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DIOPHANTINE PROPERTIES OF SUBFIELDS OF Q.

By MicHagL Friep anD MOSHE JARDEN,

Introduction. By the Galois closure ot a separable algebraic field exten-
sion F/E we mean the smallest extension I of F which is Galois over E.

A finitely generated field extension F/K of dimension r is said to be stable
if it has a separating transcendence base ¢, ..., 1, such that the Galois closure, F,
of the (separable) extension F/K(t) is regular over K. This is equivalent to
saying that 6 (F/K (t))= G (K-F/K (t)), where K is the algebraic closure of K
(cf. [5, Section 1]). The system ¢,,...,¢, is said to be a stublizing base for I/ K.

A field K is said to be stable if every finitely generated regular extension F
of K is stable.

A field K is said to be pseudo-algebraically closed (PAC) if every non-void
absolutely irreducible variety V defined over K has a K-rational point.

It was proved in [5, Theorem 3.4] that

(A)  Every PAC field is stable.

A close examination of the proof of this theorem reveals that actually a
little more was proven. Indeed, it was proven that given a PAC field K and a
regular finitely generated extension F of K, there exists a stabilizing base (t) for
F/K such that 8(F/K (1) is isomorphic to a symmetric group 5,, where
n=[F:K(t)]. It turns out that it is important for the applications also to have
this stronger property. We therefore make the following definitions.

A regular finitely generated extension F/K is said to be symmetrically
stable if it has a stabilizing base (t) such that § (F/K(t)) is isomorphic to a
symmetric group. In particular every symmetrically stable extension i$ stable.
The field K is said to be symmetrically stable if every regular finitely generated
extension F/K is symmetrically stable.

Having made these definitions we can now restate (A) as follows:

(A")  Every PAC field is symmetrically stable.
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The aim of this paper is to generalize this result fo
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654 MICHAEL FRIED AND MOSHE JARDEN.

(0 and to prove that
(B)  Every field of characteristic 0 is symmetrically stable.

The question of the stability of non-zero characteristic fields remains open.

The first step in proving (B) is to show that it suffices to consider only
extensions F /K of dimension 1 and to find a transcendental element ¢ & F such
that G (B:;]s/lg (t))=S,, where n=[F: K (f)]. This condition is then shown to be
satistied if ¢ is chosen in such a way that every pmne divisor p of K (1)/K that
ramifies in KF decomposes in KF as p=9 P +P 429, where the
o, are distinct prime divisors of KF /K. In order to show thdi such a choice of ¢
is possible, we use a well-known theorem which says that '/ K has a projective
plane model I" with at most nodes as singularities. Given such a I', we show that
it is possible to choose a K-rational point O € P*—T such that all lines that pass
through O cut I' in at least n—1 distinct points, where n=degl’. The
stereographic projection of I' from O maps a generic point P of I over K onto a
generic point Q of P! over K. The field K (Q) is then a pure transcendental

extension of K, and the above decomposition law for the prime divisors of

K(Q)/K is satisfied.

In Section 4, the theorem (B) is applied to construct a normal extension N
of the field @ of rational numbers such that N is PAC and hilbertian and
G (@ /N) is not contained in any finitely generated closed subgroup of §(@/ Q).
This reanswers a question of Ax and simultaneously answers a question of the
first author.

The authors are indebted to P. Roquette, H. Popp and W. D. Geyer for
some very useful conversations.

1. Stable Extensions. We begin, as announced in the introduction, by
reducing the problem of proving the stability of fields to the problem of proving
the stability of finitely generated extensions of dimension 1.

Lemma 1.1 A sufficient (and obviously necessary) condition for an
infinite field K to be stable (respectively, symmetrically stable) is that for every
extension L of K, every finitely generated regular extension F/L of dimension
1 is stable (symmetrically stable).

Proof. Let L be an extension of K, and let F//K be a finitely generated
regular extension of dimension r. We prove, by induction on r, that F/L is
stable (symmetrically stable). If =0, then F= L and there is nothing to prove.
The case r=1 has been assumed in the lemma. Suppose therefore that r > 2 and
that the statement is valid for r— 1. Let t,,...,t, be a separating transcendence
base for F/L. Then there exists at least one derivation D of F over L such that
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Dt,#0 (cf. Lang [9, p. 186)); hence ¢, & LF?, where p =char(L) (cf. [9, p. 185]).
A lemma of Zariski and Matsusaka implies therefore that there exists an
element ¢ of L such that F is regular over L, = L(t,_,+ct,) (see [9, p. 213]).
The element u, =t _ |+ ct is transcendental over L, since f,_,t, are algebrai-
cally independent over L, and hence dimF/L;=r-1. '/ L, has therefore, by
the induction hypothesis, a stabilizing (symmetrically stabilizing) base u,, ..., u,.
Thesystem w,,u,,..., 1, is a stabilizing (symmetrically stabilizing) base for F/ L.

Q.ED.

We must therefore consider only finitely generated regular extensions of

dimnension 1. We have already mentioned that if F/K is such an extension and
if ¢is a separable transcendence element for F/K, then t is also a stable
element for F/K if and only if @(13/}( (i))%cf(ﬁﬁ/ﬁ (1)), since F/K is
regular if and only if F is linearly disjoint from K over K. This Galois theoretic
condition is automatically fullfilled if & (KT/ K (i)) is a symmetric group.
Indeed we have the following Lemma (see [5, Lemma 1.2]):

Lemmva 1.2, Let t be a separating transcendence element of a finitely
genewted regular extension F/K of dimension 1, and let n=[F:K(t)]. If
G ( KF/K (1)) is isomorphic to the symmetric group S,, then Q(P/K( ))=S5,
and hence F /K is symmetrically stable.

n?

The Galois-theoretic condition that appears in Lemma 1.2 is satisfied if the
prime divisors of K (1) decompose in a certain way, as described in Lemma 1.5
below. In order to prove Lemma 1.5 we use the following two well-known
lernmas.

Lemma 1.3, Let L be an algebraically closed field, let t be a transcenden-
tal element over L, and let E be a finite Galois extension of L(t). Then
G(E/L(t)) is generated by the inertia groups of the prime divisors of E /L.

Proof. Let % be a prime divisor of E /L, and let

1(P)={o€8(E/L(1))]°

be the inertia group of @ . Denote by T'(%) the fixed field of (%) in E; this is
the inertia field of . T(%) is the maximal subfield of E that contains L(t) such
that the restriction of & to T'(%) is unramified over L(¢). The fixed field, T, of
the subgroup G generated by all the inertia groups I(9) is unramified over
L(¢t). 1t follows that the different of T over L(t) is the zero divisor. Further-
more, the genus of L(#) is zero. Hence, if we denote by g the genus of T/ L, we
obtain from Hurwitz genus formula (cf. Chevalley [3, p. 106, Corollary 2]) that

Plox—x)=0 VxE?Iz}
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2g—2==2[T:L(t)]. It follows that [T:L(t)]=1; hence T= L(t); hence
G=G(E/L(t)). Q.ED.

Lemma 1.4, If G is a transitive subgroup of S, and if G is generated by
cycles of length 2, then G=§,.

Proof (Z. Janko). We consider G as operating on a set X of n elements.
For every subset Y of X we denote by S(Y) the group of all permutations of X
which leave X-Y elementwise fixed. G is not empty, since it is transitive: hence
it contains 5 ({x}) for every x € X. Suppose that G contains S(Y), where Y is a
proper subset of X. Then there exists a transposition (xy) in & such that
x& X—Y and y €Y, since otherwise G would transfer Y into itself, contradict-
ing the transitivity. It follows that & contains S(Y U {x}), since S (Y U {x}) is
generated by 5(Y) and (xy). By repeating this argument at most n times, we
conclude that G= S (X). Q.ED.

Lemma 1.5, Let L be an algebraically closed field, let t be a transcenden-
tal element over L, let F be a separable extension of L(t) of degree n, and let F
be the Galois closure of F/L(1). If every prime divisor p of L(t) that ramifies
in I decomposes in F in the form

p=%P 4+ -+ P _,+2P,

where F,..., P, _,, 9 are distinct prime divisors of F/L, then G (F/ L(t))=
S

n*

Proof. Let G=G(F/L(t)), and let H=G8 (F/F). Then the only subgroup
of H that is normal in G is the trivial one. Let X={oH|o € G} be the set of the
left cosets of G modulo H. X contains exactly n elements, since (G:H)=
[F:L(t)]=n. G operates transitively on X by multiplication from the left:
7m0l = roH. Thus we get a homomorphism of G into the symmetric group S (X)
of all permutations of X. The kernel of this homomorphism is clearly contained
in H and is normal in G: hence it is trivial. It follows that G can be identified
with a subgroup of S(X). We show that G =S (X).

By Lemma 1.3, (- is generated by the inertia subgroups I(q) of the prime
divisors q of F/L. Every prime divisor of F'/L lies over a certain prime divisor
of L(t)/L. Let p be a prime divisor of L(t)/L. If p is unramified in F, then
I'(a) CH for every prime divisor ¢ of F/L that lies over p. The subgroup J
generated by all these I(q) is thus contained in H. J is also normal in G; hence

J=1

R
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Itfollows that G is generated by all the inertia groups I(q) such that the
prime divisors p of L(t)/L that lie under g ramify in F. By Lemma 1.4,
suffices to show that for such g’s I(q) is a cyclic group generated by

transposition.
Suppose therefore that p is a prime divisor of L.(t)/ L that ramifies in I,
Then we have, by assumption, that p=9 + - + 9P, +29, where

Py Py, P are distinet prime divisors of F/ 1 Let q be a prime divisor of
F /L that hes over . If ¢ is another prime divisor of F /L that lies over p,
then I(0") is conjugated to I(q). It suffices therefore to prove that I(q) is a cyclic
group generated by a transposition.

For each 1 < i< n—2, consider an extension q, of %, to F. % is unramified
over L(t); hence I(q,) C H. Furthermore, there exists a o; € G such that q;=qo;.
If 1<j<n—2 and j5i, then o]F+ (:7,«11:7, since 9P, 7 @77; hence
{o\H,...,0,_4H) contains exactly n—2 elements of X. Let 0, H and o,H be
the remaining two elements of X. If 1€ 1(q), then

o 'ro; € [(q0;)=1(q,) CH;

1

hence r{o,H)=0,H for i=1,...,n—2. It follows that r can permute only o, H{
with ¢,H. Furthermore, (g )#1 since q is ramified over L(t). Hence there
exsits an element 7€ I (q) such that 7+ 1. This element generates I(q), and its
image in S(X) is exactly the cycle (o, | H,0,H). Q.E.D.

n-—1

If we combine Lemma 1.2 with Lemma 1.5 we get

Lemma 1.6, Let t be a separating transcendence element of a finitely
generated regular extension I/ K of dimension 1, and let n=[F: K(t) )]. If every
prime divisor p of K (1) that ramifies in KF decomposes in KF in the form

p=F 4+ + P29,

where P, ..., (i}“’nﬂ are distinct prime divisors of F- K / K, then
G(F/K(t))=8(KF/K(T))=S, and hence F/K is symmetrically stable.

2. Reformulation of the Problem in Geometric Terms. In Lemma 1.6 we
gave a certain algebraic condition for a regular extension of dimension 1 to be
symmetrically stable. In this section we translate the algebraic condition into a
geometric one which is easier to handle. Extensions of dimension 1 are strongly
connected with curves. Our geometric condition is therefore on finite mor-
phisms of curves.

i
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Lemma 2.1, Let I be an absolutely irreducible projective plane curve of
degree n defined over a field K, and let O be a K-rational point of P2-—-T
satisfying the following condition:

(*) Every line that passes through O cuts ' in at least n—1 points;
almost every line that passes through O cuts I in n points.

Then the function field, K(I'), of I over K is a symmetrically stable extension
of K.

Proof.  The assumption that O does not lie on I" and that I" is a projective
curve implies that A, a projection from O, is a finite morphism and that
AI)=P* (see e.g. Shafarevich [14, p. 507). Further, A is defined over K, since O
is K-rational.

Let Q' be a point of P', and let P’ be a point of I" which is mapped onto
Q" by A. The set of all points of I" that are mapped onto Q' by A is exactly the
set of points of I' that lie on the line L through O and P’. The condition (*)
therefore implies that there are at least n— 1 points and at most n points of I’
lying over Q’; the number n— 1 is obtained only for finitely many points Q'. It
follows, by standard arguments, that if P is a generic point of I' over K and
Q@=A(P), then [K(P):K(Q)],=n. On the other hand [K (P): K (Q)]< n, since
degl'=n and since O is K-rational. Hence K (P) is a separable extension of
K (Q) of degree n. We also know that K (P) is a regular extension of K, since I'
is absolutely irreducible; hence also [K (P): K (Q)]=n. Moreover, () is a generic
point of P! over K. This means that there exists a transcendental element ¢ over
K such that K (Q)= K (7).

Let b be a prime divisor of K (¢)/K that ramifies in K (P). By what was
said above, there are at least n—1 points Pj,...,P,_, of I' that lie over
Q" =Db(Q). Each one of the Ig-specializaticms P—P{ can be extended to a prime
divisor &, of K (P)/K, and we have

F,(Q)=,(A(P)) =A(E) =0’ =0(Q).

et A 7 . ryer L R L
This means that &, lies over p. There cannot be any more prime divisors of
K(P)/K that lie over p, since p is ramified and since the sum of the
multiplicities of p in the &, must be equal to n. Hence p decomposes in K (P) in

1
the form

p=P + +P, _,+29

n-—1»

and the ®P/’s are distinct.
It follows from Lemma 1.6 that K (P)/K is a symmetrically stable exten-

sion. QED
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3. Realizing the Geometric Conditions over Fields of Characteristic 0.
Consider a projective plane curve I' of degree n and a point O in P*—1I". Let L
be a line through O, and let P,..., P, be the intersection points of L with T
One assigns to each of the points P, a positive intersection multiplicity (I, L; P,)
(cf. Seidenberg [13, p. 33]) and one has, by Bezout’s theorem, that
2T i Ly P)=n (cf. [13, p. 44]). It follows that m <n and that a necessary
condition for M to be >n—1 is that i(I',; P) <2 for i=1,...,m. One also
knows that i(I',L;P,) is not less than the multiplicity of P, on I'. Thus a
necessary condition for the inequality i(I', L; P;) <2 to hold is that the multiplic-
ity of P, on I' is at most 2. Since every point P of I' occurs as a point of
intersection of I" with a certain line through O, all the singular points of I" must
be of multiplicity 2. If char(K)=0, then I" can be birationally transferred onto a

curve 1" that satisfies this condition. Indeed, we have the following lemma:

LemMa 3.1, If K is a field of characteristic O and if F is a finitely
generated regular extension of K of dimension 1, then there exists a projective
plane curve T which is defined over K and has only singular points of
multiplicity 2 such that K(I')=F.

A proof of this lemma can be found in Lefschetz [10, p. 130] for the case
where K is algebraically closed (and of characteristic 0). It consists of two main
steps. In the first one it is shown that F/K has a projective space model
without singularities. In the second step the space model is projected on the
plane and one obtains a projective plane model for F/K with only nodes as
singularities, and hence with singularities of multiplicity 2 only. The method of
the proof of both steps is to show that starting from a projective smooth model
I for F/K in P* (that always exists), one can find a proper algebraic subset A
of P¥ such that the projection of I into P*~! from any point O EPF—Aisa
“good” one. Hence, even if K is not algebraically closed, one can choose O to
be rational over K and in this way to obtain the desired model for '/ K.

We note that the second step of the proof is carried out by Abhyankar [1,
p. 23 and p. 75]. Abhyankar’s proof is however valid over every infinite field,
and the model obtained in this proof is one with only nodes as singularities and
without strange points (i.e., points through which there pass infinitely many
tangents to the curve).

We also note that Popp proves in his Thesis and states in [12, p. 510] that
if K is an infinite field and F is a conservative regular function field of one
variable over K, then F/K has a projective plane model with only nodes as
singularities.

Given a plane curve I' with only double points as singularities, one can
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find a K-rational point O satisfying the conditions of Lemma 2.1. This follows
from the following lemma.

Lemva 3.2, If T is an absolutely irreducible projective plane curve
defined over a field K of characteristic 0, then there exists a K-rational point O
such that:

(a) No line through O is tangent to I' in two distinct points;
(b) O does not lie on the tangents to I' through the points of inflection of
I';
(¢) O does not lic on any of the lines that pass through two singular
points of T';
(d) No tangent to T that passes through a singular point passes also
through O
(e) Only finitely many lines through O are tangent to I,
Proof. The lemma is obviously valid if I" is a line. Suppose therefore that
I' is not a line, and consider its dual curve I'*. Geometrically speaking I'*
consists of all the tangents to I' considered as points in the dual plane. A
tangent to I" in two points corresponds to a singular point of I'* (see van der
Waerden [15, p. 77]). Since I'* has only finitely many singular points, we have:

(i) Only finitely many lines are tangent to I' in two points.

A point P of T'is a point of inflection if it is simple and if the tangent to I
at P cuts ' with multiplicity > 3. The point of T'* that corresponds to this
tangent has multiplicity > 2 (see [15, p. 76]); hence it is singular. Therefore

(ii) only finitely many lines are tangent to I in inflection points.

I" itself has only finitely many singular points. Hence

(iti) only finitely many lines pass through two singular points of I'.

There are at most a finite number of tangents to I' passing through a given
point of P? (see Lefschetz [10, p. 127)). It follows that

(iv) there are at most a finite number of tangents to I' that pass through
singular points.

There are therefore only finitely many “bad” lines satisfying (i), (ii), (iif), or
(iv). Since K is an infinite field, there exists a K-rational point O eP?—T that
does not lie on any of these lines. O certainly satisfies the conditions (a), (b), (¢),
and (d). It satisfies also condition (e), since every point does. Q.E.D.
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Levma 3.3. Let I' be an absolutely irreducible projective plane curve of
degree n defined over a field K of characteristic 0. Suppose that the multiplicity
of the singular points of I' is 2. Then there exists a K-rational point through
0 €P?*—T such that:

(*) every line that passes through O cuts I in at least n—1 points, and
almost every line that passes through O cuts I' in n points.

Proof. Let O be a K-rational point of P*—1 that satisfies conditions
(a)~(e) of Lemma 3.2. We prove that O satisfies (*).

Let L be a line in P? that passes through O, and denote by P,,..., P, its
intersection points with I By Bezout’s theorem

m

n= > i(I,L;P). - (1)

e

Suppose first that I, is not a tangent to I' and does not pass through
singular points of I". By (e), there are at most finitely many lines that fail to
satisfy this condition. In this case we have that i(I',L; P)=1 for i=1,...,m. It
follows from (1) that m=n.

Suppose now that I, is tangent to I', say in P,. Then P, is a simple point of
" which is not an inflection point, as follows from (b) and (d). Hence
i([,L; P))=2. If 2< i <m, then P, is simple and L is not a tangent to I at P, as
follows from (a) and (d); hence i(I', L; P,) = 1. 1t follows from (1) that m=n— 1.

The last possibility is that L passes through a singular point, say P}, which
is, by assumption, of multiplicity 2. L is not a tangent to [', by (d); hence
WLy P =2, If 2<i<m, then P, is simple, as follows from (c), hence
i(I', L; Py) = 1. It follows from (1) that m=n— 1. Q.ED.

We come now to our main theorem.
Turorem 3.4.  Every field of characteristic 0 is symmetrically stable.

Proof. By Lemma 1.1, it suffices to prove that if K is a field of character-
istic O and F is a finitely generated regular extension of K of dimension I, then
F is symmetrically stable over K. Indeed, by Lemma 3.1, F/K has a projective
plane model T, and all of its singular points are of multiplicity 2. Thus I" is an
absolutely irreducible curve, since F/K is regular of dimension 1. Let n=degI".
Then, by Lemma 3.3, there exists a K-rational point O € P*—T such that (*) is
satisfied. It follows from Lemma 2.1 that F is a symmetrically stable extension
of K. Q.ED.
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4. An Application: Construction ()f a Normal PAC Hilbertian Extension of

Q. The question of the existence of a proper PAC subfield of Q was raised by
Ax in [2, p. 269] and answered positively in [6, p. 76]. Indeed, it was proved in
[6] that if K is a denumerable hilbertian field of characteristic 0 (and in
pal ticular if K=Q) and ¢ is a positive integer, then for almost all (o0y,...,0,)€

G (K /K, the fixed field, K (o), of (0,,...,0,) in K is PAC. Tt is also known that
every algebraic separable extension of a PAC field is also a PAC field (see Ax [2,
p. 268] or Lemma 4.1 below). Hence if K( ) is a PAC field, then every
intermediate field K( )T M Q;K is also PAC. Tt is strongly believed that in this
situation M cannot be normal over K unless M= K (ef. [7, p. 303, Problem 6]).
The stability of K makes it now possible to construct a normal algebraic
extension M of K such that M is PAC and in addition does not contain any field
of the form K (6). We are thus supplied with “new” PAC fields. In addition,
these fields can be explicitly constructed. In contrast, the previous PAC fields
were known to exist only by a sophisticated measure theoretic argument.

We also note that in [6] we posed the question of fields which are
simultaneously PAC and hilbertian. Examples of such fields were provided in
[4]. These examples were however of an infinite transcendence degree over the
ground field, and it was asked in [4] whether one can construct subfields of G
which are both PAC and hilbertian. This is done now. In fact, we construct the
above field M in such a way that it is also hilbertian.

We begin by a reduction lemma.

An absolutely irreducible polynomial f€K|[T,,...,T,X ] is said to be
stable (symmetrically stable) over K with respect to Ty,..., T, it 3f/0X+0 and
if there exist elements f,,...,t,x such that (i) f(tx)=0; (i) ¢,...,t, are
algebraically independent over K; (iii) {#;,...,t} is a stabilizing (symmetrically
stabilizing) base for K (t,x)/ K. ‘

Lemma 4.1, Let K be a field of characteristic 0, and let M be an
algebraic extension K. A sufficient (and obviously necessary) condition for M to
be PAC is that for every polynomial f €K[T,,...,T,,X] which is symmetrically
stable over K with respect to Ti,..., T, such that deg,f >2, and for every
non-void K-open subset A of the affine space S', there exist a,...,a,beM
such that (a)€ A and f(a,b)=0.

Proof. Let W be an absolutely irreducible variety defined over K, and let
F be its function field over K. Then F is a finitely generated regular extension
of K. By Theorem 3.4, F is symmetrically stable over K. Let ty,...,t, be a
symmetrically stabilizing base for F/K. Then F is a finite extension of K (t);
hence there exists an x & F such that F=K (t,x). Let f€K[T},..., T, X] be an
irreducible polynomial such that f(t,x)=0. Then f is absolutely irreducible and

i
i
i
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symmetrically stable over K with respect to T',...,T,. Moreover, there exists a
birational map ¢ of the hypersurface V(f) defined by f(T,X)=0 into W, and
there exists a non-void K-open subset A of S” such that ¢ is defined in every
point of V{(f)N(AXSY. By assumption, V(f)N(AXS') contains an M-ra-
tional point (a,b) (the case deg,f=1 being trivial). The point @(a,b) is an
M-rational point of W.

Consider now an absolutely irreducible variety V defined over M. By
descent theory there exists an absolutely irreducible variety W defined over K
and an epimorphism 7 : WV defined over M (see Weil [16, p. 5]). By the first
part of the proof, W has an M-rational point P. Its image, 7 (P), is an M-rational
point of V.

Thus, M is a PAC field. Q.E.D.

The following Lemma follows from Theorem 1 of Kuyk in [42]. It is also
proved in [17].

Lemma 4.2, Let N be a normal extension of a hilbertian field K, and let
§(N/K)=II" 1G X152 H,, where the G;'s and H;'s are finite groups. Denote
by S and I the families (,)j all simple finite groups that appear as factors in
the decomposition sequences of the G;s and H,s respectively. If 6 NI =,

then N is a hilbertian field.
We shall also need the following lemma.

Lemma 4.3, For every field K there exists o polynomial g &
K[T\,...,Ts, Y] which is stable with respect to T, ...,Ts5 such that
(5T, ), K (T)) =2/52.

Proof. Let {xy,%,,%,%;,%,} be a set of five algebraically independent
elements over K, and consider the action of the group Z/5Z on this set given
by n% =%, (mea 5 Let £ be the fixed field of Z/5Z in K(x). Then K(x) is
Galois over E, and G (K (x)/E)=2Z/5Z. The field E is rational over K, i.e., E
contains five algebraically independent elements f),...,4; over K such that
E=K(t) (cf. Lenstra [11, p. 321]). If we take a y &K (x) such that K(x)=
K (t,y) and an irreducible polynomial ¢ € K[T, Y] such that g(t,y)=0, then g is
stable over K with respect to T and 8 (g(T, Y ),K(T))=2/5Z. Q.E.D.

Tueorem 4.4.  Let K be a denumerable hilbertian field of characteristic 0.

Then there exists a normal extension N of K with the following properties:

(1) 9(N/K) is isomorphic to the direct product of infinitely m(my finite
groups.
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(2) N is a hilbertian field. 3
(3) N contains no field of the form K (o), where (o) €5 (K/ K)*

Proof. The set S of all pairs (f,A), where f € K[T),...,T,,X] is absolutely
irreducible and symmetrically stable over K with respect to T, deg, f > 2, and A
is a non-void K-open subset of §" (r> 1), is countable. Order S in a.sequence

(1. Ag) (fo, Ag) (f5 Ag)se e, and construct by induction a triple sequence of
normal extensions of K, { K, L, M,|i=1,2,3,...}, which is linearly disjoint over
K such that for every i >

{9 Aliy

(a) 6(K/K)=2/2Z,

by G(L,/K)=2Z/5Z,

(¢) G(M;/K)=S5,,

(d) A, contains a K-rational point (a) and M, contains an element b such

that f;(a,b)=0.

Indeed, suppose that { K, L, M;|i=1,...,n—1} have already been constructed,
and let | be their composition. The polynomial X2—Tis obviously irreducible
over J: hence there exists a ¢ € K such that X*— ¢ is irreducible over J. Let
¢'e K be such that ¢~ ¢=0, and let K, =K (¢). Then [k,:K]=2, and K, is
linearly disjoint from J over K. Consider next the polynomial ¢ &
KI[Ty,....Ts, Y] that appears in Lemma 4.3. By [5, Lemma 5.1] there exist

dy,...,ds € K such that
Glg(d.Y).K)=6(g(dY)JK,)=Z/5Z

Denote the splitting field of g(d,Y) over K by L,. Then L, is a normal
extension of K which is linearly disjoint from JK, over K, and §(L,/K)=
Z /5Z. At last consider the pair (f,,A,,). Then polynomial f, is stable over K and
G(f(T,X),K(T))=S, for some k >2. Hence, again by [5, Lemma 5.1}, there
exists a K-rational point (a) & A, such that

G(f (X ), K)=6(f, (a,X),JK, L) =S

Denote the splitting field of f,(a, X) over K by M,. Then M, is a finite normal
extension of K which is linearly disjoint from JK, L,, and theze is an element
be M, such that f(a,b)=0. The induction is now completed.

Let K’, L and M be the fields generated by all the K,’s, L,’s and M,’s

respectively, and let N= LM. Then:

(e) K’, L and M are linearly disjoint normal extensions of K. In particular
K’ is h’near]y disjoint from N over K.
6 G(K'/K)=T*_,8(K,/K)=1*_,Z/2Z. In particular §(K'/K) is

not finitely generated (in the topological sense).
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(g) We have

o0

9(L/K)= 1] ¢(1,/K)= ﬁ Z/52,

n =] ne ]

o0
S(M/K)= 1] §(M,/K)= H S,

n =] n==]
We see only one group appears in the decomposition sequences of the
G(L,/K)'s, namely Z/5Z. The groups which can appear in the
decomposition sequences of the § (M, /K)s are only the A,’s and

Z/2Z, and none of them is equal to Z/5Z. By Lemma 4.2, N is

hilbertian.

(h) Nisa PAC field, by Lemma 4.1, since every pair (f,A) in S appears
as a certain ( f,,A,), and for the latter there exists an M, -rational point
(a,b) which is obviously also an N-rational point, such that (a) € A and
fla,b)=

() N satisfies condition (4). Indeed, suppose that there were a positive
integer e and 0y,...,0,E8(K/K) such that K (6)CN. Then K (o)
would be linearly disjoint from K’ over K, by (d). It would follow that
§(K'/K)=8 (K (¢)K'/K (o)), hence §(K'/K) would be generated
by e elements, which is a contradiction to (f).

e wwhinh Arvoaar . dhoa

g

femark. The author’s original construction was of a field N having
properties (1) and (3) above. W. D. Geyer showed then that the construction
can be strengthened in such a way that N would also be hilbertian.

QuesTiON.  Does a PAC hilbertian F have the property that each finite
group can be realized as a Galois group of a Galois extension L over F?
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