502

Algebraically Closed Fields with Distinguished Subfields

By

Mosan JARDEN *)

There is a strong feeling among field theorists that every elementary statement
which can be made about a field and its algebraic closure can be reformulated in
terms of the field itself. Thus, the statement that a polynomial f(z1, ..., x,) with
coefficients in a field X ig irreducible over the algebraic closure, K, of K (i.e. f is
absolutely irreducible) is known to be equivalent to an elementary statement about
K alone. In this note we make this feeling precise and we prove it. From now on
the field theorists can freely use the algebraic closure of a field when they make
elementary statements about the field and they do not have to make efforts to
translate their statements into the language of the field itself. Use of this principle
will be made in a later paper.

Let p be either a prime number or zero. Consider the prime field F, of charac-
teristic p and let #1, {9, f3, ... be a sequence of algebraically independent elements
over Iy, Put Kp = Fp{t1, ta, s, ...). Then every denumerable field of character-
istic p is isomorphic to a subfield of K,. By the Skolem-Léwenheim theorem every
field is elementarily equivalent to a denumerable field (c.f. Bell and Slomson [2],
p. 82). It follows that the collection, I, of all elementarily equivalent classes (for all
characteristics) is a set of cardinallity = 2%, From [4, § 7] it follows that | I] = 2%°.
Hence | I| = 2%, We choose for every il a representative K;.

Let .Z be the first order language of the theory of fields. For every sentence @ of %
we write

A40)={iel|K=0}.
Then A (@) does not depend on the specific representatives K;. If @& is another
sentence of %, then

AV )= A(O)VA(O) and A(~O)=1-— A4(0).
It follows that the set of all 4 (@) is a sub-boolean algebra o7, of the boolean algebra
of all subsets of I, and the map & > A4 (@) is an epimorphism of the boolean algebra
of the sentences of .# onto 7.

We add now a new unary predicate symbol P to .# and denote the new language
by £ (P). Models of .2 (P) will be written as pairs (K', K), where K’ is the domain
and K is the subset which corresponds to P. We shall be primarily interested in

*) This work was done while the author was in Heidelberg University.
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the case where K’ is an algebraically closed field, K is a subfield and [K': K] = oo.
In accordance with this convention we choose, for every 7e I, an algebraically
closed extension, K, of K; such that [K{ : K;] = oo. For every sentence /A of .Z(P)

we write

B(A) = {iel|(K;, K;)}= A}.
Then B(A) does not depend on the K; and K;. This follows from the following
theorem, which is a combination of two theorems of A. Robinson and a theorem
of J. Keisler (see [5], p. 71, II, IV and theorem A).

Keisler-Robinson-Theorem. Let K, L be fields and let K’', L' be respectively, al-
gebraically closed extension of them such that [K’ : K] = oo and [L': L] == oo. Then

K=L = (K' K)=(L)
(= denotes elementary equivalence).

Our main theorem is the following.

Theorem 1. If A is a sentence of & (P), then B (A) € 7. In other words, there exists
a sentence O of L such that for every field K and for every algebratcally closed infinite
extension K’ of K we have
K0 <= (K" K)=A4.
Proof. Assume that B(A) ¢ s7. Then there exist two ultra-filters 2; and Dy of I
such that '

(1) Dined=2sns,

(2) B(A)e D, — D

(see Ax [1], p. 256). Put Fy = [ [ K;/D; and Fj =] [K{/D;,§ = 1,2; then Fy = F,
el =

1€
(by (1)), the F]f are algebraically closed and [F; : Fj] = co. Hence, by the Keisler-
Robinson Theorem

(3) (Fy, 1) = (Fy, Fy).

On the other hand we have, by (2), that (Fy, Fy)l= A and (Fy, Fy) l= A, which
is in contradiction to (3).

For decision procedures in field theory it is important to give a computable version
of theorem 1. In order to do this we denote by /7 that set of sentences of % {(P) which
expresses the fact that K is a field, K’ is an algebraically closed extension of K and
that [K': K] = oco. The last of these three statements is equivalent by the Artin-
Schreier theorem to the statement [K’: K] = 3 {e. f. Lang [6], p. 223) and this is
elementarily expressed, for example, by the following sentence:

3 3 3
3X13X23X3VY1VY2VY3 A P(Yi)/\ZYzXzZO > Zleo .
i=1 i=1 i=1

Theorem 2. There exists a recursive procedure which enables us to find in a finite
number of steps, for a given sentence A of L(P), a sentence O of L such that (*) holds.




504 M. JARDEN

Proof. Theorem 1 asserts that there exists a @ which satisfies (*). Let R (&) be
the sentence of .Z(P) which is obtained from @ by restricting the range of all the
variables of & to P (c. f. Keisler [5], p. 79 for a precise definition).

Then

K=6 < (K',K)= RO

Hence, by (*), [I|= R(O) < 4, i.e. R(0) < A is true in every model of //. Hence,
by the Goédel completeness theorem I7H R(O) <« A, i.e. R(O)« A is formally
provable from I7.

We now order all the proofs of % ( P) from I7 in asequence (e.g. by Cantor’s diagonal
method) and examine them one by one. After a finite number of steps we shall hit
a proof of a sentence of the form R (@) < /A, where @ is a sentence of €. @ will
satisfy (*).

We can now combine previous results with theorems 1 and 2 to get some im-
mediate corollaries.

Denote by P (Q) the set of all prime numbers, with its associated Dirichlet density
¢. Furthermore, let % ( (I)/CQ ) be the Galois group of Q over Q, with its normalized
Haar measure u with respect to Krull topology. The fixed field of an element

o E(f(al/(ll) is denoted by @(o). For a sentence A of & (P) we denote
C(A) = {pe P@)|(Fy, Fy) = 4},

D(A) = {se@@)|(@(0), Q(0) = 4}

then we have the following theorem.

Theorem 3. (a) C(A) has a Dirichlet density 5(C(A)). If C() is an infinle set,
then 8(C(A)) 1s a positive rational number.

(b) The set D(A) is measurable and we have 6(C(A)) = u(D(A)).

(¢) The theory of all sentences A of L (P) which are true in all the pairs (F', F)
where F is a finite field and F' is an algebraically closed extension of I (similarly,
in all the pairs (I, Fyp), in almost all the pairs (F,,, Fyp), eic.) is decidable.

Proof. (a) and (b) follow from Theorem 3.17 of [3] and Theorem 1; (c) follows
from Ax ([1], p. 264) and Theorem 2.

Remarks. 1) P. Roquette noted (in a private discussion with the author) that
Theorem 1 can also be interpreted topologically. Indeed we define two topologies
Ty and Ty on I, the bases of which are the sets 4 (@) and B(A), where @ and A
are sentences of & and % (P)respectively. Both 7'y and 7's are Hausdorff and compact
and their open-closed sets are exactly the 4 (@) and B(A) respectively. For each
O of & we have A(0) = B(R(0)), hence the two topologies coincide. In particular,
if A is a sentence of £ (P), then B(A) is also open and closed in 7'y, i.e. there exists
a sentence @ of % such that B(A) = 4 (), as Theorem 1 claims.

2) The procedure which is established in Theorem 2 for finding for a given A of
Z(P) a @ of £ such that B(A)= A(O), is recursive but not primitive recursive.
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Thus we are not able to give in advance an upper bound for the number of steps
which are necessary in order to find @. Can one give a primitive recursive procedurc
for this problem ?
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