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InTRODUCTION

Kenkichi Iwasawa and Kaji Uchida proved independently in [6, 11] the
following remarkable theorem.

‘THEOREM. Let H and J be two open subgroups of the absolute Galois group,
G(Q), of the field of rational numbers Q. Suppose that o: H— J is a (topological)
wsomorphism. Then o is induced by an inner automorphism of G(Q); i.e., there
exists a g € G(Q) such that x° = x7 for every x € G(Q).

‘The main purpose of this note is to prove an analogous result for non-Abelian
free profinite groups. Here the notion of a free profinite group is used in the sense
defined, e.g., by Ribes [9, p. 60]; in particular such a group has a free system of
generators that converges to 1. Let H and ] be open subgroups of a profinite
group G. An isomorphism o: H — [ is said to be normal in G if N° = N for
every open normal subgroup N of G which is contained in H N J. If G = G(Q),
then a celebrated theorem of Neukirch [8], on which the above theorem of
Iwasawa and Uchida is based, ensures that every such an isomorphism is normal.
"This is certainly no longer the case for free profinite groups. We therefore have
to assume normality in order to obtain our

MaIN THEOREM. Let H and ] be two open subgroups of a non-Abelian free
profinite group F. Suppose that o: H— [ is a normal isomorphism in F. Then o is
induced by an inner automorphism of F.

We prove the theorem first for £, , the free profinite group on e > 2 genera-
tors. This is done in two steps: First we prove that ¢ is pointwise inner in F,;
then we show that o is inner in #, . In Section 3 we deduce the theorem for an
arbitrary F.

* Partially supported by a DAAD grant.
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1. AN APPLICATION OF REPRESENTATION T'HEORY

Let o: H — J be an isomorphism of open subgroups of a profinite group G.
Then o is said to be pointwise inner in G, if for every h € H there exists an x € G,
such that 2 = A®. Ikeda applied Representation Theory in [5] in order to deduce
from the Neukirch theorem that every automorphism of G(Q) i1s pointwise inner.
The application of Ikeda’s argument in our case is made possible by

Lemma 1.1. Let p be a prime number and let I" be a finite group of order
relatively prime to p. Let A be a simple F [I'-module (written multiplicatively).
Denote by E = I' - A the corresponding semidirect product. If I is not cyclc, then
every system of generators of I' can be lifted to a system of generators of E.

Proof (Thompson). Let x, ,..., x, be a system of generators of I'. For every
system (a) = (@ ,..., @,) € A% let I', be the subgroup of E generated by
X184 5e-r, X,a, . Then I', is mapped onto I" under the canonical homomorphism

h: E— E|A = I'. Hence, I', N A, which is the kernel of & | I, , is left invariant
under the action of I'. It follows that ', " A =1orI'y,N 4 = A, since 4 i1s a
simple F,[I"]-module. If there exists an (a) € A° such that ', " 4 = A, then I',
is equal to E, which is therefore generated by x,4, ,..., x.4, .

Assume therefore that I, " A = 1, i.e., that I, is a complement of 4 for
every (a) € Ae. If (a)  (b), then I', £ I3, , since otherwise we would have
alh,el',N A =1 fori=1,..,e which is a contradiction. It follows that 4
has at least | 4 |® complements in E. On the other hand, it is known that all the
complements of 4 are conjugate to one, say to I', since | A| and | I'| are
relatively prime (cf. Huppert [3, p. 120]). It follows that the number of conjugates
of I"are at most (E : I') = | A |. The desired contradiction follows now from the
fact thate > 1. |

LemmMA 1.2. Let e = 2 and let o: H — [ be a normal isomorphism of two open
subgroups H and J of F, . Then o is pointwise inner in F, .

Proof. Let N be an open normal subgroup of F, which is contained in
H N Jand let I' = F,/N. Let x be an irreducible character of I" and let K be a
number field over which y is defined (cf. Serre [10, p. 106]). This means that
there exists a representation p: I'— GL(n, K) such that Tr p(x) = x(x) for
every x € I'. Denote by S the set of all primes p that split completely in K and
that do not divide the order of I', and such that if p is a prime of K lying over P,
then p(x) is p-integral for every x € I. By Cebotarev density theorem, S is an
infinite set. v

Let p € S and let p be a prime of K lying over p. Then reducing module p we
obtain a representation g:I"— GL(n, F,), which is also irreducible (cf. [10,
p. 140]; note that p is also defined over @,). Let A be the corresponding simple
F,[I"]-module. Let z, ,..., 2, be generators of F, and let «, ,..., x, be the corre-
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sponding generators of I" under the canonical map F,—T. By Lemma 1.1,
%, ,..., X, can be lifted to a system of generators of the semidirect product
L = I' - 4. Hence F', has an open normal subgroup M which is contained in N
such that £,/M =~ E, NJM =~ A, and the canonical action of I" on A corresponds
to the one given by . The given isomorphism o leaves M and N invariant; hence
it induces isomorphisms H/N — JIN, H/M — J/M, and A — A, which are
also denoted by o. Thus (a®)° = a>% for every ae A every x e H/M. This,
written as a® = a°% 9" implies that ¥ and x° are conjugate as A-operators;
hence

x(x) = x(x°) mod p, forall xe H|N.

This congruence holds now for infinitely many primes p of K. Hence x(x) =
x(x9). This equation holds for every irreducible character y of I. Hence x is
conjugate to x° in I" (cf. [10, p. 32]).

Letting N run over a cofinite system of open normal subgroups of F, and using
compact arguments, we obtain that every x € H is conjugate in F,toxe.

2. AN ARGUMENT OF Iwasawa

Tkeda used in [4] an argument of Iwasawa in order to prove that every point-
wise inner isomorphism of two subgroups H and J of G(Q,) is inner in G(Q,).
We modify the argument in order to obtain the analogous result for Fe. We start
with two lemmas that replace the local class field theory in Ikeda’s work.

LeMMA 2.1. Let B be the free 7-module of rank f. Then every open subgroup A
of B is also a free Z-module of rank f.

Proof. Denote by B, the free Z-module of rank f. This module has only
finitely many subgroups of a given index m and the intersection of all subgroups
of B, of finite indices is trivial. It follows that B = B is the profinite completion
of B,. Moreover, denote, for every subgroup A, of B, of a finite index, the
closure of 4, by A, . Then the map A, — 4, is a bijection onto the set of all
open subgroups of B (compare also the proof of Lemma 2 in [7]). By the funda-
mental theorem of Abelian groups every A, is a free Z-modle of rank f. Hence.
A == A, is a free Z-module of rank f. §

LemMMA 2.2. Let e = 2, and let N be an open normal subgroup of F, with
commutator subgroup N'. Then the canonical action of I = F,JN on A = N|N’
is faithful, in other words, N|N'is self-centralizer in F,N".

Proof. 'The group N is isomorphic to Fp, where f = 1 + n(e — 1) and
n = (F,: N)(cf. [7, p. 283]). The group 4, as the maximal Abelian quotient of
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N, is therefore a free Z-module of rank f. Let x be an element of ', that commutes
with every element of N modulo N"and let M = (N, x». Then M/N"is Abelian;
hence M’ < N'. But N/M', as a subgroup of M/M’, is also Abelian; hence
M’ = N'. It follows that 4 is an open subgroup of B = M/M’. Moreover, B
is also a free Z-module of rank 1 + m(e — 1), where m = [F, : M]. By Lemma
21,1+ m(e — 1) =1 + n(e — 1); hence m = n, since e > 2, therefore M = N
andxe N. f

Lemma 2.3. Let o: H— ] be a pointwise inner isomorphism of two open
subgroups of F, . Then o is inner in F,

Proof. 1If ¢ =1, then H = J and o is the identity automorphism. The

Lemma is therefore trivially true. Suppose that e >> 2 and consider an open
normal subgroup N of ¥, which is contained in H N J. As in the proof of Lemma
1.2, it suffices to prove that ¢ is inner in £, modulo N.

Indeed, let I' = F,/N and A = N/N’ be as in Lemma 2.2. For every xe I’
let A® = {ae A|a° = a*}. Then 4™ is a closed subgroup of A, and the
finite union of all these groups covers 4. It follows that there exists an x € I" such
that 4® is open in A. For this x, let B = (4 : A™). Then (a")k = (a®)*; hence
a’° = a® for every a € A, since 4 is torsion free.

Now let y € H/N and let g be a lifting of y to an element of H/N'. Then
g lag € A for every a € A and hence

(g7lag)” = (g°)ta’g” = (g°) 'a"g’,
(g7ag)” = (glag)* = (g%)ta%g”

It follows that (a®)?"¢"" = a= for every a € A. But when a runs over the elements
of A, so does a®. It follows from Lemma 2.2 that y° = y*. [

3. Proor or THE MaIN THEOREM

Let F be a free profinite group on a set X that contains at least two elements
and let ¢: H — J be a normal isomorphism of two open subgroups of F. Again,
it suffices to consider an open normal subgroup N of F which is contained in
H N J and to prove that o is induced by an inner automorphism module N.

Indeed, the set X is assumed to converge to 1. This means in particular that
one can represent X as a disjoint union X = Y U Z, where Y is a finite set of,
say, e > 2 elements and Z is contained in N. Let M be the smallest closed
subgroup of F that contains Z. Then M < N and F/M ~ F, (cf. [9, p. 66]). Our

! 'This is a weak form of the lemma of Iwasawa. A quick proof of it can be given using
the Haar measure of A: If none of the 4'® were open, then all of them would have
measure zero; hence 4 would be of measure zero too, which is a contradiction.

|

T
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o induces an isomorphism of H/M onto J/M which is normal in F/M. By
Lemmas 1.2 and 2.3 it is inner in F/M. In particular o is induced modulo N by
an inner automorphism. [

4. APPLICATIONS
A straightforward corollary of the Main Theorem is the following one:

CoroLrLARY 4.1. Let H and J be two open subgroups of a non-Abelian free
profinite group F. If there exists an isomorphism o: H— J, normal in F, then
(F:H)y=(F:]).

Remark. 'The Main Theorem, as well as its proof remains valid for free
prosolvable groups. The method of the proof, however, does not work for free
pro-p-groups. We shall therefore take another course of proof and prove our
results for pro-p-groups in a subsequent paper.

Let H be an open subgroup of a non-Abelian free profinite group F. Then H
is also a non-Abelian free profinite group (cf. [2, p. 108]). Hence H has a trivial
center (cf. [7, p. 306] or [1, p. 235]). It follows that the intersection of H with its
centralizer C' in F is 1. Hence C is a finite group. But F is torsion free (cf. [7,
p. 306] for the finite rank case, from which the infiite rank case also follows).
Hence C = 1. It follows that the normalizer Nz(H), of H in F can be considered
as a subgroup of the group Auty ,(H), of all normal automorphisms of H in F.
The Main Theorem implies that:

CoroLLARY 4.2. Autp ,(H) = Ng(H).

In particular if we denote by Aut,(F) the group of all normal automorphisms of
F, then we have

CoroLLarY 4.3. Aut, F =F.

Remark. 'This result is, in a sense, the best possible. Indeed if F' is Abelian,
then necessarily F = 2, and every automorphism of Z is normal, although none,
except the identity, is inner. On the other hand, if X is a free system of generators
of F that converges to 1, then every permutation 7 of X can be extended to an
automorphism of F, which is certainly not inner, if 7 is not the identity.
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