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Abstract

Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if
K is a finitely generated extension of transcendence degree r of a global
field and A is a closed abelian subgroup of Gal(K), then rank(A) ≤ r+1.
Moreover, if char(K) = 0, then Ẑr+1 is isomorphic to a closed subgroup
of Gal(K).

Introduction

A consequence of class field theory appearing in [Rib70, p. 302, Thm. 8.8(b)(iii)]
says that the cohomological dimension of every number field K which is not
embeddable in R is 2. On the other hand, cd(Ẑ × Ẑ) = 2 [Rib70, p. 217,

Cor. 3.2 and p. 221, Prop. 4.4] and the group Ẑ occurs as a closed subgroup of
Gal(Q) in many ways [FrJ08, p. 379, Thm. 18.5.6]. One may therefore wonder

whether Ẑ× Ẑ is isomorphic to a closed subgroup of Gal(Q).
A somewhat surprising result of Geyer’s thesis says that this is not the case.

Indeed, every closed abelian subgroup of Gal(Q) is procyclic [Gey69, p. 357,
Satz 2.3] (see also [Rib70, p. 306, Thm. 9.1]).

We generalize this result for every finitely generated extension K of tran-
scendence degree r of a global field. We prove that if a profinite group A is
isomorphic to a closed abelian subgroup of Gal(K), then rank(A) ≤ r + 1. In

particular, Ẑr+2 is not a subgroup of Gal(K) (Proposition 3.3).
In the rest of this note, we abuse our language and write “A is a closed

subgroup of Gal(K)” rather than “A is isomorphic to a closed subgroup of
Gal(K)”.

It turns out that the latter inequality is sharp. Indeed, if char(K) = 0, then

Ẑr+1 is a closed subgroup of Gal(K), while if char(K) = p > 0, then Ẑ is a
closed subgroup of Gal(K),

∏
l ̸=p Z

r+1
l is a closed subgroup of Gal(K) if r ≥ 0

(Theorem 4.7), but Ẑr+1 is not a closed subgroup of Gal(K) if r ≥ 1 (Remark
4.8). Here l ranges over the prime numbers. The exclusion of the factor Zp in
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the case when p > 0 and r ≥ 1 follows from the rule cdp(Gal(F )) ≤ 1 for each
field F of characteristic p [Rib70, p. 256, Thm. 3.3].

The author thanks Ido Efrat for many comments to earlier versions of this
note. The author also thanks Aharon Razon for a carefull reading of the
manuscript.

1 Preliminaries
{PREL}

One of the basic tools needed in the proof of the generalization of Geyer’s result
is a special case of the renowned Pontryagin – van Kampen theorem. Here, and
in the rest of this note, l stands for a prime number, Zl is the ring of l-adic
numbers, viewed as a profinite abelian group or as a principal ideal domain. We
also write Ẑ :=

∏
l Zl for the Prüfer group [FrJ08, p. 12]. Thus, Zl is the free

pro-l cyclic group and Ẑ is the free pro-cyclic group.
{Pontryagin}

Proposition 1.1 ([RiZ10], p. 129, Thm. 4.3.3). Let A be a torsion-free abelian
profinite group. Then A ∼=

∏
l Z

rl
l , where rl is a cardinal number for each l.

The proof of Proposition 1.1 uses a special case of the Pontryagin – van
Kampen duality theorem saying that every locally compact abelian topological
group A is canonically isomorphic to its double dual group A∗∗, where A∗ =
Hom(A,R/Z). The proof of that special case needed in our proposition, dealing
only with abelian profinite groups, appears in [RiZ10, Section 2.9]. It is much
simpler than the proof of the general theorem [HeR63, p. 376, Thm. 24.2].

We denote the algebraic closure of a field K by K̃ and its separable algebraic
closure by Ksep. We write Gal(K) for the absolute Galois group Gal(Ksep/K)
of K. If A is a closed subgroup of Gal(K), then Ksep(A) denotes the fixed field
of A in Ksep.

{Real}
Lemma 1.2. Let K be a field and A a nontrivial finite subgroup of Gal(K).
Then, A ∼= Z/2Z, char(K) = 0, and the fixed field K̃(A) of A in K̃ is real
closed. In addition, A is the centralizer of itself in Gal(K).

Proof. Let R = Ksep(A). Then, a theorem of Artin says that char(K) = 0,

Ksep = K̃, and K̃ = R(
√
−1) [Lan97, p. 299, Cor. 9.3]. Let τ be the unique

element of order 2 of Gal(R) defined by τ(
√
−1) = −

√
−1.

By [Lan97, p. 452, Prop. 2.4], R is real closed. Let < be the ordering of K
induced by the unique ordering of R. If R′ is a real closed field extension of K
in K̃ whose ordering extends <, then by [Lan97, p. 455, Thm. 2.9], there exists
a unique K-isomorphism R → R′.

Let σ be an element of the centralizer CGal(K)(A) of A in Gal(K). Then,
σR is a real closure of (K,<) and Gal(σR) ∼= Z/2Z. Also, τ(σR) = τσR =
στR = σR. By the preceding paragraph applied to σR rather than to R, the
restriction of τ to σR is the identity map. In other words, τ ∈ Gal(σR). Since
ord(τ) = 2, the element τ generates Gal(σR), so R = σR. The uniqueness of
the K-isomorphism of R into R implies that σ ∈ Gal(R) = A, as desired. □



2 GEYER’S THEOREM 3

{ABCL}
Corollary 1.3. Let K be a field and A a closed abelian subgroup of Gal(K).
Then, A ∼= Z/2Z or A ∼=

∏
l Z

rl
l , where l ranges over all prime numbers and rl

is a cardinal number.

Proof. If A has a non-unit element α of a finite order, then by Lemma 1.2,
⟨α⟩ ∼= Z/2Z and ⟨α⟩ is its own centralizer in Gal(K). Since A is abelian, A is
contained in that centralizer. Therefore, A = ⟨α⟩.

Otherwise, A is torsion-free. Hence, by Proposition 1.1, A has the desired
structure. □

Given a profinite group G and a prime number l we write cdl(G) for the lth
cohomology dimension of G [Rib70, p. 196, Def. 1.1]. Also, we write ζn for
a primitive root of unity of order n.

{UNITY}
Lemma 1.4. The following statements hold for prime numbers p, l, and a finite
extension E of Qp:
(a) E contains only finitely many roots of unity.
(b) l∞|[E(ζlj )j≥1 : E].
(c) cdl(Gal(E(ζlj )j≥1)) ≤ 1.

Proof of (a). Let O be the ring of integers of E, Ē the residue field of E, π a
prime element of O, U the group of invertible elements of O, and U (1) = 1+πO
the subgroup of 1-units of O. Reduction modulo πO yields the following short
exact sequence

1 −→ U (1) −→ U −→ Ē× −→ 1,

where 1 is the trivial group. By [Ser79, p. 213, Chap. XIV, Prop. 10], U (1)

is isomorphic to a direct product of a finite abelian group with a free abelian
group. Since Ē× is also finite, the torsion group of U is finite. That group is
the group of roots of unity in E.

Proof of (b). By (a), E has only finitely many roots of unity of order lj with
j ≥ 1. Thus, there exists a non-negative integer j with ζlj ∈ E and ζlj+1 /∈ E.
By [Lan97, p. 297, Thm. 9.1], [E(ζlj+1) : E(ζlj )] = l. Apply the same argument
to the field E1 := E(ζlj+1) to find an integer j2 > j1 := j such that ζlj2 ∈ E1

and ζlj2+1 /∈ E1, so [E2 : E1] = l with E2 := E(ζlj1+1 , ζlj2+1). Continue to find
a sequence j1 < j2 < j3 < . . . and fields E ⊂ E1 ⊂ E2 ⊂ E3 ⊂ · · · such that
ζljn+1 ∈ En := E(ζlji+1)ni=1 and ζljn+1+1 /∈ En, so [En+1 : En] = l, for each
n ≥ 1. Hence, l∞|[E(ζlj )j≥1 : E].

Proof of (c). The claim follows from (b) and [Rib70, p. 291, Cor. 7.4(i),(ii)].
□

Note that the citation in the proof of (c) relies on local class field theory.

2 Geyer’s theorem

We generalize Geyer’s theorem which asserts that every closed abelian subgroup
of Gal(Q) is procyclic [Gey69, p. 357, Satz 2.3].
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{Positive}
Lemma 2.1. Let F be a field of positive characteristic p. Then, no pro-p closed
subgroup of Gal(F ) is isomorphic to Zp × Zp.

Proof. Let G be a closed pro-p subgroup of Gal(F ). By [Rib70, p. 256,
Thm. 3.3], cd(G) ≤ 1. On the other hand, Zp is a free pro-p group of rank 1.
Hence, by [Rib70, p. 217, Cor. 3.2], cd(Zp) = 1. It follows from [Rib70, p. 221,
Prop. 4.4] that cd(Zp ×Zp) = cd(Zp) + cd(Zp) = 2. Therefore, G ̸∼= Zp ×Zp, as
claimed. □

{ROOTS}
Lemma 2.2. Let K be a global field, l ̸= char(K) a prime number, and M a
separable algebraic extension of K. Suppose that M contains all of the roots
of unity of order li for i = 1, 2, 3, . . . . Then, cdl(Gal(M)) ≤ 1. In particular,
Gal(M) ̸∼= Zl × Zl.

Proof. We distinguish between two cases:

Case A: K is a number field. We assume without loss that K = Q. By as-
sumption, ζl2 ∈ M ∖R. Thus, M can not be embedded into R, i.e. M is totally
imaginary. Hence by [Rib70, p. 302, Thm. 8.8(a)], cdl(Gal(M)) ̸= ∞.

Now we consider a prime number p, a valuation v of M lying over p, and
the completion M̂v of M at v. Then, ζli ∈ M ⊆ M̂v for each i. Hence,
by Lemma 1.4(b), l∞|[M̂v : Qp]. Therefore, by [Rib70, p. 302, Thm. 8.8(b)],
cdl(Gal(M)) ≤ 1.

Finally, by [Rib70, p. 217, Cor. 3.2 and p. 221, Prop. 4.4] and [Rib70, p. 217,
Cor. 3.2],

cdl(Zl × Zl) = cdl(Zl) + cdl(Zl) = 1 + 1 = 2.

Hence, Gal(M) ̸∼= Zl × Zl, as claimed.

Case B: K is a finite separable extension of Fp(t) with t transcendental over
Fp. We assume without loss that K = Fp(t). By assumption, M contains the
field L := Fp(ζli)i≥1, so L(t) ⊆ M . Since there are infinitely many roots of

unity ζli in F̃p and only finitely many of them belong to each finite field, L
is an infinite field. In addition, for each i ≥ 1 the extension Fp(ζli+1)/Fp(ζli)
is cyclic of degree l or trivial. Hence, Gal(L/Fp(ζl)) ∼= Zl. Therefore, L is
contained in the maximal extension L′ of Fp(ζl) of an l’th power degree. Since
Gal(L′/Fp(ζl)) ∼= Zl, the restriction map Gal(L′/Fp(ζl)) → Gal(L/Fp(ζl)) is
surjective, and Zl is generated by one element, that map is an isomorphism
[FrJ08, p. 331, Cor. 16.10.8]. It follows that L = L′. Therefore, l does not
divide the order of Gal(L).

By [Rib70, p. 208, Cor. 2.3], cdl(Gal(L)) = 0. Hence, by [Rib70, p. 272,
Prop. 5.2], cdl(Gal(L(t))) = 1. Since Gal(M) ≤ Gal(L(t)), we have by [Rib70,
p. 204, Prop. 2.1(a)], that cdl(Gal(M)) ≤ 1. As in Case A, this inequality
implies that Gal(M) ̸∼= Zl × Zl, as claimed. □

Here is the promised result of Geyer.
{Geyer}

Theorem 2.3. Let K be a global field and A a closed abelian subgroup of
Gal(K). Then, A is procyclic.
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Proof. We start the proof with the special case where the torsion group Ator

of A is nontrivial. In this case there exists a non-unit τ ∈ A of finite order. By
Lemma 1.2, char(K) = 0 and A ∼= Z/2Z. In particular, A is procyclic.

We may therefore assume that A is a nontrivial torsion-free abelian profinite
group. By Proposition 1.1, A ∼=

∏
l Z

rl
l , where l ranges over all prime numbers

and for each l, rl is a cardinal number, so we may assume that A ∼= Zr
l for a

prime number l and a positive cardinal number r and prove that A ∼= Zl.
Otherwise, A contains a closed subgroup which is isomorphic to Zl × Zl.

Thus, we may assume that A ∼= Zl × Zl and prove that this assumption leads
to a contradiction.

To this end we denote the fixed field of A in Ksep by M and identify Gal(M)
with A. By Lemma 2.1, l ̸= char(K).

Claim: M contains a root of unity ζl of order l. Indeed, if l = 2, then ζl =
−1 ∈ M . Otherwise l > 2 and if ζl /∈ M , then [M(ζl) : M ] is a divisor of l − 1
which is greater than 1. On the other hand, [M(ζl) : M ] divides the (profinite)
order of A which is l∞, a contradiction.

Since Gal(M) ∼= Zl × Zl, Lemma 2.2 implies that not all roots of unity of
order li with i ≥ 1 belong to M . Let n be the smallest positive integer such that
M contains a root of unity of order ln−1 but does not contain a root of unity
of order ln. Choose a root of unity ζln and set M1 = M(ζln). Then, ζlln ∈ M
but ζln /∈ M . Hence, [M1 : M ]|l and [M1 : M ] ̸= 1 (by the Claim and [Lan97,
p. 289, Thm. 6.2(ii)], so [M1 : M ] = l.

Let U be the open subgroup of Zl of index l. Then, the index of each of the
subgroups Zl × U and U × Zl of Gal(M) is l. We choose one of them which is
different from Gal(M1) and denote its fixed field in Ksep by M2. Then, M2 is a
cyclic extension of M of degree l and M1 ̸= M2.

Since ζl ∈ M , [Lan97, p. 289, Thm. 6.2(i)] implies the existence of a, x ∈ Ksep

with M2 = M(x) and a := xl ∈ M . Choose b ∈ Ksep with bl
n−1

= x, so bl
n

= a.

In particular, M2 = M(bl
n−1

) ⊆ M(b) and [M(b) : M2] ≤ ln−1. It follows from
the preceding paragraph that

[M(b) : M ] ≤ ln. (1) {M2x}{M2x}

Next choose σ ∈ A such that σ|M1
= id and σ|M2

̸= id. In particular,
σx ̸= x, so ζ := (σb)b−1 satisfies

ζl
n

= σbl
n

·b−ln = σa·a−1 = aa−1 = 1 and ζl
n−1

= σbl
n−1

·b−ln−1

= σx·x−1 ̸= 1,

thus ζ is a primitive root of 1 of order ln.
The definition of M1 implies that M1 = M(ζ). But M(b) is a Galois ex-

tension of M (because Gal(M) is abelian). Hence, ζ = (σb)b−1 ∈ M(b), so
M1 ⊆ M(b). Since [M1 : M ] = l, we have by (1) that [M(b) : M1] ≤ ln−1. Since
σ is the identity on M1, the latter inequality implies that ord(σ|M(b)) ≤ ln−1.

On the other hand, the relation σb = bζ implies by induction on i that
σib = bζi ̸= b for each 1 ≤ i ≤ ln−1. Hence, ord(σ|M(b)) > ln−1. This
contradicts the conclusion of the preceding paragraph, as required. □
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3 Generalization of Geyer’s theorem
{GENERAL}

The central part of the proof of Geyer’s theorem says that for each prime number
l, the largest positive integer n for which Zn

l is a closed subgroup of Gal(Q) or
of Gal(Fp(t)) is 1. The next lemma will allow us to generalize that statement
to each finitely generated extension of a global field.

{RANK}
Remark 3.1. Let A be a finitely generated torsion-free abelian pro-l group for
a prime number l. [FrJ08, p. 519, Prop. 22.7.12(a)] allows us to also consider A
as a finitely generated Zl-module. Since Zl is a principal ideal domain, [Lan97,
p. 147, Thm. 7.3] implies that A = Zn

l is a finitely generated free Zl-module of
rank n for some non-negative integer n. Since Zl is generated, as a profinite
group, by one element, n is also the rank, rank(A), of A as a profinite group.
In other words, rank(A) = rankZl

(A).

{TRANS}
Lemma 3.2. Let K be a field, t an indeterminate, and l a prime number.
Suppose that n is the largest positive integer for which Zn

l is a closed subgroup of
Gal(K). Then, the largest positive integer m for which Zm

l is a closed subgroup
of Gal(K(t)) does not exceed n+ 1.

Proof. Suppose that A := Zn′

l is a closed subgroup of Gal(K(t)) for some
positive integer n′. Let φ: Gal(K(t)) → Gal(K) be the restriction map. Then,
Ker(φ) = Gal(Ksep(t)). Setting Ā = φ(A) and A0 = Ker(φ) ∩ A, we get the
following commutative diagram of profinite groups:

1 // Gal(Ksep(t)) // Gal(K(t))
φ // Gal(K) // 1

0 // A0
// A // Ā // 0,

where 0 stands for the trivial group of an additive abelian group. Since Zl is
a principal ideal domain and A is a free Zl-module of rank n′, A0 is a free Zl-
module, by [Lan97, p. 146, Thm. 7.1]. Also, by [Lan97, p. 148, Lemma 7.4], Ā
is a free Zl-module and n′ = rank(A0) + rank(Ā).

By [Rib70, p. 272, Prop. 5.2], Gal(Ksep(t)) is a projective group, so also A0

is a projective group. In other words, rank(A0) ≤ 1. Also, by Corollary 1.3 and
the assumption of the lemma, Ā = Zm

l with m ≤ n or l = 2 and Ā ∼= Z/2Z.
In each case rank(Ā) ≤ n, hence rank(A) = rank(Ā) + rank(A0) ≤ n + 1, as
claimed. □

{FINGEN}
Proposition 3.3. Let K be a finitely generated extension with transcendence
degree r of a global field K0 and let A be a closed abelian subgroup of Gal(K).
Then, A ∼= Z/2Z or A ∼=

∏
l Z

rl
l , where l ranges over all prime numbers and

rl ≤ r + 1 for each prime number l.

Proof. By Corollary 1.3, A ∼= Z/2Z or A ∼=
∏

l Z
rl
l , with cardinal numbers rl.

Assume the latter case. If K is a global field, then r = 0. Hence, by Theorem
2.3, rl ≤ 0 + 1 for each l.
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Otherwise, r ≥ 1 and K is a finitely generated extension of transcendence
degree 1 of a finitely generated extension K ′

0 of transcendence degree r − 1 of
K0. By induction, for each prime number l, r is the largest positive integer
such that Zr

l is a closed subgroup of Gal(K ′
0). Hence, by Lemma 3.2, r + 1 is

the largest positive number for which Zr+1
l is a closed subgroup of Gal(K). In

particular, rl ≤ r + 1, as claimed. □

4 Realizing Ẑr+1 as a closed subgroup of Gal(K)
{RPO}

Let K be a finitely generated extension of Q of transcendence degree r. We
complete Proposition 3.3 in this section by proving that Ẑr+1 is a closed sub-
group of Gal(K). An analogous result holds for a finitely generated extension

K of transcendence degree r of Fp(t), in which case
∏

l ̸=p Z
r+1
l replaces Ẑr+1.

{KPR}
Remark 4.1 (Valued fields). We denote the residue field of a valued field (F, v)
by F̄v and its value group by v(F×). In addition, we extend v to a valuation of
Fsep that we also denote by v, consider its valuation ring Ov,sep, and let Dv,sep =
{σ ∈ Gal(F ) | σOv,sep = Ov,sep} be the corresponding decomposition group.
Then, we let Fv be the fixed field of Dv,sep in Fsep. Abusing our notation, we
also let v be the restriction of v to Fv. Then, (Fv, v) is the Henselization of
(F, v).

One knows that (Fv, v) has the same residue field and value group as those
of (F, v) [Efr06, p. 138, Prop. 15.3.7]. Moreover, the valued fields (Fsep, v) and
(Fv, v) depend on the extension of v to Fsep up to isomorphism [Efr06, p. 138,
Cor. 15.3.6].

If v is a rank-1 valuation, then so is its extension to Fv. In this case, the
completion (F̂v, v) of (F, v) is also discrete with the same value group and residue
field as those of (F, v). Moreover, (F̂v, v) is also the completion of (Fv, v). By
Hensel’s lemma, (F̂v, v) is also Henselian [Efr06, p. 167, Cor. 18.3.2]. We embed
Fsep into F̂v,sep and observe that Fsep ∩ F̂v = Fv (since (Fsep ∩ F̂v, v) is an

immediate separable algebraic extension of (Fv, v)) and FsepF̂v = F̂v,sep (by
the Krasner-Ostrowski lemma [Efr06, p. 172, Cor. 18.5.3]). Thus, restriction
gives an isomorphism Gal(F̂v) ∼= Gal(Fv) of the corresponding absolute Galois
groups.

We denote the maximal unramified extension of Fv (resp. F̂v) by Fv,ur

(resp. F̂v,ur) and the maximal tamely ramified extension by Fv,tr (resp. F̂v,tr).

These fields are Galois extensions of Fv (resp. F̂v). As in [Efr06, p. 133,
p. 141, and p. 145], we set Z(v) = Gal(Fv) for the decomposition group,
T (v) = Gal(Fv,ur) for the inertia group, and V (v) = Gal(Fv,tr) for the rami-
fication group of (F, v). The letters Z, T , and V are borrowed from the Ger-
man translations Zerlegsungruppe, Trägheitsgruppe, and Verzweigungsgruppe
of the English expressions decomposition group, inertia group, and ramification
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group,

F Fv

Z(v)

Fv,ur

T (v)

Fv,tr
V (v)

Fsep. (2) {dir}{dir}

Each of the fields Fv,ur, Fv,tr, and Fsep is a Galois extension of Fv. By [Efr06,
p. 199, Thm. 22.1.1] and [KPR86, Thm. 2.2] (resp. [Efr06, p. 203, Thm. 22.2.1])
both restriction maps

Gal(Fv,tr/Fv) → Gal(Fv,ur/Fv) and Gal(Fv) → Gal(Fv,tr/Fv)

split. In particular, each closed subgroup of Gal(Fv,ur/Fv), hence each closed
subgroup of Gal(F̄v), is isomorphic to a closed subgroup of Gal(Fv,tr/Fv). Also,
each closed subgroup of Gal(Fv,tr/Fv) is isomorphic to a closed subgroup of
Gal(Fv).

Note that E in Theorem 22.1.1 of [Efr06] is Fsep, in our notation, so it
satisfies the condition E = El for all prime numbers l ̸= char(F̄v) needed in
that theorem.

{KrWb}
Notation 4.2. We denote the group of roots of unity in a field F by µ(F ). If
char(F ) = p > 0 and F is separably closed, then µ(F ) = F̃×

p . If char(F ) = 0

and F is algebraically closed, then µ(F ) = µ(Q̃) and Qab := Q(µ(Q̃)) is the
maximal abelian extension of Q (by the theorem of Kronecker–Weber [Neu99,
p. 324, Thm. 110]).

{Laurent}
Remark 4.3. Given a field K, the field of formal power series K((t)) in
the variable t with coefficients in K, also called the field of Laurent series
over K, is the field of all formal power series

∑∞
i=m ait

i with m ∈ Z and ai ∈ K
for all i ≥ m. If l < m, then

∑∞
i=m ait

i is identified with
∑∞

i=l ait
i with ai = 0

for each l ≤ i < m. Summation and multiplication in K((t)) are defined by the
following rules:

∞∑
i=m

ait
i +

∞∑
i=m′

a′it
i =

∞∑
i=min(m,m′)

(ai + a′i)t
i,

( ∞∑
i=m

ait
i
)( ∞∑

j=m′

a′jt
j
)
=

∞∑
k=m+m′

( ∑
i+j=k

aia
′
j)t

k.

Let v be the unique discrete valuation of K(t) with v(a) = 0 for each
a ∈ K and v(t) = 1. Then, (K((t)), v) is the completion of (K(t), v), where
v(
∑∞

i=m ait
i) = m whenever am ̸= 0. By [Efr06, p. 167, Cor. 18.3.2], K((t)) is

Henselian with respect to v.
By [CaF67, p. 28, Cor. 2] (or [Efr06, p. 141, Thm. 16.1.1]),

Gal(K((t))ur/K((t))) ∼= Gal(K).

Replacing K by Ksep, we have that Ksep((t))ur = Ksep((t)). Since the roots of
unity of order n with char(K) ∤ n are in Ksep, we have that Ksep((t)) has a cyclic
extension of degree n in Ksep((t))tr. Indeed, that extension is Ksep((t

1/n)).
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Going to the limit of these extensions, we obtain with p := char(K) that
Ksep((t))tr =

⋃
p∤n Ksep((t

1/n)) and Gal(Ksep((t))tr/Ksep((t))) ∼=
∏

l ̸=p Zl.

Moreover, if char(K) = 0, then the ramification group Gal(K̃((t))tr) of

K̃((t)) is trivial [Efr06, p. 145, Thm. 16.2.3], so K̃((t))tr = K̃((t)). Thus,

by the preceding paragraph, in this case, Gal(K̃((t))) ∼= Ẑ.
{Efrat3}

Lemma 4.4. Let K0 be a field of characteristic p, t an indeterminate, and r a
positive integer. Suppose that µ(K0,sep) ⊆ K0 and

∏
l ̸=p Zr

l is a closed subgroup

of Gal(K0). Then,
∏

l ̸=p Z
r+1
l is a closed subgroup of Gal(K0(t)).

Proof. By assumption, the fieldK0 has a separable algebraic extensionK with
Gal(K) ∼=

∏
l ̸=p Zr

l . Let v be the discrete K-valuation of K(t) with v(t) = 1
and choose a Henselization M := K(t)v of K(t) with respect to v. Then,

M̄ := K(t)v = K (3) {ae}{ae}

is the residue field of both K(t) and M with respect to v.

Claim: M is linearly disjoint from K̃ over K. Indeed, let k̃1, . . . , k̃n be linearly
independent elements of K̃ over K. Assume toward contradiction that there
exist m1, . . . ,mn ∈ M not all zero with

∑n
i=1 mik̃i = 0. Dividing m1, . . . ,mn

by the element with the least v-value, we may assume that the v-residues
m̄1, . . . , m̄n are elements ofK and one of them is non-zero. Thus, Σn

i=1m̄ik̃i = 0,
contradicting the assumption on k̃1, . . . , k̃n. This proves our claim.

By [Efr06, p. 200, Cor. 22.1.2],

Z(v)/V (v) ∼= χ(v)⋊Gal(M̄)
(3)
= χ(v)⋊Gal(K), (4) {bb}{bb}

where Z(v) = Gal(M) and V (v) are respectively the corresponding decomposi-
tion and the ramification groups of M and

χ(v) = Hom(v(M×
sep)/v(M

×), µ(K0,sep)). (5) {chiv}{chiv}

See [Efr06, last line of page 144] with µ̄ in that line being µ(K0,sep), as introduced
in the first paragraph of [Efr06, p. 143, Sec. 16.2].

The action of Gal(K) on χ(v) is given for each τ ∈ Gal(K), each homomor-
phism h: v(M×

sep)/v(M
×) → µ(K0,sep), and every γ ∈ v(M×

sep), by

τ(h)(γ + v(M×)) = τ(h(γ + v(M×))) = h(γ + v(M×)),

where the latter equality holds because µ(K0,sep) ⊆ K0 ⊆ K. In other words,
that action is trivial. It follows that

Gal(Mtr/M)
(2)∼= Z(v)/V (v)

(4)∼= χ(v)×Gal(K). (6) {c}{c}

By [Efr06, p. 147, Cor. 16.2.7], there is a short exact sequence

1 −→ V (v) −→ T (v) −→ χ(v) −→ 1.

Hence, χ(v) ∼= T (v)/V (v).
By our choice of v, the completion ofK(t) with respect to v (which is also the

completion of the Henselian field M) is the field K((t)) of formal power series
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in t with coefficients in K [Efr06, p. 83, Example 9.2.2]. The maximal unram-
ified extension of K((t)) is Ksep((t)) and by Remark 4.3, χ(v) ∼= T (v)/V (v) ∼=
Gal(Mtr/Mur) ∼=

∏
l ̸=p Zl.

By the definition of K, Gal(K) ∼=
∏

l ̸=p Zr
l . Hence, by the preceding para-

graph,

Gal(Mtr/M)
(6)∼= χ(v)×Gal(K) ∼=

∏
l ̸=p

Zl ×
∏
l ̸=p

Zr
l =

∏
l ̸=p

Zr+1
l .

Since by [KPR86, Thm. 2.2], the epimorphism Gal(M) → Gal(Mtr/M) splits,∏
l ̸=p Z

r+1
l is a closed subgroup of Gal(M). Since M is a separable algebraic

extension of K0(t) [Efr06, p. 137, Thm. 15.3.5],
∏

l ̸=p Z
r+1
l is also a closed

subgroup of Gal(K0(t)), as claimed. □

{frv}
Remark 4.5. Note that the references that support both (4) and (5) hold also
in the case where char(K0) = 0.

The following result will be needed in Theorem 4.7.
{Zll}

Lemma 4.6. Let L be a set of prime numbers and H an open subgroup of∏
l∈L Zl. Then, H ∼=

∏
l∈L Zl.

Proof. We set Z :=
∏

l∈L Zl and consider all the groups appearing in this
proof as additive groups. Since H is open in Z, its index n := (Z : H) is a
positive integer. Since Z is abelian, H is normal in Z, so nZ ≤ H

By [FrJ08, p. 13, Lemma 1.4.2(e)], nZl
∼= Zl for each l ∈ L. Hence, nZ =∏

l∈L nZl
∼=

∏
l∈L Zl = Z.

Let n =
∏

l∈L′ li(l) be the decomposition of n into a product of prime powers.
If l and l′ are distinct prime numbers, then l′ is a unit of the ring Zl, so l

′Zl = Zl.
Hence, nZ =

∏
l∈L∩L′ li(l)Zl×

∏
l∈L∖L′ Zl. Therefore, (Z : nZ) =

∏
l∈L∩L′(Zl :

li(l)Zl) =
∏

l∈L∩L′ li(l) ≤ n = (Z : H). Combining this result with the result
of the first paragraph of the proof, we have H = nZ. Therefore, by the second
paragraph of the proof, H ∼= Z, as claimed. □

This bring us to the main result of the current section.
{INDUC}

Theorem 4.7. Let F be a finitely generated extension of transcendence degree
r ≥ 0 of a global field F0 of characteristic p and let F ′ = F (µ(F0,sep)). Then,∏

l ̸=p Z
r+1
l is a closed subgroup of Gal(F ′), hence also of Gal(F ).

Proof. In the case where r = 0, F itself is a global field, hence Hilbertian
[FrJ08, p. 242, Thm. 13.4.2]. Since F ′ is an abelian extension of F , a theorem of
Kuyk asserts that F ′ is also Hilbertian [FrJ08, p. 333, Thm. 16.11.3]. Since F is
countable, so is F ′. By [FrJ08, p. 379, Thm. 18.5.6], for almost all σ ∈ Gal(F ′)
(in the sense of the Haar measure of Gal(F ′)) the closed subgroup ⟨σ⟩ of Gal(F ′)

generated by σ is isomorphic to Ẑ. Since
∏

l ̸=p Zl is a closed subgroup of
∏

l Zl

and
∏

l Zl
∼= Ẑ [FrJ08, p. 15, Lemma 1.4.5],

∏
l ̸=p Zl is a closed subgroup of

Gal(F ′).
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Alternatively, by a theorem of Whaples, for each l ̸= p the field F ′ has a
Galois extension F ′

l with Gal(F ′
l /F

′) ∼= Zl [FrJ08, p. 314, Cor. 16.6.7]. Then,
F ′′ :=

∏
l ̸=p F

′
l is a Galois extension of F ′ with Gal(F ′′/F ′) ∼=

∏
l ̸=p Zl. Since∏

l ̸=p Zl is projective [FrJ08, p. 507, Cor. 22.4.6], the restriction map Gal(F ′) →
Gal(F ′′/F ′) splits [FrJ08, p. 506, Remark 22.4.2]. Hence, again,

∏
l ̸=p Zl is a

closed subgroup of Gal(F ′).
Next assume by induction that r ≥ 1 and the theorem holds for r − 1.

Choose a finitely generated extension Fr−1 of transcendence degree r − 1 of F0

in F and let F ′
r−1 = Fr−1(µ(F0,sep)). Since F is finitely generated over F0 of

transcendence degree r, we may choose t in F which is transcendental over Fr−1

and [F : Fr−1(t)] < ∞. Then, F ′ = F ′
r−1F is a finite extension of F ′

r−1(t). Let
L be the maximal separable extension of F ′

r−1(t) in F ′, so F ′/L is a purely
inseparable extension of L. Then, L is a finite separable extension of F ′

r−1(t).

Fr−1(µ(F0,sep)) =F ′
r−1 F ′

r−1(t) L F ′= F ′
r−1F

Fr−1 Fr−1(t) F

Hence,
Gal(L) is an open subgroup of Gal(F ′

r−1(t)). (7) {ddd}{ddd}

By the induction hypothesis,
∏

l ̸=p Zr
l is a closed subgroup of Gal(F ′

r−1).

Therefore, by (7), Lemma 4.4, and Lemma 4.6,
∏

l ̸=p Z
r+1
l is a closed subgroup

of Gal(L). Since F ′/L is a purely inseparable extension (in particular F ′ = L if
char(F0) = 0),

∏
l ̸=p Z

r+1
l is a closed subgroup of Gal(F ′), hence also of Gal(F ),

as claimed. □

{Zlp}
Remark 4.8. Let F be a field as in Theorem 4.7. If p = 0, then Ẑr+1 =∏

l ̸=p Z
r+1
l . Hence, by that theorem, Ẑr+1 is isomorphic to a closed subgroup

of Gal(F ).
If p ̸= 0 but r = 0, then F = F0 is a countable Hilbertian field and again,

by [FrJ08, p. 379, Thm. 18.5.6], for almost all σ ∈ Gal(F ) we have ⟨σ⟩ ∼= Ẑ.
However, by [Rib70, p. 256, Thm. 3.3], cdp(Gal(F )) ≤ 1. On the other hand,

by [Rib70, p. 221, Prop. 4.4], cdp(Zr+1
p ) = r + 1 ≥ 2 if r ≥ 1. Hence, Zr+1

p is

isomorphic to no closed subgroup of Gal(F ). Therefore, Ẑr+1 is isomorphic to
no closed subgroup of Gal(F ).
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