
PROSOLVABLE SUBGROUPS OF FREE PRODUCTS

OF PROFINITE GROUPS

by

Moshe Jarden

School of Mathemtical Sciences

Raymond and Beverly Sackler Faculty of Exact Scientces

Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

e-mail: jarden@math.tau.ac.il

Communications of Algebra 22 (1994), 1467–1494



Introduction

This note is a contribution to the foundation of the theory of pseudo p-adically closed

fields as developed in [HJ2] and [J] as well as to the general theory of profinite groups,

especially to the theory of free and projective groups with respect to appropriate families

of subgroups as developed in [H].

Recall that a field K is said to be PpC (pseudo p-adically closed) if every

absolutely irreducible variety V defined over K which has a simple K̄-rational point for

each p-adic closure of K has a K-rational point. Theorem 15.1 of [HJ2] asserts that the

absolute Galois group G = G(K) of K is p-adically projective. This means that the

set of all subgroups H of G which are isomorphic to Γ = G(Qp) is closed in the family of

all subgroups of G and that every finite Γ-embedding problem (ϕ: G→ A, α: B → A)

is solvable. Here (ϕ: G → A, α: B → A) is a finite Γ-embedding problem if ϕ is

a homomorphism, α is an epimorphism of finite groups, and for each subgroup H of G

which is isomorphic to Γ there exists a homomorphism γ: H → B such that α ◦ γ = ϕ

on H. Conversely, if G is a p-adically projective group, then there exists a PpC field

K such that G(K) ∼= G [HJ2, Thm. 15.4]. If in addition rank(G) ≤ ℵ0, then K can be

chosen to be algebraic over Q [J, Cor. 9.4].

The proofs of both realization theorems of p-adically projective groups as abso-

lute Galois groups of PpC fields depend on certain properties of the group Γ. These

properties are formulated in [HJ2] as Assumption 3.1. Some ingredients of this assump-

tion has been found to depend on the rest of this assumption. So Assumption 3.1 of

[HJ2] has taken a simplified form in [J] as Assumption 1.5 which we reformulate as

Assumption A below. Both versions of the assumption involve the auxiliary groups

De,m = Γ1 ∗ · · · ∗ Γe ∗ F̂m (free product in the category of profinite groups), where Γi is

an isomorphic copy of Γ and F̂m is the free profinite group on m generators.

Assumption A: The profinite group Γ satisfies the following conditions.

(a) Γ is finitely generated and nontrivial,

(b) for each e and m, if a subgroup H of De,m is isomorphic to Γ, then H is conjugate

to Γi for some i between 1 and e.

(c) the center of Γ is trivial, and
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(d) Γ has a finite quotient Γ such that for each e and m and for each closed subgroup

H of De,m, if H is a quotient of Γ and if Γ is a quotient of H, then H ∼= Γ.

The main goal of this note is to simplify Assumption A for a prosolvable group Γ

by stating only inner properties of Γ without any reference to auxiliary larger groups:

Theorem B: The following conditions on a prosolvable group Γ imply Assumption A:

(a) Γ is finitely generated.

(b) The center of Γ is trivial.

(c) There exist distinct primes p, q such that Γp (resp., Γq) is a torsion free nonfree

pro-p (resp, pro-q) group (Here Γp is a p-Sylow subgroup of Γ.)

(d) Γ has a finite quotient Γ such that if a subgroup H of Γ is a quotient of Γ and Γ is

a quotient of H, then H = Γ.

We then apply local class field theory to prove that the absolute Galois group

of a finite extension of Qp satisfies conditions (a)-(d) of Theorem B and therefore also

Assumption A. Note, that [HJ2] proves Assumption A for G(Qp) by also indirectly using

a result from global class field theory, namely, the injectivity of the restriction map of

the Brauer group of an algebraic field into the product of the algebraic groups of its

Henselizations.

We replace this ingredient of the proof by the injectivity of the restriction map

of the second cohomology group of X -projective group G into the direct product of

the second cohomology groups of the subgroups in X . Here X is a, so called, separated

family of subgroups of G, and for G to be X -projective means that each finite embedding

problem for G which has a local solution for each H ∈ X has also a global solution (see

Section 1 for a precise definition). In particular a p-adically projective group is projective

with respect to the family of all closed subgroups which are isomorphic to G(Qp). Also,

a free product G = G1 ∗ · · · ∗Ge is projective with respect to the family of all conjugate

to Gi, i = 1, . . . , e. Moreover, by Haran’s subgroup theorem [H, Thm. 5.1] each closed

subgroup H of G is projective with respect to the family of the groups of the form

Gxi ∩H, where x ranges over G and i = 1, . . . , e.

The main problem in the proof of Theorem B is to find a criterion under which a
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prosolvable subgroup H of a free product G as above is conjugate to a subgroup of a

free factor Gi. Once we have such a criterion, we can apply it to prove Condition (b)

of Assumption A. Condition (d) of Assumption A reduces then to (d) of Theorem B.

By Haran’s subgroup theorem, H is an X -projective group for an appropriate

family of closed subgroups. It therefore makes sense to try to prove our criterion in the

framework of X -projective groups. There are two types of X -projective groups G for

which our criterion works:

(1a) G can be X -embedded in a Y-free group (see Section 2 for a definition) (in partic-

ular this holds if G is separable), or

(1b) X is closed in the Boolean space Subg(G) of closed subgroups of G.

Theorem C: Let G be an X -projective group which satisfies condition (1). Let H be

a closed prosolvable subgroup of G. Suppose that p, q are distinct primes and C,C ′ ∈ X

such that (C ∩ H)p contains an element of infinite order and (C ′ ∩ H)q 6= 1. Then

C = C ′ and H ≤ C.

Acknowledgement: The most important case of Theorem C is when G is the free

product of finitely many finitely generated prosolvable groups. This case is due to

Florian Pop (oral communication). The author is indebted to Florian Pop for allowing

him to incorporate the above central case into Theorem C. The author would also like

to draw the attention of the reader to Florian’s Pop treatment of relatively projective

groups in [P].

1. Minimally generated nonsolvable groups

Let x1, . . . , xn be elements of a group G. We say that x1, . . . , xn minimally generate

G if G = 〈xa1
1 , . . . , x

an
n 〉 for all a1, . . . , an ∈ G. The goal of this section is to find for each

pair p, q of prime numbers an nonsolvable finite group G which is minimally generated

by an element of order p and an element of order q. This plays a crucial role in the

proof of our main results.

The case where {p, q} 6= {2, 3} is based on the general theory of permutation

groups.
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Lemma 1.1∗ : Let p < q be primes such that {p, q} 6= {2, 3}. Let α, β be a p-cycle and

q-cycle, respectively, in the symmetric group Sq. Then the subgroup H = 〈α, β〉 of Sq

is nonsolvable.

Proof: As H contains β, it is a primitive group on the set Ω = {1, 2, . . . , q}. Suppose

that α = (a1 a2 · · · ap). Let Γ = {a1, a2, . . . , ap} and ∆ = Ω r Γ. Then α belongs

to the subgroup H∆ = {σ ∈ H‖σx = x for each x ∈ ∆} and H∆ is primitive on Γ.

By a theorem of Jordan from 1871 [W, Thm. 13.2], H is (q − p+ 1)-fold primitive and

therefore (q−p+1)-fold transitive [W, p. 23]. In particular, since q−p ≥ 2, H is triply

transitive. Given distinct elements a, b ∈ Ω use the assumption {p, q} 6= {2, 3} to choose

two more elements c, d ∈ Ω. Then there exists τ ∈ H such that τ(a, b, c) = (a, b, d).

Hence τ ∈ H{a,b} but τ 6= 1. By a theorem of Galois [W, Thm. 11.6], H is nonsolvable.

Note that if p = 2, then H = Sq [W, Thm. 13.3]. If p < q − 2, then, by another

theorem of Jordan, from 1873 [W, Thm. 13.9], H = Aq.

The case {p, q} = {2, 3} unfortunately involves numerous computations with per-

mutations of A6. It is due to Dan Haran.

Lemma 1.2: Let α ∈ S6 be a 3-cycle and β ∈ S6 a product of two disjoint 3-cycles,

none of which is disjoint to α. Then 〈α, β〉 = A6.

Proof: Conjugate by an element of S6, if necessary, to assume that β = (152)(346)

and either α = (123) or α = (132) = (123)−1. Assume without loss that the first option

occurs. Observe that αβαβαβα = (12)(3456). Hence, by [CM, p. 67],

A6 =
〈
(123), (12)(3456)

〉
≤ 〈α, β〉 ≤ A6,

whence the assertion.

The group S6 is generated by the elements si = (i6), i = 1, 2, 3, 4, 5. It is also

generated by v1 = s1 = (1n) and vj = s1sj = (1jn), j = 2, 3, 4, 5. In terms of the latter

system of generators S6 has the presentation

(1) v2
1 = v3

j = (vivj)2 = 1 1 ≤ i < j ≤ 5

* The proof of this lemma was communicated to the author by Luis Ribes and independently
by Florian Pop
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[CM, p. 64–65].

Define an automorphism ε of S6 by the following action on the generators

(16)ε = (16)(52)(34)

(26)ε = (26)(13)(45)

(36)ε = (36)(24)(51)

(46)ε = (46)(35)(12)

(56)ε = (56)(41)(23)

or, equivalently, by (notice that (16)(j6) = (1j6) for j = 2, 3, 4, 5)

vε1 = (16)ε = (16)(52)(34)

vε2 = (126)ε = (124)(356)

vε3 = (136)ε = (132)(546)

vε4 = (146)ε = (145)(236)

vε5 = (156)ε = (153)(426)

Then ε is well defined: By (1), it suffices to verify that the following elements are of

order 2: (
(124)(356)

)(
(132)(546)

)
= (26)(34)(

(124)(356)
)(

(145)(236)
)

= (13)(25)(
(124)(356)

)(
(153)(426)

)
= (16)(45)(

(132)(546)
)(

(145)(236)
)

= (16)(24)(
(132)(546)

)(
(153)(426)

)
= (25)(36)(

(145)(236)
)(

(153)(426)
)

= (12)(34)

Furthermore, use the rule (kl) = (l6)(k6)(l6) to check that ε is of order 2.

Also, (124)(356) = (126)ε ∈ Aε6 and (126) =
(
(124)(356)

)ε ∈ Aε6. Hence, by

Lemma 1.2, A6 ≤ Aε6. Since both groups have the same order they are equal: Aε6 = A6.

Lemma 1.3: Let G be the semidirect product of A6 by 〈ε〉. Then G is nonsolvable and

〈ε, (123)g〉 = G for each g ∈ G.

Proof: We may assume that g ∈ A6, otherwise replace g by gε. Then α = (123)g is

a 3-cycle. As 〈α, αε〉 is a subgroup of 〈ε, α〉, it suffices to show that 〈α, αε〉 = A6. By
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Lemma 1.2, we have only to verify that αε is the product of two disjoint 3-cycles, none

of which is disjoint to α. Obviously it suffices to consider for each pair (α, α−1) either

α or α−1. So, the following list covers all the possibilities:

(123)ε = (36)ε(16)ε(26)ε = (136)(254)

(124)ε = (46)ε(16)ε(26)ε(46)ε = (162)(345)

(125)ε = (56)ε(16)ε(26)ε(t6)ε = (143)(265)

(126)ε = (16)ε(26)ε = (124)(356)

(134)ε = (46)ε(16)ε(36)ε(46)ε = (125)(364)

(135)ε = (56)ε(16)ε(36)ε(56)ε = (156)(234)

(136)ε = (16)ε(36)ε = (132)(546)

(145)ε = (56)ε(16)ε(46)ε(56)ε = (164)(253)

(146)ε = (16)ε(46)ε = (145)(236)

(156)ε = (16)ε(56)ε = (153)(426)

(234)ε = (46)ε(26)ε(36)ε(46)ε = (153)(246)

(235)ε = (56)ε(26)ε(36)ε(46)ε = (145)(263)

(236)ε = (26)ε(36)ε = (164)(235)

(245)ε = (56)ε(26)ε(36)ε(56)ε = (123)(465)

(246)ε = (26)ε(46)ε = (156)(324)

(256)ε = (26)ε(56)ε = (125)(346)

(345)ε = (56)ε(36)ε(46)ε(56)ε = (142)(356)

(346)ε = (36)ε(46)ε = (134)(265)

(456)ε = (46)ε(56)ε = (136)(245).

Combine Lemma 1.2 with Lemma 1.3:

Proposition 1.4: Let p < q be primes. Then there exists an nonsolvable finite group

S and elements a, b ∈ S with ord(a) = p, ord(b) = q such that S = 〈ax, by〉 for all

x, y ∈ S.
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Proof: By Lemmas 1.1 and 1.3 there exists a finite group G and elements c, d ∈ G with

ord(c) = p and ord(d) = q such that 〈cx, dy〉 is nonsolvable for all x, y ∈ G. Among all

pairs (x, y) ∈ G2 choose one (x0, y0) such that the group S generated by a = cx0 and

dy0 is minimal. That is, 〈cx, dy〉 is a proper subgroup of S for no (x, y) ∈ G2. Then a, b

and S satisfy the condition required in the Proposition.

2. X -Projective groups

The concept of projective profinite group has been generalized in two directions to “real-

projective group” and “Γ-projective group” in [HJ1] and [HJ2], respectively. Haran [H]

generalizes both concepts to what he calls “X -projective groups”. Let us repeat his

definition.

Let G be a profinite group and X a family of closed subgroups of G. Then X is

separated if for all distinct Γ1,Γ2 ∈ X

(1a) Γ1 ∩ Γ2 = 1, and

(1b) there exist disjoint subfamilies X1,X2 such that X = X1∪X2, Γi ∈ Xi, and
⋃

Γ∈Xi
Γ

is closed in G, for i = 1, 2.

Let X be a separated family of closed subgroups of a profinite group G. A finite

X -embedding problem for G is a triple (ϕ: G→ A, π: B → A, B) such that

(2a) π: B → A is an epimorphism of finite groups,

(2b) ϕ: G→ A is a homomorphism, and

(2c) B is a family of subgroups of B closed under inclusion and under conjugation such

that

(2d) for each Γ ∈ X there is a homomorphism γΓ: Γ → B that satisfies π ◦ γΓ = resΓϕ

and γΓ(Γ) ∈ B.

A solution to this problem is a homomorphism γ: G → B such that π ◦ γ = ϕ

and γ(X ) ⊆ B.

Suppose now that X is also closed under conjugation in G. Then G is X -

projective if every finite X -embedding problem for G has a solution.

Of fundamental importance is Haran’s subgroup theorem:
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Proposition 2.1 ([H, Prop. 5.1]): Let G be an X -projective group and let H be a

closed subgroup. Then H is projective relative to the family {Γ ∩H‖Γ ∈ X}.

In the next sections we show that the following assumption on (G,X ) is satisfied

in many cases.

If G1, . . . , Gn are profinite groups, then we denote their free product in the cate-

gory of profinite groups by G1 ∗ · · · ∗Gn and also by
∏
∗ ni=1Gi.

Assumption 2.2: Let Γ1, . . . ,Γn ∈ X be nonconjugate subgroups of G, A a finite

group, ψi: Γi → A a homomorphism, and Ai = ψi(Γi), i = 1, . . . , n. Then there exists

a homomorphism ϕ: G→ A and elements a1, . . . , an ∈ A such that

(a) resΓi
ϕ = [ai] ◦ψi, i = 1, . . . , n ( [ai] is the inner automorphism of A induced by ai),

and

(b) for each Γ ∈ X there exists i, 1 ≤ i ≤ n, and a ∈ A such that ϕ(Γ) ≤ Aai .

For each profinite group G and a prime p we choose a p-Sylow subgroup Gp of

G. As Gp is unique up to conjugation, the statements we will make about Gp will not

depend on the choice of Gp. Denote the maximal pro-p quotient of G by G(p). Denote

the cyclic group of order n by Cn.

Proposition 2.3: Let G be an X -projective group which satisfies Assumption 2.2 and

H a closed subgroup. Suppose that there exist nonconjugate subgroups Γ1,Γ2 ∈ X and

distinct primes p, q such that (Γ1 ∩H)p and (Γ2 ∩H)q are nontrivial. Then H is not

prosolvable.

Proof: Choose an element g 6= 1 in (Γ1 ∩H)p. Choose an element h 6= 1 in (Γ2 ∩H)q.

It suffices to prove that H0 = 〈g, h〉 is not prosolvable. We do it in three parts.

Part A: Mapping H0 onto Cp × Cq. Choose an open normal subgroup N of G such

that g, h /∈ N . Let Γi = ΓiN/N , apply Assumption 2.2 to the canonical maps ψi: Γi →

Γ1 × Γ2, to get a homomorphism ψ: G → Γ1 × Γ2 such that the restriction of ψ to Γi

is conjugate to ψi, i = 1, 2, and for each Γ ∈ X , ψ(Γ) is conjugate to a subgroup of Γ1

or of Γ2. As Γi is normal in Γ1 × Γ2, ψ(Γi) = Γi for i = 1, 2, and ψ(Γ) is contained

in Γ1 or in Γ2 for each Γ ∈ X . Denote the restriction of ψ to H0 by ϕ1. In particular
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ḡ = ϕ1(g) 6= 1 and h̄ = ϕ1(h) 6= 1 commute, the order of ḡ is a p-power, and the order

of h̄ is a q-power. So ϕ1(H0) = 〈ḡ〉 × 〈h̄〉.

Let cp be a generator of Cp. Let cq be a generator of Cq. Extend the map

(ḡ, h̄) → (cp, cq) to a homomorphism ϕ2: 〈ḡ〉 × 〈h̄〉 → Cp × Cq. Let ϕ = ϕ2 ◦ ϕ1.

H0
- G

?

ϕ1

?
ψ

〈ḡ〉 × 〈h̄〉 - Γ̄1 × Γ̄2

?

ϕ2

Cp × Cq

If Γ ∈ X , then ϕ1(H0 ∩ Γ) ≤ (〈ḡ〉 × 〈h̄〉) ∩ ψ(Γ) and the latter group is contained

in 〈ḡ〉 or in 〈h̄〉. Denote the family of all subgroups of Cp and of Cq by B. Then

(1) for each Γ ∈ X we have ϕ(H0 ∩ Γ) ∈ B.

Part B: An embedding problem for H0. By Proposition 2.1, H0 is projective relative

to Y = {Γ ∩H0‖Γ ∈ X}.

Consider the free product Cp ∗ Cq and construct an epimorphism

π: Cp ∗ Cq → Cp × Cq

with kernel V by defining the restriction of π to Cp and to Cq as the identity maps.

Consider the nonsolvable group S given by Proposition 1.4. Let a, b be its minimal

generators of orders p and q, respectively. Construct a homomorphism ρ: Cp ∗ Cq → S

with kernel U by defining ρ(cp) = a and ρ(cq) = b.

Denote the image of Cp (resp., Cq) in (Cp∗Cq)/(U∩V ) by C̄p (resp., C̄q). Similarly,

denote the image of cp (resp., cq) in (Cp ∗ Cq)/(U ∩ V ) by c̄p (resp., c̄q). Let B be the

family of all subgroups of (Cp ∗ Cq)/(U ∩ V ) which are conjugate to a subgroup of C̄p

or of C̄q. Let π̄: (Cp ∗ Cq)/(U ∩ V ) → Cp × Cq be the homomorphism induced by π.

Since π̄ maps C̄p (resp., C̄q) bijectively onto Cp (resp., Cq) it follows from (1) that for
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each Γ ∈ X there exists a commutative diagram of homomorphisms

H0 ∩ Γ
���

����

γ

?

ϕ

(Cp ∗ Cq)/(U ∩ V ) -π̄ Cp × Cq - 1

such that γ(H0 ∩ Γ) ∈ B. Conclude that the triple

(ϕ: H0 → Cp × Cq, π̄: (Cp ∗ Cq)/(U ∩ V ) → Cp × Cq, B)

is a finite Y-embedding problem for H0. As H0 is Y-projective, there exists a homo-

morphism β: H0 → (Cp ∗ Cq)/(U ∩ V ) such that π̄ ◦ β = ϕ and β(Γ ∩H0) ∈ B for each

Γ ∈ X .

In particular, as g ∈ H0 ∩ Γ1, ord(g) is a nontrivial p-power, and p 6= q, 〈β(g)〉

is conjugate to a subgroup of C̄p. But π̄β(g) = ϕ(g) = cp has the same order as c̄p.

Hence, 〈β(g)〉 is conjugate to C̄p. Similarly 〈β(h)〉 is conjugate to C̄q.

Part C: An epimorphism of H0 onto S. The map ρ defines a homomorphism ρ̄: (Cp ∗

Cq)/(U ∩ V ) → S such that ρ̄(c̄p) = a and ρ̄(c̄q) = b. By Part B, 〈ρ̄ ◦ β(g)〉 is conjugate

to 〈a〉 and 〈ρ̄◦β(h)〉 is conjugate to 〈b〉. Hence, the image of H0 by ρ̄◦β is generated by

conjugates a′, b′ of a, b, respectively. So, it is the nonsolvable group S. Conclude that

H0 is not prosolvable.

3. X -projective subgroups of free products

We don’t know if every X -projective group G satisfies Assumption 2.2. In this section

we show however that this is the case if G is isomorphic to a closed subgroup of a free

product in the sense of Haran [H].

While free products of finitely many profinite groups is a well defined profinite

group there are several definitions for free products of infinitely many profinite group

(Neukirch [N1], Gildenhuys and Ribes [GR], Haran [H], and Melnikov [M]). We use

Haran’s definition (which is equivalent to Melnikov’s but more general than the others):

Let X be a separated family of closed subgroups of a profinite group F . Then F is

a free X -product if each continuous map ψ of
⋃

Γ∈X Γ into a profinite group A whose
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restriction to each Γ ∈ X is a homomorphism uniquely extends to a homomorphism

ψ: F → A.

If X is a finite set, then each family of homomorphisms γΓ: Γ → A, with Γ ranges

over X , uniquely defines a homomorphism γ: F → A whose restriction to each Γ ∈ X

coincides with γΓ. Thus, F is the usual free product of the groups in X .

To generalize this statement to the infinite case, we use Haran’s other variant of

free product.

With each Boolean space E we associate the Boolean space exp(E) of all closed

subsets of E and the Boolean space

G(E) = exp(E)× exp(E × E × E)× exp(E × E)× E.

An Etale space is a pair (E,X), where E is a Boolean space and X is a family

of profinite groups contained in E such that

(1a) E is the disjoint union of all Γ ∈ X, and

(1b) X ′ =
⋃

Γ∈X{Γ′ ∈ G(E)‖Γ′ ≤ Γ} is closed in G(E). Here each Γ ∈ X is considered

as a 4-tuple (Γ,M, I, e), where M = {(a, b, c) ∈ Γ× Γ× Γ‖ab = c}, I = {(a, a′) ∈

Γ× Γ‖a′ = a−1}, and e is the unit of Γ, and thus as a closed subset of G(E).

A morphism ψ: (E,X) → A of an etale space (E,X) into a profinite group A

is a continuous map ψ: E → A whose restriction to each Γ ∈ X is a homomorphism.

In particular ψ(Γ) is a subgroup of A. A free product over an etale space (E,X)

is a profinite group F together with a morphism ϕ: (E,X) → F such that for each

morphism ψ: (E,X) → A into a profinite group A there exists a unique homomorphism

α: F → A such that α ◦ ϕ = ψ.

Note that if X is separated, then Y = X ∪ {1} is also separated, if F is a free

X -product, then F is Y-free, and if F is a free product over (E,X), then F is also a

free product over the space (E ·∪ {1}, X ·∪ {1}). So from now on we tacitly assume that

each separated family X contains the trivial subgroup and in each etale space (E,X),

X contains the trivial subgroup.

A morphism ϕ: (E,X) → (E′, X ′) between etale spaces is a continuous map

ϕ: E → E′ such that the restriction of ϕ to each Γ ∈ X is a homomorphism into some
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group Γ′ ∈ X ′. If ϕ(E) = E′ and for each Γ′ ∈ X ′ there exists Γ ∈ X such that

ϕ(Γ) = Γ′, then ϕ is an epimorphism.

Similarly let X (resp., X ′) be a separated family of closed subgroups of a profinite

group F (resp., F ′). Then a morphism of the pair (F,X ) into the pair (F ′,X ′) is a

homomorphism ϕ: F → F ′ which maps each Γ ∈ X into some Γ′ ∈ X ′. It is an

epimorphism if ϕ(F ) = F ′ and if for each Γ′ ∈ X ′ there exists Γ ∈ X such that

ϕ(Γ) = Γ′.

Lemma 3.1: Let F be an a free X -product, H an open subgroup, Γ1, . . . ,Γn ∈ X

distinct subgroups of F , and αi: Γi → Ai an epimorphism onto a finite group Ai such

that Ker(αi) ≤ H, i = 1, . . . , n. Then there exists an epimorphism α: (F,X ) → (F̄ ,X )

such that Ker(α) ≤ H, X is a finite family of finite groups, F̄ is X -free, Ai ∈ X , and

α coincides with αi on Γi for i = 1, . . . , n.

Proof: Assume without loss that H is normal in F and let η: F → F/H be the

canonical homomorphism. By [H, Prop. 3.7 and Lemma 3.6] there is an etale space

(E,X) and a free product ϕ: (E,X) → F such that X ⊆ X, ϕ(X) = X , and the

restriction of ϕ to each Γ ∈ X is the identity map. Consider the map π: E → X defined

by π(x) = Γ whenever x ∈ Γ and Γ ∈ X. Equip X with the topology defined by π.

Thus, a subset U of X is open if and only if π−1(U) is open in E. This makes X a

Boolean space [H, Lemma 1.5].

For each i between 1 and n of [H, Lemma 1.10(a)] extends αi to a morphism

α′′i : (E,X) → Ai. Let ψ̄ = η ◦ ϕ. Since Ker(αi) ≤ H, there is a homomorphism

βi: Ai → ΓiH/H such that βi ◦ αi = η on Γi. Thus ψ̄ and βi ◦ α′′i are morphisms

from (E,X) to F/H which coincide on Γi. By [H, Lemma 1.10], Γi has an open-closed

neighborhood Xi in X such that with Ei = π−1(Xi), we have resEi(βi ◦ α′′i ) = resEi ψ̄.

Thus α′i = resEi(α
′′
i ): (Ei, Xi) → Ai is a morphism such that βi ◦ α′i = η ◦ ϕ on Ei. In

particular, Γi ⊆ Ei and resEi
α′i = αi.

Making each Xi smaller, if necessary, may further assume that X1, . . . , Xn and

therefore also E1, . . . , En are disjoint.

Let X0 = X rX1 ∪ · · · ∪ Xn and E0 = ErE1 ∪ · · · ∪ En. Then (E0, X0) is an

12



etale space. By [H, Prop. 1.11] there is an epimorphism α′0 of (E0, X0) onto a finite

etale space (Ē0, X̄0) such that the partition E0 =
⋃
· ē∈E0

(α′0)
−1(ē) of E0 is finer than

the partition E0 =
⋃
· x∈R(E0 ∩ ϕ−1(xH)), where R is a system of representatives of

the left cosets of F modulo H. In particular ϕ induces a map ψ̄0: (Ē0, X̄0) → F/H

such that ψ̄0 ◦ α′0 = η ◦ ϕ on E0. Necessarily, ψ̄0 is a morphism. Let F̄0 be the free

product of the finitely many finite groups in X̄0 and let ϕ̄0: (Ē0, X̄0) → F̄0 be the

corresponding morphism. Then there is a unique homomorphism β0: F̄0 → F/H such

that β0 ◦ ϕ̄0 = ψ̄0.

Now let Ē = Ē0 ·∪ A1 ·∪ · · · ·∪ An and X̄ = X̄0 ·∪ {A1, . . . , An}. Then (Ē, X̄)

is a finite etale space and the maps α′i, i = 0, 1, . . . , n, combine to an epimorphism

α′: (E,X) → (Ē, X̄).

Construct the free product F̄ = F̄0 ∗ A1 ∗ · · · ∗ An. Then let ϕ̄: (Ē, X̄) → F̄

be the unique morphism whose restriction to Ē0 is ϕ̄0 and to Ai is the identity map,

i = 1, . . . , n. By the universal property of F there is a homomorphism α: F → F̄ such

that ϕ̄ ◦ α′ = α ◦ ϕ. In particular α = αi on Γi, for i = 1, . . . , n, and α is surjective.

Finally let ψ̄: (Ē, X̄) → F/H be the unique morphism whose restriction to Ē0

is ψ̄0 and to Ai is βi, for i = 1, . . . , n. Then there exists a unique homomorphism

β: F̄ → F/H such that β ◦ ϕ̄ = ψ̄. Thus β = β0 on F̄0 and β = βi on Ai, i = 1, . . . , n.

(E,X) -ϕ F

?
α′

?
α

(Ē, X̄) -ϕ̄ F̄

@
@

@R
ψ̄

?
β

F/H

We claim that β ◦ α = η. Indeed, on E0 we have: β ◦ α ◦ ϕ = β0 ◦ ϕ̄0 ◦ α′0 =

ψ̄0 ◦ α′0 = η ◦ ϕ. For i ≥ 1 we have on Ei: β ◦ α ◦ ϕ = β ◦ ϕ̄ ◦ α′i = β ◦ α′i = η ◦ ϕ. Thus

β ◦ α ◦ ϕ = η ◦ ϕ on all E. Since ϕ(E) generates F , [H, p. 272] this implies β ◦ α = η.

Conclude that Ker(α) ≤ H, as desired.
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Lemma 3.2: Let F be an X -projective group, G a closed subgroup and A,B groups

in X such that A ∩ G is not conjugate in G to B ∩ G. Then F has an open subgroup

F0 which contains G such that for every open subgroup E of F0 which contains G the

groups A ∩ E and B ∩ E are not conjugate in E.

Proof: As A∩G and B∩G are nonconjugate at least one of them is not trivial. Assume

therefore without loss that so is the other one.

For each closed subgroup E0 of F which contains G consider the continuous map

f : E → Subg(E) defined by f(x) = (A ∩ E)x. Then S(E) = f−1(B ∩ E) = {x ∈

E‖(A ∩ E)x = B ∩ E} is a closed subset of E.

If E ≤ H ≤ F and x ∈ S(E), then Ax ∩E = B ∩E, hence Ax ∩B contains B ∩G

and therefore it is nontrivial. Since X is separated Ax = B. Thus Ax ∩H = B ∩H and

therefore x ∈ S(H). Conclude that S(E) ⊆ S(H).

If the lemma were false, then there would exist a family {Ei‖i ∈ I} of open

subgroups of F which contain G such that every open subgroup of F which contains G

contains Ei for some i ∈ I and S(Ei) 6= ∅ for each i ∈ I.

By compactness S(G) =
⋂
i∈I S(Ei) 6= ∅. This contradiction proves that the

lemma is true.

Proposition 3.3: Let F be a free X -product, G be a closed subgroup, and Y =

{Γx ∩G‖Γ ∈ X , x ∈ F}. Then G is Y-projective and satisfies Assumption 2.2.

Proof: By [H, Prop. 4.3], F is XF -projective. Hence, by Proposition 2.1, G is Y-

projective.

We prove that (G,Y) satisfies Assumption 2.2:

(2) Let ∆1, . . . ,∆n ∈ Y be nonconjugate subgroups ofG, A a finite group, ψi: ∆i → A a

homomorphism, and Ai = ψi(∆i), i = 1, . . . , n. Then there exists a homomorphism

ϕ: G→ A and elements a1, . . . , an ∈ A such that

(2a) res∆i
ϕ = [ai] ◦ψi, i = 1, . . . , n ([ai] is the inner automorphism of A induced

by ai), and

(2b) for each ∆ ∈ Y there exists i, 1 ≤ i ≤ n, and a ∈ A such that ϕ(∆) ≤ Aai .

14



Indeed, ∆i = Γxj(i)

j(i) ∩G, with Γj(i) ∈ X and xj(i) ∈ F . The proof of (2) naturally brakes

up now into two parts.

Part A: G is open in F . Take an open normal subgroup H of F which is contained

in G such that Γxj(i)

j(i) ∩H ≤ Ker(ψi), i = 1, . . . , n and Γxj(1)

j(1) ∩G, . . . ,Γxj(n)

j(n) ∩G are non-

conjugate in G modulo H. Apply Lemma 2.1 to the canonical maps Γj(i) → Γj(i)H/H,

i = 1, . . . , n to get epimorphism α: (F,X ) → (F̄ ,X ), where X is a finite family of

finite groups and F̄ is an X -free product such that N = Ker(α) is contained in H and

α(Γj(i)) ∈ X , i = 1, . . . , n. Put a bar on each element (resp., subgroup) of F to denote

its image under α. Thus X = {Γ̄1, . . . , Γ̄q}, with Γ1, . . . ,Γq ∈ X , and F̄ = Γ̄1 ∗ · · · ∗ Γ̄q.

Also, Ḡ is an open subgroup of F̄ . By Kurosh’s subgroup theorem [BNW, p. 105]

Ḡ =
q∏
∗
j=1

∏
∗

k∈Kj

(Γ̄ȳjk

j ∩ Ḡ) ∗ F̂m,

where F̂m is a free profinite group on m elements, and for each j, Kj is a finite set and

yjk are elements of F which give a double class decomposition of F̄ :

F̄ =
⋃
·

k∈Kj

Γ̄j ȳjkḠ.

As N ≤ G, this gives also a double class decomposition of F :

F =
⋃
·

k∈Kj

ΓjyjkG.

For each i, 1 ≤ i ≤ n, there exist ci ∈ Γj(i), k(i) ∈ Kj(i), and gi ∈ G such that

xj(i) = ciyj(i),k(i)gi. Then Γxj(i)

j(i) ∩G = (Γyj(i),k(i)

j(i) ∩G)gi and Γ̄x̄j(i)

j(i) ∩Ḡ = (Γ̄ȳj(i),k(i)

j(i) ∩Ḡ)ḡi .

Since Γxj(i)

j(i) ∩ H ≤ Ker(ψi), there is an epimorphism ψ̄i: Γ̄x̄j(i)

j(i) ∩ Ḡ → Ai such that

ψ̄i ◦ α = ψi on Γxj(i)

j(i) ∩ G. Then, ϕ̄i = ψ̄i ◦ [ḡi]: Γ̄ȳj(i),k(i)

j(i) ∩ Ḡ → Ai is an epimorphism

which satisfies ϕ̄i ◦ α = ψi ◦ [gi] on Γyj(i),k(i)

j(i) ∩G.

Γyj(i),k(i)

j(i) ∩G -[gi] Γxj(i)

j(i) ∩G -ψi Ai

?
α

?
α

wwwwww
Γ̄ȳj(i),k(i)

j(i) ∩ Ḡ -[ḡi] Γ̄x̄j(i)

j(i) ∩ Ḡ -ψ̄i Ai
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As Γ̄x̄j(1)

j(1) ∩ Ḡ, . . . , Γ̄x̄j(n)

j(n) ∩ Ḡ are nonconjugate in Ḡ, (j(1), k(1)), . . . , (j(n), k(n)) are

distinct. Hence, ϕ̄1, . . . , ϕ̄n simultaneously extend to a homomorphism ϕ̄: Ḡ→ A which

is trivial on F̂m and on each free factor Γ̄ȳjk

j ∩Ḡ such that (j, k) /∈ {(j(1), k(1)), . . . , (j(n),

k(n))}.

We prove that ϕ = ϕ̄ ◦ α: G → A and ai = ϕ(gi), i = 1, . . . , n satisfy (2a) and

(2b).

Indeed, ϕ = ψi ◦ [gi] on Γyj(i),k(i)

j(i) ∩ G. Hence, for z ∈ Γxj(i)

j(i) ∩ G we have ϕ(z) =

ψi(zgi) = ψi(z)ai . This proves (2a).

For an arbitrary Γ ∈ X and x ∈ F there exists j between 1 and q such that Γ̄ ≤ Γ̄j ,

and there exists c ∈ Γj , k ∈ Kj , and g ∈ G such that x = cyjkg. If (j, i) = (j(i), k(i))

for some i between 1 and n, then ϕ(Γx ∩ G) = ϕ̄(Γ̄ȳj,k

j ∩ Ḡ)ϕ(g) ≤ A
ϕ(g)
i . Otherwise

ϕ(Γx ∩G) = 1, and (2b) is proved.

Part B: The general case. Each ψi extends to a homomorphism of an open subgroup

of Γxk(i)

j(i) into Ai. Hence, F has an open subgroup E that contains G such that ψi extends

to a homomorphism ϕi: Γxk(i)

j(i) ∩E → Ai, i = 1, . . . , n. By making E smaller if necessary

we may assume that Γxj(i)

j(i) ∩E, i = 1, . . . , n are nonconjugate in E (Lemma 3.2). Take

a homomorphism ϕ which satisfies (2) with respect to ϕi and E. Its restriction to G

satisfies (2) with respect to ψi and G.

Let G be an X -projective group. We say that G can be X -embedded into a Y-free

group F if G can be embedded in F such that X = YF ∩G = {Γx ∩G‖Γ ∈ Y, x ∈ F}.

Corollary 3.4: Let G be an X -projective group which can be X -embedded in a Y-

free group F . Then, for every closed subgroup U of G the pair (U,X ∩ U) satisfies

Assumption 2.2.

Proof: Just note that X ∩ U = YF ∩ U and apply Proposition 3.3.

We don’t know if every X -projective group can be X -embedded in a Y-free group.

By [H, Thm. 8.5], we know at least that this is the case if G is separable.

Corollary 3.5: Let G be a separable X -projective group. Then, for every closed

subgroup U of G the pair (U,X ∩ U) satisfies Assumption 2.2.
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4. X -projective groups with X closed

Assumption 2.2 depends on finitely many homomorphisms from an X -projective group

G into a finite group. It is therefore conceivable that it is possible to reduce the as-

sumption to separable X -projective quotient of G which by Corollary 3.5 does satisfy

the assumption. In this section we succeed to carry out this idea in the case where X

is closed in the topology induced from that of Subg(G).

Lemma 4.1: Let G be an X -projective group. Suppose that X is closed in Subg(G).

Then, for each open normal subgroup M of G there exists an open normal subgroup N

which is contained in M such that

Γ,∆ ∈ X and ΓM 6= ∆M imply ΓN ∩∆N ≤M.

Proof: Choose representatives Λ1, . . . ,Λm for the groups in X modulo M . For each i

consider the closed and open subset Xi = {Λ ∈ X‖ΛM = ΛiM} of X .

Consider distinct i, j between 1 and m, and groups Γ ∈ Xi, ∆ ∈ Xj . Then Γ 6= ∆

and therefore Γ ∩ ∆ = 1 ((1a) of Section 2). In particular Γ ∩ (∆ −M) = ∅. Since

both Γ and ∆ −M are closed sets, G has an open normal subgroup N(Γ,∆) which is

contained in M such that ΓN(Γ,∆) ∩ (∆−M)N(Γ,∆) = ∅. This implies that

(1) ΓN(Γ,∆) ∩∆N(Γ,∆) ≤M

Consider now the open neighborhood of (Γ,∆) in X × X :

X (Γ,∆) = {(Γ′,∆′) ∈ X × X‖(Γ′,∆′)N(Γ,∆) = (Γ,∆)N(Γ,∆)}.

It is contained in Xi × Xj . As the latter set is compact, there exist Γk,∆k ∈ X ,

k = 1, . . . , n, such that ⋃
i 6=j

Xi ×Xj =
n⋃
k=1

X (Γk,∆k).

The group N =
⋂n
k=1N(Γk,∆k) is open, normal and contained in M . If Γ,∆ ∈ X

and ΓM 6= ∆M , then there are i 6= j such that Γ ∈ Xi and ∆ ∈ Xj . Hence there is k

between 1 and n such that (Γ,∆) ∈ X (Γk,∆k). Conclude by (1) that

ΓN ∩∆N ≤ ΓN(Γk,∆k) ∩∆N(Γk,∆k) = ΓkN(Γk,∆k) ∩∆kN(Γk,∆k) ≤M,
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as desired.

Let X be a separated family of closed subgroups of a profinite group G. We

say that the X -embedding problem (ϕ̂: G → Â, π̂: B̂ → Â, B̂) dominates the X -

embedding problem (ϕ: G→ A, π: B → A, B) if there exist homomorphisms α: Â→ A

and β: B̂ → B such that π ◦ β = α ◦ π̂, ϕ = α ◦ ϕ̂, and β(B̂) ⊆ B.

If this is the case, then every solution γ̂ of the former embedding problem leads

to a solution β ◦ γ̂ of the latter.

Lemma 4.2: Let X be a separated family of closed subgroups of a profinite group G.

Consider two finite X -embedding problems for G:

(ϕi: G→ Ai, πi: Bi → Ai, Bi), i = 1, 2.

Suppose that α: A2 → A1 is a homomorphism such that α ◦ϕ2 = ϕ1. Then there exists

an X -embedding problem (ϕ2: G→ A2, π: B → A2,B) which dominates the two given

ones.

Proof: Let B = B1×A1B2 be the cartesian product of B1 and B2 over A1 with respect

to π1 and α ◦ π2. Denote the projection of B on Bi by pi. The family B = {C ∈

Subg(B)‖pi(C) ∈ Bi, i = 1, 2} contains with each C all the subgroups of C. Also, B

is closed under conjugation. We prove that (ϕ2: G → A2, p2 ◦ π2: B → A2, B) is an

X -embedding problem, which obviously dominates the given ones.

Indeed, for Γ ∈ X there exist homomorphisms γi: Γ → Bi such that πi ◦ γi = ϕi

on Γ and γi(Γ) ∈ Bi for i = 1, 2. In particular π1 ◦ γ1 = ϕ1 = α ◦ ϕ2 = α ◦ π2 ◦ γ2 on

Γ. Hence, there exists a homomorphism γ: Γ → B such that pi ◦ γ = γi, i = 1, 2. It

satisfies π2 ◦ p2 ◦ γ = π2 ◦ γ2 = ϕ2 on Γ and pi(γ(Γ)) = γi(Γ) ∈ Bi, for i = 1, 2. Hence

γ(Γ) ∈ B, as desired.

Proposition 4.3: Let G be an X -projective group such that X is closed in Subg(G).

Suppose that a closed subgroup K of G is the intersection of countably many open

subgroups of G. Then G has a closed normal subgroup N which is contained in K such

that G/N is separable and X/N = {ΓN/N‖Γ ∈ X}-projective.
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Proof: Let K1,K2,K3, . . ., be a sequence of open subgroups of G whose intersection

is K. We construct by induction a descending double sequence G = M0 = N0 ≥M1 ≥

N1 ≥M2 ≥ N2 ≥ · · · of open normal subgroups such that

(2a) Mi ≤ Ki, i = 1, 2, 3, . . .,

(2b) if Γ,∆ ∈ X and ΓMi 6= ∆Mi, then ΓNi ∩∆Ni ≤Mi, i = 1, 2, 3, . . . and

(2c) for each i we order the finite X -embedding problems over G/Ni in a sequence

(3) (G→ G/Ni, πij : Bij → G/Ni, Bij)

such that for each i, j ≤ n the problem (3) has a solution which decomposes

through G/Mn+1.

Indeed, suppose that we have already constructed Mi, Ni, Bij , πij , and Bij for

i ≤ n and for each j such that they satisfy requirement (2). Use Lemma 4.2 to construct

a finite X -embedding problem (G → G/Nn, π: B → G/Nn,B) which dominates (3) for

all i, j ≤ n. Since G is X -projective this problem has a solution γ. This solution

decomposes through the open normal subgroup Mn+1 = Ker(γ) which is contained in

Nn. Moreover, γ leads to a solution of (3) for each i, j ≤ n. By Lemma 4.1, there exists

an open normal subgroup Nn+1 which is contained in Kn+1 ∩Mn+1 and satisfies (2b)

for i = n+ 1.

Let N =
⋂∞
n=1Nn =

⋂∞
n=1Mn. We use a bar to denote reduction modulo N and

prove that Ḡ is X/N -projective.

Note that X/N is closed in Subg(Ḡ). Hence, in order to prove that X/N is

separated it suffices to prove that Γ ∩ ∆ = 1 for each Γ,∆ ∈ X such that Γ 6= ∆ [J,

Remark 5.1]. Indeed, if x̄ ∈ Γ ∩ ∆ and x is a lifting of x̄ to G, then ΓN 6= ∆N and

x ∈ ΓN ∩ ∆N . Hence there exist n such that ΓMn 6= ∆Mn. Hence, for each i ≥ n,

ΓMi 6= ∆Ni and x ∈ ΓNi ∩∆Ni. Conclude from (2b) that x ∈ Mi. Hence x ∈ N and

x̄ = 1, as desired.

Finally we prove that Ḡ is X/N -projective. Let

(4) (ϕ: Ḡ→ A, π: B → A, B)

be a finite X/N -embedding problem. Denote the canonical projection of G onto Ḡ by
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ν. Then

(5) (ϕ ◦ ν: G→ A, π: B → A,B)

is a finite X -embedding problem. The kernel of ϕ contains Ni/N for some i. Use Lemma

4.2 to replace (5) by an X -embedding problem over G/Ni which dominates (4). Thus,

without loss, assume that A = G/Ni. Then B = Bij , π = πij and B = Bij for some j.

Let n = max{i, j}. By (2c), (5) has a solution γ which decomposes through G/Mn+1

and therefore also through G/N . Conclude that (4) has a solution.

Proposition 4.4: Every X -projective group G such that X is closed in Subg(G) sat-

isfies Assumption 2.2.

Proof: Let Γ1, . . . ,Γn ∈ X be nonconjugate subgroups of G, A a finite group, ψi: Γi →

A a homomorphism, and Ai = ψi(Γi), i = 1, . . . , n. Take an open normal subgroup K

such that Γi∩K ≤ Ker(ψi) for i = 1, . . . , n and Γ1, . . . ,Γn are nonconjugate modulo K.

By Proposition 4.3, G has a closed normal subgroupN which is contained inK such that

Ḡ = G/N is separable and X/N -projective. Let ν: G → Ḡ be the canonical map. For

each i there exists an epimorphism ψ̄i from Γi onto Ai such that ψ̄i ◦ ν = ψi on Γi. By

Corollary 3.5, (Ḡ,X/N) satisfies Assumption 2.2. Thus, there exists a homomorphism

ϕ̄: Ḡ → A and elements a1, . . . , an ∈ A such that resΓi
ϕ̄ = [ai] ◦ ψ̄i, i = 1, . . . , n, and

for each Γ ∈ X there exists i such that ϕ̄(ν(Γ)) is conjugate to a subgroup of Ai. The

homomorphism ϕ = ν ◦ ϕ̄ from G to A satisfies the requirements of Assumption 2.2.

Lemma 4.5: Let H be an open subgroup of a profinite group G. If X is a closed

subfamily of Subg(G), then X ∩H is a closed subfamily of Subg(H).

Proof: Since both X and Subg(H) are profinite spaces, it suffices to prove that the map

Γ 7→ Γ∩H from X into Subg(H) is continuous. Consider therefore Γ ∈ X and an open

normal subgroup N of H. Take an open normal subgroup M of G which is contained

in N . It suffices to prove that if Γ′ ∈ X and Γ′M = ΓM , then (Γ′ ∩H)N = (Γ ∩H)N .

Indeed, the assumption implies that Γ′N = ΓN (Note that ΓN = {cn‖c ∈ Γ, n ∈

N} need not be a subgroup ofG). Hence (Γ∩H)N = (ΓN)∩H = (Γ′N)∩H = (Γ′∩H)N ,

as desired.
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Remark 4.6: We suspect that Lemma 4.5 does not hold for an arbitrary closed subgroup

H of G.

Combine Lemma 4.4 with Proposition 2.1 and Lemma 4.5:

Corollary 4.7: Let G be an X -projective group such that X is closed in Subg(G).

Then each open subgroup H of G satisfies Assumption 2.2 with respect to X ∩H.

5. Prosolvable subgroups of X -projective groups

The theorems that we prove from now on about an X -projective group G are true if

Assumption 2.2 holds for each open subgroup H of G. However, we prefer to formulate

them for the two types of X -projective groups which satisfy this assumption according

to Sections 3 and 4.

Lemma 5.1: Let G be an X -projective group which can be X -embedded in a free Y-

product or such that X is closed in Subg(G). Let H be a closed prosolvable subgroup

of G. Suppose that p, q are distinct primes, Γ ∈ X and t is an element of G such that

(Γ ∩H)p is infinite, and (Γt ∩H)q 6= 1. Then t ∈ Γ.

Proof: We assume that t /∈ Γ and draw a contradiction by showing that H is not

prosolvable.

Indeed, tΓt is the intersection of all sets tU , where U ranges over all open subgroups

of G that contain Γt. As tΓt ∩ Γ = ∅, there exists, by compactness, an open subgroup

U of G that contains Γt such that

(1) tU ∩ Γ = ∅.

It follows that

(2) Γ ∩ U and Γt = Γt ∩ U are nonconjugate in U .

Indeed if Γtu = Γ ∩ U for some u ∈ U , then Γtu ∩ Γ 6= 1. As X is separated,

Γtu = Γ and therefore tu ∈ Γ [H, Lemma 4.6], a contradiction to (1). So, (2) is true.

Next observe that (Γ∩H ∩U)p contains (Γ∩H)p ∩U which is open in (Γ∩H)p.

Hence (Γ ∩H ∩ U)p is infinite and in particular nontrivial.
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By Proposition 2.1, U is X ∩ U -projective. By Corollary 3.4 and Corollary 4.7,

(U,X ∩U) satisfies Assumption 2.2. Apply Proposition 2.3 to U , X ∩U , H ∩U , Γ∩U ,

Γt instead of to G, X , H, Γ1, Γ2, respectively, to conclude that H is not prosolvable.

This is the required contradiction.

Theorem 5.2: Let G be an X -projective group which can be X -embedded into a free

Y-product or such that X is closed in Subg(G). Let H be a closed prosolvable subgroup

of G. Suppose that p, q are distinct primes and Γ1,Γ2 ∈ X such that (Γ1∩H)p is infinite

and (Γ2 ∩H)q 6= 1. Then Γ1 = Γ2 and H ≤ Γ1.

Proof: By Proposition 2.3, Γ1 and Γ2 are conjugate. Thus Γ1 = Γ and Γ2 = Γt with

t ∈ G. By Lemma 5.1, t ∈ Γ. Thus, (Γ ∩H)p is infinite and (Γ ∩H)q 6= 1. Hence, for

each h ∈ H the group (Γh ∩ H)q is nontrivial. Use lemma 5.1 again to conclude that

h ∈ Γ. Thus H ≤ Γ.

Theorem 5.3: Let G be an X -projective group which can be X -embedded into a free

Y-product, or for which X is closed in Subg(G). Let H be a closed prosolvable subgroup

of G for which there are infinitely many primes p which divide the order of some group

in X ∩H. Then H is contained in some group Γ which belongs to X .

Proof: Use Proposition 2.1 to assume without loss that H = G. By assumption there

is an infinite set {pi‖i ∈ I} of primes such that for each i ∈ I there exists Γi ∈ X such

that (Γi)pi 6= 1. It follows from Proposition 2.3 that all the Γi are conjugate, say to a

group Γ. In particular, each pi divides the order of Γ. We prove that G = Γ.

Indeed, assume that there exists g ∈ Gr Γ. As in the proof of Lemma 5.1, G has

an open subgroup U which contains Γg such that gU ∩ Γ = ∅. Again, this means that

Γ ∩ U and Γg are nonconjugate in U .

As Γ ∩ U is open in Γ, its index is finite. Hence almost all pi divide the order of

Γ ∩ U . Obviously, each pi divides the order of Γg. In particular, there exists distance

primes p, q such that (Γ∩U)p and (Γg)q are nontrivial. But this contradicts Proposition

2.3. Conclude that G = Γ.
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6. Cohomological criterion

In the setup of Theorem 5.2 it is in general not easy to determine whether there exist

p, q and Γ1,Γ2 such that (Γ1 ∩H)p is infinite and (Γ2 ∩H)q is nontrivial. The problem

lies in the difficulty to analyze the intersections of H with the groups Γ ∈ X . In this

section we use cohomology to find conditions on H which will insure the existence of

p and q as above. As in previous sections, whenever we speak about an X -group, we

assume that X is separated.

Lemma 6.1: Let G be a X -projective group and A a finite G-module. Then the re-

striction map

(1) res: H2(G,A) →
∏
Γ∈X

H2(Γ, A)

composed by restrictions on each factor is injective.

Proof (After Neukirch’s proof of [N1, Satz 4.1]): Let x ∈ H2(G,A). Choose a factor

system f : G × G → A which represents x. Associate with x the short exact sequence

0 → A → Ĝ
πG−→ G → 1 where Ĝ = {(a, g)‖a ∈ A, g ∈ G}, the (noncommutative)

addition on Ĝ is given by the formula

(2) (a1, g1) + (a2, g2) = (a1 + g1a2 + f(g1, g2), g1g2)

and πG is the projection on G [R, p. 103]. Let Γ be a subgroup of G. The extension

of Γ that corresponds to resΓx gives the following commutative diagram of exact rows

and inclusions as vertical maps:

(3)

0 - A - Γ̂ -πΓ Γ - 1wwwwww
?
i

?

0 - A - Ĝ -πG G - 1

Now choose an open normal subgroup N of Ĝ such that N ∩A = 1. Increase (3)
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to a commutative diagram

(4)

0 - A - Γ̂ -πΓ Γ - 1wwwwww
?
i

?

0 - A - Ĝ -πG G - 1wwwwww
?

ρ

?

ϕ

0 - A - Ĝ/N -π̂G Ḡ - 1

such that the right lower rectangle is cartesian [FJ, Section 20].

If x ∈ Ker(res), then resΓx = 0 for each Γ ∈ X . Hence πΓ has a section θΓ and

therefore π̂G ◦ ρ ◦ θΓ = ϕ on Γ. Since G is X -projective, there exists a homomorphism

γ: G→ Ĝ/N such that π̂G ◦ γ = ϕ. As the lower right rectangle of (4) is cartesian, πG

has a section θ. This means that x = 0.

Conclude that res is injective.

Theorem 6.2: Let G be an X -projective group which can be embedded in a Y-free

profinite group, or such that X is closed in Subg(G). Suppose that H is a prosolvable

closed subgroup of G

(a) and p, q are distinct primes such that Hp is torsionfree but not free pro–p, and Hq

is not free pro–q, or

(b) there exist infinitely many primes p such that Hp is not free pro–p.

Then there exists Γ ∈ X such that H ≤ Γ.

Proof: Let p be a prime such that Hp is not a free pro–p group. Then cd(Hp) ≥ 2 [R,

pp. 235-236] and therefore H2(Hp,Z/pZ) 6= 0 [R, p. 220, Cor. 4.3]. By Proposition 2.1,

Hp is (X ∩Hp)-projective. Hence, by Lemma 6.1, restriction

res: H2(Hp,Z/pZ) →
∏
Γ∈X

H2(Γ ∩Hp,Z/pZ)

is injective. Thus, there exists Γ ∈ X such that H2(Γ ∩ Hp,Z/pZ) 6= 0. In particular

Γ ∩Hp 6= 1.
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If this is the case for infinitely many p, then, by Theorem 5.3, H is contained in

some Γ which belongs to X .

So, suppose that (a) hold. As Hp is torsionfree, and with the above notation,

Γ∩Hp contains an element of infinite order. Hence, (Γ∩H)p, which contains Γ∩Hp, is

infinite. Similarly, there exists Γ′ ∈ X such that (Γ′ ∩H)q is nontrivial. Conclude from

Theorem 5.2 that H ≤ Γ.

Corollary 6.3: Let F be a free X -product. Suppose that H is a prosolvable subgroup

of F

(a) and p, q are distinct primes such that Hp is torsionfree but not free pro–p, and Hq

is not free pro–q, or

(b) there exist infinitely many primes p such that Hp is not free pro–p.

Then H is conjugate to a subgroup of some Γ ∈ X .

Proof: F is XF -projective [H, Prop. 5.3].

Example 6.4: Projective prosolvable groups. Let H be a projective prosolvable group

(e.g, a free pro–p group). Then H is isomorphic to a subgroup of a free profinite group

F [FJ, Cor. 20.14]. If X is a basis of F [FJ, p. 190] and X is the family of all closed

procyclic groups generated by the elements of X, then F a free X -product. However, H

is conjugate to no subgroup of a Γ ∈ X unless H is procyclic. Of course, for each p, the

p-Sylow subgroup of H is pro–p free [FJ, Prop. 20.37]. So, the hypothesis of Corollary

6.3 is not satisfied.

7. Large quotients

The study of p-adically projective groups and pseudo p-adically projective fields in [HJ2]

and in [J] depends on special properties that the group Γ = G(Qp) has. They involve

however information on subgroups of the groups De,m = Γ1 ∗ · · · ∗ Γe ∗ F̂m, where each

Γi is an isomorphic copy of Γ and F̂m is the free profinite group on m generators. The

exact condition is formulated in [J] as assumption A of the introduction.

It is pointed out in [J] that this assumption implies the seemingly stronger As-

sumption 3.1 of [HJ2]. The purpose of this section is to apply the previous results to
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show that Assumption A follows from assumptions on the group Γ without any refer-

ence to the auxiliary groups De,m. We denote the maximal pro-p quotient of a profinite

group Γ by Γ(p).

Proposition 7.1: Let G be an X -projective group which can be embedded in a Y-free

group, or such that X is closed in Subg(G). Suppose that Γ is a profinite group that

satisfies the following conditions:

(a) Γ is prosolvable and finitely generated.

(b) There exist distinct primes p, q such that Γ(p) is not a free pro-p group and Γ(q) is

not a free pro-q group.

Then Γ has a finite quotient Γ such that if a subgroup H of G is a quotient of Γ and Γ

is a quotient of H, and if Hp is torsionfree, then H is a subgroup of some ∆ ∈ X . In

particular, this conclusion holds if H ∼= Γ and Γp is torsionfree.

Proof: By [HJ2, Lemma 11.2], Γ has open normal subgroupsNp andNq such that Γ/Np

is a p-group, Γ/Nq is a q-group, and for each closed normal subgroup N of Γ which is

contained in Np (resp., in Nq) Γ/N is not a free pro-p (resp., pro-q) group. Let N0 be

the intersection of all open subgroups of Γ of index at most max{(Γ : Np), (Γ : Nq)}.

As Γ is finitely generated N0 is open and normal. Put Γ = Γ/N0.

Suppose that H satisfies the conditions of the proposition. Then H, as a quotient

of a prosolvable group, is prosolvable. If Hp were free pro-p, then cdpH ≤ 1, and

therefore H(p) were free pro-p [R, p. 255]. Let Mp be the intersection of all open

normal subgroups N ′
p of Γ such that Γ/N ′

p
∼= Γ/Np. Then N0 ≤ Mp and Γ/Mp is a

quotient of H(p). Let N be the kernel of the composed homomorphism Γ → H → H(p).

Let M be the kernel of the composed map Γ → H → H(p) → Γ/Mp. Then N ≤ M ,

Γ/M ∼= Γ/Mp. Hence M is the intersection of open normal subgroups N ′
p of Γ such that

Γ/N ′
p
∼= Γ/Np. It follows that Mp ≤ M . As both subgroups have the same index in Γ,

they coincide. Hence N ≤ Np and Γ/N ∼= H(p) is free pro-p. This contradiction to the

choice of Np proves that Hp is not free pro-p. Similarly Hq is not a free pro-q group.

Conclude from Theorem 6.2 that H is a subgroup of some ∆ ∈ X .

Theorem 7.2: The following conditions on a profinite group Γ imply Assumption A:
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(a) Γ is prosolvable and finitely generated.

(b) The center of Γ is trivial.

(c) There exists a prime p such that Γp is a torsionfree nonfree pro-p group.

(d) There exists a prime q 6= p such that Γq is not a free pro-q group.

(e) Γ has a finite quotient Γ such that if a subgroup H of Γ is a quotient of Γ and Γ is

a quotient of H, then H ∼= Γ.

Proof: By taking a larger quotient, if necessary, we may assume that the kernel of

Γ → Γ is contained in the intersection N0 mentioned in the first paragraph of the proof

of Proposition 7.1. In particular Γ satisfies the conclusion of Proposition 7.1.

Let H be a subgroup of De,m such that H is a quotient of Γ and Γ is a quotient

of H. We have to prove that H is conjugate to one of the groups Γi.

By a theorem of Ribes and Herfort [HR, Thm. 1], each element of De,m of a

finite order is conjugate to an element of one of the factors Γ1, . . . ,Γe, F̂m. Since F̂m

is torsionfree and since by (c), Γp is torsionfree, so is Hp. By Proposition 7.1, H is

conjugate to a subgroup H ′ of F̂m or to a subgroup H ′ of some Γi. In the former case

Hp is free pro-p [FJ, Prop. 47]. Hence, H(p) is also free pro-p group [R, p. 255]. On

the other hand, by the choice of Γ̄, the kernel of Γ → H is contained in N0 and hence

in Np (in the notation of the proof of Proposition 7.1). Hence, so is the kernel of the

composed map Γ → H → H(p). So, H(p) is not a free pro-p-group. This contradiction

proves that H ′ ≤ Γi for some i between 1 and e. Conclude from (e) that H ′ = Γi, that

is H is conjugate to Γi.

Remark 7.3: Note that condition (b) is not involved in the proof. So, Theorem 7.2

remains valid if we omit both condition (c) of Assumption A and condition (b) of the

Theorem.

Methods from both local and global class field theory are applied in [HJ2] to prove

that Γ = G(Qp) satisfies Assumption A. We replace the methods from global class field

theory by Theorem 7.2 (which is proved by pure group theoretic methods) to prove the

same result for open subgroups of G(Qp).
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Theorem 7.4: Let K be a finite extension of Qp. Then Γ = G(K) satisfies conditions

(a)–(e) of Theorem 7.2 and therefore also Assumption A.

Proof: It is an implicit result of Iwasawa that G(K) is finitely generated [S, p. III-

30]. Jannsen [Ja, Satz 3.6] gives an explicit proof of this statement. (See also [JR,

Introduction] for a simpler proof.)

To prove that the center of G(K) is trivial we repeat Ikeda’s arguments [I, p. 7]

for the triviality of the center of G(Qp). Suppose that σ is an element of Z(G(K)). Let

L be a finite Galois extension of K and consider the maximal abelian extension Lab of

L. Then Lab is a Galois extension of K. By local class field theory [N2, p. 69] the

reciprocity map θ: L× → G(Lab/L) is injective. Denote the restriction of σ to Lab by

σ̄. Then for each x ∈ L× we have θ(x) = θ(x)σ̄ = θ(xσ) [N2, p. 26]. Hence, x = xσ. As

L and x are arbitrary, σ = 1 and Z(G(K)) is trivial.

As cdp(G(K)) = 2 for each prime p [R, p. 291-292], conditions (c) and (d) are

true for G(K).

Finally, the proof of condition (e) of Theorem 6.3 is a simplified version of the

proof of [HJ2, Prop. 11.5]:

Let K0 be the compositum of all finite extensions of K of degree at most p − 1.

In particular K0 contains a primitive p-th root, ζp, of 1. For a profinite group G we

denote the rank of G(p) by rankpG. By [HJ2, Lemma 11.1], K0 has a finite extension

K1 such that for each Galois extension K ′
1 of K0 that contains K1

(1) rankpG(K ′
1/K0) = rankpG(K0).

As ζp ∈ K0, the maximal p-quotient of G(K0) is not free pro-p [S, p. II-30]. By

[HJ2, Lemma 11.2], K0 has a proper finite p-extension Kp such that for each Galois

extension K ′
p of K0 that contains Kp the group G(K ′

p/K0) is not free pro-p. Denote the

compositum of all extensions of K of degree at most m = max{[K1 : K], [Kp : K]} by

E. Then E is a finite Galois extension of K. We prove that Γ = G(E/K) satisfies the

requirements of condition (e).

Indeed, suppose that H is a subgroup of G(K) and there exist epimorphisms

G(K)
ϕ−→ H

ψ−→ G(E/K). Denote the fixed field of H in K̃ by L. Denote the fixed
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field of Ker(ϕ) by N . Then G(N/K) ∼= G(L). Also, for the fixed field E′ of Ker(ψ ◦ϕ),

we have G(E′/K) ∼= G(E/K). Hence E′ is a compositum of extensions of K of degree

at most m. Hence E′ ⊆ E. Since both fields have the same degree over K, E′ = E.

As Ker(ϕ) ≤ Ker(ψ ◦ ϕ), we have E ⊆ N . We proceed to prove that L = K and that

therefore H = G(K).

By construction, p divides [N : K0]. Let K(p)
0 be the maximal p-extension of K0.

Then Kp ⊆ N ∩K(p)
0 . Hence, the maximal pro-p quotient G(N ∩K(p)

0 /K0) of G(N/K0)

is not pro-p free. It follow from [R, p. 255] that cdpG(N/K0) > 1. Let L0 be the fixed

field of ϕ(G(K0)) in Q̃p. As G(N/K0) ∼= G(L0), we have cdpG(L0) > 1. Hence p∞ does

not divide [L0 : K] [R, pp. 291–292]. Also, L0 is the compositum of all extensions of L

of degree at most p− 1. In particular ζp ∈ L0. By [N2, Satz 4] and (1)

2 + [L0 : Qp] = rankpG(L0) = rankpG(N/K0) = rankpG(K0) = 2 + [K0 : Qp].

Hence, [K0 : Qp] = [L0 : Qp]. As [K0 : K] = [L0 : L], this implies that [K : Qp] = [L :

Qp]. So, conclude from K ⊆ L that K = L.

Problem 7.5: Suppose that a profinite group Γ satisfies conditions (a)—(e) of Theorem

7.2. Is Γ isomorphic to the absolute Galois group of a finite extension of Qp?
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