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Abstract: Let K be a global field, V a proper subset of the set of all primes of
K, S a finite subset of V, and K̃ (resp. Ksep) a fixed algebraic (resp. separable

algebraic) closure of K with Ksep ⊆ K̃. Let Gal(K) = Gal(Ksep/K) be the ab-
solute Galois group of K. For each p ∈ V we choose a Henselian (respectively,
a real or algebraic) closure Kp of K at p in K̃ if p is non-archimedean (respec-
tively, archimedean). Then, Ktot,S =

⋂
p∈S

⋂
τ∈Gal(K)K

τ
p is the maximal Galois

extension of K in Ksep in which each p ∈ S totally splits. For each p ∈ V we
choose a p-adic absolute value | |p of Kp and extend it in the unique possible

way to K̃. Finally, we denote the compositum of all symmetric extensions of K
by Ksymm.

We consider an affine absolutely integral variety V in AnK . Suppose that for
each p ∈ S there exists a simple Kp-rational point zp of V and for each p ∈ VrS
there exists zp ∈ V (K̃) such that in both cases |zp|p ≤ 1 if p is non-archimedean
and |zp|p < 1 if p is archimedean. Then, there exists z ∈ V (Ktot,S∩Ksymm) such
that for all p ∈ V and for all τ ∈ Gal(K) we have: |zτ |p ≤ 1 if p is archimedean
and |zτ |p < 1 if p is non-archimedean. For S = ∅, we get as a corollary that the
ring of integers of Ksymm is Hilbertian and Bezout.
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Introduction

The strong approximation theorem for a global field K gives an x ∈ K that
lies in given p-adically open discs for finitely many given primes p of K such
that the absolute p-adic value of x is at most 1 for all other primes p except
possibly one [?, p. 67]. A possible generalization of that theorem to an arbitrary
absolutely integral affine variety V over K fails, because in general, V (K) is a
small set. For example, if V is a curve of genus at least 2, then V (K) is finite
(by Faltings). This obstruction disappears as soon as we switch to appropriate
“large Galois extensions” of K.

Extensions of K of this type occur in our work [?]. In that work we fix an
algebraic closure K̃ of K, set Ksep to be the separable closure of K in K̃, and
consider a non-negative integer e. We equip Gal(K)e with the normalized Haar
measure [?, Section 18.5] and use the expression “for almost all σ ∈ Gal(K)e”
to mean “for all σ in Gal(K)e outside a set of measure 0”. For each σ =
(σ1, . . . , σe) ∈ Gal(K)e let Ksep(σ) = {x ∈ Ksep | xσi = x for i = 1, . . . , e} and
let Ksep[σ] be the maximal Galois extension of K in Ksep(σ).

Further, let PK be the set of all primes of K, let PK,fin be the set of all
non-archimedean primes, and let PK,inf be the set of all archimedean primes.
We fix a proper subset V of PK , a finite subset T of V, and a subset S of T such
that VrT ⊆ PK,fin. For each p we fix a completion K̂p of K at p and embed K̃

in an algebraic closure
˜̂
Kp of K̂p. Then, we extend a normalized absolute value

| |p of K̂p to
˜̂
Kp in the unique possible way. In particular, this defines |x|p for

each x ∈ K̃.
Next, we set Kp = K̃ ∩ K̂p, and note that Kp is a Henselian closure of

K at p if p ∈ PK,fin and a real or the algebraic closure of K at p if p ∈ PK,inf .
Thus,

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p

is the maximal Galois extension of K in which each p ∈ S totally splits. For
each σ ∈ Gal(K)e we set Ktot,S [σ] = Ksep[σ] ∩Ktot,S .

For each extension M of K in K̃ and every p ∈ Pfin ∩ V we consider the
valuation ring OM,p = {x ∈ M | |x|p ≤ 1} of M at p. For each subset U of V
we let

OM,U = {x ∈M | |xτ |p ≤ 1 for all p ∈ U and τ ∈ Gal(K)}.

Then, the main result of [?] is the following theorem:

Theorem A: Let K,S, T ,V, e be as above. Then, for almost all σ ∈ Gal(K)e

the field M = Ktot,S [σ] satisfies the strong approximation theorem:
Let V be an absolutely integral affine variety over K in AnK for some

positive integer n. For each p ∈ S let Ωp be a non-empty p-open subset of

Vsimp(Kp). For each p ∈ T r S let Ωp be a non-empty p-open subset of V (K̃),



3

invariant under the action of Gal(Kp). Finally, for each p ∈ V r T we assume
that V (OK̃,p) 6= ∅. Then, V (OM,VrT ) ∩

⋂
p∈T

⋂
τ∈Gal(K) Ωτp 6= ∅.

The main result of the present work establishes the strong approximation
theorem for much smaller fields. To this end we call a Galois extension L of
K symmetric if Gal(L/K) is isomorphic to the symmetric group Sn for some
positive integer n. We denote the compositum of all symmetric extensions of K
by Ksymm.

Theorem B: Let K,S, T ,V, e be as above. Then, for almost all σ ∈ Gal(K)e

the field M = Ksymm∩Ktot,S [σ] satisfies the strong approximation theorem (as
in Theorem A). In particular, Ksymm∩Ktot,S satisfies the strong approximation
theorem.

Additional interesting information about the fields mentioned in Theorem
B and their rings of integers is contained in the following result.

Theorem C: Let K be a global field and e a non-negative integer. Then, for
almost all σ ∈ Gal(K)e the field M = Ksymm ∩Ksep[σ] is PAC (Definition ??)

and Hilbertian, hence Gal(M) ∼= F̂ω. Moreover, the ring of integers of M is
Hilbertian and Bezout (Definition ??).

Note that the statement about the Hilbertianity of M in Theorem C is
due to [?]. See also the proof of Proposition ??. The authors are indebted to
the anonymous referee for pointing out that proposition and its proof.
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1 Weakly Symmetrically K-Stably PSC Fields
over Holomorphy Domains

{WEAKLY}
Let K be a global field, that is K is either a number field or an algebraic
function field of one variable over a finite field. Throughout this work, we use
the notation PK , K̃, Ksep, Gal(K), Kp and | |p for p ∈ PK , introduced in the

introduction. For each p ∈ PK and every subfield M of K̃ we consider the closed
disc

OM,p = {x ∈M | |x|p ≤ 1}

of M at p. If p is non-archimedean, then OM,p is a valuation ring of rank 1 of
M .

Next we consider a subset U of PK and a field K ⊆M ⊆ K̃. A prime of
M is an equivalence class of absolute values of M , where two absolute values on
M are equivalent if they define the same topology on M . Let UM be the set
of all primes of M that lie over U . If q ∈ UM lies over p ∈ U , then we denote
the unique absolute value of M that extends | |p to M and represents q by | |q.
In this case there exists τ ∈ Gal(K) such that |x|q = |xτ |p for each x ∈ M .
Conversely, the latter condition defines q. We set

OM,U =
⋂

q∈UM

{x ∈M | |x|q ≤ 1}

for the U-holomorphy domain of M . If U consists of non-archimedean primes,
then OM,U is the integral closure of OK,U in M . If U is arbitrary but M is Galois
over K, then

OM,U =
⋂
p∈U

⋂
τ∈Gal(K)

OτM,p .

In the number field case (i.e. char(K) = 0), we denote the (cofinite) set
of all non-archimedean primes of K by PK,fin. In the function field case, where
p = char(K) > 0, we fix a separating transcedence element tK for K/Fp and let
PK,fin = {p ∈ PK | |tK |p ≤ 1}. In both cases we set

OK = OK,PK,fin
= {x ∈ K | |x|p ≤ 1 for all p ∈ PK,fin}.

If K is a number field, then OK is the integral closure of Z in K. In the
function field case OK is the integral closure of Fp[tK ] in K. In both cases OK
is a Dedekind domain. Following the convention in algebraic number theory, we
call OK the ring of integers of K.

Next we consider a finite (possibly empty) subset S of PK . We set

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p

as in the introduction. If S = ∅, then Ktot,S = Ksep.
We also choose a non-empty proper subset V of PK that contains S.
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{WEAa}
Definition 1.1. [?, Def. 12.1] Let M be an extension of K in Ktot,S and let O
be a subset of M . We say that M is weakly symmetrically K-stably PSC
over O if for every polynomial g ∈ K[T ] with g(0) 6= 0 and for every absolutely
irreducible polynomial h ∈ K[T, Y ] monic in Y with d = degY (h) satisfying {CON1a}
(1a) h(0, Y ) has d distinct roots in Ktot,S , and {CON1b}
(1b) Gal(h(T, Y ),K(T )) ∼= Gal(h(T, Y ), K̃(T )) and is isomorphic to the sym-

metric group Sd,

there exists (a, b) ∈ O ×M such that h(a, b) = 0 and g(a) 6= 0.
Note that in that case, if M ⊆ M ′ ⊆ Ktot,S , then M ′ is also weakly

symmetrically K-stably PSC over O.
If S = ∅, we say that M is weakly symmetrically K-stably PAC over

O.
{WEAb}

Definition 1.2. [?, Def. 13.1] Let M be an extension of K in Ktot,S and let O
be a subset of M . We say that M is weakly PSC over O if for every absolutely
irreducible polynomial h ∈ M [T, Y ] monic in Y such that h(0, Y ) decomposes
into distinct monic linear factors over Ktot,S and every polynomial g ∈ M [T ]
with g(0) 6= 0 there exists (a, b) ∈ O ×M such that h(a, b) = 0 and g(a) 6= 0.
In particular, O is infinite.

If S = ∅, then M is PAC over O [?, Def. 13.5], i.e. for every absolutely
irreducible polynomial f ∈M [T,X] which is separable in X there exist infinitely
many points (a, b) ∈ O ×M such that f(a, b) = 0.

Indeed, let f ∈ M [T,X] be an absolutely irreducible polynomial which
is separable in X. Let ∆ ∈ M [T ] be the discriminant of f , let g ∈ M [T ]
be the leading coefficient of f , and let d = degX(f). Since O is infinite,
we can choose c ∈ O with ∆(c)g(c) 6= 0. Let Y = g(T )X, let h′(T, Y ) =
g(T )d−1f(T, g(T )−1Y ), and let h(T, Y ) = h′(T + c, Y ). Then, h ∈ M [T, Y ]
is an absolutely irreducible polynomial, monic in Y , such that h(0, Y ) decom-
poses into distinct monic linear factors over Ksep. By assumption, there exist
infinitely many (a, b) ∈ O × M such that h(a, b) = 0 and g(a) 6= 0, hence
f(a+ c, g(a)−1b) = 0.

Note that in that case, M is a PAC field, i.e. every absolutely integral
variety over M has an M -rational point [?, Lemma 1.3].

{WEAc}
Lemma 1.3. Let M0 be an extension of K in Ksep, let M = M0 ∩ Ktot,S ,
and let O be a subset of OM,S such that OK,V · O ⊆ O. Suppose that M0 is
weakly symmetrically K-stably PAC over O. Then, M is weakly symmetrically
K-stably PSC over O.

Proof: Let g be a polynomial in K[T ] with g(0) 6= 0 and let h be an absolutely
irreducible polynomial in K[T, Y ], monic in Y , with d = degY (h) satisfying (1).
By [?, Lemma 1.9], there exists c ∈ OK,V which is sufficiently S-close to 0 such
that for each a ∈ OKtot,S ,S all the roots of h(ac, Y ) are simple and belong to
Ktot,S . Consider the polynomial h(cT, Y ) ∈ K[T, Y ]. Then, since M0 is weakly
symmetrically K-stably PAC over O, there exists a ∈ O and b ∈ M0 such that
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h(ac, b) = 0 and g(a) 6= 0. Then, ac ∈ O and b ∈M0 ∩Ktot,S = M , as desired.

Lemma 1.4. [?, Lemma 13.2] Let M be an extension of K in Ktot,S which is {WEAd}
weakly symmetrically K-stably PSC over OK,V . Then, M is weakly PSC over
OM,V .
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2 Composita of Symmetric Extensions
of a Global Field

{COMP}
A symmetric extension of K is a finite Galois extension of K with Galois
group isomorphic to Sm for some positive integer m. Let Ksymm be the com-
positum of all symmetric extensions of K.

Using the notation introduced in the introduction, we prove that for almost
all σ ∈ Gal(K)e, the field Ksymm[σ] is PAC and Hilbertian, so Gal(Ksymm[σ]) ∼=
F̂ω. Moreover, if V contains only non-archimedean primes, then the ringOKsymm[σ],V
is Hilbertian and Bezout. Finally, the field M = Ktot,S ∩Ksymm[σ] is weakly
PSC over OM,V . This leads in Section ?? to a strong approximation theorem
for M .

{COMa}
Definition 2.1. LetO be an integral domain with quotient field F . We consider
variables T1, . . . , Tr, X over F and abbreviate (T1, . . . , Tr) to T. Let f1, . . . , fm
be irreducible and separable polynomials in F (T)[X] and let g be a non-zero
polynomial in F [T]. Following [FrJ08, Sec. 12.1], we write HF (f1, . . . , fn; g) for
the set of all a ∈ F r such that f1(a, X), . . . , fm(a, X) are defined, irreducible,
and separable in F [X] with g(a) 6= 0. Then, we call HF (f1, . . . , fm; g) a sep-
arable Hilbert subset of F r. We say that the ring O is Hilbertian if for
every positive integer r every separable Hilbert subset of F r has a point with
coordinates in O. Finally, we say that O is Bezout if every finitely generated
ideal of O is principal.

{COMb}
Example 2.2. Taking q0 ∈ PK r V in [?, p. 241, Thm. 13.3.5(b)], we find
that H ∩ OrK,V 6= ∅ for each r ≥ 1 and every separable Hilbert subset H of
Kr. In particular, if V contains only non-archimedean primes, then OK,V is a
Hilbertian domain.

Let d be a positive integer. Denote the set of all absolutely irreducible
polynomials h ∈ K[T, Y ], monic in Y with d = degY (h), that satisfy (1) of
Section 1 with S = ∅, i.e. {CONb1a}
(1a) h(0, Y ) has d distinct roots in Ksep, and {CONb1b}
(1b) Gal(h(T, Y ),K(T )) ∼= Gal(h(T, Y ), K̃(T )) ∼= Sd

by Hd. Let H =
⋃∞
d=1Hd.

{COMc}
Lemma 2.3. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e

every separable algebraic extension M of Ksymm[σ] is weakly symmetrically K-
stably PAC over OK,V .

In particular, the field Ksymm is weakly symmetrically K-stably PAC over
OK,V .

Proof: By Definition ??, it suffices to consider the case e ≥ 1 and to prove
that for almost all σ ∈ Gal(K)e the field Ksymm[σ] is weakly symmetrically
K-stably PAC over OK,V . Moreover, since the set H is countable, it suffices to
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consider a positive integer d, a polynomial h ∈ Hd, and a non-zero polynomial
g ∈ K[T ], and to prove that for almost all σ ∈ Gal(K)e there exists (a, b) ∈
OK,V ×Ksymm[σ] such that h(a, b) = 0 and g(a) 6= 0.

By Borel-Cantelli [?, p. 378, Lemma 18.5.3(b)], it suffices to construct a
sequence of pairs (a1, b1), (a2, b2), (a3, b3), . . . that satisfies for each n ≥ 1 the
following conditions: {CONc2a}
(2a) an ∈ OK,V and h(an, X) is separable, {CONc2b}
(2b) the splitting field Kn of h(an, X) over K has Galois group Sd, {CONc2c}
(2c) h(an, bn) = 0, in particular bn ∈ Kn, and g(an) 6= 0, {CONc2d}
(2d) K1,K2, . . . ,Kn are linearly disjoint over K.

Indeed, inductively suppose that n is a positive integer and (a1, b1), . . . ,
(an−1, bn−1) satisfy Condition (2) (for n − 1 rather than for n). Let L =
K1K2 · · ·Kn−1. By [?, p. 294, Prop. 16.1.5] and [?, p. 224, Cor, 12.2.3], K
has a separable Hilbert subset H such that for each a ∈ H the polynomial
h(a,X) is separable, Gal(h(a,X),K) ∼= Gal(h(a,X), L) ∼= Sd, and g(a) 6= 0.
Using Example ??, we choose an element an ∈ H ∩ OK,V and a root bn ∈ Ksep

of h(an, X). Then, bn lies in the splitting field Kn of h(an, X), so all of the
statements (2a) – (2d) are satisfied.

By Lemmas ?? and ??, we get the following corollary:
{COMd}

Corollary 2.4. Let e be a non-negative integer. Then, for almost all σ ∈
Gal(K)e each extension M of Ktot,S ∩Ksymm[σ] in Ktot,S is weakly symmetri-
cally K-stably PSC over OK,V . Hence, M is weakly PSC over OM,V .

In particular, the field M = Ktot,S ∩ Ksymm is weakly symmetrically K-
stably PSC over OK,V , so it is also weakly PSC over OM,V .

When S = ∅, we get by Definition ??:
{COMe}

Corollary 2.5. Let e be a non-negative integer. Then, for almost all σ ∈
Gal(K)e each separable algebraic extension M of the field Ksymm[σ] is PAC
over OM,V .

In particular, the field M = Ksymm is PAC over OM,V .

{COMj}
Proposition 2.6. Let L be a Hilbertian field and M an extension of L in Lsymm.
Then, M is Hilbertian.

Proof: Following [?, Sec. 2.1], we say that a profinite group G has abelian-
simple length n if there is a finite series 1 = G(n) / · · · / G(1) / G(0) = G of
closed subgroups, where for i = 0, . . . , n−1, the group G(i+1) is the intersection
of all open normal subgroups N of G(i) such that G(i)/N is abelian or simple.

As mentioned in the proof of [?, Thm. 5.5], the abelian-simple length of
each symmetric group Sn is at most 3. Hence, by [?, Prop. 2.8], the abelian-
simple length of Gal(Lsymm/L) is at most 3. Therefore, by [?, Thm. 3.2], every
field M between L and Lsymm is Hilbertian.
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{COMf}
Corollary 2.7. Let e be a positive integer. Suppose that V contains only non-
archimedean primes. Then, for almost all σ ∈ Gal(K)e the rings OKsep[σ],V and
OKsymm[σ],V are Hilbertian. In addition, the ring OKsymm,V is Hilbertian.

Proof: By Proposition ??, for all σ ∈ Gal(K)e the field Ksymm[σ] is Hilber-
tian. By [?, p. 669, Thm. 27.4.8], for almost all σ ∈ Gal(K)e the field Ksep[σ]
is Hilbertian. By [?, Prop. 2.5 and Cor. 2.6], if a field M is PAC over a subring
O and M is Hilbertian, then the ring O is Hilbertian. It follows from Corollary
?? that for almost all σ ∈ Gal(K)e the rings OKsep[σ],V and OKsymm[σ],V are
Hilbertian.

Finally, by Proposition ??, the fieldKsymm is also Hilbertian. By Corollary
??, Ksymm is PAC over OKsymm,V . Hence, by the preceding paragraph, the ring
OKsymm,V is Hilbertian.

{COMg}
Corollary 2.8. Let e be a non-negative integer. Then, for almost all σ ∈
Gal(K)e the field Ksymm[σ] is PAC, Hilbertian, and Gal(Ksymm[σ]) ∼= F̂ω.

Proof: By Corollary ??, Definition ??, and Corollary ??, for almost all σ ∈
Gal(K)e the field M = Ksymm[σ] is PAC and Hilbertian. Hence, by [?, p. 90,

Thm. 5.10.3], Gal(M) ∼= F̂ω, as claimed.

{REMa}
Remark 2.9. (a) It is not true that Ksymm[σ] is PAC for every σ ∈ Gal(K)e.

For example, [FrJ08, p. 381, Remark 18.6.2] gives σ ∈ Gal(Q) such that Q̃(σ)
is not a PAC field. Hence, by [FrJ08, p. 196, Cor. 11.2.5] also the subfield
Qsymm[σ] of Q̃(σ) is not PAC.

(b) In a forthcoming note, we make some mild changes in the proof of
Theorem 1.1 of [?] and in some lemmas on which it depends in order to prove in
the setup of Proposition ?? that if L is the quotient field of a Hilbertian domain
R and S is the integral closure of R in M , then S is also a Hilbertian domain.
In particular, in view of the proof of Proposition ??, the latter result applies to
every extension M of L in Lsymm. It will follow, in the notation of Corollary
??, that each of the rings OKsymm[σ],V is Hilbertian.

By [?, Lemma 4.6], if M is an algebraic extension of K which is PAC
over its ring of integers OM = OM,PK,fin

, then OM is a Bezout domain. Thus,
Corollary ??, applied to V = PK,fin yields the following result:

{COMh}
Corollary 2.10. Let e be a non-negative integer. Then, for almost all σ ∈
Gal(K)e the ring of integers of each separable extension of Ksymm[σ] is Bezout.

In particular, the ring OKsymm is Bezout.
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3 Strong Approximation Theorem
{STRONG}

In the notation of Section 1, we prove that for almost all σ ∈ Gal(K)e the field
Ktot,S ∩ Ksymm[σ] satisfies the strong approximation theorem for absolutely
integral affine varieties.

Given a variety V we write Vsimp for the Zariski-open subset of V that
consists of all simple (= non-singular) points of V . We cite two results from
[?]. The first one is Proposition 12.4 of [?]:

{STRa}
Proposition 3.1 (Strong approximation theorem). Let M be a subfield of
Ktot,S that contains K and is weakly symmetrically K-stably PSC over OK,V .
Then, (M,K,S,V) satisfies the following condition, abbreviated as (M,K,S,V) |=
SAT:

Let T be a finite subset of V that contains S such that VrT ⊆ PK,fin. Let
V be an absolutely integral affine variety over K in AnK for some positive integer
n. For each p ∈ T let Lp be a finite Galois extension of Kp such that Lp = Kp

if p ∈ S and let Ωp be a non-empty p-open subset of Vsimp(Lp), invariant under
the action of Gal(Lp/Kp). Assume that V (OK̃,p) 6= ∅, for each p ∈ V r T .
Then, there exists z ∈ V (OM,VrT ) such that zτ ∈ Ωp for all p ∈ T and all
τ ∈ Gal(K).

The second result is Proposition 13.4 of [?], applied (for simplicity) to the
case where S consists only of finite primes of K and V = PK,fin:

{STRb}
Proposition 3.2 (Local-global principle). Let M be a subfield of Ktot,S that
contains K and is weakly symmetrically K-stably PSC over OK,V . Then, (M,S)
satisfies the following condition, abbreviated as (M,S) |= LGP:

Let V be an absolutely integral affine variety over M in AnM for some
positive integer n such that Vsimp(OMq,q) 6= ∅ for each q ∈ SM and V (OMq,q) 6=
∅ for each q ∈ PM,fin r SM . Then, V (OM ) 6= ∅.

Recall that an extension M of K in Ktot,S is said to be PSC (=pseudo-S-
closed) if every absolutely integral variety V over M with a simple Kτ

p -rational
point for each p ∈ S and every τ ∈ Gal(K) has an M -rational point [?, Def. 1.3].
Also, a field M is ample if the existence of an M -rational simple point on V
implies that V (M) is Zariski-dense in V [?, p. 67, Lemma 5.3.1]. In particular,
every PSC field is ample. 1.

The next lemma is observed in [?, Cor. 2.7].
{STRc}

Lemma 3.3. Let M be an extension of K in Ktot,S . Suppose that (M,K,S,S) |=
SAT. Then, M is a PSC field, hence ample.

Proof: Consider an absolutely integral variety V over M with a simple Kτ
p -

rational point for each p ∈ S and every τ ∈ Gal(K). Replacing K by a finite
extension K ′ in Ktot,S and S by SK′ , we may assume that V is defined over K

1The work [?] uses the adjective “large” rather than “ample”.
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and has a simple Kp-rational point for each p ∈ S. Moreover, we may assume
that V is affine. Thus, we may apply Proposition ?? to the case V = T = S
and Ωp = Vsimp(Kp) for each p ∈ S. Observe that in this case OM,VrT = M .

Corollary ??, Lemma ??, Proposition ??, and Proposition ?? yield the
following result:

{STRd}
Theorem 3.4. Let e be a non-negative integer. Then, for almost all σ ∈
Gal(K)e, every extension M of Ktot,S ∩Ksymm[σ] in Ktot,S has the following
properties.

(a) (M,K,S,V) |= SAT.
(b) M is PSC, hence ample.
(c) If S consists only of finite primes of K, then (M,S) |= LGP.

In particular, M = Ktot,S ∩Ksymm satisfies (a), (b), and (c).

Proof: By Corollary ??, for almost all σ ∈ Gal(K)e every extension M of the
field Ktot,S ∩ Ksymm[σ] in Ktot,S is weakly symmetrically K-stably PSC over
OK,V . Hence, by Proposition ??, (M,K,S,V) |= SAT, so (a) holds. It follows
from Lemma ?? that M is PSC, as (b) states. Finally, if in addition, S consists
only of finite primes, then by Proposition ??, (M,S) |= LGP, which establishes
(c).
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