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Introduction

The Cebotarev density theorem is one of the major results in algebraic number
theory. It provides a quantitative measure of sets of prime divisors with qualitative
properties related to finite Galois extensions. The basic nature of the theorem
makes it very handy for applications. Thus the Cebotarev density theorem plays a
central role in the decision procedure for the theory of finite fields of Ax [3] and in
the transfer principle [7] from finite fields to the fields K(o), where K is a global
field. An immediate application of the theorem, namely Bauer’s theorem, is the
key ingredient in Neukirch’s proof [9], that two finite normal extensions of @ with
isomorphic absolute Galois group must coincide; and there are many more
applications.

The Cebotarev density theorem is true for number fields as well as for function
fields of one variable over finite fields. The number field case has attracted the
most attention. There are at least three versions of the proof, that of Cebotarev
[4], that of Artin [1, 2] and that of Deuring [5]. They have also found their way to
textbooks, e.g., that of Lang [8]. Serre [11, Theorem 7] sketches a unified
treatment for both cases, via L-series

The goal of this note is to provide an elementary proof for the Cebotarev
density theorem in the function field case.

Theorem. Let E be a function field of one variable over a finite field and let F be a
Sinite Galois extension of E. If €is a conjugacy class in &(L/K), then the Dirichlet

: . _ F/E
density of the set of prime divisors p of E whose Artin symbol <~—£——> is equal to € is

€]
[F:E]

The central ingredient in the proof is the Riemann hypothesis for curves:
otherwise it consists only of manipulations with fields and prime divisors.
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1. Preliminaries and Notation

Throughout this work K denotes a field with g elements and ¢ is the Frobenius
automorphism of its absolute Galois group: ¢x =x*, for every x algebraic over K.
The unique extension of K of degree n is denoted by K,. We also fix a
transcendental element ¢t over K and consider function fields which are finite
separable extensions of K(t). If E is such an extension, then we denote by O, the
integral closure of K[¢] in E. The ring O, 1s a Dedekind domain and the set of its
non-zero prime ideals is denoted by P(E). This set stands in a bijective cor-
respondence with the set of prime divisors of E which are finite on O,. For a
pe P(E) we denote by E =0y/p the residue field at p and by Np= IE | its absolute
norm. The field K is naturally embedded in E and [E Kl<oco. If K is
algebraically closed in E, then degp= [E K] is the degree of p. In this case we
may consider a constant field extension E'=K'E, where K'=K,. Then K’ is
algebraically closed in E" and [E": E]=n. If z is a primitive element for K'/K, then
its discriminant over K is non-zero; hence it is a unit of O, It follows that
Op =0g[z] (cf. Zariski-Samuel [12, p.264]). Moreover, every pe P(E) is un-
ramlﬁed in E" and if p’e P(E') lies over p, then E =F [(2)=K' E In particular, if
degp=j and j divides n, then the residue class degree f(p) [E’ E]=[KK]
=n/j. Hence, if g(p) denotes the number of p’e P(E’) lying over p, then the formula
S(p)g(p)=n implies that g(p)=.

For the rest of this work we assume that indeed K is algebraically closed in E
and fix a finite Galois extension F of E. If pe P(E) is unramified in F and e P(F)

J is the Frobenius automorphism attached to p. It is the unique

lies over p, then |—

element of &(F/E) that satisfies
F/E
B

}x_x "mod*B for every xeO0y.

F/E| . F/E . .
The conjugacy class of —g—g—} 1s the Artin symbol <~—£—) Consider now a fixed

conjugacy class € of ®(F/E) with, say, ¢ elements. The class € is associated with
the set

C= {pe P(E) ’ <w~b—> = @f .

Our aim is to prove that

>, Np~*

Jim -25€ - C
s»1+ > Np~™* [F:E]
veP(E)

In the proof we also use the following notation:
L =the algebraic closure of K in F.
n=[L:K], m=[F:LE].
P,(E)=the set of prime divisors of E of degree k.
P(E)={pe P(E)|p is unramified in F and degp=kj.
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C(E)= {DePk(E) ’ (59 - 6:}.

R(F/E)={pe P(E)|p is ramified in F}.
R(F/E)={pe R(F/E)|degp=k}.
G=G6(F/E).

2. Prime Ideals of Degree 1

The first and the most decisive step in the computation of the density of C is an
interesting and useful result for its own sake.

Lemma 1. If every element t of € satisfies

res; T="1es, (1)
then

c

IC,(B)=—q+0()/q),

m

where the constant of the O depends on [F:K(t)] and on the genus of F but
otherwise it does not depend on q, on E or on F.

Proof. Let 1eQ and f=ordr. Then (1) implies that n|f; hence M =K , contains
L=K,. The field M is linearly disjoint from F over L. Thus N=MTF is a finite
Galois extension of E and [N:ME]=[F:LE]=m. Moreover, assumption (1)
implies the existence of an element Te ®(N/E) such that

respT=1 and res, T=resy, . (2)
The order of 7 1s f, since f is the order of the restriction of ¥ to M and to F.
Therefore, if we denote by D= N(%) the fixed field of %, we have that [N:D]
=ord7=f. On the other hand, F(t)=FnD and [F:F(t)]=ordt= f; hence
FD =N. In addition (2) implies that K = MnD; thus using the relation [M : K] = {,
we have that MD=N. Let also g=[F(r): E] and [N: F]=[D:F(t)]=d. Then

gd=[D:E]=[N:ME]=m. (3)

>
F

2
S

F(r)

M

M
d

/ i
/LE
L nE/g
K/

D

n
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Now M is algebraically closed in N, since L is algebraically closed in F. Thus
K =MnD is algebraically closed in D; in other words, D is a function field of one
variable over K. It follows from the Riemann hypothesis for curves that

IP(D/K)|=q+0)/q), 4)

where the constant of the O equals twice the genus, g,,, of D, which is equal to the
genus of F, since N is a separable constant field extension of both D and F. Let

P,(D)={qe P(D)|degq=1 and q is unramified over E}.

This set differs from P, (D) by at most [ D : K(¢)] prime divisors which are not finite
on 0, and by at most m|R,(D/E)|. By Hurwitz’s genus formula and by (3)

[R(D/E) = IR (D/K(t)| £2gp—2+2[D: K()] =29, —2+2[F : K(1)].

Thus (4) implies
IPL(D)|=q+0()/q), (5)

where the constant of the O depends only on [F: K(t)] and on g,.
We consider now the set
F/E} -—r}
P

and define a map h:P,(D)—C, in the following way: We start with an element
qe P/ (D) and note that since degq=1 and since N/D is a constant field extension,
there exists a unique Qe P(N) lying over q and Q is unramified over E. Define
B=h(q)=FnQ. If p=EnDP, then K<E,CD,=K; hence, E,=K and Np=gq.
Observe that

C.= {‘BEP(F)[ deg(EnPB)=1 and

xeM = Ix=px=x"
(©)

xe0, = Ix=x=x"modq.

Therefore, Tx = x? mod Q for every xe Oy = MO, ; hence, tx=x"* mod P for ever
> N D

. FIE
x€ 0. This means that {—%— =1 and therefore that Pe C..

Claim. The fibers h™ }(B) contain exactly d elements.

Indeed, if Pe C, and if p = EN*P, then the degree of F‘B over Ep = K is equal to
ordt=f. Thus Fy=M and degP=d=[N:F]. It follows that over P there lie
exactly d elements Q,,...,Q,e P(N). Let q;=DnQ, for i=1,...,d. Then

F/E

x€0, = ix= x=x""=x"mod P.

Therefore, we have, with (6), that Ix=x?mod{Q; for every xeOy=MO;. In
particular we get for xe 0, that x =x"modq;. This means that 13(” =K. It follows
that q,e h~ }(%P) and also that L, is the unique element of P(N) that lies over ;.
Thus q,, ..., q, are distinct elements of h™ *(). If, on the other hand, ge ™ (‘) and



Cebotarev Density Theorem for Function Fields 471

L 1s the unique prime ideal of O lying over q, then q lies also over ¥ and therefore
must be one of the Q/’s. It follows that q belongs to the set {q,, s Oyt
If we apply the claim to (5), we get

Cl=2a+0(/g

with the above restrictions on the constant of the 0. Allowing t to run over all
elements of €, we have

el

e

=§q+0(1/5). (7)

Over every element of C, (E) there lie exactly g elements of |J C,. Hence, (7) and (3)
: ¢
imply that |C,(E)| = g+ o()q). O

Lemma 1 is also proved by Fried [6, p. 223]. Beside the use of the Riemann
hypothesis for curves, Fried applies a result of class field theory which asserts that
the L-functions associated to a non-trivial character of an abelian function field
extension is a polynomial in t= ¢~ * He does it in order to single out those primes
whose Artin symbol is the given conjugacy class. The same separation of primes is
done in our proof by the fixed field D of %, and we manage to avoid class field

theory.

3. Constant Field Extensions

It is easier to count the number of primes in C of higher degrees for cyclic
extensions. In the reduction to the case of degree 1 primes, which is treated in
Lemma 1, we would like to avoid primes of small degrees. Therefore, we prove:

Lemma 2. Let E' be a finite extension of E and let K, be the algebraic closure of K in
E'. For a multiple k of b let

Py(E'JE)={p'e P, (E')| deg(p'nE)=*k}.
Then we have for ¢>4 that
IPin(E/E)N=0(g™)  k—o0.
Proof. 1f p’e P, ,(E'/E), then E; = K, and the residue field of p=Enyp’is K, where j
is a proper divisor of k; hence, j < —l;— Over every such p there lie at most [E':E]

elements of P(E'). Hence,
k
|PynEVENS[E"E] ). |P(E)=0 <§ q"/z) =0(q"),

where we have used the simple estimation |P (BEl=0(g). O
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Lemma 3. Assume that F/E is a cyclic extension and that the unique element t of €
generates O(F/E). Let k be a positive integer such that
res, T=res; @ (8)
and let e>3%. Then .
|ICAE)=-—q"+0(q™) k—0.
km

Proof. Let K'=K,, L'=LK', E'=EK',and F'=L'F. Then K is algebraically closed
in E', the field F' is a cyclic extension of E" and L' is the algebraic closure of K’ in
F'. Also, (8) implies that LnK"= K. Hence

[K':K]=[L":L]=[E"E]=[L'E LE]=[F :F]l=k

and
[F':L'E]l=[F:LE]=m.

k
m
F

Another use of (8) implies that there exists a '€ AutF’ such that res;7' =1t and
res, v =res;.¢". Then 7’ fixes the elements of K’ and therefore belongs to G(F'/E’).

! /

F
Let C,(E’) be the set of all p’e P(E') of degree 1 (over K') such that ( ;, ) ={7}.

Note that F and F’ have the same genus and that [F": K'(t)] =[F :K(¢)], since F" is
a separable constant field extension of F. Hence we may apply Lemma 1 to E' and
conclude that

1
ICUE) = —¢"+0(¢"") koo, (9)
Let C(E)={p'e C,(E)| deg(Enp’)=k}. Then (9) and Lemma 2 imply that
1
CUEY = ¢ +0@Y) ko, (10)

We compare C,(E) and C',(E'). Over every element p of C,(E) there exist exactly
k prime ideals p', ..., p; of Op. Then p’,, ..., p are unramified in F" and of degree 1
over K'. Let B, ..., B, be the elements of P(F') lying over p, ..., p,, respectively,
and let B,=FnP}, for i=1,...,k Then
x€0, = tx=tx=x"mod P,

k
xel = t'x=¢"x=x7".
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F'/E

=)

Thus pie C\(E’). Conversely, if p'e C{(E'), then Enp’e C,(E). The alsymptotic
formula of the lemma follows therefore from (10). []

Hence v'x=x"!modp; for every xe0,. = L'Op, which means that <

4. Reduction to the Cyclic Case

In this section we use a well known idea of Deuring [5] and reduce the counting of
the number of elements in C,(E) in the general case to the case, settled in Sect. 3,
where F/E is a cyclic extension.

Lemma 4. Let a and k be positive integers and assume that every element v of €
satisfies
res; T=res; @°. (11)

a) If kfamodn, then C(E) is empty.
b) If k=amodn and if e>1, then

C ,
|CE)|= P ¢+0(q* k-,

Proof. a) If C,(E) contains a prime p and if Pe P(F) lies over p, then
F/E f F/E ;
Ies, |—x—| =res, @" on one hand, and by (11), res, T’T =res, ¢“, on the other

hand. Hence k=amodn.

b) The algebraic closure of K in the fixed field E'=F(r) of © is K,, where
d=gcd(a, n)=gcd(k,n). Let m'=[F : LE'] and consider the following diagram of
fields.

F

!

Kg

E
=
Let ClE)= {yrer) =)

A : -
= {1}, degp’zé, p’ is unramified over E and

deg(Emp’):k}. By Lemmas 3 and 2

d ds-ﬁ d
C BN = @+ 0la™ ) = L tiom, ko, a2
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We define a map h:Cy (E)—C(E) by h(p')= Enyp’. Indeed, let p'e €} (E') and

/

F/E . .
p=Enp’. Then <~£,~> = {1} and therefore there exists a unique element Pe P(F)

' ) F/E
over p’ and it satisfies [—#} =1. Moreover, since Np=Np’, we have 1= [—/*},

hence pe C(E). ¥ ¥
. : : . . |F/E
Conversely, if pe C,(E) and if Be P(F) lies over p and satisfies o =1, then

I4

with p'=E'nB, we have E -E Hence p'e C}(E") and h(p’)=p.
The order of h ™! (p) is therefore equal to the number of Qe P(F) that lie over p

F/E
and satisfy [—/ﬂ} =1. They are all conjugate to B by elements of the centralizer

Q
Cg(7). Hence

Cel _1G _[E:E]
EDTCO N,

™ (p)l =

where D(*B)= G(F/E') is the decomposition group of B in G. It follows by (12) that

d N
|C{E)| = m q“+ 0(¢™)

— S 0™, k-
km

5. Summing Up

The fourth step in the proof is to sum up the |C,(E)’s according to Lemma 4. But
first we need an auxiliary result.

Lemma 5. Let a and n be positive integers. Then

© a+jn 1
—  log(l— 1 -
Z o - og(l—x)+0(1) x—
Proof'. If {1 is an n-th root of unity, then 1+ + ... +{" ' =0. Hence
1 0 xk o] Xk
- = log(1—={x){ ‘== 2, 5 (= =
ngnzl nkgl k C'gl ) kZld k

If {+1, then log(1—{x) is bounded as x—1", and the lemma follows.

Lemma 6. [f 0<a<n is an integer such that res; T=res; ¢* for every 1€ €, then

log(l—g' 9 +0(1) s—1". (13)

Z Np "=- [F E]

{  The author is indebted to David Hayes for this proof
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Proof. Fix an 3<e<1 and apply Lemmas 4 and 5 for x=¢'~* to compute

DNp =) ) Np~

peC J=0 peCa+ ju(E)
. a+jn gla+ jn) —(a+ jn)s
=) |\=——=q"""+0(q )>q
j:0<m(a+]n)

(1—s)(a+ jn)

+O<q(5—s)a Z q(e—s)jn)
j=0

=~ “log(l—g'")+0(1)+0 g

- mn g q 1___q(£—s)n
C

—_ l 1— 1—5 R +.
Fopploeli—a o), st O

In the special case where F=E, Lemma 6 simplifies to

Y Np*=—log(l—¢q'~9+0(1) s—1". (14)
peP(E) '
Dividing up (13) by (14) and going to the limit, we find that the Dirichlet density of
Cis
2 Ny~

5(C)= lim =€ =
() s—1* Z Np_s [FE]

peP(E)

Thus the Cebotarev density theorem for function fields has been completely
proved.

References

1. Artin, E.: Uber eine neue Art von L-Reihen. Abh. Math. Sem. Univ. Hamburg 3, 89108 (1924)
2. Artin, E.: Idealklassen in Oberkorpern und allgemeines Reziprozititsgesetz. Abh. Math. Sem.
Univ. Hamburg 5, 353-363 (1927)

Ax, J.: The elementary theory of finite fields. Ann. Math. 88, 239-271 (1968)

Cebotarev, N.: Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer
gegebenen Substitutionsklasse gehoren. Math. Ann. 95, 191-228 (1926)

Deuring, M.: Uber den Tchebotareffschen Dichtigkeitssatz. Math. Ann. 110, 414-415 (1934)
Fried, M.: On Hilbert’s irreducibility theorem. J. Number Theory 6, 211-231 (1974)

Jarden, M.: Elementary statements over large algebraic fields. Trans. AMS 164, 67-91 (1972)
Lang, S.: Algebraic number theory. Reading: Addison-Wesley 1970

Neukirch, J.: Kennzeichnung der p-adischen und der endlichen algebraischen Zahlkorper. Invent,

Math. 6, 296-314 (1969)
10. Samuel, P.: Lectures on old and new results on algebraic curves. Tata Institute for Fundamental

Research, Bombay 1966

11. Serre, J.-P.: Zeta and L functions. In: Arithmetical algebraic geometry, pp. 82-92. Schilling,
O.F.G, ed. New York: Harper & Row 1965

12. Zariski, O., Samuel, P.: Commutative algebra. I. Berlin, Heidelberg, New York: Springer 1975

W

L XN

Received February 18, 1982; in revised form May 22, 1982



