . . . [FJ2, Lemma 15.8]. Then, for almost all σσσ ∈ G(K)e there exists i
such that Li ⊆ Ks(σσσ), as follows from [FJ2, Lemma 16.11].

We call a finite extension L/K symmetric if it is Galois and G(L/K) ∼= Sn for
some positive integer n. We denote the compositum of all symmetric extensions
of K by Ksymm.

Lemma 6.4: Let K be a finitely generated field and let N be a Galois extension

of K which is contained in Ksymm. Then N is PAC over no finite extension K ′

of K.

Proof: Let K̂ be the Galois closure ofK ′/K. Then K̂ ⊆ N and each composition
factor of G(N/K̂) is either An, for some positive integer n, or Z/2Z.

Assume that N is PAC over K ′. Then N is also PAC over K̂. By Proposition
6.2 and Remark 6.3, K̂ has cyclic extension L of degree 5 which is contained in
N . This contradiction to the first paragraph implies that N is not PAC over K ′.

Example 6.5: An algebraic extension of a finitely generated field K which is PAC

but not PAC over K. If K is a finite field, then each infinite algebraic extension
N of K is PAC [FJ2, Cor. 10.5] but N is not PAC over K (Remark 1.2). So
suppose K is infinite. Then K is Hilbertian.

If char(K) = 0, Theorem 16.46 of [FJ2] gives an example of a Galois exten-
sion N of K which is PAC and G(N/K) is isomorphic to the direct product of
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symmetric groups. By Lemma 6.4, N is PAC over no finite extension of K. The
same is true for Ksymm.

If char(K) > 0, then Kins is separably Hilbetian [FJ2, p. 149, Exer. 2]. The
proof of [FJ2, Thm. 16.46] goes through for Kins using [GJ2, Thm. 10.5]. As a
result, Kins has a Galois extension N which is PAC and G(N/Kins) is isomorphic
to the direct product of symmetric groups. As in the preceding paragraph, N is
PAC over no finite extension of K.

Example 6.6: The maximal solvable extension Qsol of Q. It is not known if Qsol

is PAC. But since for n ≥ 5, Sn is not a quotient of G(Qsol/Q), Proposition 6.2
implies that certainly Qsol is PAC over no number field.

We don’t know of any field N which is PAC and Galois over a finitely generated
field, except when N is separably closed. But if such a field exists, the Galois
group G(N/K) must be rich.

Proposition 6.7: Suppose that a field N is Galois and PAC over a finitely

generated field K. Then for each finite group G there exists a finite Galois

extension K ′ of K and a Galois extension L of K ′ which is contained in N such

that G(L/K ′) ∼= G.

Proof: A theorem of Fried, Völklein, Harbater, and Pop asserts that each finite
group G is regular over N [Ja3, Prop. 2.6]. It follows that G is already regular
over a finite Galois extension K ′ of K which is contained in N . By Proposition
6.2, K ′ has a Galois extension L which is contained in N such that G(L/K ′) ∼= G.

7. Examples of non-PAC fields over rings — finite extensions of Qtr

Denote the maximal totally real extension of Q by Qtr. It is the fixed field in Q̃
of all involutions of G(Q). It is a Galois extension of Q. Florian Pop [Pop, Main
Theorem] proves that Qtr is a PRC field. Hence, each algebraic extension M of
Qtr is PRC [Pre, Thm. 3.1]. If, in addition, M is not formally real, then M is
PAC. For example, Qtr(

√
−1) is a PAC field. We prove in this section that no

finite extension of Qtr is PAC over Q.

Lemma 7.1: Let K be a field of characteristic 6= 2, let b ∈ K, and let k be a

positive integer. Set L = K( 2k√
b) and E = K(ζ2k) (ζ2k is a primitive root of 1

of order 2k). Suppose that [L : K] = 2k and that L ∩ E = K. Then, for each i

between 1 and k, Li = K( 2i√
b) is the unique subfield of L of degree 2i over K.

Proof: The assumption [L : K] = 2k and the inequalities [Li : K] ≤ 2i and
[L : Li] ≤ 2k−i imply that [Li : K] = 2i.
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On the other hand, suppose thatK ⊆ K1,K2 ⊆ L and [K1 : K] = [K2 : K]. By
assumption, L is linearly disjoint from E over K. Hence [K1E : E] = [K2E : E].
As LE/E is a cyclic extension, K1E = K2E. Thus, K1K2E = KiE, i = 1, 2 and
therefore [K1K2 : K] = [K1K2E : E] = [KiE : E] = [Ki : K]. Conclude that
K1 = K2.

Theorem 7.2: Let K be a totally real number field. Then no finite extension

of Qtr is PAC over K.

Proof: Let M be a finite extension of Qtr. Assume that M is PAC over K.
In order to draw a contradiction we choose a positive integer k such that 2k >
[M : Qtr]. Consider the absolutely irreducible polynomial f(T1, T2, T3, Y ) =
Y 2k

+ T 2
1 + T 2

2 + T 2
3 (Apply [FJ2, Lemma 16.22] on Y 2k

+Z). As in the proof of
Lemma 1.3, find nonzero ci, c′i ∈ K, i = 1, 2, 3 such that g(T, Y ) = Y 2k

+ (c1 +
c′1T )2 +(c2 +c′2T )2 +(c3 +c′3T )2 is absolutely irreducible. By [FJ2, Lemma 11.6],
K has a Hilbert set H = HK(p) with p ∈ K[T, Y ] an irreducible polynomial such
that g(b,X) is irreducible over K(ζ2k) for each b ∈ H. By Proposition 5.4, there
exist q ∈ K(X) and a finite subset S of K such that g(q(X), Y ) is absolutely
irreducible and g(q(a), Y ) is irreducible over K(ζ2k) for each a ∈ K rS.

By assumption there exist a ∈ K rS and b ∈M such that g(q(a), b) = 0. Let
c = (c1+c′1q(a))

2+(c2+c′2q(a))
2+(c3+c′3q(a))

2. Then b2
k

= −c, [K(b) : K] = 2k

andK(b)∩K(ζ2k) = K. By Lemma 7.1, K( 2j√−c) is the unique extension ofK of
degree 2j which is contained inK(b), j = 1, . . . , k. SinceK( 2j√−c) is not formally
real, K(b) ∩Qtr = K. As Qtr/K is Galois, 2k = [Qtr(b) : Qtr] ≤ [M : Qtr]. This
contradiction to the choice of k implies that M is not PAC over K.

Remark 7.3: The case K = Q. It is possible to prove that no finite extension
of Qtr is PAC over Q without applying Faltings’ theorem. One may use in this
case the absolutely irreducible polynomial X2k

+ 7T 2
1 + 7T 2

2 + 7T 2
3 and choose

(a1, a2, a3) 6= (0, 0, 0) in Q3 and b ∈M such that b2
k

= −7a2
1 − 7a2

2 − 7a2
3. Since

the equation t21 + t22 + t23 = 7t20 has no solutions in Q [CaF, p. 359, Exer. 4.10,
or Se2, p. 45, Lemma A], c = −b2k

is not a square in Q. Using ramification
arguments and the identity (1−

√
−1)2 = −2

√
−1 in the case c = 2, one proves

that b satisfies the conditions of Lemma 7.1 over Q. Then one proceeds as in the
proof of Theorem 7.2.

The necessary condition on a Galois extension N of Q to be PAC over Q which
Proposition 6.7 gives is not a sufficient condition. We show that Qtr(

√
−1),

which is PAC but not PAC over Q (Theorem 7.2) satisfies this condition. Indeed,
already Qtr does.
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To this end recall that a field M is PRC (pseudo real closed) if every
absolutely irreducible variety V which is defined over M has an M -rational point
provided it has a simple M̄ -rational point for each real closure M̄ of M . The
latter condition is equivalent to “the unique ordering of M̄ extends to an ordering
of the function field of V over M̄” [La2, p. 282].

Proposition 7.4: Let M be a PRC field. Then every finite group G is regular

over M .

Proof: By a theorem of Harbater, G is regular over E = M((t)) [Har, Thm. 2.3].
Thus, there exists an absolutely irreducible polynomial f ∈ E[Y, Z] which is
Galois in Z over E(Y ) and G(f(Y, Z), E(Y )) ∼= G. Choose x1, . . . , xn ∈ E such
that f is Galois over M(x, Y ) and G(f(Y,Z),M(x)) ∼= G. Write f(Y, Z) =
g(x, Y, Z) with g ∈M(x)[Y,Z].

By Bertini-Noether, there exists a Zariski-open subset U of An(M̃(x)) which
contains x such that for all a ∈ U the polynomial g(a, Y, Z) is well defined,
absolutely irreducible, Galois in Z overM(a, Y ), and G(g(a, Y, Z),M(a, Y )) ∼= G.

As M((t)) is a regular extension of M , so is M(x). Thus, x generates an
absolutely irreducible variety V over M , and U ∩V 6= ∅. Let M̄ be a real closure
of M . Then, the unique ordering of M̄ extends to M̄((t)) [Ja2, Example 18.9] and
therefore to M̄(x). Since M is PRC, there exists an M -rational point a ∈ U ∩V .
Conclude from the preceding paragraph that G is regular over M .

Lemma 7.5: For every finite group G there exists a finite group H and an epi-

morphism ϕ: H → G which maps all involutions of H onto 1.

Proof: Use [HJ2, Cor. 6.2] with I = ∅.

Theorem 7.6: For every finite group G there exist totally real fields K ⊆ L

such that K is Galois over Q, L is Galois over K and G(L/K) ∼= G.

Proof ∗: Let ϕ: H → G be an epimorphism as in Lemma 7.5. By [Pop], Qtr is
PRC. Hence, by Proposition 7.4, H is regular over Qtr. Since Qtr is Galois over
Q, H is already regular over a finite Galois extension K of Q which is contained
in Qtr. As K is Hilbertian, there exists a finite Galois extension N of K such
that G(N/K) ∼= H. Let L be the fixed field in N of Ker(ϕ). Thus G(L/K) ∼= G

and resLτ = 1 for each involution τ of G(N/K).
If L 6⊆ Qtr, then there would exist an involution τ ∈ G(Q) rG(L). In particular

resNτ would be an involution of G(N/K) whose restriction to L is not 1. This

* Together with Wulf-Dieter Geyer
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contradiction to the preceding paragraph proves that L is totally real, as desired.

If in the definition that precedes Proposition 7.4, we let M̄ range over the
p-adic closures of M , then M becomes PpC (pseudo p-adically closed) [HJ1,
Def. 12.2]. We denote the maximal totally p-adic extension of Q by Qtp. As in
the case of Qtr, [Pop] proves that Qtp is a PpC field.

Problem 7.7: Let G be a finite group. Do there exist totally p-adic number

fields K ⊆ L such that K is Galois over Q, L is Galois over K, and G(L/K) ∼= G?

8. Regular realization of finite groups with rational branch points

Let K be a PAC field and let t be a transcendental element over K. We say
that a finite group G is regular over K with branch points a1, . . . , ar, if
there exists a finite Galois extension F of K(t) which is regular over K such that
G(F/K(t)) ∼= G and a1, . . . , ar are all the branch points of F/K(t). In geometric
terms F/K(t) corresponds to a (ramified) Galois cover ϕ: X → P1 over K which
remains a cover with the same Galois group after extending K to K̃. Then
a1, . . . , ar are the branch points of ϕ in K̃ ∪ {∞}.

Theorem 8.1: Let M be a field of characteristic 0 which is PAC over a subring

R and let G be a finite group. Then, for infinitely many r, the group G is regular

over M with exactly r branch points, all of them in R.

Proof: Lemma 2 of [FrV] constructs a finite group H with a trivial center such
that the Schur multiplier of H is generated by commutators, and an epimorphism
π: H → G. Let h be the number of nontrivial conjugacy classes of H. For each
multiple s ≥ 3 of h such that H is generated by s−1 elements consider an s-tuple
C = (C1, . . . , Cs) of nontrivial conjugacy classes of H such that each nontrivial
conjugacy class appears the same number of times among the Ci’s. Fried and
Völklein define a covering Ψ′: Hinn

s (C) → Us, where Us is a Zariski open subset
of (P1)s, Hinn

s (C) is an algebraic set of dimension s, and all of these objects
are defined over Q. To each field K of characteristic 0 and to each K-rational
point q ∈ Hinn

s (C) they associate a Galois covering ϕ: Y → P1(C) which is
defined over K with Galois group G whose branch points are the coordinates of
Ψ′(q) = (b1, . . . , bs) such that the elements of Ci generate the conjugacy class of
inertia groups of the branch point bi, i = 1, . . . , s [FrV, Thm. 1]. If in addition
s is large enough, then Hinn

s (C) is absolutely irreducible [FrV, Prop. 1]. In this
case Hinn

s (C) has an M -rational point q such that (b1, . . . , bs) ∈ (Us ∩ As)(R).
This point gives then a regular realization of H over M whose branch points are
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b1, . . . , bs. If we consider the fixed field of Ker(π) in the field that realizes H, we
get a regular realization of G over M whose branch points are those bi such that
Ci∩Ker(π) = ∅. List these bi’s as a1, . . . , ar. Their number is a positive multiple
of s/h. So, as s is large, so is r.

Combine Theorem 8.1 with Proposition 3.1:

Corollary 8.2: Let R be a countable Hilbertian integral domain with a quo-

tient field K of characteristic 0 (e.g., R = Z and K = Q). Then for almost all

σσσ ∈ G(K)e, for each finite group G and for infinitely many positive integers r,

the group G is regular over K̃(σσσ) with branch points a1, . . . , ar ∈ R.

9. The density property

We fix for this section a valued field (M,v) and an extension of v to M̃ which
we also denote by v. We say that (M,v) has the density property if for each
absolutely irreducible variety V defined over M the set V (M) is v-dense in V (M̃).

Since all extensions of v to M̃ are conjugate over M , the density property of
(M,v) does not depend on the particular extension. Note that the definition of
[GeJ] asks for V (M) to be dense in V (M̃v), where M̃v is the completion of M̃
with respect to v. But, by a theorem of Abraham Robinson [Pre, p. 241], the
valued field (M̃v, v) is an elementary extension of (M̃, v). In particular, V (M̃) is
v-dense in V (M̃v). So, the two definitions are equivalent.

Note also that Γv = v(M×) is cofinal in v(M̃×) [Ja2, Cor. 7.2]. So, while
speaking about v-density in M̃ it suffices to consider approximations with respect
to elements of Γv only.

Lemma 9.1 (Prestel): Let M be a PAC field and let w be a valuation of M̃ .

Then M is w-dense in M̃ .

Proof: The proof is a slight variation of the proof of [FrJ, Thm. 10.14] (which
is also due to Prestel). By [FrJ, Cor. 10.7] the w-closure of M in M̃ is a PAC
field. Thus, we may assume that M is w-closed in M̃ and prove that M = M̃ .

To this end, let f ∈ M [X] be an irreducible separable polynomial of degree
n ≥ 1 and let f(X) =

∏n
i=1(X − xi) be its factorization in M̃ [X]. Consider

γ ∈ Γ = v(M̃×) and choose c ∈ M× such that w(c) ≥ nγ. By Eisentein’s
criteria, the polynomial f(X)f(Y ) − c2 is absolutely irreducible. Hence, there
exist x, y ∈ M such that f(x)f(y) = c2. It follows from w(f(x)) + w(f(y)) =
2w(c) that w(f(x)) ≥ nγ or w(f(y)) ≥ nγ. Suppose for example that the first
possibility occurs. Then

∑n
i=1 w(x−xi) ≥ nγ. It follows that there exists i such

that w(x− xi) ≥ γ.
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Since {x1, . . . , xn} is a finite set, it follows that there exists i such that for each
γ0 ∈ Γ there exists γ > γ0 and an x ∈M with w(x− xi) ≥ γ. This implies that
xi ∈M and that therefore n = 1. Conclude that M = M̃ .

We use vector notation. For a = (a1, . . . , an) ∈ M̃n we replace min1≤i≤n v(ai)
by v(a). We denote the valuation ring of v in M by OM,v.

Theorem 9.2: Suppose that (M,v) is a valued field and M is PAC over OM,v.

Then (M,v) has the density property.

Proof: Choose an extension of v to M̃ and denote it again by v. Let V be
an absolutely irreducible variety of dimension r in An which is defined over M .
Consider a point b0 ∈ V (M̃) and let ε ∈ Γv. We have to find b ∈ V (M) such
that v(b− b0) > ε.

To this end take a generic point x for V over M . Then F = M(x) is a regular
extension of M of transcendence degree r. Let ϕ0: F → M̃ ∪ {∞} be a place of
F over M such that ϕ0(x) = b0.

By Remark 1.2(a), M is PAC. Hence, by [FJ1, Thm. 3.4], F/M is a stable
extension. That is, F/M has a separating transcendence base t = (t1, . . . , tr),
such that the Galois closure F̂ of F/M(t) is a regular extension of M . If ϕ0(ti) =
∞ replace ti by t−1

i . Thus, without loss, assume that a0 = ϕ0(t) 6= ∞.
Choose a primitive element z for F̂ /M(t) which is integral over M [t]. Thus

F̂ = M(t)[z]. In particular

x = κ0(t)−1κκκ(t, z), with κκκ = (κ1, . . . , κn) ∈M [T, Z]n and 0 6= κ0 ∈M [T].

Let h ∈ M [T, Z] be an absolutely irreducible polynomial which is monic and
separable in Z such that h(t, z) = 0, and let d = degZ h. Then h(t, Z) has d
distinct roots z1, . . . , zd, all of them belong to F̂ (because F̂ /M(t) is Galois), and
0 6= discirminant(h(t, Z)) =

∏
i 6=j(zi − zj) = q ∈M [t]. Also,

z = λ0(t)−1λλλ(t, z) with λλλ = (λ1, . . . , λd) ∈M [T, Z]d and 0 6= λ0 ∈M [T].

Extend ϕ0 to a place ψ0 of F̂ . Since z is integral over M [t], we have c0 = ψ0(z) ∈
M̃ .

Let Γ (resp., W ) be the absolutely irreducible variety in An+r+1 (resp., Ar+1)
which is generated over M by the point (x, t, z) (resp., (t, z)). We may change
(b0,a0, c0), if necessary, in a small v-adic neighborhood of Γ(M̃) to assume that
q(a0)κ0(a0)λ0(a0) 6= 0 [Mum, p. 82]. In particular b0 = κ0(a0)−1κκκ(a, c).

Consider the following open neighborhood of (a0, c0) in W (M̃):

W0 = {(a, c) ∈W (M̃)| q(a)κ0(a)λ0(a) 6= 0}.
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Then xi: W0(M̃) → M̃ is a continuous function in the v-adic topology, i =
1, . . . , n. Hence, there exists δ ∈ Γv such that for each (a, c) ∈W0(M̃)
(1a) v(a− a0) > δ implies q(a)κ0(a)λ0(a) 6= 0, and
(1b) v((a, c)− (a0, c0)) > δ implies v(κ0(a)−1κκκ(a, c)− b0) > ε.

Choose γ > δ such that for each a ∈ M̃r with v(a−a0) > γ there exists c ∈ M̃
such that h(a, c) = 0 and v(c− c0) > δ [GeJ, Lemma 1.1]. Since M is v-dense in
M̃ (Lemma 9.1), we may choose a1 ∈Mr such that

(2) v(a1 − a0) > γ.

Now choose 0 6= m ∈ OM such that v(m) > γ. The polynomial h(a1+mT, Z) ∈
M [T, X] is absolutely irreducible and, since discriminant(h(a1, Z)) = q(a1) 6= 0
we have ∂h

∂Z (a1 + mT, Z) 6= 0. Let α1, α2 ∈ M [T, Z] and 0 6= β ∈ M [T] such
that

α1(T, Z)h(a1 +mT, Z) + α2(T, Z)
∂h

∂Z
(a1 +mT, Z) = β(T).

Since M is PAC over OM,v, there exists t1 ∈ OrM,v and c ∈M such that h(a1 +
mt1, c) = 0 and β(t1) 6= 0, and therefore ∂h

∂Z (a1+mt1, c) 6= 0. So, a = a1+mt1 ∈
Mr satisfies h(a, c) = 0 and ∂h

∂Z (a, c) 6= 0.
Let ψ be a place of F̂ over M such that ψ(t, z) = (a, c) (It is possible to

choose ψ such that its residue field will be M .) Note that v(a − a1) > γ > δ.
Hence, by (2), v(a− a0) > δ. Therefore, cj = ψ(zj) = λ0(a)−1λj(a, c) ∈ M and
h(a, cj) = 0, j = 1, . . . , d. Since discriminant(h(a, z)) = q(a) 6= 0, the elements
c1, . . . , cd are distinct. Hence they are all the roots of h(a, Z). Also, by the choice
of γ, there exists k between 1 and d such that v(ck − c0) > δ. Assume without
loss that ck = c. Then v(c − c0) > δ. Let b = ψ(x) = κ0(a)−1κκκ(a, c) ∈ V (M).
By the choice of δ, v(b−b0) > ε. This completes the proof of the theorem.
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