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Introduction

There are relatively few cases in which the absolute Galois group of a field is known

explicitly. One such case is the absolute Galois group of a p-adic field [JW]. A very

broad generalization of this case is given by the class of p-adically projective groups,

defined below (Section 4), which can be realized as absolute Galois groups of “pseudo p-

adically closed” (PpC) fieldsK [HJ4], characterized by the condition that any absolutely

irreducible variety defined over K with a simple point in every “p-adic closure” of K

has a K-rational point. Here we prove a realization theorem that implies in particular

that every p-adically projective profinite group of at most countable rank is realizable

as an absolute Galois group of an algebraic PpC field. In the more precise form given

as Theorem A below, this has consequences both for the algebraic theory of (arbitrary)

PpC fields and the theory of p-adically projective groups (of arbitrary rank), given as

Theorems B, C below. Of course the realization theorem can also be viewed as giving the

construction of a large family of fields algebraic over Q whose absolute Galois groups are

known explicitly. For this it suffices to give explicit constructions of p-adically projective

groups, which is quite easy. For example, the absolute Galois group of Qp is itself p-

adically projective, as is any free profinite group (indeed, any projective profinite group),

the class is closed under free products, and under taking closed subgroups satisfying a

certain condition (Theorem F).

The main results are as follows. The notation G(K) denotes the absolute Galois

group of a field K.

Theorem A (Realization Theorem): Let G be a p-adically projective group of at most

countable rank, K a number field, L a finite Galois extension of K and π: G→ G(L/K)

and epimorphism satisfying:

for each embedding η: G(Qp)→ G there is an embedding ζ: G(Qp)→ G(K) such

that resL ◦ ζ = π ◦ η.

Then there is a PpC field E algebraic over K and an isomorphism γ: G → G(E) such

that resL ◦ γ = π.

Theorem B (Group Theoretic Application): Let G be a p-adically projective profinite
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group which is not projective. Then G has cohomological dimension 2.

This theorem answers a question of Gregory Cherlin.

Theorem C (Field Theoretic Application): Let K be a PpC field, v, v1, . . . , ve p-adic

valuations of K. Then K is dense in the p-adic closure K with respect to v, K is unique

up to K-isomorphism, and if v1, . . . , ve are inequivalent, then they are independent.

The route from Theorem A to Theorem C goes through model theory.

Theorem D (Lefschetz Principle): Let θ be a first order sentence true in all PpC fields

which are algebraic over Q. Then θ is true in every PpC field.

This theorem has the effect of recoding the Realization Theorem in a directly

applicable form.

One very striking consequence of Theorem B should be noticed. It is well known

that G(C(t)) is a free profinite group and it follows from the work of Krull and Neukirch

[KN] that G(R(t)) is a real free profinite group in an appropriate sense [HJ2]. On

the other hand it follows easily from Theorem B that G(Qp(t)) is not even p-adically

projective (Theorem 6.9), and hence probably not p-adically free in any reasonable

sense. It would no doubt be interesting to make the obstruction more explicit.

One very useful principle in the PAC, PRC cases is that an algebraic extension of

such a field is again of the same type [FJ and P]. This fails in the PpC case. However,

it is necessary to find the correct version of this principle to prove the Realization

Theorem.

Theorem E (Algebraic Extension Theorem): Let L be an algebraic extension of a

PpC field K. Then L is PpC if and only if for every p-adic closure K of K, either

L ⊆ K or LK = K̃.

The proof (as always in such contexts) uses Weil descent, and generalizes Heine-

mann and Prestel’s proof [HP]. We have a group theoretic analog, which however is not

a strict parallel to the field theoretic result:

Theorem F: Let G be a p-adically projective profinite group and let H be a closed
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subgroup of G. Then H is p-adically projective if and only if for each G ≤ G with

G ∼= G(Qp) either G ≤ H or G ∩H is projective.

This relies on group theoretic construction of Haran [H] analogous to Weil descent.

At this stage a common framework for theories of “pseudo closed” fields is begin-

ning to emerge, based on certain special properties largely shared by the three profinite

groups 1, Z2, and G(Qp). It is not surprising that the necessary properties emerge

more clearly in the third case. We take an abstract unifying approach as far as it can

conveniently go at this point, but at present we are still restricted to taking essentially

these groups as our point of departure.

To conclude this introduction we sketch the proof of the Realization Theorem.

We construct in succession four fields Kσ ⊆Mω ⊆M0 ⊆ E, algebraic over Q so that

(1a) Kσ is PpC and has an explicitly known Galois group.

(1b) The Algebraic Extension Theorem applies to each extension successively (so that

all four fields are PpC).

(1c) The desired isomorphism γ exists at the level of G(E).

The four fields involved are obtained as follows.

Kσ: We may assume that the set Embd(G(Qp), G) of all embeddings η: G(Qp)→ G

is nonempty (else [FJ, Thm. 20.22] applies). Then π ◦Embd(G(Qp), G) = {resL ◦ηi| i =

1, . . . , e} for some ηi ∈ Embd(G(Qp), G(K)) and a positive integer e. LetKi be the fixed

field of η(G(Qp)) in Q̃. By a theorem of Neukirch [N1], Ki is p-adically closed. Choose

generators σ̄e+1, . . . , σ̄e+m for G(L/K) with m ≥ 2. We will find σ1, . . . , σe+m ∈ G(K)

such that

(2a) resLσe+i = σ̄e+i for i = 1, . . . ,m,

(2b) the intersection Kσ of the fields K
σi

i (i ≤ e) and the fixed field of σe+1, . . . , σe+m

in Q̃ is a PpC field, and

(2c) G(Kσ) ∼= De,m is the free product of e copies of G(Qp) and the free profinite

group on m generators.

In fact the set of σσσ = (σ1, . . . , σe+m) having properties (2b) and (2c) are of measure

1 in G(K)e+m.
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The remaining steps can be viewed as taking place group theoretically inside

G(Kσ) = De,m.

Mω: There is a group ∆ω called the universal G(Qp)-group of rank ℵ0 which plays

the role of the p-adically free group on ℵ0 generators. Working inside De,m we find an

extension Mω of Kσ with these properties:

(3a) Kσ ⊆Mω ⊆ K
σ1

1 ∩ · · · ∩K
σe

e ,

(3b) LKσ ∩Mω = Kσ, and

(3c) G(Mω) ∼= ∆ω.

This is analogous to a construction introduced by Lubotzky – v.d. Dries / Mel-

nikov [FJ, Sec. 24.3] to recognize the free profinite group of rank ℵ0 as a subgroup of

F̂m.

M0: Next find ∆0 ≤ ∆ω and an epimorphism θ: ∆0 → G such that

(7a) π ◦ θ = resL on ∆0,

(7b) if H ≤ ∆0 is isomorphic to G(Qp), then θ(H) ∼= G(Qp),

(7c) if H1,H2 ≤ ∆0 are isomorphic to G(Qp) and θ(H1) = θ(H2), then H1 and H2 are

conjugate in ∆0, and

(7d) for each H ≤ G isomorphic to G(Qp) there is H ′ ≤ ∆0, H ′ ∼= G(Qp) with

θ(H ′) = H.

Let M0 be the fixed field of ∆0 in Q̃.

E: Apply p-adic projectivity to get a continuous section γ: G → ∆0 for θ and let

E be the fixed field of γ(G) in Q̃.
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Notation

F̂m = the free profinite group on m generators.

For σσσ = (σ1, . . . , σe) ∈ G(K)e, K̃(σσσ) is the fixed field of σ1, . . . , σe in K̃.

F̂ω = the free profinite group on ℵ0 generators.

G(K) = the absolute Galois group of K.

Qp,alg = Qp ∩ Q̃.

K̃ = the algebraic closure of a field K.

Ks = the separable closure of a field K.

Vsim(K) = the set of K-rational simple points of a variety V defined over K.

We use the term “variety” for “absolutely irreducible variety”.

Definitions

A field K is PAC if every variety V defined over K has a rational point.

A field K is PRC if every variety V defined over K with a simple K-rational point for

each real closure K of K has a K-rational point.

A valuation v of a field K is p-adic if the residue field is Fp and p has the smallest

positive value under v.

A field K is p-adically closed if it admits a p-adic valuation and no proper algebraic

extension of K admits one. If K is algebraic over a field K, then K is said to be an

algebraic closure of K.

A field K is PpC if every variety V defined over K with a simple K-rational point for

each p-adic closure K of K has a K-rational point.

Acknowledgement: The author is indebted to Ido Efrat for valuable suggestions that

improve a former version of this work.
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1. Γ-universal groups.

Lubotzky and v.d. Dries, and independently Melnikov, have shown how to embed F̂ω as

a closed normal subgroup of F̂m for m ≥ 2 [FJ, Sec. 24.3], using a characterization of F̂ω

due to Iwasawa. In the theory of PRC fields it has been necessary to extend Iwasawa’s

charactrization to real free groups and to apply it to the embedding of a “universal”

real free group as a closed normal subgroup of a free product of finitely many copies of

Z/2Z and F̂m (m ≥ 2) [HJ3, Lemma 3.4]. We will show how to develop this theory in

a general framework which applies also to the case of p-adically universal groups. Thus

we will deal with Γ-universal groups, for Γ a fixed finitely gnerated profinite groups:

Γ = 1 is Iwasawas’ context, Z/2Z is the context of [HJ3], and G(Qp) is our intended

application. Our main result will be that the G(Qp)-universal group of rank ℵ0 embeds

in De,m for e ≥ 1 and m ≥ 2 (Proposition 1.8) which corresponds exactly to the second

step in the proof of the Realization theorem.

For a profinite group G let Subg(G) (resp., Hom(Γ, G)) be the set of all closed

subgroups of G (resp., all continuous homomorphisms of Γ into G). If G is finite,

both Subg(G) and Hom(Γ, G) are finite. In general Subg(G) = lim←−Subg(G/N) and

Hom(Γ, G) = lim←−(Hom(Γ, G/N)), where N ranges over all normal open subgroups of

G. Thus both Subg(G) and Hom(Γ, G) are Boolean spaces. The map Im: Hom(Γ, G)→

Subg(G) which maps each ψ ∈ Hom(Γ, G) onto its image, ψ(Γ), is continuous. Let

D(Γ, G) be the set of all subgroups of G which are isomorphic to Γ. Let Embd(Γ, G)

be the set of all embeddings of Γ into G. Since each epimorphism of Γ onto a group

isomorphic to Γ is an isomorphism [FJ, Prop. 15.3], Im−1(D(Γ, G)) = Embd(Γ, G).

Hence D(Γ, G) is closed in Subg(G) if and only if Embd(Γ, G) is closed in Hom(Γ, G).

The group G acts on Hom(Γ, G) according to the law: ψx(g) = x−1ψ(g)x. The

group Aut(Γ) acts on Hom(Γ, G) according to the law: ψω = ψ ◦ ω. Define ψ,ψ′ ∈

Hom(Γ, G) to be (G,Aut(Γ))-equivalent (or just equivalent if G and Γ are clear from

the context) if there exist x ∈ G and ω ∈ Aut(Γ) such that ψ′ = ψxω. Since the

actions of G and Aut(Γ) on Hom(Γ, G) commute, this defines an equivalence relation

on Hom(Γ, G). We call a subset I of Hom(Γ, G) a (G,Aut(Γ))-domain if it is closed

under the actions of both G and Aut(Γ). For example, Embd(Γ, G) is a (G,Aut(Γ))-
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domain. If γ: G → B is an epimorphism, then the relations γ ◦ ψx = (γ ◦ ψ)γ(x) and

γ ◦ ψω = (γ ◦ ψ)ω show that γ ◦ Embd(Γ, G) is a (B,Aut(Γ))-domain. If, in addition,

Embd(Γ, G) is closed, then so is γ ◦ Embd(Γ, G).

A proper Γ-embedding problem for G is a triple (ϕ: G → A, π: B → A, I),

where ϕ and π are epimorphisms of profinite groups and I is a closed (B,Aut(Γ))-

subdomain of Hom(Γ, B) such that π ◦ I = ϕ ◦ Embd(Γ, G). The embedding problem

is finite if B is a finite group. A proper solution of the embedding problem is an

epimorphism γ: G→ B such that π ◦ γ = ϕ and γ ◦ Embd(Γ, G) = I.

The profinite group G is Γ-universal if Embd(Γ, G) is nonempty and if each

proper finite Γ-embedding problem of G is properly solvable.

Lemma 1.1: Any two Γ-universal groups G and H of rank ℵ0 are isomorphic.

Proof: Each of the groups G andH has a descending sequence of open normal subgroups

whose intersections is 1: G = M ′
0 ≥ M ′

1 ≥ · · · and H = N ′
0 ≥ N ′

1 ≥ · · ·. By induction

we construct two descending sequences of open normal subgroups, G = M0 ≥ M1 ≥

· · · ≥ Mn and H = N0 ≥ N1 ≥ · · · ≥ Nn such that Mi ≤ M ′
i and Ni ≤ N ′

i for

i = 1, . . . , n, and isomorphisms ϕi: G/Mi → H/Ni such that ϕi induces ϕi−1 and

ϕi ◦ ρi ◦ Embd(Γ, G) = τi ◦ Embd(Γ,H), where ρi: G → G/Mi, τi: H → H/Ni are

canonical.

Initially ϕ0 is the map 1→ 1. To proceed with the (n+ 1)st step of the induction

consider the group K = M ′
n+1 ∩Mn and let κ: G → G/K and ρ̄n: G/K → G/Mn be

the canonical maps. Then

ϕn ◦ ρ̄n ◦ (κ ◦ Embd(Γ, G)) = ϕn ◦ ρn ◦ Embd(Γ, G) = τn ◦ Embd(Γ,H).

SinceH is Γ-universal there exists an epimorphism γ′: H → G/K such that ϕn◦ρ̄n◦γ′ =

τn and γ′ ◦ Embd(Γ,H) = κ ◦ Embd(Γ, G). Let Nn+1 = N ′
n+1 ∩ Ker(γ′) and let

γ: H/Nn+1 → G/K be the epimorphism defined by γ′. ThenNn+1 ≤ N ′
n+1, ϕn◦ρ̄n◦γ =

τn+1,n, and γ◦(τn+1◦Embd(Γ,H)) = κ◦Embd(Γ, G). Again, τn+1,n: H/Nn+1 → H/Nn

is canonical.

Since G is Γ-universal there exists an epimorphism ϕ′: G → H/Nn+1 such that

γ ◦ ϕ′ = κ and ϕ′ ◦ Embd(Γ, G) = τn+1 ◦ Embd(Γ,H).
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Let Mn+1 = Ker(ϕ′) and let ϕn+1: G/Mn+1 → H/Nn+1 be the isomorphism

defined by ϕ′. Then, with canonical ρn+1,n: G/Mn+1 → G/Mn, we have τn+1,n◦ϕn+1 =

ϕn ◦ ρn+1,n and ϕn+1 ◦ (ρn+1 ◦ Embd(Γ, G)) = τn+1 ◦ Embd(Γ,H). This completes the

induction step.

The compatible sequence of ϕ0, ϕ1, ϕ2, . . . of isomorphisms induces an isomorphism

ϕ: G→ H.

1.2 Notation: For a positive integer e let Γ1, . . . ,Γe be isomorphic copies of Γ. Con-

sider the free products (in the category of profinite groups) De = Γ1 ∗ · · · ∗ Γe and

De,m = De ∗ F̂m. For each i between 1 and e fix an isomorphism ψi: Γ→ Γi.

Our next goal is the embedding of a Γ-universal group in De,m for e ≥ 1 and

m ≥ 2 (Proposition 1.8).

Lemma 1.3 (Binz–Neukirch–Wenzel [BNW, p. 105]): Let G =
∏
∗ i∈IGi be the free

product of profinite groups Gi over a finite index set I. Let H be an open subgroup of

G. For each i ∈ I consider the double class decomposition of G:

G =
⋃
·

j∈Ji

GixijH.

Then

H ∼=
∏
∗
i

∏
∗

j∈Ji

(Gxij

i ∩H) ∗ F̂m,

where

m =
∑
i∈I

[(G : H)− |Ji|]− (G : H) + 1.

Lemma 1.4: For e,m ≥ 1 let D = De, F = F̂m, and G = De,m. Also, let H be an open

normal subgroup of G of index n that contains D. Then H ∼= Den,1+n(m−1).

Proof: If G =
⋃
· n

i=1Hzi, then G =
⋃
· n

i=1DziH andDzi∩H = Dzi ∼= De for i = 1, . . . , n.

Since FH = G and (F : F ∩H) = (G:H) = n, the Nielsen–Schreier formula [FJ, Prop.

15.27] implies that F ∩H ∼= F̂1+n(m−1). As [(G:H)−n] + [(G:H)− 1]− (G:H) + 1 = 0,

Lemma 1.3 implies that

H ∼=
n∏
∗

i=1

(Dzi ∩H) ∗ (F ∩H) ∼= Den ∗ F̂1+n(m−1) = Den,1+n(m−1).

From now on we make the following assumption:
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Assumption 1.5: The profinite group Γ satisfies the following conditions.

(a) Γ is finitely generated and nontrivial, and

(b) for each e and m, if a subgroup H of De,m is isomorphic to Γ, then H is conjugate

to Γi for some i between 1 and e.

(c) the center of Γ is trivial, and

(d) Γ has a finite quotient Γ such that for each e andm and for each closed subgroupH

of De,m, if H is a quotient of Γ and if Γ is a quotient of H, then H is isomorphic to

Γ. We refer to each quotient of Γ which has Γ as a quotient as a large quotient.

Remark 1.6: Assumption 1.5 is satisfied if Γ is a finite group with a trivial center [HR,

Thm. 1] or if Γ ∼= G(Qp) [HJ4, Prop. 12.10]. Part (c) of the assumption is not used

until Section 3. As this assumption excludes the case Γ = Z/2Z, these results are not a

strict generalization of the real case. It might be possible to develop the theory under

the hypothesis that the center of Γ is finite, but such a theory could have no further

field theoretic applications.

The first result that uses Part (d) of the Assumption 1.5 is Lemma 2.5.

Lemma 1.7: Let H be a closed subgroup of De,m which is isomorphic to Γ.

(a) If Hx = H for some x ∈ De,m, then x ∈ H.

(b) Let d be an integer between 1 and e and let A = Γ1 ∗ · · · ∗ Γd ∗ F̂m. If H ∩A 6= 1,

then H ≤ A.

(c) If H ′ 6= H is another closed subgroup of De,m which is isomorphic to Γ, then

H ∩H ′ = 1.

(d) In the notation of 1.2, ψ1, . . . , ψe represent the equivalence classes of Embd(Γ, De,m).

Proof: By Assumption 1.5 each of the groups H and H ′ is conjugate to some Γi. As-

sertion (a) therefore follows from [HR, Thm. B’].

To prove assertion (b), note that De,m = A ∗ B where B = Γd+1 ∗ · · · ∗ Γe. We

know that H = Γx
i for some i between 1 and e. If i > d, let α: De,m → B be the

homomorphism which maps A onto 1 and B identically onto itself. By assumption,

there exists c ∈ Γi, c 6= 1, such that cx ∈ A. Then cα(x) = α(cx) = 1, a contradiction.

It follows that i ≤ d. But then Ax ∩ A 6= 1. Conclude from [HR, Thm. B’] that x ∈ A
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and therefore H ≤ A.

To prove (c) note, as before, that H ′ = Γy
j for some y ∈ De,m. Assume that

H ∩H ′ 6= 1. If i 6= j, then map Γi onto 1 and all the other components identically onto

themselves to draw a contradiction. If i = j, then xy−1 ∈ Γi (by (a)) and H = H ′, a

contradiction.

Next consider the obvious map De,m → Γ1 × · · · × Γe to conclude that Γ1, . . . ,Γe

are mutually nonconjugate in De,m. In particular, ψ1, . . . , ψe are nonequivalent.

Finally let ψ: Γ → De,m be an embedding. By Assumption 1.5, there exists

x ∈ De,m such that ψ(Γ)x = Γi. Thus conjugation by x gives an isomorphism [x] of

ψ(Γ) onto Γi. Then ω = ψ−1 ◦ [x−1] ◦ ψi ∈ Aut(Γ) and ψωx = ψi. This means that ψ

is equivalent to ψi.

Proposition 1.8: For e ≥ 1 and m ≥ 2 let D = De, G = De,m, and let K be an open

subgroup of G. Then G contains a closed normal subgroup H of countable rank which

is Γ-universal such that D ≤ H and KH = G.

Proof: Choose a prime p which does not divide (G:K). Let ρ: G → Zp be an epimor-

phism such that ρ(D) = 1. We will show that H = Ker(ρ) will do.

Note first that H contains D and (G:KH) is a power of p which divides (G:K), so

G = KH. Also, for each nonnegative integer i, G has a unique open normal subgroup

Gi of index pi which contains H. Since G is finitely generated, H is countably generated.

By Assumption 1.5(b),

Embd(Γ, Gi) = Embd(Γ,H).

In particular, since e ≥ 1, Embd(Γ,H) is nonempty. The proof that each finite proper

Γ-embedding problem for H is properly solvable has three parts.

Part A: Embedding problem. Let (ϕ: H → A, π: B → A, I) be a finite proper

embedding problem for H. In particular Ker(ϕ) is a normal open subgroup of H. Let

N be an open normal subgroup of G such that H ∩ N = Ker(ϕ). Then HN = Gk

for some positive integer k. Extend ϕ to an epimorphism ϕ: Gk → A with kernel N .

Choose a positive integer r0 such that pr0 − r0 > k, let r = max{p|B|, r0, |I|}, and let
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n = r+ k. Then pr − r > k. By Lemma 1.4, Gn = D′ ∗ F ′ where D′ ∼= De′ , F ′ ∼= F̂m′ ,

e′ = epn and m′ = 1 + pn(m− 1). Thus

(1) m′ > 2n.

Claim 2: For each α ∈ ϕ ◦ Embd(Γ, Gn) there exist at least n nonequivalent elements

ζ of Embd(Γ, Gn) such that ϕ ◦ ζ is (A,Aut(Γ))-equivalent to α.

Indeed, let ζ be an element of Embd(Γ, Gn) and let α = ϕ ◦ ζ. For each x ∈ Gk

the homomorphism ϕ ◦ ζx = αϕ(x) is (A,Aut(Γ))-equivalent to α. If y ∈ Gk and

ζx is (Gn,Aut(Γ))-equivalent to ζy, then there exist b ∈ Gn and ω ∈ Aut(Γ) such that

ζx = ζybω. Hence ζ(Γ)x = ζ(Γ)yb. As ζ(Γ) ⊆ Gn, Lemma 1.7(a) gives a ∈ ζ(Γ) such that

x = yba. Hence x ∼= y modGn. Conclude for representatives g1, . . . , gpr of Gk modulo

Gn, that ζxi , i = 1, . . . , pr are (Gn,Aut(Γ))-nonequivalent elements of Embd(Γ, Gn)

which are mapped by ϕ onto an element of Hom(Γ, A) which is (A,Aut(Γ))-equivalent

to α. As pr > n, the claim follows.

Part B: Generators of Gn. Let A0 be the smallest normal subgroup of A that

contains α(Γ) for each α ∈ ϕ ◦Embd(Γ,H). Let B0 be the smallest normal subgroup of

B which contains β(Γ) for each β ∈ I. Let H0 be the smallest closed normal subgroup

of H that contains η(Γ) for each η ∈ Embd(Γ,H). Deduce from

ϕ
( ⋃

η∈Embd(Γ,H)

η(Γ)
)

=
⋃

α∈ϕ◦Embd(Γ,H)

α(Γ) = π
( ⋃

β∈I

β(Γ)
)

that

(3) ϕ(H0) = A0 = π(B0)

(Lemma 4.2 of [HJ3]). Also, D ≤ H0 ≤ H.

Let now Nn = Gn ∩N and choose x ∈ Nn −Gn+1. As H0 contains D′, we have

Gn = H0F
′. Let therefore x = h0f with h0 ∈ H0 and f ∈ F ′. Since H0 ≤ Gn+1 we

have

(4) f ∈ (F ′ ∩H0Nn)−Gn+1.
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Denote the image of z ∈ Gn under the canonical map Gn → Gn/Nn+1 = Gn by z̄.

Since Gn = Gn+1Nn

Gn = Gn/Gn+1 ×Gn/Nn
∼= Z/pZ×A.

In particular |F ′| ≤ |Gn| = p|A| ≤ n. Use (4) to find generators c1, . . . , cn of the

subgroup F ′ of Gn such that c1 = f̄ /∈ Gn+1. Let cn+1 = · · · = cm′ = 1. By Gaschütz

Lemma, F ′ has generators x1, . . . , xm′ such that x̄i = ci for i = 1, . . . ,m′ [FJ, Lemma

15.30]. In particular

(5) x1 /∈ Gn+1

and, by (3) and (4),

(6) ϕ(x1) = ϕ(f) ∈ ϕ(H0Nn) = ϕ(H0) = π(B0).

Also

(7) ϕ(xn+1) = · · · = ϕ(xm′) = 1.

Finally choose for each i between 1 and e′ a closed subgroup Γi of D′ isomorphic

to Γ and an isomrphism ψ′i: Γ→ Γi such that D′ = Γ1 ∗ · · · ∗ Γe′ .

Part C: Solution of the embedding problem. Define a map

γ:
e′⋃

i=1

Γi ∪ {x1, . . . , xm′} −→ B

in the following way: First use (6) to choose γ(x1), . . . , γ(xn) ∈ B such that π(γ(xj)) =

ϕ(xj) for j = 1, . . . , n and

(8) γ(x1) ∈ B0.

By (1), |Ker(π)| ≤ |B| ≤ r < n < m′ − n. Hence we can choose γ(xn+1), . . . , γ(xm′) as

a system of generators for Ker(π).
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Finally let β1, . . . , βs be representative of the (B,Aut(Γ))-equivalence classes of

I. Then s ≤ |I| ≤ n. By Lemma 1.7(d), ψ′1, . . . , ψ
′
e′ represent the equivalence classes of

Embd(Γ, Gn). Hence, by Claim (2), each α ∈ ϕ ◦ Embd(Γ, Gn) is equivalent to at least

n homomorphisms ϕ ◦ ψ′1, . . . , ϕ ◦ ψ′e′ . By assumption π ◦ I = ϕ ◦ Embd(Γ, Gn). Since

there are at most n of the homomorphisms π ◦βi, we may reenumerate ψ′1, . . . , ψ
′
e′ such

that π ◦ βi is (A,Aut(Γ))-equivalent to ϕ ◦ ψ′i for i = 1, . . . , s. Use the surjectivity of

π to replace β1, . . . , βs if necessary by equivalent embeddings and assume that π ◦ βi =

ϕ ◦ ψ′i for i = 1, . . . , s. Then choose βs+1, . . . , βe′ ∈ I such that π ◦ βi = ϕ ◦ ψ′i for

i = s+ 1, . . . , e′. Define γ on Γi as βi ◦ (ψ′i)
−1.

The map γ extends to a homomorphism γ: Gn → B such that π ◦ γ = ϕ. Since

Ker(π) ≤ γ(Gn) and ϕ(Gn) = A we have γ(Gn) = B. Also, γ ◦ψ′i = βi for i = 1, . . . , e′.

Hence γ ◦ Embd(Γ,H) = γ ◦ Embd(Γ, Gn) = I. In particular

(9) γ
( ⋃

η∈Embd(Γ,H)

η(Γ)
)

=
⋃
β∈I

β(Γ).

Finally, as Gn/H ∼= Zp, (5) implies that 〈x1〉H = Gn. By (9) and [HJ3, Lemma

4.2], γ(H0) = B0. Hence, by (8), γ(x1) ∈ B0 = γ(H0) ⊆ γ(H). Conclude that

γ(H) = γ(〈x1〉H) = γ(Gn) = B.

The restriction of γ to H properly solves the embedding problem of Part A.
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2. The group ∆ω.

We now give an explicit consitiruction of the Γ-universal group of rank ℵ0 which we

call ∆ω. It will allow us to deduce properties of ∆ω which are not immediate from the

definition.

For each ordinal number between 1 and ω let En be the set of all n-tuples of 0

and 1. The projection maps πn,m: En → Em, for n ≥ m given by πn,m(ε1, . . . , εn) =

(ε1, . . . , εm) are compatible with each other and Eω = lim←−En. The first three properties

of Eω that we list below are included in [HJ3, Lemma 1.2].

Lemma 2.1: (a) Every nonempty open–closed subset of Eω is homeomorphic to Eω.

(b) Let X be an inverse limit of a sequence of finite discrete spaces. Let X0 be a

finite discrete space and let ϕ: Eω → X0 and α: X → X0 be continuous maps.

If α(X) ⊆ ϕ(Eω), then there exists a continuous injection γ: X → Eω such that

ϕ ◦ γ = α.

(c) Let ϕ and α be as in (b). If α(X) = ϕ(Eω), then there exists a continuous

surjection γ: Eω → X such that α ◦ γ = ϕ.

In the rest of this section we construct the Γ-universal group as a free product of

the free profinite group F̂ω of rank ℵ0 with a free product over Eω of isomorpic copies

of Γ. The free product ∆ω we obtain generalizes that of [HJ3] where Γ is Z/2Z but

is a special case of those of Gildenhuys and Ribes [GR]. The proof that ∆ω is indeed

Γ-universal is given in section 4.

Consider the free profinite group F̂ω with a basis {y1, y2, y3, . . .} converging to 1

and let Yω = {y0, y1, y2, . . .} with y0 = 1. Every continuous map of Yω into a profinite

group G that maps 1 onto 1 uniquely extends to a homomorphism of F̂ω into G. For

each n < ω let F̂n be the free profinite group with the basis {y1, . . . , yn}.

Lemma 2.2: Let ρ: Yω → A be a continuous map into a finite group A such that

A = 〈ρ(Yω)〉 and ρ(1) = 1. Let π: G → A be an epimorphism from a profinite group

of rank ≤ ℵ0. Then there exists a continuous map γ: Yω → G such that ρ = π ◦ γ,

G = 〈γ(Yω)〉 and γ(1) = 1.

Proof: (Iwasawa) There exists a positive integer k such that A = 〈ρ(y1), . . . , ρ(yk)〉 and
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ρ(yi) = 1 for each i ≥ k+1. Let g0 = 1. For each i between 1 and k choose gi ∈ G such

that π(gi) = ρ(yi). Also choose a sequence of generators gk+1, gk+2, . . . for Ker(π) that

converges to 1. Then the sequence {g1, g1, g2, . . .} converges to 1 and generates G. The

map γ: Yω → G defined by ρ(yi) = gi, i = 0, 1, 2, . . ., is continuous, 〈ρ(Y )〉 = G and we

have π ◦ γ = ρ.

Let now Γ be a profinite group. For each n ≤ ω and for each e ∈ En take an

isomorphic copy Γe of Γ and fix an isomorphism ψe: Γ→ Γe. Form the free product

∆n =
∏
∗

e∈En

Γe ∗ F̂n, 0 ≤ n < ω

(in the notation of section 1, this is the group D2n,n.) For m ≤ n let πn,m also denote

the epimorphism πn,m: ∆n → ∆m defined by

πn,m(y1) = y1, . . . , πn,m(ym) = ym, πn,m(ym+1) = 1, . . . , πn,m(yn) = 1,

and such that for each en ∈ En and with em = πn,m(en) the restriction of πn,m to Γen

coincides with ψem
◦ ψ−1

en
. Now take the inverse limit:

∆ω = lim←−∆n and πm = lim←−πn,m.

If e ∈ Eω and en = πn(e), then Γe = lim←−Γen is a closed subgroup of ∆ω and ψe =

lim←−ψen
. Similarly F̂ω = lim←− F̂n is a closed subgroup of ∆ω and ∆ω = 〈Γe, F̂ω〉e∈Eω

.

In particular every homomorphism of ∆ω into a profinite group is determined by its

restriction to the set

(1) Zω =
⋃

e∈Eω

Γe ∪ Yω.

Lemma 2.3: Every continuous map ϕ of Zω into a profinite group G such that ϕ(1) = 1

and for each e ∈ Eω the restriction of ϕ to Γe is a homomorphism uniquely extends to

a homomorphism ϕ: ∆ω → G.

Proof: Going to the limit reduces the lemma to the case where G is finite. In this

case ∆ω has an open normal subgroup K such that if z, z′ ∈ Zω and zK = z′K, then
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ϕ(z) = ϕ(z′). Choose a positive integer m such that Ker(πm) ≤ K. For each n ≥ m let

Zn =
⋃

e∈En
Γe ∪ {1, y1, . . . , yn}. Define a map ϕn: Zn → G such that ϕn ◦ πn = ϕ on

Zω in the following way: First let ϕn(yi) = ϕ(yi) for i = 0, . . . , n. For en ∈ En choose

e ∈ Eω such that πn(e) = en. Denote the restriction of πn to Γe by π. As π is an

isomorphism define ϕn on Γen as ϕ ◦ π−1. If e′ is an another element of Eω such that

πn(e′) = en and the restriction of πn to Γe′ is π′, then ϕ ◦ (π′)−1 = ϕ ◦ π−1. Indeed,

for z̄ ∈ Γen
let z = π−1(z̄) and z′ = (π′)−1(z̄). Then πn(z) = πn(z′) and therefore

ϕ(z) = ϕ(z′).

We have proved that ϕ uniquely determines ϕn. The latter map uniquely ex-

tends to a homomorhism ϕn: ∆n → G. The compatible collection {ϕn}n≥m defines an

extension of ϕ to a homomorhism ϕ: ∆ω → G.

The following Lemma allows little changes in Yω while keeping Lemma 2.3 valid.

Lemma 2.4: Let ρ be an epimorphism of ∆ω onto a finite group A. Then ∆ω has

an automorphism ϕ whose resteiction to each Γe is the identity map and such that

〈ρ(ϕ(Yω))〉 = A.

Proof: Since the map ρ: ∆ω → A is continuous, there exists a positive integer k such

that ρ(yi) = 1 for each i > k. As ρ is surjective there exist z1, . . . , zm ∈
⋃

e∈Eω
Γe

such that A = 〈ρ(y1), . . . , ρ(yk), ρ(z1), . . . , ρ(zm)〉. Define y′i = yi for i = 0, . . . , k,

y′k+j = yk+jzj for j = 1, . . . ,m, and y′i = yi for each i > k +m. Then lim
i→∞

y′i = 1 and

therefore the map yi 7→ y′i, i = 0, 1, 2, . . . extends to a homomorphism ϕ: ∆ω → ∆ω

whose restriction to
⋃

e∈Eω
Γe is the identity map (Lemma 2.3). Clearly ϕ is surjective.

To prove that ϕ is also injective define for each n a homomorphism ϕn: ∆n → ∆n

such that ϕn(yi) = πn(y′i) and whose restriction to Γe is the identity map for each

e ∈ En. Then ϕn is surjective. Since ∆n is finitely generated, ϕn is an isomorphism

[FJ, Prop. 15.3]. Conclude that ϕ = lim←−ϕn is an automorphism.

Obviously, Lemma 2.3 holds for Z ′ω =
⋃

e∈Eω
Γe ∪ {y′0, y′1, y′2, . . .} and we have

〈ρ(y′0), ρ(y′1), ρ(y′2), . . .〉 = 〈ρ(y1), . . . , ρ(yk), ρ(z1), . . . , ρ(zm)〉 = A.

Lemma 2.5: Suppose that Γ satisfies Assumption 1.5. Let H be a closed subgroup of

∆ω which is isomorphic to Γ. Then
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(a) there exists e ∈ Eω such that H is conjugate to Γe,

(b) if Hx = H for some x ∈ ∆ω, then x ∈ H, and

(c) For a closed subset E0 of Eω let ∆0 be the closed subgroup of ∆ω generated by

Yω and by Γe, e ∈ E0. If H is a closed subgroup of ∆ω which is isomorphic to Γ

and H ∩∆0 6= 1, then H ≤ ∆0.

(d) if H ′ 6= H is another closed subgroup of ∆ω which is isomrophic to Γ, then

H ∩H ′ = 1.

Proof: In the notation of Assumption 1.5(d) there exists n0 such that for each n ≥ n0,

Γ is a quotient of ϕn(H). Hence, by Assumption 1.5(d), ϕn(H) is conjugate to Γen

for some en ∈ En. Now use standard limit arguments to find e ∈ Eω such that H is

conjugate to Γe. Parts (b), (c), and (d) follow now also by standard limit arguments

from parts (a), (b), and (c), respectively, of Lemma 1.7.

For each positive integer n the map e 7→ ψe maps the finite set En injectively into

Hom(Γ,∆n). For various n these maps are compatible with the maps πn,m. Hence,

taking the inverse limit, the map e 7→ ψe maps Eω homeomorphically onto the closed

subset Ψω = {ψe| e ∈ Eω} of Hom(Γ,∆ω). As in the proof of Lemma 1.7(d) the first

statement of the following Lemma is a reinterpretation of Lemma 2.5:

Lemma 2.6: The set Ψω is a closed system of representatives of the (∆ω,Aut(Γ))-

equivalent classes of Embd(Γ,∆ω), and Embd(Γ,∆ω) is a closed subset of Hom(Γ,∆ω).

Proof: The map (e, z, µ) 7→ ψzµ
e maps the compact space Eω×∆ω×Aut(Γ) continuously

onto Embd(Γ,∆ω). Hence Embd(Γ,∆ω) is closed.
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3. The Γ-structure ∆ω.

Let Γ be a finitely generated profinite group. Recall that a weak Γ-structure is a

system G = 〈G,X, d〉 where G is a profinite group, X is a Boolean space on which G

continuously acts, and d: X → Hom(Γ, G) is a continuous map such that d(xg) = d(x)g

for each x ∈ X and g ∈ G [HJ4, Definition 1.1]. Sometimes we denote X by X(G). The

system G is a Γ-structure if in addition, for each x ∈ X and g ∈ G, xg = x implies

g = 1 (i.e., the action of G on X is regular.)

A weak Γ-structure G = 〈G,X, d〉 is said to be finite if both G and X are finite.

Let H = 〈H,Y, d〉 be another weak Γ-structure. A morphism ϕ: H → G is a pair

consisting of a homomorphism ϕ: H → G and a continuous map ϕ: Y → X such that

ϕ(yh) = ϕ(y)ϕ(h) and d(ϕ(y)) = ϕ ◦ d(y) for each y ∈ Y and h ∈ H. We call ϕ an

epimorphism if both ϕ: H → G and ϕ: Y → X are surjective.

Consider now the closed subset Xω = {ψz
e | e ∈ Eω, z ∈ ∆ω} of Embd(Γ,∆ω).

The action of ∆ω on Xω is regular: If ψz = ψ for ψ ∈ Xω and z ∈ ∆ω, then z belongs

to the centralizer of ψ(Γ) in ∆ω. By Lemma 2.5(b), z belongs to the center of ψ(Γ),

hence, by Assumption 1.5(c), z = 1. Thus ∆ω = 〈∆ω, Xω, inclusion〉 is a Γ-structure.

Moreover, by Lemma 2.6, Ψω is a closed system of representatives for the ∆ω-classes of

Xω. We show that ∆ω is free on Ψω ∪· Yω.

Lemma 3.1: Let G = 〈G,X, d〉 be a weak Γ-structure. Let f0: Yω → G and f1: Ψω → X

be continuous maps such that f0(1) = 1. Then there exists a unique morphism ϕ: ∆ω →

G which coincides with f0 on Yω and with f1 on Ψω and such that ϕ ◦ ψe = d(f1(ψe))

for each e ∈ Eω.

Proof: Suppose that ϕ exists. Then its value at each element of Zω ((1) of Section 2)

is uniquely determined. Hence the homomorphism ϕ: ∆ω → G is uniquely determined.

Since Ψω represents the ∆ω-classes of Xω the map ϕ: Xω → X is uniquely determined

by its values on Ψω and by the homomorphism ϕ: ∆ω → G. Conclude that ϕ: ∆ω → G

is uniquely determined by (f0, f1).

To prove the existence of ϕ define a map ϕ0: Zω → G that coincides with f0 on Yω

and for each e ∈ Eω the restriction of ϕ0 to Γe is the homomorphism d(f1(ψe)) ◦ ψ−1
e .
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To prove that ϕ0 is continuous it suffices to prove that ϕ0 is continuous on
⋃

e∈Eω
Γe.

Indeed, let N be an open normal subgroup of G. Since d ◦ f1: Ψω → Hom(Γ, G)

is a continuous map there exists a positive integer n such that for each e, e′ ∈ Eω

(1) ψπn(e) = ψπn(e′) implies d(f1(ψe)) ∼= d(f1(ψe′)) modN.

It suffices to prove for this n and for e, e′ ∈ Eω with e′ 6= 1 that

(2) z ∈ Γe, z
′ ∈ Γe′ and πn(z) = πn(z′) 6= 1 imply ϕ0(z) ∼= ϕ0(z′) modN.

Indeed, the assumption of (2) implies that Γπn(e) ∩ Γπn(e′) 6= 1. Hence, by Lemma

1.7(d), πn(e) = πn(e′), and therefore ψπn(e) = ψπn(e′). Thus

ψ−1
e (z) = ψ−1

πn(e)(πn(z)) = ψ−1
πn(e′)(πn(z′)) = ψ−1

e′ (z′).

Conclude from (1) that

ϕ0(z) = d(f1(ψe))(ψ−1
e (z)) = d(f1(ψe))(ψ−1

e′ (z′)) ∼= d(f1(ψe′))(ψ−1
e′ (z′)) ∼= ϕ0(z′) modN,

as desired.

By Lemma 2.3, ϕ0 extends to a homomorphism ϕ0: ∆ω → G. Since d(f1(ψe)) =

ϕ0 ◦ ψe for each e ∈ Eω conclude from [HJ4, Lemma 2.7] that the pair (ϕ0, f1) extends

to a morphism ϕ: ∆ω → G of weak Γ-structures.

Lemma 3.2 ([H, Lemma 1.9]): Let f0 be a continuous map from a closed subset C of a

Boolean space E into a finite discrete space X. Then f0 extends to a continuous map

f : E → X.

Notation 3.3: Consider a closed subset E0 of Eω and a closed subset Y0 of Yω that

contains 1. Let Ψ0 = {ψe| e ∈ E0}, ∆0 = 〈Γe, y| e ∈ E0, y ∈ Y0〉 and X0 = {ψz
e | e ∈

E0, z ∈ ∆0}. Then ∆0 = 〈∆0, X0, inclusion〉 is a sub-Γ-structure of ∆ and Ψ0 is a

closed system of representatives for the ∆0-classes of X0.

The following generalization of Lemma 3.2 may be interpreted as saying that the

sub-Γ-strucure ∆0 is free on Ψ0 ∪· Y0.

20



Proposition 3.4: In notation 3.3 let G = 〈G,X, d〉 be a weak Γ-structure. Suppose

that f0: Y0 → G and f1: Ψ0 → X are continuous maps such that f0(1) = 1. Then there

exists a unique morphism ϕ: ∆0 → G that coincides with f0 on Y0 and with f1 on Ψ0,

and ϕ ◦ ψe = d(f1(ψe)) for each e ∈ E0.

Proof: The uniqueness of ϕ is proved exactly as in the first paragraph of the proof of

Lemma 3.1.

We prove the existence of ϕ first for finite X. In this case f0 extends to a con-

tinuous map f0ω: Yω → G and f1 extends to a continuous map f1ω: Ψω → X (Lemma

3.2). Then Lemma 3.1 gives a morphism ϕω: ∆ω → G that coincides with f0ω on Yω

and with f1ω on Ψω, and for each e ∈ Eω the restriction of ϕω to Γe is d(f1ω(ψe))◦ψ−1
e .

The restriction of ϕω to ∆0 is the desired morphism ϕ.

In the general case present G as the inverse limit of finite weak Γ-structures:

G = lim←−Gi with Gi = 〈Gi, Xi, di〉, i ∈ I [HJ4, Lemma 1.3]. For each i ∈ I let

ρi ∈ G → Gi be the associated morphism and let fti = ρi ◦ ft, t = 0, 1. By the

preceding paragraph there exists a unique morphism ϕi: ∆0 → Gi that coincides with

f0i on Y0 and with f1i on Ψ0, and for each e ∈ Ψ0 the restriction of ϕi to Γe is

d(f1i(ψe)) ◦ ψ−1
e . If j ∈ I is greater than i, then the uniqueness of ϕi implies that

ϕi = ρji ◦ ϕj , where ρji: Gj → Gi is the associated morphism. Therefore, the ϕi’s

define a morphism ϕ: ∆0 → G, as stated in the proposition.
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4. Γ-Projective groups.

The main result of this section is Proposition 4.4, which consitutes the third step in the

proof of the Realization Theorem.

Let Γ be a profinite group that satisfies Assumption 1.5. A Γ-embedding prob-

lem for a profinite group G is a pair (ϕ: G→ A, π: B → A), where π is an epimorphism

of profinite groups and ϕ is a homomorphism such that ϕ◦Embd(Γ, G) ⊆ π◦Hom(Γ, B).

The problem is finite if B is finite. A solution to the problem is a homomorphism

γ: G → B such that π ◦ γ = ρ. We call G Γ-projective if Embd(Γ, G) is closed in

Hom(Γ, G) and if each finite Γ-embedding problem for G is solvable. By the second

paragraph of Section 1, this definition is equivalent to the one given in [HJ4, §4]. In the

case Γ = G(Qp) we follow the convention of [HJ4] and refer to “G(Qp)-projective” as

p-adically projective.

An embedding problem for a Γ-structure G = 〈G,X, d〉 is a pair (ϕ: G →

A, π: B→ A) of morphisms of weak Γ-structures such that π is a cover (i.e., π: B → A

is an epimorphism, π: X(B) → X(A) is a surjective map and for each x, x′ ∈ X(B)

that satisfy π(x) = π(x′) there exists b ∈ B such that xb = x′.) The problem is finite if

B is a finite structure. A solution to the problem is a morphism γ: G→ B such that

π ◦ γ = ϕ. Finally, G is said to be projective if each finite embedding problem for G

is solvable.

Lemma 4.1: Let π: B→ A be an epimorphism of weak finite Γ-structures. In Notation

3.3, let ϕ: ∆0 → A be a morphism. Then there exists a morphism γ: ∆0 → B such

that π ◦ γ = ϕ. In particular ∆0 is a projective Γ-structure and ∆0 is a Γ-projective

group.

Proof: The second part of the last statement follows from the first one by Proposition

5.4(a) of [HJ4]. To prove the existence of γ in the first statement extend ϕ first, as in the

second part of the proof of Proposition 3.4, to a morphism ϕω: ∆ω → A. By Lemma

2.2 there exists a continuous map γ0: Yω → B such that γ0(1) = 1 and π ◦ γ0 = ϕω

on Yω. By Lemma 2.1(c) there exists a continuous map γ1: Ψω → X(B) such that

π ◦ γ1 = ϕω. Extend (γ0, γ1) to a morphism γω: ∆ω → B whose restriction to Γe is
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γ1(ψe) ◦ψ−1
e , for each e ∈ Eω (Lemma 3.1). The uniqueness part of Lemma 3.1 applied

to the morphisms from ∆ω to A assures that π ◦ γω = ϕω. The restriction γ of γω to

∆0 is a morphism which satisfies π ◦ γ = ϕ, as desired.

At this point we tie up the discussion that started in Section 2 with the universal

Γ-groups of Section 1.

Proposition 4.2: The group ∆ω is Γ-universal. If G is a Γ-universal group of rank

ℵ0, then Embd(Γ, G) is closed in Hom(Γ, G).

Proof: The second statement follows from the first one by Lemma 1.1. So, we have

only to prove that every proper Γ-embedding problem for ∆ω is properly solvable. Let

π: B → A be an epimorphism of finite groups. Let I be a (B,Aut(Γ))-subdomain of

Hom(Γ, B) and let ϕ: ∆ω → A be an epimorphism such that π ◦ I = ϕ ◦ Embd(Γ,∆ω).

Denote the subset of all β ∈ I such that π ◦ β ∈ ϕ ◦ Ψω by I0. Let I1 = {βb| β ∈

I0, b ∈ B}. Then B = 〈B, I1, inclusion〉 and A = 〈A, π ◦ I1, inclusion〉 are finite weak

structures. Also π naturally extends to an epimorphism π: B → A and ϕ naturally

extends to an epimorphism ϕ: ∆ω → A.

Change Yω if necessary to assume that 〈ϕ(Yω)〉 = A (Lemma 2.4). By Lemma 2.2

there exists a continuous map γ0: Yω → B such that π◦γ0 = ϕ on Yω, B = 〈γ0(Yω)〉 and

γ0(1) = 1. As π ◦ I0 = ϕ ◦Ψω, Lemma 2.1(c) gives a continuous surjection γ1: Ψω → I0

such that π ◦ γ1 = ϕ on Ψω.

By Lemma 3.1 there exists a morphism γ: ∆ω → B which coincides with γ0 on

Yω and with γ1 on Ψω and such that for each e ∈ Eω the restriction of γ to Γe is

γ1(ψe) ◦ ψ−1
e .

The homomorphism γ: ∆ω → B is surjective. Obviously π ◦ γ = ϕ on Yω. Also,

for e ∈ Eω we have π ◦ γ = π ◦ γ1(ψe) ◦ψ−1
e = ϕ ◦ψe ◦ψ−1

e = ϕ on Γe. Hence π ◦ γ = ϕ

on ∆ω.

Use Lemma 2.6 to check that I0 = γ1(Ψω) ⊆ γ ◦ Embd(Γ,∆ω) ⊆ I. By construc-

tion, I0 contains representatives for the (B,Aut(Γ))-equivalence classes of I. Conclude

that γ ◦ Embd(Γ,∆ω) = I. It follows that ∆ω is Γ-universal.

Lemma 4.3: Let G be a Γ-projective group. Then Embd(Γ, G) has a closed system
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Z of representatives to its (G,Aut(Γ))-classes. Also, for each such Z, and with X =

{ζg| ζ ∈ Z, g ∈ G}, G = 〈G,X, inclusion〉 is a projective Γ-structure and D(Γ, G) =

{ξ(Γ)| ξ ∈ X}.

Proof: By [HJ4, Lemma 5.4(b)], Hom(Γ, G) has a closed subset X which is closed under

the action of G such that {ψ(Γ)| ψ ∈ X} = D(Γ, G). Moreover, for each ψ,ψ′ ∈ X,

ψ(Γ) = ψ′(Γ) if and only if there exists g ∈ ψ(Γ) such that ψg = ψ′. By Assumption

1.5(c), the action of G on X is regular. Hence X has a closed system Z of representatives

for its G-classes [HJ4, Lemma 2.4]. The system Z represents the (G,Aut(Γ))-classes of

Embd(Γ, G).

Conversely, if we start from Z and define X as in the Lemma, then [HJ4, Lemma

5.4(b)] states that G is a projective Γ-structure.

Proposition 4.4: Let G be a Γ-projective group of rank at most ℵ0. Let A be a finite

group. Suppose that π: G→ A and ρ: ∆ω → A are epimorphisms such that

(1) π ◦ Embd(Γ, G) ⊆ ρ ◦ Embd(Γ,∆ω).

Then there exists an embedding γ: G→ ∆ω such that ρ ◦ γ = π.

Moreover, Eω has a closed subset E0 such that γ(G) is contained in the closed

subgroup ∆0 generated by Yω and by the groups Γe with e ∈ E0. Also, γ(G) has

a normal complement N in ∆0 such that for each H ∈ D(Γ,∆0) there exists H ′ ∈

D(Γ, γ(G)) with NH = NH ′.

Proof: Change Yω if necessary to assume that

(2) 〈ρ(Yω)〉 = A

(Lemma 2.4). Next choose a closed system Z of representatives of the (G,Aut(Γ))-

equivalent classes of Embd(Γ, G) (Lemma 4.3). The rest of the proof brakes into two

parts.

Part A: Replacing Z. Let α ∈ π ◦Z. By (1) and by Lemma 2.6 there exist ψα ∈ Ψω,

dα ∈ ∆ω and µα ∈ Aut(Γ) such that α = ρ ◦ψdαµ−1
α

α = (ρ ◦ψα)ρ(dα)µ−1
α . Choose gα ∈ G
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such that π(gα) = ρ(dα)−1. Then

(3) απ(gα)µα ∈ ρ ◦Ψω.

As Hom(Γ, A) is a discrete space, the set Zα = {ζ ∈ Z| π ◦ ζ = α} is open-closed in

Z. The map ζ 7→ ζgαµα maps Zα homeomorphically onto Z ′α = Zgαµα
α . Hence Z =⋃

· α∈π◦Z Zα is homeomorphic to Z ′ =
⋃
· α∈π◦Z Z

′
α. In particular Z ′ is a closed system

of representatives for the (G,Aut(Γ))-classes of Embd(Γ, G). Moreover, if ζ ∈ Zα, then

by (3), π ◦ ζgαµα = απ(gα)µα ∈ ρ ◦Ψω. It follows that π ◦Z ′ ⊆ ρ ◦Ψω. Replace therefore

Z by Z ′ if necessary to assume

(4) π ◦ Z ⊆ ρ ◦Ψω.

Let now X = {ζg| ζ ∈ Z, g ∈ G}. By Lemma 4.3, G = 〈G,X, inclusion〉 is a

projective Γ-structure and Z is a closed system of representatives for the G-classes of

X.

Part B: Construction of γ. Use (2) and apply Lemma 2.2 to construct a continuous

map θ0: Yω → G such that π ◦ θ0 = ρ on Yω, θ0(1) = 1 and 〈θ0(Yω)〉 = G.

Since rank(G) ≤ ℵ0, the space Z is an inverse limit of a sequence of finite discrete

spaces. Apply Lemma 2.1(b) on the maps π: Z → Hom(Γ, A) and ρ: Ψω → Hom(Γ, A).

By (4) there exists a continuous injective map θ′1: Z → Ψω such that ρ ◦ θ′1 = π on

Z. In particular Ψ0 = θ′1(Z) is a closed subset of Ψω. Let θ1: Ψ0 → Z be the inverse

homeomorphism to θ′1. Now consider the sets E0 = {e ∈ Eω| ψe ∈ Ψ0}, ∆0 = 〈Γe, y| e ∈

E0, y ∈ Yω〉, and X0 = {ψz
e | e ∈ E0, z ∈ ∆0}. Then ∆0 = 〈∆0, X0, inclusion〉 is a

Γ-structure and Ψ0 is a closed system of representatives for the ∆0-classes of X0. Apply

Proposition 3.4 to extend the pair (θ0, θ1) to a morphism θ: ∆0 → G such that for each

e ∈ E0 the restriction of θ: ∆0 → G to Γe is θ1(ψe) ◦ ψ−1
e . It satisfies π ◦ θ = ρ on

∆0. Also, θ: ∆0 → G is an epimorphism and θ: Ψ0 → Z is bijective. So, θ is a cover.

In particular, the homomorphism θ: ∆0 → G maps each H ∈ D(Γ,∆0) isomorphically

onto some H ∈ D(Γ, G).

Since G is projective θ: ∆0 → G has a section γ [HJ4, Lemma 5.2]. It satisfies

ρ ◦ γ = π. In particular γ(G) ≤ ∆0 and N = Ker(θ) is a normal complement of γ(G)
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in ∆0. If H ∈ D(Γ,∆0) and H ∈ D(Γ, G) are as before, then γ(H) ∈ D(Γ, γ(G))

and Nγ(H) = NΓe. The embedding γ: G → ∆ω satisfies the requirements of the

proposition.

Corollary 4.5: let G be a Γ-projective group of rank at most ℵ0. Then G can be

embedded in each of the groups De,m with e ≥ 1 and m ≥ 2.

Proof: Take A = 1 in Proposition 4.4 and observe that since Embd(Γ,∆ω) 6= ∅, condi-

tion (1) holds. HenceG can be embdedded in ∆ω. By Proposition 4.2, ∆ω is Γ-universal.

As there is a unique Γ-universal group of rank ℵ0 (Lemma 1.1), ∆ω is isomorphisc to a

closed subgroup of De,m (Proposition 1.8). Hence, so is G.

5. Subgroups of Γ-projective groups.

Recall that each closed subgroup of a projective group is projective [FJ, Cor. 20.14].

The same statment holds for real projective groups [HJ1, Cor. 10.5]. However, as Γ

is not isomorphic to any of its proper closed subgroup (Assumption 1.5(b)) a closed

subgroup of Γ is Γ-projective if and only if it is projective. The goal of this section

is to generalize this observation to arbitrary Γ-projective groups by giving the exact

condition for a closed subgroup of a Γ-projective group to be Γ-projective.

To this end we recall some definitions of Haran. In [H, Def. 3.1] he calls a family

X of closed subgroups of a profinite group G separated if for all distinct H1,H2 ∈ X

(1a) H1 ∩H2 = 1, and

(1b) there exist subfamilies X1,X2 ⊆ X such that X = X1∪· X2, Hi ∈ X2, and
⋃

H∈Xi
H

is closed in G for i = 1, 2.

Remark 5.1: If X is closed in Subg(G), then condition (1b) is automatically satisfied.

Indeed, since X is Boolean there exist disjoint closed subsets Xi of X such that Hi ∈ Xi

for i = 1, 2. So, all we have to prove is that if X is closed, then
⋃

H∈X H is closed in G.

Indeed, let g be in the closure of the latter set. For each open normal subgroup

N of G let XN be the set of all H ∈ X such that gN ∩ H 6= ∅. The set XN is open

and closed in X and by assumption it is nonempty. If N ′ ≤ N is another open normal

subgroup of G, then X ′N ⊆ XN . So, by compactness of X there exists H ∈ X whose
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intersection with gN is nonempty for each open normal subgroup N of G. Conclude

that g ∈ H.

Haran continues in [H, Def. 4.1] to consider an arbitrary family X of closed sub-

groups of a profinite group G and call a triple

(2) (ϕ: G→ A, π: B → A, Con(B))

a finite X -embedding problem if

(3a) α is an epimorphism of finite groups,

(3b) ϕ is a homomorphism,

(3c) Con(B) is a family of closed subgroups of B closed under inclusion and under

conjugation such that

(3d) for each H ∈ X there is a continuous homomorphism γ: H → B that satisfies

π ◦ γ = ϕ on H and γ(H) ∈ Con(B).

A solution of this problem is a homomorphism γ: G → B such that π ◦ γ = ϕ

and γ(X ) ⊆ Con(B).

Finally if G is a profinite group and X is a separated family of subgroups of

G closed under conjugation, then G is projective relative to X if every finite X -

embedding problem for G has a solution [H, Def. 4.2].

Lemma 5.2: If G is a Γ-projective group, then G is projective with respect to the

separated family D(Γ, G).

Proof: Condition (1a) is satisfied by [HJ4, Lemma 4.5(a)] and condition (1b) is satisfied

by Remark 5.1 since D(Γ, G) is a closed subset of Subg(G). So, all we have to prove is

that with X = D(Γ, G) the X -embedding problem (2) has a solution.

Indeed, let X be a closed subset of Embd(Γ, G), which is closed under the action of

G such that G = 〈G,X, inclusion〉 is a projective Γ-structure and such that D(Γ, G) =

{ξ(Γ)| ξ ∈ X} (Lemma 4.3). Choose ξ1, . . . , ξe ∈ X such that ϕ◦ξ1, . . . , ϕ◦ξe is a system

of representatives for the A-equivalence classes of the finite set X(A) = ϕ ◦X. For each

i between 1 and e choose βi ∈ Hom(Γ, G) such that ϕ ◦ ξi = π ◦βi and βi(Γ) ∈ Con(B).

Then β1, . . . , βe is a set of representative for the B-equivalence of X(B) = {βb
i | i =
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1, . . . , e; b ∈ B} and π maps {β1, . . . , βe} bijectively onto {π ◦ ξ1, . . . , ϕ ◦ ξe}. Hence

A = 〈A,X(A), inclusion〉 and B = 〈B,X(B), inclusion〉 are finite weak Γ-structures

and π: B → A is a cover. Also, ϕ: G → A is a morphism of weak Γ-structures. Since

G is projective there exists a morphism γ: G → B such that π ◦ γ = ϕ. In particular

ϕ: G → B is a homomorphism that satisfies γ ◦ ξ(Γ) ∈ Con(B) for each ξ ∈ X. It

therefore solves the given X -embedding problem.

Theorem 5.3: Let G be a Γ-projective group. Then a closed subgroup H of G is

Γ-projective if and only if for each G ∈ D(Γ, G) either G ≤ H or G ∩H is projective.

Proof: Suppose first that the condition is satisfied. Note that the topology of Subg(H)

coincides with the topology induced by that of Subg(G). Hence D(Γ,H) = D(Γ, G) ∩

Subg(H) is closed in Subg(H).

By Lemma 5.2, G is projective with respect to the family D(Γ, G). By a theorem

of Haran [H, Thm. 5.1], H is projective with respect to the family H = {G ∩H| G ∈

D(Γ, G)}. To prove that H is Γ-projective consider a finite Γ-embedding problem,

(ϕ: H → A, π: B → A), for H. It induces an H-embedding problem (ϕ: G →

A, π: B → A, Subg(B)). Indeed, let G ∈ D(Γ, G). If G ≤ H, then, by assumption,

there exists a homomorphism γ: H → B that satisfies π ◦ γ = ϕ on G. Otherwise

G ∩H is projective and the existence of γ as above is also guaranteed. Conclude that

the embedding problem has a solution and that therfore H is Γ-projective.

Conversely, suppose that H is Γ-projective. Let G be a group in D(Γ, G) which

is not contained in H. We have to prove that G ∩H is projective.

Indeed, by Lemma 5.2 and by Haran’s theorem, G ∩H is projective with respect

to the family Y = {G′ ∩ G ∩ H| G′ ∈ D(Γ,H)}. Observe that if G′ ∈ D(Γ,H), then

G′ 6= G and therefore G′ ∩ G = 1. It follows that Y = {1}. Conclude that G ∩ H is

projective.
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6. The cohomological dimension of Γ-projective groups.

We continue in this section to consider a profinite group Γ that satisfies Assumption 1.5.

Using Corollary 4.5, we prove that the cohomological dimension of each Γ-projective

group is equal to that of Γ. In particular, for Γ = G(Qp) we obtain that the cohomo-

logical dimension of every G(Qp)-projective group is 2. We deduce that G(Qp(t)) is not

G(Qp)-projective.

In order to prove these results we need an analogue of the Skolem-Löwenheim

theorem for several properties of profinite groups. We say that a closed subgroup H

of a profinite group G has at most countable corank if H is the intersection of

countably many open subgroups of G. If ϕ: H → G is a homomorphism of profinite

groups and A is a G-module, then A is an H-module and we denote the inflation map

of Hq(G,A) into Hq(H,A) by InfG
H .

Recall that for a prime l, cdl(G) ≤ n if Hq(G,A) = 0 for each q > n and each

l-primary G-module A [R, p. 200]. Since A is the direct limit of finite l-primary modules

Ai [R, p. 202] and since Hq(G,A) = lim
→
Hq(G,Ai) [R, p. 114], it suffices to consider

only finite l-primary G modules. Each finite l-primary module A can be embedded in

the induced module IndG
1 A which has trivial cohomology [R, p. 146]. Using the method

of dimension shifting one can then prove that for cdl(G) ≤ n to hold it suffices that

Hn+1(G,A) = 0 for each finite l-primary G-module A.

Lemma 6.1: Let l be a prime, G a profinite group, and K be a closed subgroup of

G of at most countable corank. Then G has a closed normal subgroup N of at most

countable corank which is contained in K such that cdl(G/N) ≤ cdl(G).

Proof: If cdl(G) = ∞ take N = K. So, suppose that cdl(G) = q − 1 for some positive

integer q. Present K as an intersection K =
⋂∞

n=1Kn of open subgroups of G. Induc-

tively define a descending sequence G ≥ N1 ≥ N2 ≥ · · · of open normal subgroups of

G and for each n order the finite l-primary G/Nn-modules in a sequence An1, An2, . . .

such that for each n, Nn ≤ Kn, and the module An =
⊕

1≤i,j≤nAij satisfies

(1) InfG/Nn

G/Nn+1
Hq(G/Nn, An) = 0.
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Indeed, suppose that Ni and Aij has already been constructed for each i ≤ n and

each j. Then lim
→
Hq(G/M,An) = Hq(G,An) = 0, where M ranges over all normal

subgroups which are contained in Nn and the maps between the cohomology groups

are the corresponding inflations [R, p. 114]. As Hq(G/Nn, An) is a finite group, G

has an open normal subgroup Nn+1 ≤ Kn+1 ∩ Nn such that InfG/Nn

G/Nn+1
x = 0 for each

x ∈ Hq(G/Nn, An). Now order the countably many finite l-primary modules of G/Nn+1

in a sequence An+1,1, An+2,2, . . . .

We have to prove that the closed normal subgroup N =
⋂∞

n=1Nn of G satisfies

Hq(G/N,A) = 0 for each finite l-primary G/N -module A. Indeed, since the action

of G/N on A is continuous there exists a positive integer i such that the action of

Ni/N on A is trivial. Thus, A is a G/Ni-module and therefore there is j such that

A = Ai,j . Let n = max{i, j}. Then A is a direct summand of An. Since Hq(G/Nn, ·) is

an additive functor [R, p. 118], (1) implies that InfG/Nn

G/Nn+1
Hq(G/Nn, A) = 0. Conclude

that Hq(G/N,A) = 0.

Lemma 6.2: Let G be a profinite group and let l be a prime. Then G has a closed

normal subgroup N0 of at most countable corank such that cdl(G/N) ≥ cdl(G) for each

closed normal subgroup N of G contained in N0.

Proof: Let S be the set of all positive integers q such that cdl(G) ≥ q. For each

q ∈ S there exists a finite l-primary module Aq such that Hq(G,Aq) 6= 0. Choose a

closed normal subgroup Nq of G which acts on Aq trivially. Since lim
→
Hq(G/M,Aq) =

Hq(G,Aq) 6= 0, where M ranges over all open normal subgroups of G which are con-

tained in Nq, there exists an open normal subgroup Mq contained in Nq such that

Hq(G/M,Aq) 6= 0 for each closed normal subgroup M of G which is contained in Mq.

The closed normal subgroup N0 =
⋂

q∈S Mq satisfies Hq(G/N,Aq) 6= 0 and therefore

cdl(G/N) ≥ q for each closed normal subgroup N of G contained in N0 and for each

q ∈ S. Conclude that cdl(G/N) ≥ cdl(G) for each closed normal subgroup N ≤ N0.

Proposition 6.3: Let G be a profinite group. Let K be a closed subgroup of G of

at most countable corank. Then G has a closed normal subgroup N contained in K
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of at most countable corank such that cdl(G/N) = cdl(G) for each prime l. Moreover,

if N ≥ M1 ≥ M2 ≥ · · · is a decreasing sequence of closed normal subgroups such that

cdl(G/Mi) = cdl(G) for each l and i, then their intersection M has the same property.

Proof: List the set of primes in a sequence l1, l2, l3, . . . . Combine lemmas 6.1 and 6.2

to inductively produce a descending sequence K ≥ N1,1 ≥ N1,2 ≥ · · ·, of closed normal

subgroups of at most countable corank such that cdlj (G/N1j) ≤ cdlj (G) and such that

cdlj (G/N) ≥ cdlj (G) for each closed normal subgroup N ≤ N1j and for j = 1, 2, 3, . . . .

Let N1 =
⋂∞

j=1N1j . Use Lemma 6.1 to inductively construct a descending se-

quence N1 ≥ N2,1 ≥ N2,2 ≥ · · · of closed normal subgroups of at most countable corank

such that cdlj (G/N2j) ≤ cdlj (G) for j = 1, 2, 3, . . . .

Let N2 =
⋂∞

j=1N2j and repeat this construction for i = 1, 2, 3, . . . . In particular,

cdlj (G/Nij) ≤ cdlj (G). Take N =
⋂∞

i=1Ni. Then cdl(G/N) ≥ cdl(G) for each prime

l. Also, if l = lj , then N =
⋂∞

i=1Nij . Hence, if A is a finite l-primary G/N -module,

then it is a G/Nij-module for all large i. Thus, if q > cdl(G), then Hq(G/N) =

lim
→
Hq(G/Nij) = 0. Conclude that cdl(G/N) = cdl(G).

A similar argument proves the last statement of the proposition.

It is a consequence of Krasner’s lemma that Q̃Qp = Q̃p. The following lemma

gives an analogue of these statement for arbitrary Γ-projective groups.

Lemma 6.4: For each Γ-projective group G there exists a closed normal subgroup N

of countable rank such that for each H ∈ D(Γ, G) we have H ∩N = 1.

Proof: For a positive integer n let Γn be the intersection of all open subgroups of Γ of

index at most n. Each H ∈ D(Γ, G) has a unique open normal subgroup Hn such that

H/Hn
∼= Γ/Γn. Take an open normal subgroup M of G such that M ∩ H = Hn. If

H ′ ∈ D(Γ, G) satisfies MH ′ = MH, then H ′/M ∩H ′ ∼= MH ′/M = MH/M ∼= H/Hn
∼=

Γ/Γn and therefore M ∩ H ′ = H ′
n. Use the compactness of D(Γ, G) to conclude that

there are finitely many open normal subgroups M1, . . . ,Mm of G such that for each

H ∈ D(Γ, G) there exists i between 1 and m such that Mi ∩H = Hn. The open normal

subgroup Nn = M1 ∩ · · · ∩ Mm satisfies Nn ∩ H ≤ Hn for each H ∈ D(Γ, G). Let
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N =
⋂∞

n=1Nn. As
⋂∞

n=1 Γn = 1, also
⋂∞

n=1Hn = 1 for each H ∈ D(Γ, G). Conclude

that N ∩H = 1 for each H ∈ D(Γ, G).

We say that a finite Γ-embedding problem (ϕ̂: G → Â, π̂: B̂ → Â) of a profinite

group G dominates another finite Γ-embedding problem (ϕ: G → A, π: B → A) if

there exist homomorphisms α: Â → A and β: B̂ → B such that π ◦ β = α ◦ π̂ and

ϕ = α ◦ ϕ̂. Then every solution γ̂ of the former embedding problem gives rise to a

solution β ◦ γ̂ of the latter one.

Lemma 6.5: Let (ϕi: G→ Ai, πi: Bi → Ai) be a finite Γ-embedding problem, i = 1, 2.

Let α: A2 → A1 be a homomorphism such that α ◦ ϕ2 = ϕ1. Then there exists a finite

Γ-embedding problem (ϕ2: G→ A2, π: B → A2) which dominates the given embedding

problems.

Proof: Let B = B1 ×A1 B2 be the fibred product of B1 and B2 over A1 [FJ, Section

20.2]. Denote the projection of B onto Bi by ρi, i = 1, 2. We prove that (ϕ2: G →

A2, π2 ◦ ρ2: B → A2) is a Γ-embedding problem, which obviously dominates the two

given ones.

Indeed, for ζ ∈ Embd(Γ, G) there exists βi ∈ Hom(Γ, Bi) such that πi ◦βi = ϕi ◦ζ.

By [FJ, Prop. 20.6(b)] there exists β ∈ Hom(Γ, B) such that ρ2 ◦ β = β2 and therefore

π2 ◦ ρ2 ◦ β = ϕ2 ◦ ζ.

Lemma 6.6: Let G be a Γ-projective group and let K be a closed subgroup of at most

countable corank. Then G has a closed normal subgroup of at most countable corank

N contained in K such that G/N is Γ-projective and ν ◦Embd(Γ, G) = Embd(Γ, G/N),

where ν: G→ G/N is the canonical epimorphism.

Proof: Apply Lemma 6.4 to assume without loss that K is normal and that

(2) H ∩K = 1 for each H ∈ D(Γ, G).

Let K1,K2,K3, . . . be a sequence of open normal subgroups whose intersection is K.

We construct by induction a descending sequence, G ≥ N1 ≥ N2 ≥ N3 ≥ · · ·, of open

normal subgroups such that Nn ≤ Kn, n = 1, 2, 3, . . ., and for each i we order the finite
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Γ-embedding problems of the form (G→ G/Ni, π: B → G/Ni) in a sequence

(3) (G→ G/Ni, πij : Bij → G/Ni),

j = 1, 2, 3, . . ., such that for each n and for each i, j ≤ n there is a solution of the

Γ-embedding problem (3) which factors through G/Nn+1.

Indeed, suppose that Ni, Bij , and πij have already been constructed for i ≤ n and

for each j. Choose by Lemma 6.5 a finite Γ-embedding problem (G → G/Nn, π: B →

G/Nn) which dominates (3) for each i, j ≤ n. As G is Γ-projective, this problem has a

solution γ. Then Nn+1 = Ker(γ) ∩Kn+1 satisfies the requirements of the induction.

Let N =
⋂∞

n=1Nn. To prove that G/N is Γ-projective note first by (2) that

ν ◦Embd(Γ, G) is a closed subset of Embd(Γ, G/N). Let π: B → A be an epimorphism

of finite groups and let ϕ: G/N → A be a homomorphism such that ϕ◦ν◦Embd(Γ, G) ⊆

Hom(Γ, B). We prove that there exists a homomorphism γ: G/N → B such that

π ◦ γ = ϕ.

As the kernel of ϕ contains Ni/N for some i, we may take the corresponding fibred

product as in the proof of Lemma 6.5 and assume that A = G/Ni and that ϕ is the

canonical map. Then (ϕ ◦ ν: G→ G/Ni, π: B → G/Ni) is a Γ-embedding problem for

G. Therefore, in the above notation, B = Bij and π = πij for some j. For n = max{i, j}

the solution of this problems factors through G/Nn+1 and therefore also through G/N .

Consider the closed subset D = {ν(ζ(Γ))| ζ ∈ Embd(Γ, G)} of D(Γ, G/N). We

have proved, in the notation of [HJ4], that each finite D-embedding problem for G/N

is solvable. By [HJ4, Lemma 4.5], G/N is Γ-projective, D = D(Γ, G), and therefore

ν ◦ Embd(Γ, G) = Embd(Γ, G/N).

Proposition 6.7: Let G be a Γ-projective group and let K be a closed subgroup of at

most countable corank. Then G has a closed normal projective subgroup N contained

in K such that cdl(G/N) = cdl(G) for each prime l, G/N is Γ- projective, H ∩N = 1

for each H ∈ D(Γ, G), and ν ◦ Embd(Γ, G) = Embd(Γ, G/N), where ν: G → G/N is

the canonical epimorphism.

Proof: Apply Lemma 6.4 to assume that K is normal and that H ∩ K = 1 for each

H ∈ D(Γ, G). Then the same statement holds for every closed subgroup of K. Now use
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Proposition 6.3 and Lemma 6.6 to inductively construct a descending double sequence

K ≥M1 ≥ N1 ≥M2 ≥ N2 ≥ · · · of closed normal subgroups of G of at most countable

coranks such that cdl(G/Mi) = cdl(G) for each i and each prime l, the group G/Ni

is Γ-projective and the canonical homomorphism νi: G → G/Ni maps Embd(Γ, G)

bijectively onto Embd(Γ, G/Ni).

Let N =
⋂
Mi =

⋂
Ni. Proposition 6.3 states that M1 can be chosen in such a

way that cdl(G/N) = cdl(G) for each prime l

Now consider the closed subset ν ◦ Embd(Γ, G) of Embd(Γ, G/N). To prove the

last two statements of the proposition it suffices by [HJ4, Lemma 4.5(a)] to prove that

each finite embedding problem (ϕ: G/N → A, π: B → A) for which ϕ◦ν◦Embd(Γ, G) ⊆

π ◦Hom(Γ, B) has a solution.

Indeed, choose i such that Ni ⊆ Ker(ϕ). Then ϕ = ϕ̄ ◦ ν̄i, where ϕ̄: G/Ni → A is

a homomorphism and ν̄i: G/N → G/Ni is the canonical epimorphism. By assumption

ϕ̄ ◦Embd(Γ, G/Ni) = ϕ̄ ◦ νi ◦Embd(Γ, G) = ϕ ◦ ν ◦Embd(Γ, G) ⊆ π ◦Hom(Γ, B). Since

G/Ni is Γ-projective there exists a homomorphism γi: G/Ni → B such that π ◦ γi = ϕ̄.

Hence γi ◦ ν̄i solves the above embedding problem.

Finally observe by Theorem 5.3 that N is Γ-projective. Since D(Γ, N) is empty,

N is projective.

Our main result of this section answers a questions of Gregory Cherlin.

Theorem 6.8: If G is a Γ-projective group and D(Γ, G) 6= ∅, then cdl(G) = cdl(Γ)

for each prime l that divides the order of Γ. If l does not divide the order of Γ, then

cdl(G) ≤ 1. In particular, if G is a p-adically projective group and D(G(Qp), G) 6= ∅,

then cdl(G) = 2 for each prime l.

Proof: Assume, by Proposition 6.7, that rank(G) ≤ ℵ0. By assumption G has a closed

subgroup H which is isomorphic to Γ. By Corollary 4.5, G is isomorphic to a closed

subgroup of D1,2. Hence, by [R, p. 204], cdl(Γ) ≤ cdl(G) ≤ cdl(D1,2). Thus, it suffices

to prove that if q = max{2, 1 + cdl(Γ)}, then Hq(D1,2, A) = 0 for each finite l-primary

D1,2-module A.

But, as D1,2
∼= Γ ∗ F̂2 and since cdl(F̂2) = 1 a theorem of Neukirch [N2, Satz 4.2]
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states that

Hq(D1,2, A) ∼= Hq(Γ, A)⊕Hq(F̂2, A) = 0.

Let C be an algebraically closed field of characteristic zero and let t be a transcen-

dental element over C. It is a well known consequence of Riemann existence theorem

that G(C(t)) is a free profinite group [R, p. 80]. In particular G(C(t)) is projective

[FJ, Example 20.13]. Krull and Neukirch [KR] have examined the action of the complex

conjugate on G(C(t)). Their results have been generalized to an arbitrary real closed

field R by Schuppar [Sp] and by [DR]. As a result [HJ1, Thm. 4.1] proves that G(R(t))

is a real free profinite group and in particular G(R(t)) is real projective [HJ1, Cor. 3.3].

The analogy between the real and the p-adic case has gone a long way. Surprisingly

enough Theorem 6.8 obstructs it to extend to the absolute Galois group of Qp(t):

Theorem 6.9: Let K be a formally p-adic p-adically closed field and let t be a tran-

scendental element over K. Then G(K(t)) is not p-adically projective. In particular

the group G(Qp(t)) is not p-adically projective.

Proof: The group G(K) is p-adically projective [HJ4, Thm. 15.1]. For each prime l

Theorem 6.8 implies that cdl(G(K)) = 2. Hence cdl(G(K(t)) = 3 [R, p. 272]. Conclude

from Theorem 6.8 that G(K(t)) is not p-adically projective.
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7. Algebraic extensions of pseudo closed fields.

Weil descent has been used to prove that algebraic extensions of PAC or PRC are again

PAC or PRC, respectively [FJ, Cor. 10.7, and P, p. 148]. This principle fails in the

PpC case. The difficulty is caused by the following situation: L/K algebraic, K a p-

adic closure of K, and L 6⊆ K, LK 6= K̃. Obviously this will not occur when K is the

algebraic closure or a real closure of K. However, the method used in a different case

by Heinemann and Prestel [HP, §2] can be extended to a general result which contains

the correct version of this principle in the PpC case as well.

We take as our setting a field K with a distinguished family K of separable alge-

braic extensions of K, playing the role of all admissible “closures” of K. We will always

tacitly assume that K is closed under the action of G(K). We say that K is pseudo

K-closed (PKC) if every nonempty variety V defined over K with simple point over

each K ∈ K has a simple K-rational point. Here and in the sequel we use the term

“variety” to mean that V is absolutely irreducible.

If for each K ∈ K and each variety V defined over K the existence of a simple

K-point of V implies that V (K) is Zariski dense in V , then a necessary and sufficient

condition for K to be PKC is:

Every nonempty variety V defined over K with a K-simple rational point for each

K ∈ K has a K-rational point.

In fact, if the latter condition is satisfied and V is a nonempty variety defined over K,

then V (K) is Zariski-dense in V , in particular Vsim(K) 6= ∅. Indeed, if U is a Zariski

open nonempty set of V , then we may replace it, if necessary, by a complement of a

hypersurface defined over K. Then U is isomorphic to a variety (even affine) defined

over K. By assumption, for each K ∈ K, Usim(K) 6= ∅. Hence U(K) 6= ∅.

The assumption made in the last paragraph about K holds if K is real closed (a

standard consequence of [L, p. 282]) or if K is p-adically closed [PR, p. 145]. This gives

the following examples of PKC fields.

Examples 7.1: (a) If K ⊆ {Ks}, then K is PAC.

(b) If K is the family of all real closures of K, then K is PRC.
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(c) If K is the family of all p-adic closures of K, then K is PpC.

Given a finite separable extension E of a field K, Weil’s descent method uniformly

associates with each variety V defined over E a variety W defined over K: Suppose that

[E : K] = d and denote the d distinct K-embeddings of E into K̃ by σ1, . . . , σd. Choose

a basis w1, . . . , wd for E/K. For each i between 1 and d define a map λi: And → An at

a point y = (yjk| 1 ≤ j ≤ d, 1 ≤ k ≤ n) by λi(y) = xi, with

(1) xik =
d∑

j=1

(σiwj)yjk.

The map Λ = (λ1, . . . , λd) from And into An×· · ·×An (d factors) is a linear isomorphism.

Moreover, for each variety V defined over E in An there exists a variety W defined over

K in And such that Λ(W ) = σ1V × · · · × σdV [FJ, Prop. 9.34]. Assume without loss

that σ1 = 1. Then λ1 maps W (K) into V (E). Moreover, if y ∈Wsim, then x = Λ(y) is

simple on σ1V × · · · × σdV and therefore x1 ∈ Vsim. Hence

(2) Wsim(K) 6= ∅ implies Vsim(E) 6= ∅.

Consider the family K(E) = {KE| K ∈ K} of separable algebraic extensions of E. It is

closed under the action of G(E).

Lemma 7.2: In the above notation suppose that K is pseudo closed with respect to a

family K of separable algebraic extensions. Then E is pseudo closed with respect to

K(E).

Proof: Let V be a variety defined over E such that Vsim(E) 6= ∅ for each E ∈ K(E).

Consider K ∈ K. We prove that Wsim(K) 6= ∅.

To do so choose a primitive element z for E/K and let f = irr(z,K). Decompose

f into irreducible factors over K: f = f1 · · · fm and let dr = deg(fr), r = 1, . . . ,m.

For each r between 1 and m choose τr ∈ G(K) such that fr(τrz) = 0. Then choose

ρr1, . . . , ρr,dr ∈ G(K) such that ρr1τrz, . . . , ρr,drτrz are the roots of fr. Since K is closed

under the action of G(K), Er = τ−1
r (K)E belongs to K(E) and therefore there exists

ar ∈ Vsim(Er). Also, τr(Er) = K · τrE.
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The restriction of the set {ρrsτr| r = 1, . . . ,m, s = 1, . . . , dr} to E coincides

with {σ1, . . . , σd}. Hence, the simple point (ρrsτrar)r,s of σ1V × · · · × σdV uniquely

corresponds to a simple point b of W such that for k = 1, . . . , n

(3) ρrsτrark =
d∑

j=1

(ρrsτrwj)bjk, r = 1, . . . ,m; s = 1, . . . , dr.

To prove that b is K-rational apply ρ ∈ G(K) on (3):

(4) ρρrsτrark =
d∑

j=1

(ρρrsτrwj)ρbjk, r = 1, . . . , d; s = 1, . . . , dr.

Observe that τrark, τrwj ∈ K · τrE = K(τrz) and ρr1, . . . , ρr,dr are the distinct K-

embeddings of K(τrz) into K̃. Hence for each k and r, the set of (d+ 1)-tuples

(ρρrsτrark, ρρrsτrw1, . . . , ρρrsτrwd), s = 1, . . . , dr

is a permutation of the set

(ρrsτrark, ρrsτrw1, . . . , ρrsτrwd), s = 1, . . . , dr.

It follows that the unique solution (b1k, . . . , bdk) of the linear system (3) coincides with

that of (4). So ρb = b and b is K-rational.

By assumption W has a simple K-rational point. By (2), Vsim(E) 6= ∅. Conclude

that E is PK(E)C.

To generalize Lemma 7.2 to infinite extensions we have to introduce a topology on

the family of all separable algebraic extensions of K. The topology of the latter space

is dual to that of all closed subgroups of G(K). Thus, a basic open neighborhood of a

separable algebraic extension L of K is determined by a finite Galois extension N of K.

It is the set of all separable algebraic extensions whose intersections with N is L ∩N .

In particular the topology is comapct. For the rest of this section we make the following

assumtion:

Assumption 7.3: The family K is closed in the space of all separable algebraic exten-

sions of K.

Consider also a separable algebraic extension L of K.
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Lemma 7.4: The field L is pseudo-K(L)-closed.

Proof: Assume that L is not pseudo closed with respect to K(L). Then there exists a

variety V defined over L which has a simple L-rational point for each L ∈ K(L) but

has no simple L-rational point. Let K ′ be a finite extension of K contained in L over

which V is defined. Then Vsim(E) = ∅ for each finite extension E of K ′ contained in L.

Let S(E) = {K ∈ K| Vsim(KE) = ∅}. By Lemma 7.2, S(E) is nonempty.

Suppose that M belongs to the closure of S(E) but not to S(E). Then M ∈ K

and therefore Vsim(ME) 6= ∅ (otherwise M ∈ S(E)). Take a finite extension M0 of

K contained in M such that Vsim(M0E) 6= ∅. Let N be a finite Galois extension of

K that contains M0E. Then there exists K ∈ S(E) such that K ∩ N = M ∩ N . In

particular M0E ⊆ KE and therefore Vsim(KE) 6= ∅, a contradiction. Conclude that

S(E) is closed.

If F is a finite extension of E contained in L, then S(F ) ⊆ S(E). By compactness

there exists K which belongs to S(E) for all E. Then KL ∈ K(L) but Vsim(KL) = ∅,

a contradiction. Conclude that L is pseudo-K(L)-closed.

Consider now the family L = {L ∈ K| L ⊆ L}. It is closed under the action of

G(L) and closed in the space of all separable algebraic extensions of L. We give some

conditions for L to be PLC.

Lemma 7.5: L is PLC if and only if KL is PL(K)C for each K ∈ K.*

Proof: Suppose first that L is PLC. Consider K ∈ K and let V be a variety defined

over KL such that Vsim(LK) 6= ∅ for each L ∈ L. As LKL = LK and since by, Lemma

7.4, KL is PL(KL)C, this implies that Vsim(KL) 6= ∅. Conclude that KL is PL(K)C.

Conversely, suppose that

(5) KL is PL(K)C for each K ∈ K.

Let V be a variety defined over L such that Vsim(L) 6= ∅ for each L ∈ L. Given

K ∈ K, this implies that VsimLK 6= ∅ for each L ∈ L. Hence, by (5), Vsim(KL) 6= ∅.

As, L is PK(L)C (Lemma 7.4), this implies that Vsim(L) 6= ∅. Conclude that L is PLC.

* D. Haran called my attention to this lemma.
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Corollary 7.6: Each of the following conditions suffices for L to be PLC.

(a) K ∈ K implies L ⊆ K or KL = Ks,

(b) K1K2 = Ks for each K1,K2 ∈ K, K1 6= K2, and K has a Galois extension N

such that N ∩ L = K, NL = Ks and for each K ∈ K there exists L ∈ K such

that L ⊆ L and N ∩K = N ∩ L.

Proof: Assume first that condition (a) holds. Consider K ∈ K. If L ⊆ K, then K ∈ L.

Hence KL ∈ L(K) and therefore, by definition, KL is PL(K)C. If L 6⊆ K, then

KL = Ks is a PAC field [L, p. 76]. Conclude from Lemma 7.5 that L is PLC.

Now assume that condition (b) holds. We prove condition (a):

LetK be a field in K that does not contain L. ThenN∩K = N∩L for some L ∈ L.

In particular K 6= L. By Galois theory KL = K ·(N∩K)L = K ·(N∩L)L = K ·L = Ks.

Condlude from the first paragraph, L is PLC.

The converse of Corollary 7.6(a) is true under certain conditions.

Corollary 7.7: Suppose that L is PLC and satisfies the following conditions:

(a) K1,K2 ∈ K and K1 6= K2 implies that K1K2 = Ks.

(b) No proper separable algebraic extension E of a field K ∈ K is PAC unless E = Ks.

Then, for each K ∈ K, either L ⊆ K or KL = Ks.

Proof: Let K be a field in K that does not contain L. Then KL is a proper separable

algebraic extension of K. By Lemma 7.4, KL is pseudo-L(KL)-closed. If L ∈ L, then

L ⊆ L and therefore L 6= K. By (a), LK = Ks. Hence L(KL) = {LKL| L ⊆ L, L ∈

K} ⊆ {Ks}. By Example 7.1(a), KL is PAC. Conclude from (b) that KL = Ks.
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8. Algebraic extensions of PpC fields.

To apply the results of Section 7 to p-adic fields we need a special case of a theorem of

Pop [Po].

Lemma 8.1: Let E be a formally p-adic field. If G(E) ∼= G(Qp), then E is p-adically

closed.

Proof: Note first that G(Qp) is isomorphic to no proper closed subgroup of itself. Oth-

erwise Qp,alg would have a proper algebraic extension L such that G(L) ∼= G(Qp). By

a theorem of Neukirch [N1], L is p-adically closed. Hence L is isomorphic to Qp,alg. By

[FJ, Lemma 18.19], Qp,alg = L, a contradiction.

By assumption E has a p-adic closure E. Since G(E) ∼= G(Qp) the first paragraph

implies that E = E. Thus E is p-adically closed.

The following Lemma is implicit in [HJ4] (especially [HJ4, Lemma 10.3(a)]). We

give here a direct proof based on Krasner’s lemma and on Lemma 8.1.

Lemma 8.2: For a field K, the set K of all p-adic closures of K is closed in the space

of all algebraic extensions of K.

Proof: Suppose that a field E belongs to the closure of K. We show first that it is for-

mally p-adic. Otherwise there would exist x1, . . . , xn ∈ E, a polynomial f(X1, . . . , Xn)

with integral coefficients, and a positive integer a which is relatively prime to p such

that pf(γ(x1), . . . , γ(xn)) = a, where γ(X) is the Kochen operator [PR, p. 99, with O

being the localization of Z at p]. Take a finite Galois extension N of K that contains

x1, . . . , xn. By assumption, there exists K ∈ K such that K ∩N = E ∩N . In particular

x1, . . . , xn ∈ K and therefore K is not formally p-adic. This contradiction shows that

E is formally p-adic.

Now we show that G(E) and G(Qp) have the same finite quotients. Consider

a finite Galois extension F of E. Take a finite Galois extension N of K such that

F0 = F ∩ N is a Galois extension of E0 = E ∩ N and F = EF0. Take K ∈ K with

K ∩ N = E0. Then G(KF0/K) ∼= G(F0/E0) ∼= G(F/E). But G(K) ∼= G(Qp) [HJ4,

Corollary 8.6]. So, each finite quotient of G(E) is a finite quotient of G(Qp).
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Conversely, let G be a finite quotient of G(Qp). By Krasner’s Lemma [Ri, p. 197],

there exists a polynomial g ∈ Z[X] whose Galois group over Qp,alg and therefore over

every p-adically closed field is isomorphic to G. (The intersection of each p-adically

closed field with Q̃ is isomorphic to Qp,alg [PR, Thm. 3.2].) Let N be the splitting field

of g over K and take K as before. Then G(NE/E) ∼= G(NK/K) ∼= G. So G(E) and

G(Qp) have the same finite quotients.

As G(Qp) is finitely generated [S, p. III-30], G(E) ∼= G(Qp) [FJ, Prop. 15.4].

Conclude from Lemma 8.1 that E is p-adically closed.

Proposition 8.3: Let L be an algebraic extension of a PpC field K. Then L is PpC

if and only if for each p-adic closure K of K we have: L ⊆ K or KL = K̃.

Proof: Use Lemma 8.2 and apply Lemma 7.6(a) to the family K of all p-adic closures

of K to prove the “if” part of the proposition.

To prove the “only if” part we have to verify conditions (a) and (b) of Lemma

7.7.

By [HJ4, Thm. 15.1(a)], G(K) is a p-adically projective group. Therefore condition

(a) of Lemma 7.5 follows from [HJ4, Lemma 4.5(b)]. Finally, since each p-adically closed

field is Henselian [PR, Thm. 3.1], condition (b) of Lemma 7.7 is a special case of a

theorem of Frey and Prestel [FJ, Thm. 10.14].

An algebraic extension L/K is totally p-adic if L can be embedded over K in

each p-adic closure of K (Since there is a bijective correspondence between Θ-sites of a

field and the isomorphism classes of its p-adic closures this definition coincides with the

one given in [HJ4, Section 12].)

Corollary 8.4: Let L be an algebraic extension of a PpC field K. Then L is PpC if

at least one of the following conditions is satisfied:

(a) L is a totally p-adic Galois extension of K, or

(b) K has a Galois extension N such that N ∩L = K, NL = K̃ and for every p-adic

closure K of K there exists a p-adic closure L of L such that N ∩K = N ∩ L.

Proof: If (a) holds, then every p-adic closure of K contains L, and we may apply Propo-

sition 8.3. As mentioned in the proof of Proposition 8.3, condition (c) of Lemma 7.7
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holds for the family K of p-adic closures of K. Hence, if (b) holds, then L is PpC by

Lemma 7.6(b).

Corollary 8.5: Let L be a finite extension of a PpC field K. If L is PpC, then L is

contained in every p-adic closure of K

Proof: Let K be a p-adic closure of K. Then KL is a finite extension of K. Since K̃ is

an infinite extension of K it follows from Proposition 8.3 that L ⊆ K.

Example 8.6: An algebraic extension of a PpC field with p-adically projective absolute

Galois group which is not PpC. Let E be the maximal unramified extension of Qp. Then

l∞|[E : Qp] for each prime l. Hence H = G(E) is a projective group [R, p. 291] and

therefore p-adically projective. However, as E is not algebraically closed the “only if”

part of Proposition 8.3 implies that E is not PpC .

Remark 8.7: It follows easily from either Proposition 8.3 or Theorem 5.3 that a closed

subgroup H of a p-adically projecitve group G which satisfies G ≤ H or G∩H = 1 for all

G ∈ D(Γ, G) is again p-adically projective. Proposition 8.3 and Theorem 5.3 strengthen

this result in two distinct ways; the field theoretic and the group theoretic results are

not strictly comparable. The descent argument on which the proof of Proposition 8.3

is based has a parallel in the group theoretic technique introduced in [H], on which the

proof of Theorem 5.3 is based.

Remark 8.8: It is a simple observation that the family of real closures of a field is

closed. Therefore, Lemma 7.6(a) gives a proof of Prestel’s extension theorem for PRC

fields which does not use elimination of quantifiers for real closed fields.
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9. The Realization Theorem.

From now on we let the group Γ be G(Qp). Proposition 12.10 of [HJ4] states that

this group satisfies Assumption 1.5. For a field K denote the set of all embeddings

ζ: G(Qp) → G(K) such that the fixed field of ζ(G(Qp)) in K̃ is p-adically closed by

Embdp(G(Qp), G(K)). It is still an open question whether Embdp(G(Qp), G(K)) =

Embd(G(Qp), G(K)) (see [Po]). However, if K is PpC, this is the case [HJ4, Cor. 15.2].

The first step toward the Realization Theorem is recorded as the main result of

[EJ]:

Proposition 9.1: Let K be a countable Hilbertian field having e p-adic closures

K1, . . . ,Ke (not necessarily distinct). Then for almost all σσσ ∈ G(K)e+m (in the sense

of the Haar measure) the field

Kσ = K
σ1

1 ∩ · · · ∩K
σe

e ∩ K̃(σe+1, . . . , σe+m)

is PpC with e nonequivalent p-adic valutions which are induced by K
σ1
, . . . ,K

σe
and

G(Kσ) ∼= De,m.

Theorem 9.2: Let L be a finite Galois extension of a countable Hilbertian field K.

Let G be a p-adically projective group of at most countable rank. Suppose that π: G→

G(L/K) is an epimorphism such that π◦Embd(G(Qp), G) ⊆ resL◦Embdp(G(Qp), G(K)).

Then there exists a PpC field E, algebraic over K and there exists an isomorphism

γ: G→ G(E) such that resL ◦ γ = π.

Proof: If Embd(G(Qp), G) is empty, then G is a projective group. In this case the

theorem reduces to [FJ, Thm. 20.22]. So, assume that Embd(G(Qp), G) 6= ∅.

Let ζ1, . . . , ζe be elements of Embd(G(Qp), G) such that π ◦ζ1, . . . , π ◦ζe represent

the (G(L/K),Aut(G(Qp)))-classes of π ◦ Embd(G(Qp), G). For each i between 1 and e

there is, by assumption, ηi ∈ Embdp(G(Qp), G(K)) such that resL ◦ ηi = π ◦ ζi. Denote

the fixed field of ηi(G(Qp)) in K̃ by Ki. It is a p-adic closure of K. Choose generators

σ̄e+1, . . . , σ̄e+m of G(L/K) such that m ≥ 2.

By Proposition 9.1, and in the notation of 9.2, there exists σ1, . . . , σe+m ∈ G(K)

such that resLσi = 1 for i = 1, . . . , e and resLσi = σ̄i for i = e + 1, . . . , e + m, the

44



field Kσ is PpC with e p-adic valuations which are induced by K
σi

i , i = 1, . . . , e and

G(Kσ) ∼= De,m. In particular Kσ ∩L = K. Rename K
σi

i as Ki, if necessary, to assume

that σi = 1 for i = 1, . . . , e.

By Lemma 1.1 and Propositions 1.8 and 4.2, Kσ has a Galois extension Mω such

that G(Mω) ∼= ∆ω, LKσ ∩Mω = Kσ, and Mω ⊆ Ki for i = 1, . . . , e. It follows from

Corollary 8.4(a) that Mω is PpC. Also, resL: G(Mω)→ G(L/K) is an epimorphism and

π ◦ Embd(G(Qp), G) ⊆ resL ◦ Embd(G(Qp), G(Mω)).

By Proposition 4.4 there is an embedding γ: G→ G(Mω) such that resL ◦ γ = π.

All we still have to prove is that the fixed field E of γ(G) in K̃ is PpC.

Indeed, Proposition 4.4 also states that Eω has a closed subset E0 such that

E contains the fixed field (in K̃) M0 of the closed subgroup generated by Yω and by

G(Qp)e0 for all e0 ∈ E0. Moreover, M0 has a Galois extension N such that N ∩E = M0,

NE = K̃, and for each p-adic closure M0 of M0 there exists a p-adic closure E of E

such that N ∩M0 = N ∩ E.

Let Mω be a p-adic closure of Mω. By Lemma 2.6(c), either M0 ⊆ Mω or

MM0 = K̃. Hence, by Proposition 8.3, M0 is PpC. Conclude from Corollary 8.4(b)

applied to M0 and Mω instead of K and L that E is PpC.

Corollary 9.3: Let L be a finite Galois extension of a countable Hilbertian field K.

Suppose that F is a countable PpC field that contains K. Then K has an algebraic

extension E which is PpC and there exists an isomorphism γ: G(F )→ G(E) such that

res
Ẽ/L
◦ γ = res

F̃ /L
.

Proof: The group G(F ) is p-adically projective [HJ4, Prop. 15.1] and countably gener-

ated. Let K ′ = L ∩ F . Then the map resL: G(F ) → G(L/K ′) is surjective. In order

to apply Theorem 9.2 (replacing K by K ′ and π by resL) we have only to prove that

resL ◦ Embd(G(Qp), G(F )) ⊆ resL ◦ Embdp(G(Qp), G(K ′)).

Indeed, let ζ: G(Qp)→ G(F ) be an embedding. Then the fixed field F of ζ(G(Qp))

in F̃ is p-adically closed [HJ4, Cor. 15.2]. Hence, K = K̃∩F is also p-adically closed and

K̃F = F̃ [HJ4, Prop. 6.4 and Cor. 6.6]. In particular the map res
K̃

: G(F )→ G(K) is an

isomorphism. Let η = res
K̃
◦ζ. Then η ∈ Embdp(G(Qp), G(K ′)) and resL ◦ζ = resL ◦η.
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Corollary 9.4: Let K be a countable formally p-adic Hilbertian field. Let G be a

p-adically projective group of at most countable rank. Then there exists a PpC field E,

algebraic over K, such that G(E) ∼= K.

Proof: TakeK = L in Theorem 9.2 and observe that Embdp(G(Qp), G(K)) is nonempty.

Hence, the assumption π ◦Embd(G(Qp, G) ⊆ resK ◦Embd(G(Qp), G(K)) of that theo-

rem is satisfied.

Remark 9.5: Covers of p-adic Galois structures. Let F be a Galois extension of a

field E such that G(F/E) is a projective G(Qp)-structure. Let γ: G(F/E)→ G(E) be

a section to the cover res: G(E) → G(F/E) [HJ4, Lemma 5.2] and let L be the fixed

field of γ(G(F/E)) in Ẽ. Then the conditions of Corollary 8.4(b) are satisfied (with E

replacing K). Hence, if E is PpC, then so is L.

This is actually the situation in the proof of Theorem 9.2, with M0, N and E

replacing E, F and L, respectively. The same situation occurs in the proof of [HJ4,

Thm. 15.3] with E1, F1 and K1 replacing E, F and L. So, we can deduce now that K1

is PpC and spare the additional transcendental construction done in that proof.

We use the notation of [HJ4, Remark 10.5] and denote the space of all Θ-sites of

a field M by X(M).

Corollary 9.6: Let K be a formally p-adic countable Hilbertian field. Let X be a

Boolean space of at most countable weight. Then K has a PpC algebraic extension M

such that X(M) is homeomorphic to X.

Proof: By Lemma 2.1(b), X is homeomorphic to a closed subset E0 of Eω. In notation

3.3 take Y0 to be any subset of Yω. By Lemma 4.1, ∆0 is a Γ-projective group. Hence,

by Corollary 9.4 there exists an algebraic extension M of K such that G(M) ∼= ∆0. As

E0 is a closed set of representatives of ∆0 it is homeomorphic to X(M).

Example 9.7: A generalization of Example 8.6. Take e p-adically closed fieldsK1, . . . ,Ke,

algebraic over Q, such that K = K1 ∩ · · · ∩ Ke is PpC and G(K) = De (Proposition

9.1). Let L1 be the maximal unramified extension of K1. By Example 8.6, G(L1) is
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projective but L1 is not PpC. By Proposition 8.3, L = L1 ∩K2 ∩ · · · ∩Ke is not PpC.

On the other hand a theorem of Haran and Lubotzky [HL, Prop. 4] implies that G(L) is

isomorhic to the free product G(L) ∗De−1. Hence G(L) is p-adically projective.

10. The Lefshetz principle for PpC fields.

Recall that a family of fields is elementary if it can be axiomatized by sentences of

the first order language of fields. Condition (1) below is a convenient way to prove the

existence of a set of axioms for the theory of PpC fields without writing them down

explicitly*.

Lemma 10.1: The family of PpC fields is elementary.

Proof: By [BS, p. 151] it suffices to prove that

(1a) The family of PpC fields is closed under the formation of ultraproducts and

(1b) under elementary equivalence.

However, by Frayne’s Lemma [BS, p. 161], (1b) follows from (1a) and from these state-

ments:

(2b) If a field E is an elementary subfield of a PpC field F , then E is also PpC .

(2c) The family of PpC fields is closed under isomorphisms.

So, it suffices to prove (1a) and (2b).

Proof of (1a): Suppose that Fi is a PpC field for each i in a set I. Let D be an ultrafilter

of I and let F =
∏

i∈I Fi/D. To prove that F is PpC consider a variety V defined over

F and which has a simple F -rational point for each p-adic closure F of F . We have to

prove that V has an F -rational point.

Indeed, we may present V as an ultraproduct V =
∏
Vi/D, where Vi is a variety

defined over Fi for each i that belongs to a subset I0 of I which belongs to D. Let J

be the set of all i ∈ I0 for which Fi has a p-adic closure F i such that Vi,sim(F i) = ∅. If

J ∈ D choose for each i ∈ J such an F i and consider the ultraproduct F ′ =
∏
F i/D.

As the family of p-adically closed fields is axiomatizable in the language of ordered fields

[PR, p. 85] F ′ is a p-adically closed field that contains F and Vsim(F ′) = ∅. But then

* Grob gives an explicit set of axioms for the theory of PpC fields [Gr, p. 45]

47



F = F̃ ∩F ′ is a p-adic closure of F [PR, Thm. 3.4] and Vsim(F ) = ∅. This contradiction

proves that I − J ∈ D. Since Fi is PpC the variety Vi has an Fi-rational point for each

i ∈ I − J . Conclude that V (F ) 6= ∅.

Proof of (2b): Let V be a variety defined over E such that Vsim(E) 6= ∅ for each p-adic

closure E of E. Since F is an elementary extension of E, the variety V is also defined

over F . If F is a p-adic closure of F , then E = Ẽ ∩ F is a p-adic closure of E. Hence

Vsim(E) 6= ∅ and therefore Vsim(F ) 6= ∅. As F is PpC, V has an F -rational point. Hence

V has also an E-rational point. Conclude that E is PpC .

The following embedding lemma is a special case of [Po, Lemma 5.5].

Lemma 10.2: Let E and F be field extensions of a common field L. Suppose that E

is countable and that F is PpC and ℵ1-saturated. Suppose further that there exists a

homomorphism ϕ: G(F )→ G(E) such that res
L̃
ϕ(σ) = res

L̃
σ for each σ ∈ G(F ). Then

there exists an L̃-embedding Φ: Ẽ → F̃ such that

(1) Φ(ϕ(σ)x) = σΦ(x), for each x ∈ Ẽ and each σ ∈ G(F ).

Remark 10.3: Pop’s proof is modeled on the proof of [FJ, Lemma 18.2]. The main

new ingredient is the observation that if F is a p-adic closure of F and ϕ(G(F )) =

G(E), then E is a p-adic closure of E. Indeed, L = L̃ ∩ F is a p-adically closed field

and res
L̃
(G(E)) = G(L) ∼= G(Qp). As G(E) ∼= G(Qp) is finitely generated, the map

res
L̃
: G(E) → G(L) is an isomorphism. So, Pop’s theorem [Po, Thm. 4.2] applies and

E is a p-adically closed field. Note that if E is PpC (the only case we need for the

elementary equivalence theorem), then we may as well apply [HJ4, Cor. 15.2].

Denote the first order language of fields with e valuations and with a constant

symbol for each element of a field L by Le(field, L).

Suppose that w1, . . . , we are p-adic valuations of F . For each i between 1 and e

choose a p-adic closure F i of F with respect to wi. Let Ei be the p-adic closure of

E such that ϕ(G(F i)) = G(Ei) and let vi be the p-adic valuation of E induced by

Ei. Then Φ maps the structure (E, v1, . . . , ve) onto a substructure of (F,w1, . . . , we).

Moreover, Φ(Ei) = Φ̃(E)∩F i is a p-adic closure of Φ(E) with respect to the restriction

of wi to Φ(E).
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Proposition 10.4 (the elementary equivalence theorem): Let (E, v1, . . . , ve) and

(F,w1, . . . , we) be PpC fields with e p-adic valuations. Let L be a common subfield

of E and L. Suppose that there exists an isomorphism ϕ: G(F ) → G(E) such that

res
L̃
ϕ(σ) = res

L̃
σ for each σ ∈ G(F ). Suppose further that Ei (resp., F i) is a p-adic

closure of E (resp., F ) with respect to vi (resp., wi) such that ϕ(G(F i)) = G(Ei),

i = 1, . . . , e. Then (E, v1, . . . , ve) is elementarily equivalent to (F,w1, . . . , we) over L.

Proof: Only finitely many elements of L are involved in each sentence of Le(field, L).

We may therefore suppose that L is a countable field. Further, replace E and F by

ultrapowers ∗E = EN/D and ∗F = FN/D. By [FJ, Lemma 18.4], ϕN/D induces an

isomorphism ∗ϕ: G(∗F ) → G(∗E) such that res
L̃
∗ϕ(σ) = Res

L̃
σ for each σ ∈ G(∗F ).

Moreover, for each i between 1 and e, ϕN/D maps G(F
N
i /D) isomorphically onto

G(E
N
i /D). Let ∗Fi = ∗̃F ∩∗

∏
F

N
i /D and let ∗Ei = ∗̃E ∩

∏
E

N
i /D. Then restriction

maps G(E
N
i /D) isomorphically onto G(∗Ei) and maps G(

∏
F

N
i /D) isomorphically onto

G(∗Fi). Hence ∗ϕ maps G(∗Fi) isomorphically onto G(∗Ei). So, without loss assume

that (E, v1, . . . , ve) and (F,w1, . . . , we) are ℵ1-saturated [FJ, Lemma 6.14].

Use the Skolem-Löwenheim theorem [FJ, Prop. 6.4] to construct a countable

elementary substructure (E1, v1,1, . . . , v1,e) of (E, v1, . . . , ve) such that L ⊆ E1. Let

E1j = Ẽ1 ∩ Ej , j = 1, . . . , e. By Lemma 10.2, there exists an L̃-embedding Φ1: Ẽ1 →

F̃ such that Φ1(ϕ(σ)x) = σΦ1(x) for each x ∈ Ẽ1 and σ ∈ G(F ). In particular

E′1 = Φ1(E1) ⊆ F and Φ1(E1j) = Ẽ′1 ∩F j . So Φ1 maps v1,j onto the restriction of w1,j

to E′1, j = 1, . . . , e.

Let ϕ1: G(E′1) → G(E1) be the isomorphism induced by Φ1. It satisfies

Φ1(ϕ1(σ̄)x) = σ̄Φ1(x) for each σ̄ ∈ G(E′1) and x ∈ Ẽ1. In particular, for σ ∈ G(F ),

σ̄ = res
Ẽ′

1
σ and x ∈ Ẽ1 we have Φ1(ϕ(σ)x) = σΦ1(x) = Φ1(ϕ1(σ̄)x). Hence res

Ẽ1
ϕ(σ) =

ϕ1(σ).

This means that we can now change the roles of E and F . Use the back and forth

method and induction to construct two towers of structures of corresponding p-adic clo-

sures. The union of these towers will give an elementary substructure (Eω, vω1, . . . , vωe)

of (E, v1, . . . , ve) which is isomorphic over L to an elementary substructure

(Fω, wω1, . . . , wωe) of (F,w1, . . . , we) [FJ, Lemma 6.3]. Conclude that (E, v1, . . . , ve)
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is elementarily equivalent to (F,w1, . . . , we) over L.

Proposition 10.5: Let K be a countable Hilbertian field. Let (F,w1, . . . , we) be

a countable PpC extension of K with e p-adic valuations. Then (F,w1, . . . , we) is K-

elementarily equivalent to an ultraproduct
∏∞

n=1(En, vn1, . . . , vne)/D of PpC fields with

e p-adic valuations where En is perfect and algebraic over K and G(En) ∼= G(F ),

n = 1, 2, 3, . . . .

Proof: If F is not formally p-adic, then it is PAC. In this case the proposition reduces

to [FJ, Prop. 20.23]. So, assume that F is formally p-adic. For each i between 1 and e

choose a p-adic closure F i of F with respect to wi.

Let L1 ⊆ L2 ⊆ L3 ⊆ · · · be an ascending sequence of finite Galois extensions of K

whose union is K̃. For each n the intersectionKn = Ln∩F is a countable formally p-adic

Hilbertian field. Apply Corollary 9.3 with Ln/Kn replacing L/K to find a PpC field

En and an isomorphism ϕn which makes the following diagram commutative:

G(En)
ϕ

yyssssssssss
res

��
G(F )

res
// G(Ln/Kn)

For each i between 1 and e let Eni be the p-adic closure of En such that ϕn(G(F i)) =

G(Eni). Denote the p-adic valuation of En that Eni induces by vni.

Let D be a nonprincipal ultraproduct of N and let

(∗E, v1, . . . , ve) =
∏

(En, vn1, . . . , vne)/D

and (∗F,∗ w1, . . . ,
∗ we) = (F,w1, . . . , we)N/D. By [FJ, Lemma 18.4],∏

ϕn/D:
∏

G(F )N/D → G(En)/D

induces, by restriction, an isomorphism ϕ that makes the following diagram commuta-

tive:

G(∗E)
ϕ

zzuuuuuuuuu
res

��
G(∗F )

res
// G(K)
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For each i between 1 and e let ∗(Ei) =
∏
Eni/D and let ∗Ei be the algebraic clo-

sure of ∗E in ∗(Ei). It is the p-adic closure of ∗E with respect to vi. Also, let
∗(F i) = F

N
i /D and let ∗F i be the algebraic closure of ∗F in ∗(F i). It is the p-

adic closure of ∗F with respect to ∗wi. Then
∏
ϕn/D maps G(∗(F i)) onto G(∗(Ei))

and therefore ϕ(G(∗F i)) = G(∗Ei). By Lemma 10.1, ∗E and ∗F are PpC fields.

Hence, by Proposition 10.4, (∗E, v1, . . . , ve) ≡K (∗F,∗ w1, . . . ,
∗ we). Conclude that

(∗E, v1, . . . , ve) ≡K (F,w1, . . . , we).

Proposition 10.6: Let K be a countable Hilbertian field. Let P be a family of p-

adically projective groups with this property: If E and F are two elementarily equivalent

PpC fields and if G(F ) ∈ P, then G(E) ∈ P. Then a sentence θ of Le(field,K) is true in

all PpC fields (F,w1, . . . , we) with e p-adic valuations such that K ⊆ F and G(F ) ∈ P

if and only if θ is true in all PpC fields (E, v1, . . . , ve) with e p-adic valuations such that

E is algebraic over K and G(E) ∈ P.

Proof: Suppose that the latter condition holds. Let (F,w1, . . . , we) be a PpC field

containing K with e p-adic valuations such that G(F ) ∈ P. By the Skolem-Löwenheim

theorem, (F,w1, . . . , we) has a countable elementary substructure (F0, w01, . . . , w0e) that

contains K. By Proposition 10.5, (F0, w01, . . . , w0e) ≡K

∏
(En, vn1, . . . , vne)/D with

En a perfect PpC field, algebraic over K, and G(En) ∼= G(F0), for each n ∈ N. By

assumption G(En) ∈ P. Hence θ is true in (En, vn1, . . . , vne) for each n, and therefore

θ is true in (F,w1, . . . , we).

Apply Proposition 10.6 to the family of all p-adically projective groups:

Theorem 10.7: A sentence θ of Le(field) is true in each PpC field of characteristic 0

with e p-adic valuations if and only if θ is true in each PpC field with e p-adic valuation

which is algebraic over Q.

Here is an algebraic application of Theorem 10.7.

Theorem 10.8: Let F be a PpC field and let v, v1, . . . , ve be distinct p-adic valuations

of F . Then

(a) v(F×) is a Z-group,
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(b) the Henselization of F with respect to v is p-adically closed, in particular all p-adic

closures of F with respect to v are F -isomorphic,

(c) F is dense in the p-adic closure F with respect to v, and

(d) v1, . . . , ve are independent.

Proof: Each of the statements (a) and (d) is equivalent to a conjunction of sentences in

the language Le(field). As each p-adic valuation of an algebraic field over Q is discrete

those statements hold for every algebraic PpC field with e p-adic valuations. Conclude

from Theorem 10.7 that they also hold for F .

Statement (b) follows from (a) by [PR, Thm. 3.2].

As F is the Henselization of F with respect to v, statement (c) is equivalent

to the conjunction of countably many sentences in Le(field). The nth statement says

that for every polynomial f of degree at most n and for every a such that v(a) ≥ 0,

v(f(a)) > 0 and v(f ′(a)) = 0, and for every nonzero b there exists c such that v(c) > 0

and v(f(a+c)) ≥ v(b) [D, p. 108]. Since each of these sentences is true for every algebraic

field, Theorem 10.7 implies that it also holds for F . Conclude that F is v-dense in F .

Remark 10.9: (a) Parts (b) and (c) of Theorems 10.8 have been proved by Grob [Gr,

pp. 38 and 34, respectively] by different methods.

(b) A formally p-adic field K is said to be maximal if it has no proper algebraic totally

p-adic extension. If K is PpC, then this condition can be reformulated in terms of G(K):

“For each proper open subgroups U of G(K) there exists H ∈ D(G(Qp), G(K)) which

is conjugate to no subgroup of U .” As the theory of maximal PpC is elementary [Gr,

p. 40], Proposition 10.6 implies that Theorem 10.7 holds for maximal PpC field with e

valuations. Again, this is a result of Grob [Gr. p. 92] (However, Grob does not inlcude

predicates for valuations in her language.)
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Index of definitions and notation

at most countable corank 23
basis (of ∆ω) 13
De 6
De,m 6
D(Γ, G) 5
∆n 12
dominate (Γ-embedding problem) 25
∆ω 12
domain (of equivalent homomorhisms) 5
elementary (family of fields) 37
Embd(Γ, G) 5
En 11
Eω 11
embedding problem (for a Γ-structure) 17
epimorphism (of weak Γ-structures) 15
equivalent (homomorphisms) 5
finite (embdedding problem) 6, 17
finite (X -embedding problem) 21
finite (weak Γ-structure) 15
Γ-embedding problem 17
Γ-projective (group) 17
Γ-structure 15
Γ-universal (group) 6
Kσ 35
large quotient 7

Le(field, L) 38
morphism (of weak Γ-structures) 15
πm 12
πn,m 11
PAC 4, 29
p-adically closed 4
p-adic closure 4
p-adically projective (group) 17
PpC 4, 29
PRC 4, 29
proper Γ-embedding problem 5
proper solution 6
projective (structure) 17
projective (group) relative to X 22
pseudo-K-closed 29
regular (action of a profinite group) 15
separated (family of subgroups) 21
solution (to a Γ-embedding problem) 17
sulution (to a finite X -embedding problem) 21
Subg(G) 5
totally p-adic (extension of fields) 33
weak Γ-structure 15
Yω 12
Zω 12
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