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Strong Approximation Theorem
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over the Compositum of all Symmetric Extensions of a Global Field
by
Moshe Jarden and Aharon Razon

Abstract: Let K be a global field, V a proper subset of the set of all primes of
K, S a finite subset of V, and K (resp. Ksep) a fixed algebraic (resp. separable
algebraic) closure of K with K., € K. Let Gal(K) = Gal(Kp/K) be the ab-
solute Galois group of K. For each p € V we choose a Henselian (respectively,
a real or algebraic) closure K, of K at p in K if p is non-archimedean (respec-
tively, archimedean). Then, Ko, s = npes ﬂ‘rGGal(K) K} is the maximal Galois
extension of K in K., in which each p € S totally splits. For each p € V we
choose a p-adic absolute value | |, of K, and extend it in the unique possible
way to K. Finally, we denote the compositum of all symmetric extensions of K
by Ksymm-

We consider an affine absolutely integral variety V in A’%. Suppose that for
each p € S there exists a simple K,-rational point z, of V and for each p € V.S
there exists z, € V(K) such that in both cases |z, |, < 1 if p is non-archimedean
and |zy|, < 1if p is archimedean. Then, there exists z € V (Kot 5N Ksymm) such
that for all p € V and for all 7 € Gal(K) we have: |27|, < 1 if p is archimedean
and |z7|, < 1 if p is non-archimedean. For & = (), we get as a corollary that the
ring of integers of Kgymm is Hilbertian and Bezout.



Introduction

The strong approximation theorem for a global field K gives an « € K that
lies in given p-adically open discs for finitely many given primes p of K such
that the absolute p-adic value of z is at most 1 for all other primes p except
possibly one [?, p. 67]. A possible generalization of that theorem to an arbitrary
absolutely integral affine variety V over K fails, because in general, V(K) is a
small set. For example, if V is a curve of genus at least 2, then V(K) is finite
(by Faltings). This obstruction disappears as soon as we switch to appropriate
“large Galois extensions” of K.

Extensions of K of this type occur in our work [?]. In that work we fix an
algebraic closure K of K, set Kep to be the separable closure of K in K, and
consider a non-negative integer e. We equip Gal(K)¢ with the normalized Haar
measure [?, Section 18.5] and use the expression “for almost all o € Gal(K)¢”
to mean “for all o in Gal(K)¢ outside a set of measure 0”. For each o =
(01,...,0¢) € Gal(K)® let Ksep(0) ={x € Keep | 27 =z fori=1,...,e} and
let Kyop[o] be the maximal Galois extension of K in Kep(0).

Further, let Px be the set of all primes of K, let Pk 5, be the set of all
non-archimedean primes, and let Pg ins be the set of all archimedean primes.
We fix a proper subset V of Pk, a finite subset 7 of V, and a subset S of T such
that V7T C Pk gn. For each p we fix a completion Kp of K at p and embed K

in an algebraic closure K p of K p- Then, we extend a normalized absolute value

| | of K, to K, in the unique possible way. In particular, this defines ||, for
cach z € K.

Next, we set K, = K N K,, and note that K, is a Henselian closure of
K at p if p € Pg an and a real or the algebraic closure of K at p if p € Px ins.

Thus,
Kes=[) [ K
peS TeGal(K)

is the maximal Galois extension of K in which each p € S totally splits. For
cach o € Gal(K)® we set Kio,5[0] = Keeplo] N Kiot,s-

For each extension M of K in K and every p € Pg, NV we consider the
valuation ring Oy, = {x € M| |z], < 1} of M at p. For each subset U of V
we let

Ovu={re M| |z7|, <1forallpelf and 7 € Gal(K)}.

Then, the main result of [?] is the following theorem:

Theorem A: Let K,S,T,V,e be as above. Then, for almost all o € Gal(K)®
the field M = Ko 5|0 satisfies the strong approximation theorem:

Let V be an absolutely integral affine variety over K in A%, for some
positive integer n. For each p € S let (), be a non-empty p-open subset of
Viimp(Kp). For each p € T\ S let Q, be a non-empty p-open subset of V(K),



invariant under the action of Gal(K,). Finally, for each p € V \. T we assume
that V(Og ) # 0. Then, V(Onmy~7) N Nper Nregarx) O # 0-

The main result of the present work establishes the strong approximation
theorem for much smaller fields. To this end we call a Galois extension L of
K symmetric if Gal(L/K) is isomorphic to the symmetric group S,, for some
positive integer n. We denote the compositum of all symmetric extensions of K
by Ksymm-

Theorem B: Let K, S,T,V,e be as above. Then, for almost all o € Gal(K)¢
the field M = Kqymm N Kiot,s]0] satisfies the strong approximation theorem (as
in Theorem A). In particular, Ksymm N Kiot,s satisfies the strong approximation
theorem.

Additional interesting information about the fields mentioned in Theorem
B and their rings of integers is contained in the following result.

Theorem C: Let K be a global field and e a non-negative integer. Then, for
almost all o € Gal(K)® the field M = Kgymm N Kgep|o] is PAC (Definition ?77)
and Hilbertian, hence Gal(M) = E,,. Moreover, the ring of integers of M is
Hilbertian and Bezout (Definition 77).

Note that the statement about the Hilbertianity of M in Theorem C is
due to [?]. See also the proof of Proposition ??. The authors are indebted to
the anonymous referee for pointing out that proposition and its proof.
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1 Weakly Symmetrically K-Stably PSC Fields
over Holomorphy Domains

Let K be a global field, that is K is either a number field or an algebraic
function field of one variable over a finite field. Throughout this work, we use
the notation P, K, Ky, Gal(K), K, and | |, for p € Pk, introduced in the
introduction. For each p € Px and every subfield M of K we consider the closed
disc

Oumyp={zeM| |z|, <1}

of M at p. If p is non-archimedean, then Oy, is a valuation ring of rank 1 of
M.

Next we consider a subset U of Pg and a field K C M C K. A prime of
M is an equivalence class of absolute values of M, where two absolute values on
M are equivalent if they define the same topology on M. Let Uy; be the set
of all primes of M that lie over U. If q € Up; lies over p € U, then we denote
the unique absolute value of M that extends | |, to M and represents q by | |4
In this case there exists 7 € Gal(K) such that |z|q = [27|, for each z € M.
Conversely, the latter condition defines q. We set

Omu= () {zeM| |zl <1}
q€UNM

for the U/-holomorphy domain of M. If U consists of non-archimedean primes,
then Oy is the integral closure of Ok in M. If U is arbitrary but M is Galois

over K, then
Omu=() ] Oy
peU reGal(K)

In the number field case (i.e. char(K) = 0), we denote the (cofinite) set
of all non-archimedean primes of K by Pk g,. In the function field case, where
p = char(K) > 0, we fix a separating transcedence element tx for K/F, and let
P an = {p € Px| [tx|p <1}. In both cases we set

Ok = Orpi, =4 € K| [aly < 1 for all p € Prcan).

If K is a number field, then Ok is the integral closure of Z in K. In the
function field case Of is the integral closure of Fy[tx] in K. In both cases Ok
is a Dedekind domain. Following the convention in algebraic number theory, we
call Ok the ring of integers of K.

Next we consider a finite (possibly empty) subset S of Px. We set

Kes=[) () K

peES TeGal(K)

as in the introduction. If S = ), then Kiot,5 = Kgep-
We also choose a non-empty proper subset V of Py that contains S.

{WEAKLY}
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Definition 1.1. [?, Def. 12.1] Let M be an extension of K in K s and let O
be a subset of M. We say that M is weakly symmetrically K-stably PSC
over O if for every polynomial g € K[T] with g(0) # 0 and for every absolutely
irreducible polynomial h € K[T,Y] monic in Y with d = degy (h) satisfying

(1a) h(0,Y) has d distinct roots in Kiot,s, and

(1b) Gal(h(T,Y), K(T)) = Gal(h(T,Y), K(T)) and is isomorphic to the sym-
metric group Sgq,

there exists (a,b) € O x M such that h(a,b) = 0 and g(a) # 0.
Note that in that case, if M C M’ C Kio,s, then M’ is also weakly
symmetrically K-stably PSC over O.

If S = ), we say that M is weakly symmetrically K-stably PAC over
0.

Definition 1.2. [?, Def. 13.1] Let M be an extension of K in Ky s and let O
be a subset of M. We say that M is weakly PSC over O if for every absolutely
irreducible polynomial A € M[T,Y] monic in Y such that h(0,Y) decomposes
into distinct monic linear factors over Ko s and every polynomial g € M[T)
with g(0) # 0 there exists (a,b) € O x M such that h(a,b) = 0 and g(a) # 0.
In particular, O is infinite.

If S = (), then M is PAC over O [?, Def. 13.5], i.e. for every absolutely
irreducible polynomial f € M[T, X] which is separable in X there exist infinitely
many points (a,b) € O x M such that f(a,b) = 0.

Indeed, let f € M[T, X] be an absolutely irreducible polynomial which
is separable in X. Let A € MJT] be the discriminant of f, let ¢ € M[T]
be the leading coefficient of f, and let d = degy(f). Since O is infinite,
we can choose ¢ € O with A(c)g(c) # 0. Let Y = ¢g(T)X, let M(T,Y) =
g(T)4=Lf(T,g(T)~1Y), and let h(T,Y) = W(T + ¢,Y). Then, h € M[T,Y]
is an absolutely irreducible polynomial, monic in Y, such that h(0,Y") decom-
poses into distinct monic linear factors over Ky.,. By assumption, there exist
infinitely many (a,b) € O x M such that h(a,b) = 0 and g(a) # 0, hence
Fla+c.g(a)~1b) = 0.

Note that in that case, M is a PAC field, i.e. every absolutely integral
variety over M has an M-rational point [?, Lemma 1.3]. |

Lemma 1.3. Let My be an extension of K in Kgep, let M = My N Kiot,s,
and let O be a subset of Opn,s such that Oy - O C O. Suppose that My is

weakly symmetrically K -stably PAC over O. Then, M is weakly symmetrically
K-stably PSC over O.

Proof: Let g be a polynomial in K[T'] with g(0) # 0 and let h be an absolutely
irreducible polynomial in K[T, Y], monic in Y, with d = degy (h) satisfying (1).
By [?, Lemma 1.9], there exists ¢ € O,y which is sufficiently S-close to 0 such
that for each a € Ok, s.s all the roots of h(ac,Y) are simple and belong to
Kiot,s- Consider the polynomial h(cT,Y) € K[T,Y]. Then, since My is weakly
symmetrically K-stably PAC over O, there exists a € O and b € M, such that

{WEAa}

{coN1a}
{CON1b}

{WEAb}

{WEAc}
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h(ac,b) = 0 and g(a) # 0. Then, ac € O and b € My N Kior,s = M, as desired.
[ |

Lemma 1.4. [?, Lemma 13.2] Let M be an extension of K in K,s which is {WEAd}
weakly symmetrically K-stably PSC over Ok y. Then, M is weakly PSC over
Omy.
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2 Composita of Symmetric Extensions
of a Global Field

A symmetric extension of K is a finite Galois extension of K with Galois
group isomorphic to S, for some positive integer m. Let Kgymm be the com-
positum of all symmetric extensions of K.

Using the notation introduced in the introduction, we prove that for almost
all o € Gal(K)¢, the field Kyymm[o] is PAC and Hilbertian, so Gal(Kgymm|[o]) =

{covp}

F,,. Moreover, if V contains only non-archimedean primes, then the ring Ok_ o],V

is Hilbertian and Bezout. Finally, the field M = Kiot.s N Ksymm[o] is weakly
PSC over Op,y. This leads in Section 7?7 to a strong approximation theorem
for M.

Definition 2.1. Let O be an integral domain with quotient field F'. We consider
variables T4, ..., T, X over F and abbreviate (T1,...,T,) to T. Let f1,..., fm
be irreducible and separable polynomials in F(T)[X] and let g be a non-zero
polynomial in F[T]. Following [FrJ08, Sec. 12.1], we write Hr(f1,..., fa;g) for
the set of all a € F" such that fi(a, X),..., fim(a, X) are defined, irreducible,
and separable in F[X] with g(a) # 0. Then, we call Hp(f1,..., fm;9) a sep-
arable Hilbert subset of F”. We say that the ring O is Hilbertian if for
every positive integer r every separable Hilbert subset of F” has a point with
coordinates in @. Finally, we say that O is Bezout if every finitely generated
ideal of O is principal. ]

Example 2.2. Taking ¢qo € Px ~ V in [?, p. 241, Thm. 13.3.5(b)], we find
that H N O ,, # () for each » > 1 and every separable Hilbert subset H of
K. In particular, if V contains only non-archimedean primes, then Ok y is a
Hilbertian domain. |

Let d be a positive integer. Denote the set of all absolutely irreducible
polynomials A € K[T,Y], monic in Y with d = degy (h), that satisfy (1) of
Section 1 with S = 0, i.e.

(1a) h(0,Y) has d distinct roots in Kgep, and
(1b) Gal(h(T,Y), K(T)) = Gal(h(T,Y),K(T)) = S,
by Ha. Let H =g, Ha-

Lemma 2.3. Let e be a non-negative integer. Then, for almost all o € Gal(K)°
every separable algebraic extension M of Kgymm[o] is weakly symmetrically K -
stably PAC over Ok y.

In particular, the field Keymm s weakly symmetrically K-stably PAC over

OKA)'

Proof: By Definition 77, it suffices to consider the case e > 1 and to prove
that for almost all o € Gal(K)° the field Kgymm[o] is weakly symmetrically
K-stably PAC over Ok . Moreover, since the set 7 is countable, it suffices to

{COMa}

{coMb}

{coNbila}
{CONb1b}

{comc}
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consider a positive integer d, a polynomial h € H4, and a non-zero polynomial
g € K[T], and to prove that for almost all o € Gal(K)® there exists (a,b) €
Ok,v X Ksymm|o] such that h(a,b) =0 and g(a) # 0.

By Borel-Cantelli [?, p. 378, Lemma 18.5.3(b)], it suffices to construct a
sequence of pairs (a1,b1), (az,b2), (as,bs), ... that satisfies for each n > 1 the
following conditions:

(2a) a, € Ok,y and h(an, X) is separable,

(2b) the splitting field K,, of h(a,, X) over K has Galois group Sy,
(2¢) h(ap,b,) =0, in particular b,, € K,,, and g(a,) # 0,

(2d) Ky, Kas,...,K, are linearly disjoint over K.

Indeed, inductively suppose that n is a positive integer and (ai, b1),. ..,
(an—1,bn—1) satisty Condition (2) (for n — 1 rather than for n). Let L =
K1Ky---Kp—1. By [?, p. 294, Prop. 16.1.5] and [?, p. 224, Cor, 12.2.3], K
has a separable Hilbert subset H such that for each a € H the polynomial
h(a, X) is separable, Gal(h(a,X), K) = Gal(h(a,X),L) = Sy, and g(a) # 0.
Using Example 77, we choose an element a,, € H N Ok y and a root b, € Kgp,
of h(an,X). Then, b, lies in the splitting field K,, of h(a,, X), so all of the
statements (2a) — (2d) are satisfied. 1

By Lemmas 7?7 and 77, we get the following corollary:

Corollary 2.4. Let e be a non-negative integer. Then, for almost all o €
Gal(K)® each extension M of Kior.s N Ksymm[0] in Kior,s is weakly symmetri-
cally K-stably PSC over Ok y. Hence, M is weakly PSC over Opyyp.

In particular, the field M = Kio,s N Ksymm 15 weakly symmetrically K-
stably PSC over Ok y, so it is also weakly PSC over Oy .

When S = (), we get by Definition ?7?:

Corollary 2.5. Let e be a non-negative integer. Then, for almost all o €
Gal(K)® each separable algebraic extension M of the field Ksymmlo] is PAC
over Op v .

In particular, the field M = Kgymm is PAC over Oy y .

Proposition 2.6. Let L be a Hilbertian field and M an extension of L in Leymm .
Then, M is Hilbertian.

Proof: Following [?, Sec. 2.1], we say that a profinite group G has abelian-
simple length n if there is a finite series 1 = G q-.. a«GM a GO = G of
closed subgroups, where for i = 0,...,n—1, the group GOV is the intersection
of all open normal subgroups N of G(Y such that G(Y) /N is abelian or simple.

As mentioned in the proof of [?, Thm. 5.5], the abelian-simple length of
each symmetric group S, is at most 3. Hence, by [?, Prop. 2.8], the abelian-
simple length of Gal(Lsymm/L) is at most 3. Therefore, by [?, Thm. 3.2], every
field M between L and Lgsymm is Hilbertian. [ |

{CONc2a}

{CONc2b}
{CONc2c}
{coNc2d}

{comMd}

{COMe}

{com;}
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Corollary 2.7. Let e be a positive integer. Suppose that V contains only non-
archimedean primes. Then, for almost all ¢ € Gal(K)® the rings Ok, [o],v and
OK.ymmlo],v are Hilbertian. In addition, the ring Ofk,,,,,.,v is Hilbertian.

symr

Proof: By Proposition ??, for all o € Gal(K)® the field Ksymm[o] is Hilber-
tian. By [?, p. 669, Thm. 27.4.8], for almost all o € Gal(K)® the field Kqcp[o]
is Hilbertian. By [?, Prop. 2.5 and Cor. 2.6], if a field M is PAC over a subring
O and M is Hilbertian, then the ring O is Hilbertian. It follows from Corollary
77 that for almost all o € Gal(K)® the rings Ok, [0,y and Ok, . . [0],v are
Hilbertian.

Finally, by Proposition 77, the field Kqymm is also Hilbertian. By Corollary
??, Ksymm is PAC over Ok, .. v. Hence, by the preceding paragraph, the ring
OK.ymm,v is Hilbertian. |

Corollary 2.8. Let e be a non-negative integer. Then, for almost all o €
Gal(K)® the field Ksymm|o] is PAC, Hilbertian, and Gal(Kgymm|o]) = F,.

Proof: By Corollary ??, Definition 77, and Corollary ??, for almost all o €
Gal(K)® the field M = Kgymm|o] is PAC and Hilbertian. Hence, by [?, p. 90,
Thm. 5.10.3], Gal(M) = E,,, as claimed. |

Remark 2.9. (a) It is not true that Ksymm[o] is PAC for every o € Gal(K)°.
For example, [FrJ08, p. 381, Remark 18.6.2] gives o € Gal(Q) such that Q(o)
is not a PAC field. Hence, by [FrJ08, p. 196, Cor. 11.2.5] also the subfield
Qsymm[0] of Q() is not PAC.

(b) In a forthcoming note, we make some mild changes in the proof of
Theorem 1.1 of [?] and in some lemmas on which it depends in order to prove in
the setup of Proposition 77 that if L is the quotient field of a Hilbertian domain
R and S is the integral closure of R in M, then S is also a Hilbertian domain.
In particular, in view of the proof of Proposition 77, the latter result applies to
every extension M of L in Lgymm. It will follow, in the notation of Corollary
77, that each of the rings O y is Hilbertian. |

symm|[0],

By [?, Lemma 4.6], if M is an algebraic extension of K which is PAC
over its ring of integers Onr = Onrpy 1,5 then Oy is a Bezout domain. Thus,
Corollary 77, applied to V = Pg gn yields the following result:

Corollary 2.10. Let e be a non-negative integer. Then, for almost all o €
Gal(K)¢ the ring of integers of each separable extension of Ksymm|o| is Bezout.
In particular, the ring Ok, is Bezout.

symm

{cous}

{covg}

{REMa}

{coMn}
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3 Strong Approximation Theorem

In the notation of Section 1, we prove that for almost all & € Gal(K)® the field
Kiot,s N Ksymm[o] satisfies the strong approximation theorem for absolutely
integral affine varieties.

Given a variety V' we write Viimp for the Zariski-open subset of V' that
consists of all simple (= non-singular) points of V. We cite two results from
[?]. The first one is Proposition 12.4 of [?]:

Proposition 3.1 (Strong approximation theorem). Let M be a subfield of
Kiot,s that contains K and is weakly symmetrically K-stably PSC over Ok y.
Then, (M, K,S,V) satisfies the following condition, abbreviated as (M, K,S,V) E
SAT:

Let T be a finite subset of V that contains S such that VT C Pk fn. Let
V' be an absolutely integral affine variety over K in A’ for some positive integer
n. For each p € T let Ly be a finite Galois extension of K, such that L, = K,
if p €S and let Q, be a non-empty p-open subset of Vsimp(Lyp), invariant under
the action of Gal(Ly/Ky). Assume that V(Og ) # 0, for each p € VN T.
Then, there exists z € V(Onr,y7) such that 27 € Q, for allp € T and all
T € Gal(K).

The second result is Proposition 13.4 of [?], applied (for simplicity) to the
case where S consists only of finite primes of K and V = Pk gy:

Proposition 3.2 (Local-global principle). Let M be a subfield of Kio,s that
contains K and is weakly symmetrically K -stably PSC over O . Then, (M,S)
satisfies the following condition, abbreviated as (M,S) = LGP:

Let V' be an absolutely integral affine variety over M in A%, for some
positive integer n such that Vimp (O, q) # 0 for each q € Spr and V(On,.q) #
0 for each q € Pprgin ~ Snr. Then, V(Onr) # 0.

Recall that an extension M of K in Kot s is said to be PSC (=pseudo-S-
closed) if every absolutely integral variety V over M with a simple K p-rational
point for each p € S and every 7 € Gal(K) has an M-rational point [?, Def. 1.3].
Also, a field M is ample if the existence of an M-rational simple point on V'
implies that V(M) is Zariski-dense in V' [?, p. 67, Lemma 5.3.1]. In particular,
every PSC field is ample. E

The next lemma is observed in [?, Cor. 2.7].

Lemma 3.3. Let M be an extension of K in Kyo,s. Suppose that (M, K, S,S) =
SAT. Then, M is a PSC field, hence ample.

Proof: Consider an absolutely integral variety V over M with a simple K-
rational point for each p € S and every 7 € Gal(K). Replacing K by a finite
extension K’ in Ko s and S by Sk+, we may assume that V is defined over K

IThe work [?] uses the adjective “large” rather than “ample”.

{sTRONG}

{STRa}

{STRb}

{STRc}
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and has a simple K-rational point for each p € §. Moreover, we may assume
that V is affine. Thus, we may apply Proposition 7?7 to the case V =T =S
and Qp = Viimp(K,) for each p € S. Observe that in this case Oy por = M.
|

Corollary 7?7, Lemma 7?7, Proposition 7?7, and Proposition 7?7 yield the
following result:

Theorem 3.4. Let e be a mon-negative integer. Then, for almost oll o €
Gal(K)¢, every extension M of Kiot,s N Ksymm[0] in Kior,s has the following
properties.

(a) (M,K,S,V) = SAT.

(b) M is PSC, hence ample.

(¢c) If S consists only of finite primes of K, then (M,S) | LGP.
In particular, M = Kiot,s N Ksymm satisfies (a), (b), and (c).

Proof: By Corollary ??, for almost all o € Gal(K)® every extension M of the
field Kiot,s N Kgymm|0] in Kot s is weakly symmetrically K-stably PSC over
Ok,v. Hence, by Proposition ??, (M, K,S,V) = SAT, so (a) holds. It follows
from Lemma ?? that M is PSC, as (b) states. Finally, if in addition, S consists
only of finite primes, then by Proposition ??, (M,S) = LGP, which establishes

(c). |

{STRd}
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