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Introduction

Our topic in this paper is the group-theoretic behavior of elements of the absolute Galois

group of a Hilbertian field which are chosen at random. We continue the study that has

been initiated in [J] and extended by Chatzidakis [C]. Indeed our main results can be

viewed as completing those of [C].

We denote the absolute Galois group of a field K by G(K). Equip G(K) with the

normalized Haar measure µ. For each positive integer e use µ also for the Haar measure

of G(K)e. Abbreviate an e-tuple (σ1, . . . , σe) of elements of G(K) by σσσ and let 〈σσσ〉 be

the closed subgroup of G(K) generated by σ1, . . . , σe. Denote the fixed field of σσσ in the

algebraic closure K̃ of K by K̃(σσσ). Let F̂ e be the free profinite group on e generators.

Theorem A (The free generators theorem [FJ, Thm. 16.13]): Let K be a Hilbertian

field. Then 〈σσσ〉 ∼= F̂ e for almost all σσσ ∈ G(K)e.

Consider the centralizer CG(K)〈σσσ〉 and the normalizer NG(K)〈σσσ〉 of 〈σσσ〉 in G(K).

Our main objects of investigation are the following subsets of G(K)e:

C1(K) = {σ ∈ G(K)|CG(K)〈σ〉 = 〈σ〉}

Ce(K) = {σσσ ∈ G(K)e|CG(K)〈σσσ〉 = 1}, e ≥ 2, and

Ne(K) = {σσσ ∈ G(K)e|NG(K)〈σσσ〉 = 〈σσσ〉}, e ≥ 1.

For Hilbertian fields there is a simple connection between Ce(K) and Ne(K).

Lemma B: If K is a Hilbertian field, then for each e ≥ 1, Ne(K) is contained in Ce(K)

up to a set of measure 0.

Proof: Consider σσσ ∈ G(K)e such that 〈σσσ〉 ∼= F̂ e. It is well known that the center of F̂ e

coincides with F̂ e if e = 1 but is trivial if e ≥ 2 [FJ, Cor. 24.8]. Hence if σσσ ∈ Ne(K)

and 〈σσσ〉 ∼= F̂ e, then σσσ ∈ Ce(K). Indeed, if τ−1σσστ = σσσ, then τ ∈ 〈σσσ〉. So τ belongs to

the center of 〈σσσ〉 which coincides with 〈σσσ〉 for e = 1 and is trivial if e ≥ 2. Thus Lemma

B is a consequence of Theorem A.

The first result about Ce(K) (Theorem D) is valid for each K involved in Theorem

C.
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Theorem C: If K = Q or K = N(t), with N a real closed or algebraically closed field

and t transcendental over N , then every closed abelian subgroup of G(K) is procyclic.

Proof: See [G, Thm. 2.3] or [R, p. 306] for the case K = Q and Lemma 5.1 for K = N(t).

Theorem D ([J, Thm. 14.1]): Let K be a Hilbertian field. Suppose that every abelian

closed subgroup of G(K) is procyclic. Then µ(Ce(K)) = 1.

Chatzidakis has proved a stronger theorem:

Theorem E (Chatzidakis [C, Thm. 2.2] or [FJ, 24.53]): If K is a countable Hilbertian

field, then µ(Ne(K)) = 1. Therefore, by Lemma B, µ(Ce(K)) = 1.

It turns out that further generalization of Theorem E depends upon the roots of

unity which are contained in K. We denote the extension of a field F generated by all

roots of unity by Fcyc.

Theorem F: Let K be a Hilbertian field with prime field F . If Fcyc ∩ K is a finite

extension of F , then µ(Ce(K)) = 1.

Theorem G (Main result): Let K0 be a field of characteristic 0 that contains all roots

of unity. Take a set T of cardinality ℵ1, algebraically independent over K0 and let

K = K0(T ). Then neither Ne(K) nor Ce(K) nor their complements in G(K)e contain

a set of positive measure. In particular neither Ne(K) nor Ce(K) is a measurable set.

Since K is Hilbertian this result shows that one cannot remove the hypotheses of

countability from Theorem E.

In the last section we complete Theorem C:

Theorem H: Let K be a finitely generated extension of Q of transcendence degree n.

(a) The rank of each closed abelian subgroup of G(K) is at most n + 1.

(b) Ẑn+1 is isomorphic to a closed subgroup of G(K).

Our results for the measure of the sets Ne(K) and Ce(K) over uncountable Hilber-

tian fields are incomplete in two ways: we deal entirely with purely transcendental

extensions, and only in characteristic 0.
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1. Fields with only finitely many roots of unity.

A rather simple observation about fields with absolute Galois group isomorphic to Zp×

Zp leads in this section to the proof of Theorem F. For a positive integer n we denote

the n-th root of unity by ζn.

Lemma 1.1 ([L2, p. 221]): Let K be a field and let n be an integer ≥ 2. Assume for

a ∈ K, a 6= 0 that a /∈ Kp for each prime divisor p of n and that if 4|n, then a /∈ −4K4.

Then Xn − a is irreducible in K[X].

Lemma 1.2: Let K be a field with G(K) ∼= Zp × Zp. Then char(K) 6= p and ζpi ∈ K

for every positive integer i.

Proof: Note first that char(K) 6= p, since otherwise G(K), as a pro-p group, would be

projective and therefore free [R, p. 257] (a theorem of Witt). Every finite extension of

K is an abelian p-group. Since [K(ζp) : K] divides p− 1, we have ζp ∈ K.

Assume for i ≥ 2 that ζpi−1 ∈ K but ζpi /∈ K. Hence [K(ζpi) : K] = p (Lemma

1.1). Since Z/pZ×Z/pZ is a quotient of Zp×Zp there exists a cyclic extension K(a1/p)

of K, with a ∈ K, of degree p such that K(ζpi)∩K(a1/p) = K. In particular a is not a

p-th power in K(ζpi). If p = 2 and a ∈ −4K(ζ2i)4, then
√

a ∈
√
−1K(ζ2i)2 ⊆ K(ζ2i), a

contradiction. Conclude from Lemma 1.1 that K(a1/pi

) is an abelian extension of K of

degree pi which is linearly disjoint from K(ζpi). In particular K(a1/pi

) contains ζpia1/pi

and therefore also ζpi . This contradiction proves that ζpi ∈ K, as asserted.

Consider now a Hilbertian field K such that

(1) each of the fields K(
√
−1) and K(ζp), p a prime and p 6= char(K), contains only

finitely many roots of unity.

For example, if Qcyc ∩K is a finite extension of Q, then K satisfies (1). Theorem F is

therefore a consequence of Propositions 1.3 and 1.4 below.

Proposition 1.3: Let K be a Hilbertian field that satisfies (1). Then µ(C1(K)) = 1.

Proof: For a prime p 6= char(K) let Kp∞ = K(ζpi | i = 1, 2, 3, . . .). Also, let ξp = ζp

for p 6= 2 and ξ2 = ζ4. By assumption, there exists a positive integer m such that
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ζpm ∈ K(ξp) but ζpm+1 /∈ K(ξp). By Lemma 1.1, ζpm+i generates a cyclic extension of

K(ξp) of degree pi, i = 1, 2, 3, . . . . Hence G(Kp∞/K(ξp)) ∼= Zp.

The action of G(Kp∞/K) on the set {ζpi | i = 1, 2, 3, . . .} defines an embedding

of G(Kp∞/K) into Z×p . Recall that Z×p ∼= A ⊕ Zp, where A = Z/(p − 1)Z if p 6= 2

and A = Z/2Z if p = 2. Therefore G(Kp∞/K), being an infinite subgroup of Z×p , is

isomorphic to a group A1 ⊕ Zp with A1 ≤ A (For p = 2 use that Zp is a principal ideal

domain and [L2, p. 393].) If Kp is the fixed field of the subgroup A1 of G(Kp∞/K),

then G(Kp/K) ∼= Zp.

As Kp/K is an infinite extension the subset S1 =
⋃

p6=char(K) G(Kp) of G(K) is of

measure 0. By Theorem A, the set T2 of all σ ∈ G(K) such that 〈σ〉 ∼= Ẑ is of measure

1. By the bottom theorem [FJ, p. 216], the set T3 of all σ ∈ G(K) for which K̃(σ) is a

proper finite extension of no proper field that contains K is of measure 0. It therefore

suffices to prove that if

σ ∈ (G(K)− S1) ∩ T2 ∩ T3,

then σ commutes with no element of G(K)− 〈σ〉.

Assume that there exists τ ∈ G(K) − 〈σ〉 such that στ = τσ. Then there is a

prime p that divides [K̃(σ) : K̃(σ, τ)]. Let a be the element of Ẑ with pth coordinate

ap = 1 and lth coordinate al = 0 for each prime l 6= p. Then, since σ ∈ T3, the degree

[K̃(σ) : K̃(σ, τa)] is an infinite power of p. As K̃(σ)/K̃(σ, τa) is an abelian extension

with Galois group generated by one element, that group is isomorphic to Zp. It follows

that G(K̃(τa)K̃(σ)/K̃(τa)) ∼= Zp. By the choice of a, G(K̃(τa)) is a quotient of Zp.

As each endomorphism of Zp is an automorphism [FJ, Prop. 15.3], K̃(τa)K̃(σ) = K̃

and

G(K̃(σ, τa)) ∼= G(K̃(τa))×G(K̃(σ)) ∼= Zp × Ẑ.

Conclude that G(K̃(σa, τa)) ∼= Zp × Zp.

By Lemma 1.2, p 6= char(K) and K̃(σa, τa) contains ζpi for every positive integer

i. Hence also K̃(σa) contains ζpi for all i and therefore Kp ⊆ K̃(σa). However the

degree [KpK̃(σ) : K̃(σ)] as a divisor of [K̃(σa) : K̃(σ)] is on one hand relatively prime

to p, and as a divisor of [Kp : K] is on the other hand a p-th power. It follows that
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KpK̃(σ) = K̃(σ) and therefore that Kp ⊆ K̃(σ). This contradiction to σ /∈ S1 completes

the proof of the Proposition.

Note that the assumption “K contains only finitely many roots of unity” does not

imply (1). Indeed the theory of cyclotomic extensions asserts that G(Qp∞/Q) ∼= A⊕Zp,

where A = Z/(p − 1)Z if p 6= 2 and A = Z/2Z if p = 2. Let K be the fixed field of A

in Qp∞ . As G(Qp∞/Q(ξp)) ∼= Zp the field Q(ξp) is not contained in K. Moreover, since

[Q(ξp) : Q] = |A| we have K(ξp) = Qp∞ . So, K(ξp) contains infinitely many roots of

unity.

On the other hand the only roots of unity in Qp∞ are the ±ζpi ’s. The field K

contains only finitely many of them, since otherwise it would contain them all and

therefore would coincide with Qp∞ , a contradiction. Finally note that since G(K/Q) ∼=

Zp the field K is Hilbertian [FJ, Prop. 15.5].

Proposition 1.4: Let K be a Hilbertian field of that satisfies (1) and let e ≥ 2. Then

µ(Ce(K)) = 1.

Proof: Let S be the set of all σσσ ∈ G(K)e such that 〈σ1〉∩〈σ2〉 = 1 and CG(K)〈σi〉 = 〈σi〉,

i = 1, 2. By [J, Thm. 5.1] (or as an easy consequence of Theorem A) and by Proposition

1.3 the set S has measure 1.

Let σσσ ∈ S and let τ ∈ CG(K)(〈σσσ〉). Then τ commutes with both σ1 and σ2.

Conclude that τ ∈ 〈σ1〉 ∩ 〈σ2〉 = 1. Thus CG(K)〈σσσ〉 = 〈σσσ〉, as desired.
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2. Irreducible polynomials over rational function fields.

Hilbert’s irreducibility theorem takes a strong form over rational function fields K =

K0(t): Separable irreducible polynomials f ∈ K[X, Y ] in two variables remain irre-

ducible, if one variable is substituted by a + bt with (a, b) ∈ K2
0 arbitrary, satisfying

only one inequality g(a, b) 6= 0 [FJ, Thm. 12.9].

For the rest of this section we fix an infinite field K0 and set K = K0(t). Define

the rank of an infinite separable algebraic extension as the cardinality of the family of

all finite subextensions.

Lemma 2.1: Consider a tower K ⊆ L ⊆ M of separable algebraic extensions with

L/K finite and rank(M/K) < |K0|. Let f1, . . . , fm be irreducible polynomials in

M [X1, , . . . , Xr, Y ] separable in Y . Let g1, . . . , gn be irreducible polynomials in

L[X1, , . . . , Xr, Y ], separable in Y , and let 0 6= h ∈ M [X1, , . . . , Xr]. Then there ex-

ists x ∈ Kr such that fi(x, Y ) is separable irreducible in M [Y ], i = 1, . . . ,m, gj(x, Y )

is separable irreducible in L[Y ], j = 1, . . . , n and h(x) 6= 0.

Proof: Do induction on r to assume that r = 1. Then follow the proof of [FJ, Lemma

16.32], using that a separable Hilbert subset of a finite separable extension of K contains

a separable Hilbert subset of K. (The proof of this statement is a simple modification

of the proof of [FJ, Cor. 11.7].)

Proposition 2.2: Let M be a separable algebraic extension of K with rank(M/K) <

|K0|. Consider a finite Galois extension L of K with G = G(L/K). Suppose that G

acts on a finite abelian group A. Let A×|G be the corresponding semidirect product

and let α: A×|G → G be the projection map. Then there exists an epimorphism

γ: G(K) → A×|G such that α ◦ γ = resL and the fixed field L̂ of Ker(γ) is linearly

disjoint from M over L0 = M ∩ L.

Proof: Let F̂ /E be a Galois extension such that E = K(x1, . . . , xr) with x1, . . . , xr

algebraically independent over K and F̂ is a regular extension of L for which there is

an isomorphism θ: G(F̂ /E) → A×|G such that α ◦ θ = resL [FJ, Lemma 24.46]. For

x = (x1, . . . , xr) find rings R = K[x, g(x)−1] with 0 6= g(x) ∈ K[x] and R̂ = R[z] where

F̂ = E(z) and the discriminant of z over E is a unit of R. Then R̂/R is a ring cover.
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In particular R̂ is the integral closure of R in F̂ [FJ, end of §5.2]. Let f(x, Z) = irr(z,E)

and h(x, Z) = irr(z,L(x)). Since F̂ /L is regular h is absolutely irreducible.

Now choose a ∈ Kn such that g(a) 6= 0, f(a, Z) is irreducible over K and

h(a, Z) is irreducible over ML (Lemma 2.1). The K-specialization x → a extends

to an epimorphism ϕ of R̂ onto a Galois extension L̂ = K(ϕ(z)) of K that con-

tains L such that ϕ(b) = b for each b ∈ L. Since f(a, Z) is irreducible over K it

induces an isomorphism ϕ∗: G(L̂/K) → G(F̂ /E) such that resF̂ /L ◦ ϕ∗ = resL̂/L [FJ,

Lemma 5.5]. The map γ = θ ◦ ϕ∗ ◦ resL̂ from G(K) satisfies α ◦ γ = resL. Also

[L̂ : L] = deg(h(a, Z)) = [ML̂ : ML]. Hence L̂ is linearly disjoint from M over L0.

3. Ne(K) is big.

In this Section we assume that K0 is an uncountable field of characteristic 0 and let

K = K0(t) be the field of rational functions in t over K0. Our goal is to show that for

each e ≥ 1 the complement of Ne(K) contains no set of positive measure, i.e., Ne(K) is

a “big” set. This will give one half of Theorem G. The proof is based on the following

version of [FJ, Lemma 16.30].

Lemma 3.1: Let G be a profinite group and let S be a subset of Ge. Suppose that

µH(r(S)) = 1 for each epimorphism r: G→ H onto a profinite group H of rank ≤ ℵ0.

(Here we also use r to denote the function from Ge to He induced by r: G→ H.) Then

Ge − S contains no set of positive measure. In particular this holds if r(S) = He for

each H as above.

Proof: Let B be a measurable subset of Ge − S. Then there exists a set B with B ⊆ B

such that µ(B − B) = 0 which belongs to the σ-algebra generated by all open-closed

subsets of Ge [FJ, Lemma 16.29]. An induction on structure shows that B can be

found in a σ-algebra A generated by countably many open-closed sets, A1, A2, A3, . . .

. For each i there is a normal open subgroup Ni of G and there is a finite subset Ti

of Ge such that Ai =
⋃

τττ∈Ti
τττNe

i . The group N =
⋂∞

i=1 Ni is normal and closed in

G and rank(G/N) ≤ ℵ0. Let r: G → G/N be the canonical epimorphism. Clearly
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r−1(r(Ai)) = Ai, i = 1, 2, 3, . . . . Since the collection of all A ∈ A with A = r−1(r(A))

is closed under taking complements and under countable unions it coincides with A. In

particular r−1(r(Ge−B)) = Ge−B. Since Ge−B ⊇ S we have r(Ge−B) ⊇ r(S) and

µH(r(Ge − B)) ≥ µH(r(S)) = 1. Hence µ(Ge − B) = µH(r(Ge − B)) = 1. Conclude

that µ(B) = µ(B) = 0, as desired.

Our first application of Lemma 3.1 depends upon the following corollary of Propo-

sition 2.2.

Lemma 3.2: Let M be a Galois extension of K with rank(M/K) ≤ ℵ0 and let σσσ ∈

G(M/K)e. Then K has a Galois extension M ′ which contains M with rank(G(M ′/K)) ≤

ℵ0 and there exists an extension τττ ∈ G(M ′/K)e of σσσ such that NG(M ′/K)〈τττ〉 = 〈τττ〉.

Proof: Present M as a union M =
⋃∞

i=1 Ki of an ascending sequence K1 ⊆ K2 ⊆ · · · of

finite Galois extensions of K. Let σσσi = resKi(σσσ), i = 1, 2, 3, . . . . Inductively construct

an ascending sequence L1 ⊆ L2 ⊆ . . . of finite Galois extensions of K and e-tuples

τττ i ∈ G(Li/K)e, i = 1, 2, 3, . . . such that

(a) M ∩ Li = Ki and resKi
(τττ i) = σσσi,

(b) τττ i+1 extends τττ i, i = 1, 2, 3, . . . , and

(c) resLi(NG(Li+1/K)〈τττ i+1〉) = 〈τττ i〉.

Indeed suppose that we have already constructed Li and τττ i for i = 1, . . . , n such

that they satisfy conditions (a)–(c). In particular for G = G(Kn+1Ln/K) there exists

ρρρ ∈ Ge that extends both σσσn+1 and τττn, and M ∩Kn+1Ln = Kn+1. Choose an integer

m ≥ 2 and let G operate on the group ring (Z/mZ)[G] by multiplication from the right.

By Proposition 2.2, K has a Galois extension Ln+1 that contains Kn+1Ln such that

M ∩ Ln+1 = Kn+1 and there exists a commutative diagram

1 −→ G(Ln+1/Kn+1Ln) −→ G(Ln+1/K) −→ G(Kn+1Ln/K) −→ 1y y ∥∥∥
1 −→ (Z/mZ)[G] −→ (Z/mZ)[G]×|G −→ G −→ 1

in which the vertical arrows are isomorphisms. Lemma 24.52 of [FJ] states that ρρρ

extends to τττn+1 ∈ G(Ln+1/K) such that resKn+1Ln
(NG(Ln+1/K)〈τττn+1〉) = 〈ρρρ〉. (The
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close “H into G0” at the end of that lemma should be corrected to “H onto G0”.) In

particular τττn+1 extends both σσσn+1 and τττn, and resLn
(NG(Ln+1/K)〈τττn+1〉) = 〈τττn〉. This

completes the induction.

Let M ′ =
⋃∞

i=1 Li and let τττ be the unique element of G(M ′/K)e that extends all τττ i.

Then M ′ is a Galois extension of K of rank ≤ ℵ0, τττ extends σσσ and NG(M ′/K)〈τττ〉 = 〈τττ〉.

Indeed if κ ∈ NG(M ′/K)〈τττ〉, then resLn+1(κ) ∈ NG(Ln+1/K)〈τττn+1〉. Hence resLn
(κ) ∈

〈τττn〉, n = 1, 2, 3, . . . . Conclude that κ ∈ 〈τττ〉.

Lemma 3.3: Suppose that |K0| = ℵ1 and let L/K be a Galois extension of rank ≤ ℵ0.

Then each σσσ1 ∈ G(L/K)e extends to σσσ ∈ G(K)e such that NG(K)〈σσσ〉 = 〈σσσ〉.

Proof: Order the collection of all finite Galois extensions of K in a transfinite sequence

{Kα| 1 ≤ α < ℵ1}. Apply Lemma 3.2 in a transfinite induction to define for each

ordinal α < ℵ1 a Galois extension Lα and σσσα ∈ G(Lα/K)e such that (a) L1 = L, (b)

rank(Lα/K) = ℵ0, (c) α < β implies that Kα ⊆ Lβ , Lα ⊆ Lβ and σσσβ extends σσσα, and

(d) NG(Lα/K)〈σσσα〉 = 〈σσσα〉,

Then Ks =
⋃

α<ℵ1
Lα and σσσ = lim←−σσσα extends σσσ1 and satisfies NG(K)〈σσσ〉 = 〈σσσ〉.

Proposition 3.4: Let K = K0(t) be the field of rational functions in t over a field K0

of cardinality ℵ1. Then G(K)e −Ne(K) and G(K)e −Ce(K) contain no set of positive

measure.

Proof: By Lemma B it suffices to prove only the assertion about Ne(K).

Apply Lemma 3.1 on the set S = Ne(K). Consider a Galois extension L/K of

rank ≤ ℵ0. By Lemma 3.3, resLS = G(L/K)e. Hence, Ge−S contains no set of positive

measure.
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4. Ne(K) is small.

We apply the technique of power series fields to complete the proof of Theorem G.

Let K be a field of characteristic 0. For a transcendental element t over K

choose for each positive integer e an e-th root t1/e of t such that whenever d divides e,

(t1/e)e/d = t1/d. Puiseux’s theorem states that the algebraic closure of the field of power

series K̃((t)) is the union of all fields Ee = K̃((t1/e)). In order to obtain the algebraic

closure of the complete discrete valued field E = K((t)) we have to distinguish between

unramified and purely ramified extensions. First note that each algebraic extension

L of E is Henselian with residue field of characteristic 0. Therefore, if L′ is a finite

extension of L, then [L′ : L] is equal to the product of the ramification index and the

residue degree [A, Prop. 15]. Now observe that Eur = K̃E, as a separable constant field

extension of E, is unramified with an algebraically closed residue field K̃. Hence, each

algebraic extension of Eur is purely unramified. On the other hand, F =
⋃∞

e=1 E(t1/e) is

a purely ramified extension of E with a divisible value group, Q. Hence, each algebraic

extension of F is unramified. It follows that Eur ∩ F = E and EurF = Ẽ. For each e

the field Eur(t1/e) is a cyclic extension of E of degree e. Therefore G(Eur) = Ẑ. As K

is algebraically closed in E and therefore also in F this yields a presentation of G(E)

as a semidirect product of G(K) and Ẑ.

Proposition 4.1: Let K be a field of characteristic 0 and let E = K((t)).

(a) The field Eur = K̃E is the maximal unramified extension of E.

(b) The field F =
⋃∞

e=1 E(t1/e) is a totally unramified extension of E, ord(F×) = Q,

each algebraic extension of F is unramified, and K is algebraically closed in F .

(c) Eur ∩ F = E and EurF = Ẽ.

(d) G(Eur) = Ẑ and G(F ) ∼= G(K).

(e) G(E) is the semidirect product of G(K) and Ẑ.

Corollary 4.2: Let K be a field of characteristic 0 that contains all roots of unity.

(a) G(K((t))) ∼= G(K)× Ẑ.

(b) There exists an isomorphism α: G(K)× Ẑ→ G(K̃(t)∩K((t))) such that res
K̃
◦α

is the projection map of G(K)× Ẑ onto G(K).
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Proof: In this case F , of Proposition 4.1, is a Galois extension of E.

Proposition 4.3: Let T be an uncountable set, algebraically independent over a field

of characteristic 0 that contains all roots of unity. Let K = K0(T ). Then Ce(K) and

Ne(K) contains no set of positive measure.

Proof: By Lemma B it suffices to prove that Ce(K) contains no set of positive measure.

We apply Lemma 3.1 on S = G(K)e−Ce(K) and consider an epimorphism r: G(K)→

H onto a profinite group H of rank ≤ ℵ0. Denote the fixed field of Ker(r) by L.

Then L/K is a Galois extension of rank ≤ ℵ0. Hence T has a countable subset T1 for

which there exists a Galois extension L1 of K1 = K0(T1) such that L1K = L. Choose

t ∈ T − T1 and let K2 = K0(T − {t}) and L2 = L1K2. Then K = K2(t). Assume

without loss that r is the epimorphism resL2 : G(K)→ G(L2/K2).

By Corollary 4.2(b) each σσσ ∈ G(L2/K2)e extends to τττ ∈ G(K)e for which there

exists ρ ∈ G(K) − 〈τττ〉 such that τiρ = ρτi, i = 1, . . . , e. Thus ρ ∈ CG(K)〈τττ〉 − 〈τττ〉.

Therefore τττ ∈ S.

Conclude from Lemma 3.1 that Ce(K) contains no set of positive measure.

Combine now Propositions 3.4 and 4.3 to achieve the main result of this work.

Theorem 4.4: Let K0 be a field of characteristic 0 that contains all roots of unity.

Take a set T of cardinality ℵ1, algebraically independent over K0 and let K = K0(T ).

Then neither Ne(K) nor Ce(K) nor their complements in G(K)e contain a set of positive

measure. In particular neither Ne(K) nor Ce(K) is a measurable set.
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5. Abelian subgroups of G(K).

We give in this section some details about the possible ranks of closed abelian subgroups

of absolute Galois groups of finitely generated extensions of Q. First we prove the second

part of Theorem C.

Lemma 5.1: Let N be either an algebraically closed or a real closed field. Let x be

transcendental over N . Then every abelian closed subgroup C of G(N(x)) is procyclic.

Proof: Suppose first that N is algebraically closed. As the cohomological dimension of

G(N) is 0, the cohomological dimension of G(N(x)) is 1 [R, p. 276]. In other words

G(N(x)) is projective (Actually G(N(x)) is free. But this is a deeper theorem.) It

follows that C is projective [FJ, Cor. 20.16]. Hence, for each p, the p-Sylow subgroup

Cp of C is pro-p-free [FJ, Prop. 20.47]. Since Cp is abelian it must be procyclic.

Conclude that C is also procyclic.

Now assume that N is real closed. If C is not procyclic, it contains a closed

subgroup B isomorphic to Zp × Zp, for some prime p [G, Satz 1.13]. By Lemma 1.2,

the fixed field of B contains
√
−1 and therefore also Ñ . This contradicts the first part

of the Lemma.

Proposition 5.2: For almost all σσσ ∈ G(Q)e each closed abelian subgroup C of

G(Q̃(σσσ)(x)), with x transcendental over Q̃(σσσ), is procyclic.

Proof: Each of the extensions Qp∞ = Q(ζpi | i = 1, 2, 3, . . .) is infinite. Hence

µ(
⋃

G(Qe
p∞)) = 0. Let σσσ ∈ Ge − G(Qp∞)e and let F = Q̃(σσσ)(x). Assume that C

is a closed abelian nonprocyclic subgroup of G(F ). As in the second paragraph of the

proof of Lemma 5.1, F and therefore Q̃(σσσ) contain ζpi , i = 1, 2, 3, . . . for some prime p.

Thus σσσ ∈ G(Qp∞)e, a contradiction.

Proposition 5.3 (Haran): Let K be an extension of Q of transcendence degree n.

Then the rank of each closed abelian subgroup of G(K) is bounded by n + 1.

Proof: If n = 0, then K is an algebraic extension of Q, and Theorem C applies.

For n > 0 we may assume without loss that K = K0(x) for some extension K0

of Q of transcendence degree n − 1 and a transcendental element x over K0. Let B
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be a closed abelian closure of G(K). The short exact sequence 1 −→ G(K̃0(x)) −→

G(K) res−→G(K0) −→ 1 induces a short exact sequence of abelian profinite groups 1 −→

C −→ B −→ A −→ 1. The group A is contained in G(K0). By an induction hypothesis

on n, rank(A) ≤ n. Lemma 5.1 asserts that C, as an abelian closed subgroup of G(K̃0)

is procyclic. Hence rank(B) ≤ n+1. This completes the induction and the proof of the

proposition.

Now we show that the bound in Proposition 5.3 can not be improved.

Proposition 5.4: Let K be a finitely generated extension of Q of transcendence degree

n. Then Ẑn+1 is isomorphic to a closed subgroup of G(K).

Proof: The field L = QabK is finitely generated over Qab and of transcendence degree

n. We prove by induction on n that Ẑn+1 is even isomorphic to a closed subgroup of

G(L).

Indeed for n = 0, L = Qab is Hilbertian [FJ, Thm. 15.6]. Hence, by Theorem

A, almost each σ ∈ G(L) generates a subgroup isomorphic to Ẑ. For n > 0 choose

a transcendental basis t1, . . . , tn for L/Qab and let E0 = Qab(t1, . . . , tn−1) and E =

E0(tn). By the induction hypothesis Ẑn is isomorphic to a closed subgroup of G(E0).

Since E contains all roots of unity Corollary 4.4(b) implies that Ẑn+1 is isomorphic to

a closed subgroup of G(E). As G(L)∩A is an open subgroup of A it is also isomorphic

to Ẑn+1. The induction is complete.
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