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Introduction

The goal of this work is to complete the proof of an old conjecture of Geyer-Jarden in
characteristic 0. The conjecture deals with a finitely generated field K of Q. We fix an
algebraic closure K of K. Then, the absolute Galois group Gal(K) = Gal(K/K) of K
is a profinite group. It is equipped with a unique Haar measure px with px(Gal(K)) = 1
[FrJO8, p. 378, Sec. 18.5]. For each positive integer e > 1, the group Gal(K)€ is equipped
with the product measure, which we also denote by px. We say that a certain statement
holds for almost all o € Gal(K)® if the set of o € Gal(K)® for which that statement

¢, we consider the field

holds has px-measure 1. For each o = (01,...,0.) € Gal(K)
Ko)={zeK|omw=uz,i=1,..., e}
Given an abelian variety A over K and a positive integer m, we denote the kernel of

the multiplication of A by m with A,,. For a prime number [, we write Aj = (J;2; Ajs.

CONJECTURE A ([GeJ78, p. 260, Conjecture]): Let K be a finitely generated field over
Q, let A be a non-zero Abelian variety over K, and let e be a positive integer. Then,
for almost all o € Gal(K)¢ the following holds:

(a) If e =1, then there exist infinitely many prime numbers | with A;(K (o)) # 0.

(b) If e > 2, then there exist only finitely many prime numbers | with A;(K (o)) # 0.
(c) Ife > 1 and [ is a prime number, then A;~ (K (¢)) is finite.

B. PrREVIOUS RESULTS. Conjecture A along with its analog to positive characteristics
has been proved in [GeJ78, p. 259, Thm. 1.1] when A is an elliptic curve. The analog of
the conjecture is true for an arbitrary abelian variety over a finite field [JaJ84, p. 114,
Prop. 4.2]. Note that the latter paper contains a proof of Part (a) of Conjecture A and
its analog to positive characteristic. Unfortunately, that proof is false as indicated in
[JaJ85].

Part (c) of Conjecture A along with its analog to positive characteristic and Part
(b) of the conjecture appears in [JaJ01, Main Theorem].

The main result of [GeJ05] considers a non-zero abelian variety A over a number
field K and says that there exists a finite Galois extension L of K such that for almost
all o € Gal(L) there exist infinitely many primes [ with A;(K (o)) # 0.
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Finally, David Zywina [Zyw16] improves [GeJ05] by proving Part (a) of Conjecture
A for a number field K not only for almost all o € Gal(L) for some L as [GeJ05] does
but for almost all o € Gal(K).

We generalize Zywina'’s result to an arbitrary finitely generated extension K of QQ:

THEOREM C: Let A be a non-zero abelian variety over a finitely generated extension
K of Q. Then, for almost all o0 € Gal(K) there exist infinitely many prime numbers 1
with Ayj(K (o)) # 0.

D. ON THE PROOF. Let g = dim(A). For each prime number [ let p4;: Gal(K) —
GLg4(F;) be the l-ic representation (also called the mod-! representation) of Gal(K)

induced by the action of Gal(K) on the vector space A; over F; of dimension 2g.

D1. Serre’s theorem. The proof of [GeJ05] uses the main result of [Ser86]. That result
deals with a number field K. Omong others, it gives a finite Galois extension L of K,
a positive integer n, and for each [ a connected reductive subgroup H; of GLgg4 , such
that (H;(F;) : pa,(Gal(L))) divides n. In addition, the fields L(A;) with [ ranging over
all prime numbers are linearly disjoint over L. Another important feature of Serre’s
theorem is the existence of a set A of prime numbers of positive Dirichlet density, such

that H; splits over [F; for each [ € A.

D2. Borel-Cantelli Lemma. Foreachllet S; = {o € Gal(L)| pa,(c) has eigenvalue 1}.Jj
Then, [GeJO05] proves the existence of a positive constant ¢ and a set A of positive Dirich-
let density such that 7 (S;) > ¢ for each I € A. Thus, » ., pr(S1) = co. In addition,
by D1, the sets S; with [ ranging over A are py-independent. It follows from the Borel-
Cantelli Lemma, that almost all ¢ € Gal(L) lie in infinitely many .S;’s with [ € A. Thus,
for almost all o € Gal(L) there exist infinitely many I’s such that 4;(K (o)) # 0, which

is the desired result over L.

D3. Zywina’s combinatorial approach. Zywina makes a more careful use of the Borel-
Cantelli Lemma. In [Zyw16] he chooses a set B of representatives of Gal(K) modulo
Gal(L). For each | and every 5 € B he considers the set

Up,, = {0 € BGal(L)| pa,(o) has eigenvalue 1}.
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Then, he constructs a positive constant c and a set Ag of prime numbers having positive

Dirichlet density such that
(1) pr(Usgi) > ; for each | € Ag.

Again, by the Borel-Cantelli Lemma, this leads to the conclusion that the px-measure

of the set Ug of all 0 € Gal(K) that belong to infinitely many Ug; is [ Since

1
L:K]"
the Ug’s with 8 € B are disjoint, it follows that for almost all o € Gal(K) there are

infinitely many I’s such that A;(K(c)) # 0.

D4. Function fields. Now assume that K is a finitely generated extension of QQ of
positive transcendence degree and choose a subfield E of K such that K/F is a regular
extension of transcendence degree 1. We wish to find a place of K/E with residue field

K that induces a good reduction of A onto an abelian variety A over K such that
(2) Gal(K (4;)/K) = Gal(K(A4;)/K)

for at least every [ in a set of positive Dirichlet density.

D5. Hilbert irreducibility theorem. The first idea that comes into mind is to use
Hilbert Irreducibility Theorem. However, that theorem can take care of only finitely

many prime numbers, so it is of no use for our problem.

D6. Openness theorem. Instead, we choose a smooth curve S over E whose function
field is K such that A has a good reduction along S and set K = [1,cr K(Ar), where
L is the set of al prime numbers. Using a combination of results of Anna Cadoret and
Akio Tamagawa that goes under the heading “openness theorem” (Proposition 1.6),
we find a closed point s of S with an open decomposition group in Gal(K/K). Let
K be the residue field of K at s and Kg = ITco Ks(As,), where Ag is the reduction
of A at s. Then, there exists a finite extension K’ of K in K such that the reduction
modulo s induces an isomorphism Gal(K/K’) 2 Gal(Kg/Ks). This gives the desired

isomorphism (2) for K’ rather than for K and for all prime numbers .

D7. Serre’s theorem over K. Now we use a result of [GaP13] and find a finite Galois

extension L of K that contains K’ and satisfies the same reduction conditions that K’



does and in addition the fields L(A;), with [ ranging over all prime numbers, are linearly
disjoint over L.

Note that Ky is again finitely generated over Q and the transcendence degree of
K over Q is one less than that of K. Starting with Serre’s theorem for number fields
mentioned above and using induction on the transcendence degree over Q, we now prove

the theorem of Serre mentioned in D1 over our current field K.

D8. Strongly regular points. Having Serre’s theorem for our function field K at our
disposal, we now follow the proof of [Zyw16] to obtain the estimates (1) for our abelian
variety A/K. The proof contains a careful analysis of regular points of the reductive
groups H; mentioned in Serre’s theorem for [ € A. It uses Zywina’s crucial observation
that if 7' is an F;-split maximal torus of H; and t € T'(F;), then t" € p4;(Gal(L)).
Moreover, if t is a regular element of H; and T is the unique maximal torus of H; that
contains t, then the number of points t’ € T'(F;) with (t')” = t™ is at most n", where
r = rank(H;) = dim(7"). Finally, still following [Zyw16], we make use of the Lang-
Weil estimates (or rather the more accurate version of these estimates that [Zyw16]
provides) to prove that “most of the points” of p4;(Gal(K)) are regular points of H;
whose characteristic polynomials have “maximal numbers of roots in F;” (We may refer

to these points as “strongly regular”).

D9. Serre’s density theorem. At some point of the proof, [Zyw16] uses the Chebotarev
density theorem for number fields to choose a prime of K whose Artin class is equal
to a previously chosen conjugacy class in Gal(L(A4;)/K) (where L is the number field
mentioned in Serre’s theorem for number field). Instead, we use Serre’s generalization
of the Chebotarev density theorem (Proposition 3.5) to our function field K in order to

find a prime p of K with the same properties as above.

ACKNOWLEDGEMENT: Part of this wark was done during research visits of the first
author at the University of Kassel. We thank Wulf-Dieter Geyer and Aharon Razon for
careful reading of this work and the referee for helpful comments to an earlier version

of it.



1. Adelic Openness

Let K be a finitely generated transcendental extension of Q and A an abelian variety
over K. We consider K as a function field of one variable over a field F. Using results
of Cadoret and Tamagawa, we prove that there exists a finite extension K’ of K in
K= 1, K(A;), with [ ranging over all prime numbers, such that the reduction modulo
“almost every valuation v of K’ over E” maps the group Gal(K'(A;)/K'), for each I,
isomorphically onto the corresponding group with respect to the reduced objects.

To be more specific, let E be a finitely generated extension of Q, S an absolutely
integral smooth curve over E, K = E(S) the function field of S, and A an abelian
variety over K of dimension g > 0 with good reduction along S [Shi98, p. 95, Prop. 25].
Let A(f() be the abelian group of all K-rational points of A. For each m € N let 4,,
be the kernel of multiplication of A by m. By [Mil85, p. 116, Remark 8.4], A,,(K) is a
free Z/mZ-module of rank 2g. Moreover, since A is defined over K, each o € Gal(K)
gives rise to an automorphism of A(K) that leaves A,,(K) invariant.

We denote the set of all prime numbers by L. For each | € L let T;(A) =
<h_mAli([~() be the Tate module of A associated with I. Then, A;(K) = Flgg and
Ti(A) =2 779, so Aut(A;) = GLyy(F;) and Aut(7;(A)) = GLy,(Z;). Thus, the action of

Gal(K) on A(K) mentioned in the preceding paragraph gives rise to homomorphisms
(1) PA,L Ga,l(K) — GL2g(Fl), PA,I=: Gal(K) — GLZg(Zl).

Since Ker(pa ;) = Gal(K(A4;)) and Ker(pa =) = Gal(K(Ai=)) = Gal(U;~; K(A;)),
the homomorphism p4; (resp. pa i) (also called the I-ic and the [-adic representations
of Gal(K)) induces (under an abuse of notation) a homomorphism py4;: Gal(N/K) —
GLag(IF;) (resp. pa,ieo: Gal(N/K) — GLgg(Z;)) for each Galois extension N of K that
contains K (A;) (resp. K(A;=)).

We denote the set of closed points of S by Scosed- By Hilbert Nullstellensatz,
Sclosed 1S an infinite set.

Since S is a smooth curve, each s € S¢pseq induces a discrete valuation vg of K
with residue field K which is a finite extension of E in E [Lan58, p. 151, Thm. 1] and

where F is the algebraic closure of E in K.
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Let Ky = Ky,s be the maximal Galois extension of K which is unramified along

S and observe that £ C K, because char(F) = 0. Thus, Gal(K/K) is the étale
fundamental group of S. Since char(Kg) = 0 for each s € Sgosed, [SeT68, Thm. 1]
implies that

(2) K(A,,) C K, for each m € N.

By what we said above, p4; and pa e give rise to homomorphisms
pr: Gal(Kyu/K) — Aut(4,), pre=: Gal(Ky, /K) — Aut(T;(A)).

Writing m;: Aut(7;(A)) — Aut(A;) for the epimorphism defined by the reduction
GL2y(Z;) — GL2g(F;) modulo I, we have p; = m o pj. Further, the products of
the p;’s, the p;=’s, and the m;’s, with [ ranging over L, give rise to homomorphisms that

fit into the following commutative diagram:
(3) Gal(K/K)

[Lier Aut(Ti(A)) - [Lier, Aut(Ar)

Next we consider a point s € Sciosea and choose an extension vs . of vs to Kyy.
Since E C K.y, the residue field of vg y, is E. For each Galois extension L of K in Ky,

we consider the decomposition group of vg |, over K,
Dg 1k = {0 € Gal(L/K)| forall x € L: vy (0x) > 0 <= v u:(x) > 0}.

Since vs ur/vs is unramified, reduction modulo the prime ideal of the valuation ring of

VUs,ur gives rise to an isomorphism ¢gs: Dg i/ — Gal(Kg) [EnP10, second paragraph

of page 123 and the “first exact sequence” on page 124].

(4) Let vs: Gal(Ks) — Dsgk,./x be the inverse of ¢s. For each | € L we con-
sider the homomorphism pj s = pi 0 s Gal(Kg) — Aut(Tj(A)). It satisfies

piee s(Gal(Ks)) = proe (Ds k., /i )- We also consider the homomorphisms

ps = potbs: Gal(Ky) — [ Aut(A;) and poo s = poc oths: Gal(Ky) — | [ Aut(Ty(A)).
lell lelL



They satisfy pS(Gal(KS)) = p(DS’Kur/K) and poo’s(Gal(f(S)) = poo(Ds,Kur/K).

The following result of Anna Cadoret is the main theorem of [Cadl5], rewritten

in our notation:

PROPOSITION 1.1: We consider a point 8 € Sciosed. If there exists | € 1L such that
the group pi= (Gal(Ks)) is open in pj=(Gal(K,,/K)), then p s(Gal(Ky)) is open in
Poo(Gal( Ky, /K)).

Our goal is to prove the assumption of Proposition 1.1, hence to make the con-
sequence of that theorem valid. To this end we combine two theorems of Cadoret and

Akio Tamagawa:

PrROPOSITION 1.2 (Cadoret-Tamagawa): Given | € L and d € N, we set
Sd) — {s € Selosed | [Ks : E] < d} and consider the set

Sy = {s € Seiosed | p1= s(Gal(Ky)) is not open in p;=(Gal(K,/K))}.

Then, S; NS4 is finite.

Proof: By [CaT12, Thm. 5.1], p;~ is a GSRP-representation. In other words, the
maximal abelian quotient of each open subgroup of pj~(Gal(Ky/EK)) is finite. It
follows from [CaT13, Thm. 1.1] that S; N S® is finite, as claimed. i

COROLLARY 1.3: There exists s € Sciosed Such that the group pso s(Gal(Ky)) is open
in poo (Gal( Ky, /K)).

Proof: Since K is the function field of the curve S over E, there exists ¢t € K which is
transcendental over E such that d = [K : E(t)] < oo. For all but finitely many elements
t € E, the map t —  gives rise to a point 8 € Sciesed Such that [Kg : E] < d. Hence,
S() is infinite.

Now we choose [ € L. By Proposition 1.2 and the preceding paragraph, S(® \ §; is
infinite. Thus, there exists s € Sciosed Such that pj= ¢(Gal(Ks)) is open in pje (Gal( Ky, /K)).J]
It follows from Proposition 1.1 that pe s(Gal(Ks)) is open in p(Gal(Ku/K)), as

claimed. [ |



COROLLARY 1.4: There exists s € Scioseqa Stuch that the group ps(Gal(Ky)) is open in
p(Gal(Ky/K)).

Proof: Let s be a point in Scjoseq that satisfies the conclusion of Corollary 1.3. Then,

by (4), the commutative diagram (3) extends to a commutative diagram

(5) Gal(Ky)
lws
e S Gal(Kw/K) N
[Lier Aut(Ti(A)) . [T,er Aut(4) .

In particular,
7r(90075(@'&1(}_(3))) = ps(Gal(f_(s)) and 7(poo (Gal(Ky /K))) = p(Gal(Ky/K)).

By Corollary 1.3, poo s(Gal(Ks)) is open in po (Gal(K,,/K)). By [FrJ08, p. 5], 7 is an
open map. Therefore, ps(Gal(Ky)) is open in p(Gal(K . /K)). i

Setup 1.5: We interpret Corollary 1.4 in terms of Galois groups. To this end we fix
a point 8 € Sgoseq Such that pg(Gal(Ky)) is open in p(Gal(K,,/K)). Since A has
good reduction at s, its reduction Ag with respect to vs is an abelian variety over
K, in particular, it is non-empty and absolutely integral [Shi98, p. 83, Section 11.1].
Moreover, by the last paragraph of [Shi98, p. 70], dim(As) = dim(A) = g. We write
K = [, K(4) and Ks = [[,o Ks(Asy). By (2), K C K. Moreover, by [SeT68,
p. 495, Lemma 2], for each [ € L, reduction modulo s induces an isomorphism AZ(R' ) —
As,z(fZ)-

We denote the restriction of vy, to K by vs. Then, KS is the residue field of K
with respect to 0g. Also, DS’ RK is the image of Dg g ,k under the restriction map
res: Gal(Ky,/K) — Gal(K/K). We write K’ for the fixed field of Dy g /i n K (and
note that K’ depends on s). Then, s induces a monomorphism vs: Gal(Ks/Kg) —
Gal(K /K) whose image is Gal(K/K'). Let ¢g: Gal(K/K') — Gal(Ks/Ks) be the
inverse of @25. Again, by [SeT68, p. 495, Lemma 2], the isomorphism Al(f() — ASJ(IZ)
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induces an isomorphism o;: Aut(4;) — Aut(As;) that commutes with the action of
Gal(K/K'). Thus, o o PG /) = PA © Pslaark. k. for each | € L. The
product of the a;’s gives rise to an isomorphism a: [[;op Aut(4;) — [],cp Aut(As;).

PROPOSITION 1.6: In the notation of Setup 1.5 and in particular with the choice of the

closed point s of S made in the Setup, K’ is a finite extension of K in K.

Proof:  Observe that p: Gal(K,,/K) — [],c Aut(4;) naturally decomposes as p =
poresg. g, where p: Gal(K/K) — [1,cr Aut(A;) is defined by the action of Gal(K /K)
on the A;’s. Since K = [],o; K(A;), the homomorphism 4 is injective.

Similarly, we write p.: Gal(Ks/Ks) — [], o1, Aut(Asg ;) for the corresponding mono-

morphism associated with Ky and Ag. It fits into the following commutative diagram:

p

— T
(6) Gal(Ky/K) —=> Gal(K /K) —"> [],op, Aut(4))

#)ST QZJST la
Gal(K,) —> Gal(Ks/Ks) —=> [T,er, Aut(Ag,).
\—/’/

Ps

Note that in the notation of Corollary 1.4, p, o resg i, = Ps- We use Corollary 1.4 in
order to choose s € S(F) such that the group ps(Gal(K5s)) is open in p(Gal(Ky,/K)).
Since both restrictions maps in (6) are surjective, a~!(p,(Gal(Ks/Kg))) is open in
p(Gal(K/K)). Since 1)s is injective, since « is bijective, and since both p, and j are
injective, the group D g/ = Ys(Gal(Ky/Ks)) is open in Gal(K/K). It follows that
K', which is the fixed field of DS’ RIK in K , is a finite extension of K in K , as claimed.



2. Independent Homomorphisms

Let I' be a profinite group and I a set. For each ¢ € I let p; be a homomorphism of I'
into a profinite group I';. Here we follow the usual convention and always assume that a
homomorphism between profinite groups is continuous. In addition, every finite group
is equipped with the discrete topology. Let p = [[;.; pi be the direct product of the
pi’s. That is, p is the homomorphism from I' to [],.; I'; defined by p(x) = (pi(x))scr-
Following [Ser13] and [GaP13], we say that the family (p;);cs is independent if p(I") =
Hie] pi(T).

Note that if a family (p;);c; of homomorphisms as in the preceding paragraph
is independent and a: IV — T' is an epimorphism of profinite groups, then the family

(pi 0 a)jer is also independent.

LEMMA 2.1: Let (G;);er be a family of closed subgroups of a profinite group G and let

H be an open subgroup of G. Suppose that (),.; Gi = 1. Then, I has a finite subset J

such that (,c; G; < H.

i€l

Proof: Assume toward contradiction that the lemma does not hold. Then, for each

finite subset J of I the closed subset (.. ; G; ~ H is non-empty. If J' is a finite subset of

jET
I that contains J, then Gj~NH C(N;c; G5 H. 1t follows from the compactness
of G that the set [;c;

ﬂieIGizleﬂ. |

jeJ’

G; ™ H is non-empty. This contradicts the assumption that

One of the ingredients of the proof of the following lemma appears in [GaP13,
Remark 3.2(b)(ii)].

LEMMA 2.2: Let I' be a profinite group. For each i in a set I let p; be a homomor-
phism of T' into a finite group I';. Suppose that the family (p;);c; is independent,
N;cr Ker(p;) = 1, and A is an open subgroup of I'. Then, A has an open subgroup A’

which is normal in T' such that the family (p;|a)ics is independent.

Proof: By assumption, the homomorphism p = [[,.; pi satisfies p(I') = [[,c; ps(I).
Since A is open in I', the subgroup p(A) of [],; pi(I') is open [FrJO8, p. 6, Remark
1.2.1(f)]. Thus, I has a finite subset J such that [[,. ;1 % [[,c; < ;pi(T) < p(A).
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Since (;c; Ker(p;) = 1, we may use Lemma 2.1 to enlarge J such that A" =
Nics Ker(p;) < A. In particular, A’ is normal in I'. Since the I';’s are finite, A’ is open
in A.

Given a family (z;);c; in (A")!, we have p;(z;) = 1 for each i € J. Thus,
(pi(zs))ier € [l;e 1 X [Licr~ypi(T) < p(A). Hence, there exist € A with p(x) =
(pi(x;))ier. In particular, p;(x) = p;(x;) = 1 for each ¢ € J, so x € A’. It follows that
p(A") =[], pi(A’). This means that the family (p;|a’)ier is independent, as claimed.

Remark 2.3:  Let K be a field. For each i € I let p;: Gal(K) — G; be a homomorphism
of profinite groups and let K; be the fixed field of Ker(p;) in K. Consider a Galois
extension K of K in K that contains each K; and let p;: Gal(K/K) — G; be the
homomorphism induced by p;. As noticed in [GaP13, Remark 3.1], the family (K;);crs

is linearly disjoint over K if and only if the restriction maps
pi: Gal(K/K) = Gy, iel

are independent (see also [FrJ08, Lemma 2.5.6]). |
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3. Serre’s Density Theorem

We give in this section an account of a generalization of the Chebotarev density theorem
to finitely generated extensions of QQ due to Jean-Pierre Serre. We call this generalization

“Serre’s density theorem”.

3.1 NAGATA RINGs. Recall that a Noetherian ring A (commutative with 1) is called
a Nagata ring if for every prime ideal P of A and for every finite extension L of
Quot(A/P) the integral closure of A/P in L is a finitely generated A/P-module (see
[Mat80, p. 231] or [Liu06, p. 340, Def. 2.27]). In particular, every field and every
Dedekind domain of characteristic 0 are Nagata rings [Liu06, p. 340, Example 2.28]. It
follows from the definition that if A is a Nagata ring and U is a multiplicative subset
of A, then U7'A is also a Nagata ring. The main theorem about Nagata rings, due
to Nagata, says that each finitely generated ring extension of a Nagata ring is again a
Nagata ring [Mat80, p. 240, Thm. 72]. In particular, every finitely generated Z-algebra,

is a Nagata ring.

3.2 REGULAR RINGS. Let K be a finitely generated extension of Q and L a finite
Galois extension of K and choose a transcendence base (t1,...,t.) for K/Q. By Sub-
section 3.1, Ry = Zlt1,...,t,] is a Nagata ring and the Krull dimension, dim(Ry), of
Ry is 7 + 1 = trans.deg(K/Q) + 1. Therefore, the integral closure R of Ry in K is a
finitely generated Rp-module with Quot(R) = K. Thus, R = Z[x1,...,x)] for some
Z1,...,2, € K and R is a Nagata ring with dim(R) = dim(Ry) = trans.deg(K/Q) + 1.
The set
U = {p € Spec(R) | R, is a regular ring}

is open in Spec(R) [GROG65, p. 166, Cor 6.12.6]. Moreover, U is non-empty, because it
contains the generic point of Spec(R). Therefore, there exists a non-zero element f € R
such that Spec(R[f~!]) C U. In particular, the ring R[f~1] is regular. Adding f~1
to the set {x1,..., 2k}, if necessary, we may assume that Spec(R) is smooth, so R is a
regular ring.

Since R is a Nagata ring, its integral closure Ry in L is a finitely generated R-

module, hence a finitely generated ring extension of Z. Moreover, the fixed ring of
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Ry, under Gal(L/K) is R. Hence, Spec(R) is isomorphic to the quotient scheme of
Spec(Ry) modulo Gal(L/K), where Gal(L/K) acts on Spec(Ry) in the natural way
[GoW10, p. 331, Prop. 12.27]. Finally, we replace R and Ry by R[u| and Rp[ul, if
necessary, where u is an appropriate element of K>, to assume that Ry is a ring cover
of R in the terminology of [FrJO8, p. 109, Remark 6.1.5]. This means that Ry = R[],
where discr(irr(z, K)) is a unit of R and irr(z, K) is the monic irreducible polynomial

of z over K. In particular, Ry, is standard étale over R [Ray70, p. 19, (2)].

3.3 DIRICHLET DENSITY. We denote the set of maximal ideals of R by Max(R). For
each p € Max(R), the residue ring R/p is a finite field (see [Ser65, p. 83, Sec. 1.3] or
[Eis95, p. 132, Thm. 4.19]) and we set Np = |R/p|. Note that Max(R) (resp. Max(RL))
is the set of closed points of Spec(R) (resp. Spec(Ry)).

This allows us to use the notation and the results of [Ser65, Sec. 2.7] for X =
Spec(Ryr), G = Gal(L/K),and Y = Spec(R). Let d = dim(Y"). Then, d = trans.deg(K)-+J]
1. Accordingly, the Dirichlet density of a subset B of Max(R) is defined as the limit
ZpeB ﬁ

(1) 5(B) = lim
s—dt ZpeMax(R) NLpS

Y

if it exists. By [Ser65, p. 84, Cor.2], the denominator of the fraction in (1) diverges as
s — d*. Hence, §(B) = 0 if B is finite. In other words, if 6(B) > 0, then B is infinite.

3.4 ARTIN SYMBOL. Next we consider p € Max(R) and choose p;, € Max(Ry,) over p.
Then, Ry /py is a finite Galois extension of the finite field R/p. By our choice of R and
Ry, the maximal ideal p, is unramified over R, so the decomposition group D = D,,, /,
of pr, over p is isomorphic to D = Gal((Rr/pr)/(R/p)) [FrJ08, p. 109, Lemma 6.1.4].
As usual we denote the element of D that corresponds to the Frobenius element of D
by [Lp/—LK} and the conjugacy class of [LP/—LK} in G = Gal(L/K) by (L/TK) This conjugacy

class does not depend on the choice of py. If L’ is a finite Galois extension of K that

L'/K\| _ (L/K
p ) L~ ( p )
With this notation, we may now state the Serre density theorem (that Serre

contains L and p is unramified in Ry, then our definition implies that (

calls the “Artin-Chebotarev density theorem”):
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PROPOSITION 3.5 ([Ser65, p. 258, Thm. 7]): In the above notation, let C' be a conjugacy

class of G. Then, the Dirichlet density of the set of all p € Max(R) such that (L/—K) =C

p
is equal to I%' In particular, that set is infinite.

In the case where K is a number field, Proposition 3.5 reduces to the usual Cheb-

otarev density theorem.
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4. Images of [-ic representations

Let A be an abelian variety over a number field K. Using previous results of Faltings and
Nori, Serre proved the existence of a finite Galois extension L of K with a great amount
of information about the groups pa;(Gal(L)). We use Proposition 1.6 to generalize
Serre’s result to finitely generated extensions of Q, but limit our generalization only to

properties we need in the sequel.

PROPOSITION 4.1: Let A be an abelian variety of positive dimension g over a finitely
generated extension K of Q. Then, there exist positive integers n,r,ly and for each
l > lyp there exists a connected reductive subgroup H; of GLagyr, of rank r with the
following properties:

(a) There exist a number field Ky, an abelian variety Ag over Ky of dimension g, a
finite Galois extension Ly of Ky, and a positive integer ng that divides n such that
pa,.1(Gal(Lg)) is a subgroup of H;(F;) of index < ny. Moreover, H; contains the
group G,,, of homotheties of GLag r,. Furthermore, the family (pa,,1|Gai(Lo))i>1, Of
homomorphisms is independent.

(b) There exists a finite Galois extension L of K such that the group pa;(Gal(L))

is contained in H;(F;) with index < n. Moreover, the family (pa

Gal(L))1>1, Of

homomorphisms is independent.

Proof: First suppose that K is a number field. By Serre, there exist positive integers
no,r,lo and for each [ > [y there exists a connected reductive subgroup H; of GLog F,
of rank r such that (a) holds with Ko = K, Ag = A, Ly = L, and n = ng. See [Zyw]16,
Thm. 3.1] for the statement. A full account of statement (a) and the proof can be found
in [Ser86]. See also letters from Serre to M.-F. Vignéra [Ser00, #137] and K. Ribet
[Ser00, #138]. Finally, the statement about the independence of the family (pa,ili>i,)
is proved in [Ser13, Thm. 1].

Thus, (a) and (b) hold when K is a number field.

Now assume that the transcendence degree of K over Q is positive. In Section 1
and in particular in Setup 1.5 we have introduced the following objects: E is a finitely

generated extension of Q, S is a smooth curve over E whose function field is K, s is
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closed point of S, K, is the maximal unramified extension of K along S, it contains
K(A)) for each | € L, K is the residue field of K at s, it is a finite extension of E with
trans.deg(Ks/Q) = trans.deg(K/Q) — 1, Ag is an abelian variety over Ky of dimension
g, K’ is a finite extension of K (Proposition 1.6), 1hs: Gal(Ks/Ks) — Gal(K/K') is an
isomorphism, and ¢¢: Gal(K /K') — Gal(K/Ky) is the inverse of t)s.
An induction hypothesis on the transcendence degree over Q applied to K and
Ag gives a number field Ky, an abelian variety Ag over K, a finite Galois extensions
Ly of Ky and positive integers ng, 7,y such that
(1a) For each prime number [ > [ there is a connected reductive subgroup H; of GLyg F,
such that pa, ;(Gal(Lo)) is a subgroup of H;(IF;) of index < ng. Moreover H; is of
rank r and contains the center G,, of GLag4 F,.
(1b) The family (pao,ilGai(Lo))i>1, of homomorphisms is independent.
Moreover, there exists a finite Galois extension Lg of K¢ and a positive integral
multiple ng of ng with the following properties:
(2a) For all I > 1y, pa,,(Gal(Ls)) < H;(F;), and (H;(F;) : pa,,(Gal(Ls))) < ns.
(2b) The family (pa,.ilcai(Le))i>1, of homomorphisms is independent.
Let L’ be the fixed field in K, of 1s(Gal(Ls)). Then, L’ is a finite Galois extension
of K’ in K, and, by the last statement of Setup 1.5, we have the following commutative
diagram:

PA,L |Ga1(K’)

T

PAg,1

Gal(K') = > Gal(Ky/K') —=> Gal(Ks) —= Hy(F,)

| | ]

PAg,l

Gal(L') > Gal(Ky /L) —= Gal(Ls) —=> H,(F,).

Since s maps Gal( K\, /L") surjectively onto Gal(Ls), it follows from (2b) that the fam-

ily (pa,ilcai(z’))i>1, of homomorphisms is independent (Section 2, second paragraph).
Since K’ is a finite extension of K, so is L'. However, L’ need not be Galois over

K. Nevertheless, by Lemma 2.2, K has a finite Galois extension L in K, that contains

L' such that the family (pa,i|gai(z))i>1, is independent. Moreover, for each | > Iy we
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have p4;(Gal(L)) < pa (Gal(L')) < Hi(F;) and, by (2a),
(H(F1) : pau(Gal(L))) = (Hi(Fy) : pau(Gal(L'))) - (pau(Gal(L')) : pau(Gal(L)))

< (Hy(F1) : pa.i(Gal(Ls))) - [L: L] < ng[L: L].
Thus, L satisfies Conditions (a) and (b) of the proposition with n = ng[L : L']. i
4.2 TORI IN REDUCTIVE GROUPS. Let H be a connected reductive group over a field
F and let T be a maximal torus of H over F. Then, T(F) is isomorphic to (F*)"
for some positive integer r, called the rank of H [Spr98, p. 117, Subsection 7.2.1]. In
particular, T" is absolutely integral. By [Spr98, p. 108, Prop. 6.4.2], all maximal tori of
H are conjugate, so the rank of H is independent of T'.

We say that T F-splits if T" is isomorphic over F' to the group D, of diagonal
matrices. Thus, in this case T'(F') = (F*)". We say that H F-splits if H has a maximal
F-split torus [Spr98, p. 271, Sec. 16.2.1], By [Spr98, p. 256, Thm. 15.2.6], all F-split
maximal tori are conjugate by an element of H(F).

A result of Zywina gives additional information on the groups H; mentioned in

Proposition 4.1.

LEMMA 4.3: Let A, g, K, L, n,r,ly, and H; with [ > ly, be as in Proposition 4.1. Then,
there is a finite Galois extension M of Q such that if | € I splits completely in M and
is sufficiently large, then the following holds:

(a) The reductive group H; [F;-splits.

(b) Let (Xi;,Y )1<ij<24 be independent variables. We identify GLq,(F;) with the
closed subvariety of Spec(F;[X;;,Y]i<ij<24) = A;ngH defined by the equation
det((Xij)1<ij<og)Y = 1.

Let T' be an F;-split maximal torus of H;. Then, the torus T, viewed as a
closed subvariety of AﬁfQH is defined by at most ¢y polynomials of degree at most

co, where ¢; and cy are constants that do not depend on .

Proof: By Proposition 4.1, the subgroups H; satisfy Conditions (a) and (b) of that
Proposition with respect to an abelian variety Ag of dimension g defined over a number

field Ky and with respect to a finite Galois extension Ly of Ky. Therefore, our lemma

follows from [Zyw16, Lemma 3.2] (in which A = Ay, K = Ky, and L = Ly). ]
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Another auxiliary tool that we quote from [Zyw16] is the following variant of a

theorem of Lang-Weil:

PROPOSITION 4.4 ([Zyw16, Thm. 2.1]): Let q be a power of a prime number and con-
sider a Zariski-closed subset V' of A{;q with k > 1 defined by the simultaneous vanishing

of s polynomials fi,..., fs in Fq[X1,...,Xs], each of which of degree at most e. Let

Vi,...,Vy be the irreducible components of V]?q which have the same dimension as V.
Then,
(a) |V(Iﬁ‘q)’ < quim(V) + 6(3 4 Se)k—i—leqdim(V)—%‘

If all of the components Vi, ..., V,, are defined over F,, then
(b) ||V (Fy)| — mg¥™Y)| < 6(3+ se)fHgsgdim(V)=}

In the rest of this section we bound the constant m that appears in Proposition

4.4 in terms of the degrees of fi,..., fs.

LEMMA 4.5: Let F' be an algebraically closed field, Y an irreducible algebraic variety
in A%, H a hypersurface in A%, and Zy,...,Z, the irreducible components of Y N H.

Then, 7%, deg(Z;) < deg(Y') deg(H).

Proof: The degrees of Y and H don’t change by taking the Zariski-closures of these
varieties in P%. The number of the components of Y N H may only increase. Hence, we
may assume that Y and H are projective.

IfY C H, then Y = Y N H is the unique irreducible component of Y N H and
deg(Y) < deg(Y)deg(H). If on the other hand Y € H, then by [Har77, p. 53, Thm. 7.7],

(3) i(Y, H; Z;) deg(Z;) = deg(Y') deg(H).

Jj=1

Since the intersection multiplicities (Y, H; Z;) are positive integers, the conclusion of

the lemma follows from (3). i
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LEMMA 4.6: Let F' be an algebraically closed field and let fy,..., fr € F[X1,...,X,]

be non-zero polynomials. Let
:V(fla"'7fk)zspec( Xla--- /ZF[X;[,, ] )

be the algebraic variety in A% defined by fi1,..., fr andlet Zy, ..., Z,, be the irreducible
components of V. Then, m < Y deg(Z;) < HZ , deg(f3).

Proof:  Since deg(Z;) > 1 for all i, the left inequality is clear. We prove the right
inequality.

First we consider the case where k£ = 1. Let f; = cgf1 --- g% be the decom-
position of f; into a product of powers of irreducible polynomials in F[X7,..., X,],
no one of which is a product of the other with an element of K*, and ¢ € K*.

Then, V(g1),...,V(gm) are the irreducible components of V(f1). By [Har77, p. 52,

Prop. 7.6(d)], we have > deg(V(¢g;)) = Yiv, deg(g:) < D1, d; deg(g:) = deg(f1)-
Now we assume that k > 2, set Vi1 = V(f1,..., fx—1), and let Wy,... W, be

the irreducible components of Vi _1. An induction assumption implies that

(4) Zdeg ) < deg(f1) - - deg(fr—1).

For each 1 <4 <m’ let Z;1,...,Z; m be the irreducible components of W; NV (fy).
Then, the Z;; with ¢ = 1,...,m’ and j = 1,...,m] are the irreducible components of
V' (eventually with repetitions). By Lemma 4.5, Z deg(Z ) < deg(W;)deg(fr). It
follows from (4) that

ZZdeg i <Zdeg ;) deg(fir) < deg(f1) - - - deg(fr—1) deg(fr),

=1 j=1

and this implies the desired inequality. |
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5. Good Reduction of Abelian Varieties

We generalize results of Serre and Tate in [SeT68] about good reduction of Abelian
schemes over discrete valuation rings to results about good reduction of Abelian schemes

over more general integral domains.

5.1 ABELIAN SCHEME OVER A DOMAIN. Let R be a Noetherian integrally closed
domain with quotient field K and let m: A — Spec(R) be an abelian scheme. Thus, 7
is a proper and smooth morphism with connected geometric fibers [Mil85, p. 145, first
paragraph of §20].

Moreover, for each p € Spec(R) let K, = Quot(R/p) and set K, for the algebraic
closure of K,. Also, let A, = A x Spec(K,). Then, m,: A, — Spec(K,) is a proper
and smooth morphism with a connected geometric fiber, so A, is an abelian variety
over K, that we call the reduction of .A modulo p.

Note that 7 is of finite type and set g = dim(.A) —dim(R) for the relative dimension
of A. Then, dim(A,) = g for each p € Spec(R) [Mum88, p. 304, Thm. I11.10.3’].

In particular, let o be the zero ideal of R. Then, the generic fiber A = A, of A

is an abelian variety over K of dimension g.

5.2 MULTIPLICATION WITH m. By [Mil85, p. 116, Remark 8.4], multiplication of A by
a positive integer m is a finite and flat morphism of A onto A. Moreover, the kernel A,,
of that morphism is a finite flat group scheme over Spec(R) of order m?9. In particular,
the finiteness of the morphism A,, — Spec(R) implies that A,, = Spec(B), where
B = B,, is a ring extension of R which is finitely generated as an R-module [Mum88,

p. 172, Def. 11.7.3]. In other words, B is an integral extension of R.

Remark 5.3: TIf none of the residue characteristics of R divides m (equivalently, m ¢ p
for each p € Spec(R); equivalently, m is a unit of R), then multiplication of A by m
as well as A,,, — Spec(R) are étale morphisms [Mil85, p. 147, Prop. 20.7]. Hence, B is

étale over R. [ |

5.4 REDUCTION MODULO p. We consider a prime ideal p € Spec(R) and compose each

B € Homp(B, R) with the quotient map R — R/p followed by the inclusion R/p — K,

20



to get a homomorphism 3, as in the following commutative diagram

B

T

B R R/p Ky.

The map B — B, gives rise to a reduction map modulo p:
(1) HOHIR(B,R) —>H0mR(B,Kp).

There is a natural bijection Hompg (B, R) — Morg(Spec(R), Spec(B)) that maps each
p € Hompg(B, R) onto the R-morphism Spec(R) — Spec(B) that maps each prime ideal
of R onto its inverse image in B under  [Liu06, p. 48, Prop. 2.3.25]. By definition,
Am(R) = Morg(Spec(R), Spec(B)). An analogous rule applies to K, rather than to R.

This gives a commutative diagram

fo

T f H

Mor g (Spec(R), Spec(B)) ——= Morg(Spec(K,), Spec(B))

| i

HOIDR(B,R> HomR(B,f{p),

(2)

where the vertical arrows are bijections. Note that if s € Morg(Spec(R), Spec(B)), then
fo(s) = soiy, where i, is the natural map Spec(K,) — Spec(R/p) — Spec(R) that
maps the zero ideal of I_(p onto p. Thus,

(3) if 5,s" € Morg(Spec(R), Spec(B)) and f,(s) = fu(s'), then s(p) = s'(p).

LEMMA 5.5: Let R and A be as in Subsection 5.1 and let m be a positive integer.
Consider a prime ideal p of R and let o be the zero ideal of R. Then, the following
statements about the objects introduced in this section are true:

(a) The map fo: Am(R) — An(K) is bijective.

(b) Let p be a prime ideal of R such that char(K,){ m. Then, the map fy: Ay (R) —

Ap.m(K,y) is injective, hence
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-1
(c) the specialization map A, (K) LN A (R) LN Ap.m(Ky) is injective.

Proof of (a): We consider Diagram (2) in the case where p is the zero ideal o of R.
In this case, K p = K. Let : R — K be the inclusion map. By the commutativity of
that Diagram it suffices to prove that the map Hompg(B, R) — Hompg(B, K) defined by
«a +— Lo« is bijective.

Indeed, the map a +— ¢ o « is injective, because ¢ is injective. In order to prove
that the map is surjective it suffices to prove that 5(B) C R for each € Hompg(B, K).

Indeed, if z € B, then z is integral over R (by Subsection 5.2). Hence, so is 3(z).
Since R is integrally closed, 5(z) € R, as has to be proved.

Proof of (b): Since char(K,) { m, we have char(K) { m. Hence, we may consider the
integrally closed integral domain R’ = R[m™!]. Then we make a base change from R to
R’ and consider the prime ideal p’ = pR’ of R’. We also set A’ = Agr: and B’ = B[m™1].
Then, Quot(R') = Quot(R) = K, Quot(R'/p’) = Quot(R/p) = K, A,, = Spec(B’).
Finally, we may identify Hompg(B, K,) with Hompg/ (B’, K,). Hence, by Diagram(2), we
may identify Ay, (Ky) with A;,M(Kp).

By (a) (applied to R and to R’), we may identify A,,(R) and A’ (R’) with A,,(K),
hence we may identify A,,(R) and A, (R'). Let fy: Aj, (R') — Ap.m(Kyp) = A;,7m(f(p)
be the analogous map to fy: Am(R) = Ay m(Kp). Then, the following diagram com-

mutes:

fp

/ H H

Thus, it suffices to prove that the morphism fp, is injective.

Let s,t be elements of A;, (R') such that f,,(s) = f,(t). By (3) for R’ rather than
for R, s(p’) = t(p’). Diagram (2) identifies both s and ¢ as elements of
Morg: (Spec(R’), Spec(B’)), i.e. as sections of the morphism h: Spec(B’) — Spec(R’)
induced from the inclusion R" C B’. Since m is a unit of R/, Remark 5.3 implies that
B’ is étale over R'. Since h is affine, it is separated [Liu06, p. 100, Prop. 3.3.4]. Hence,
by [Mil80, p. 25, Cor. 3.12] or [Gro71, Exposé 1, p. 6, Cor. 5.3] , s = t, as claimed.
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Proof of (¢): This follows from (b) and from (a). i

Let 7m: A — Spec(R) be as in Subsection 5.1 and let m be a positive integer. We
use Lemma 5.5(a) to identify A,,(R) and A4,,(K).

If char(K,) f m, then by Lemma 5.5(c), the injective map fy: Ay (R) = Apm(Kp)
can be considered as an injective homomorphism fy: A (K) — Ap . (K,) that we call
the reduction map modulo p. If m’ is a multiple of m and m’ ¢ p, then the reduction
map modulo p with respect to m’ extends the reduction map modulo p with respect to

m.

LEMMA 5.6: Let R and A be as in Subsection 5.1. Let m be a positive integer and
N an algebraic extension of K that contains K(A,,). We denote the integral closure
of R in N by Ry. Consider a prime ideal p of R that does not contain m. Then,
for each B € Spec(Ry) over p, reduction modulo ¥ maps A,,(N) isomorphically onto
Ap,m(Neg)-

Proof: By Subsection 5.1, dim(A,) is equal to the relative dimension g of A over R.
Hence, by [Mil85, p. 116, Remark 8.4], | A, (V)| = m?9 and | A 1 (Ngp)| = |Ap.m (Ng)| <l
m?9. By Lemma 5.5(c) for Ry and N rather than R and K, the reduction map
A (N) — Ay m(Ng) is injective. Hence, that map is bijective, so it is an isomor-

phism. |

5.7 GOOD REDUCTION OF REPRESENTATIONS. Again, let R, A, B, and m be as in
Subsection 5.2. In particular, B = R[z1,...,x] is a finitely generated ring extension of
R. Let I be the kernel of the R-homomorphism R[X7, ..., X;] — B that maps X; onto
x;fori=1,... k.

We consider again a Galois extension N of K that contains K(A4,,), a prime ideal
p of R that does not contain m, and a prime ideal 3 of the integral closure Ry of
R in N that lies over p. Then, A, ,,(Ny) = Hompg(B, Ny). As usual, we identify
each element of Homp (B, Ny) with a k-tuple (z1, ..., Tkq) With coordinates in Ny
at which every h € I vanishes. Then, x1,...,z; lie in Ry and reduction modulo 13
maps I1,...,T, onto Ty, ..., Ty, respectively. This gives another presentation to

the reduction modulo P of A,,(/N) mentioned in Lemma 5.6 and its proof.
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Next, we recall that B is étale over R (Subsection 5.3) and assume that Ry is also
étale over R, at least locally over p (e.g. N = K(A,, ), where m’ is a multiple of m that
does not belong to p). Let Dy, = {0 € Gal(N/K)| 0B = B} be the decomposition
group of B over p. Then, the reduction x — Z modulo P (with x € Ry) induces an
isomorphism ¢ — & of Dy, onto Gal(Ny/K,) defined by 6z = oz. Indeed, if N/K
is finite, then Ry /R is locally standard étale in a Zariski-open neighborhood of p
[Mil80, p. 26, Thm. 3.14]. Thus, there exists z € N such that Ry g = Ry[z], where the
discriminant of irr(z, K) is a unit of R, (Subsection 3.2). Now apply [FrJO8, p. 109,
Lemma 6.1.4].

This isomorphism is then compatible with the isomorphism A, (N) — Ay m(Ne)

given by Lemma 5.6, which leads to the following commutative triangle:

D‘B/p E— Gal(ng/I_(p)

PA,m
l %

GL2y(Z/mZ),

where p4 ,, is the m-ic representation induced by the action of Gal(K) on A,,(K). If
[ is a prime number that does not belong to p and if K(A;~) C N, the preceding diagram

applied to [, 12,13, ... gives rise to a commutative diagram for the {-adic representations:

D‘B/p —_— Gal(pr/I_(p)

PA,1o©
l %

GL2y(Zy).
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6. Bounds on Degrees

Given a field F' and a non-zero polynomial f € F[X], we denote the number of distinct
roots of f(X)in F by v(f(X)). We prove that the condition “v(f(X)) < d” is equivalent

to a “Zariski-closed condition on the coefficients of f”.

LEMMA 6.1: Let F' be a field, t1,...,t. elements of a field extension of F', T =
Spec(F[t]) (with t = (t1,...,t.)), f € F[t][X] a monic polynomial in X of degree
m with coefficients in F[t], and d an integer between 1 and m. Then, there exists a

Zariski closed subset V of T such that V(F) = {t' € T(F)| v(f(t', X)) < d}.

Proof: Let f(t,X) = [[/~,(X — z;) be the decomposition of f(t, X) in F(\t/) We set
x = (1,...,2Tm). Then, F(t,x)/F(t) is a finite normal extension of fields. Moreover,
F[t,x]/Ft] is an integral extension of integral domains. Hence, by [Mum88, p. 171,
Prop. I1.7.4], the corresponding morphism ¢: U = Spec(F[t,x]) — Spec(F[t]) is closed.

Let I be the set of all d-tuples i = (iy,...,i4) of integers between 1 and m. For
eachi € I and 1 < j < m we consider the Zariski-closed subset Wj ; of U defined by
the equation (X; — X;,)--- (X, — X;,) = 0.

Since F[t,x]/F[t] is an integral extension, for each t' € T(F) the map t — t’

extends to an F-homomorphism F[t,x] — F[t',x’] that maps x onto x’ = (z},...,2],)
with z},...,2, € F such that f(t/,X) = [[y (X — ). If x" = («f,...,2/) is

another m-tuple in F™ such that the map t — t’ extends to an F-homomorphism
F[t,x] — F[t/,x"] that maps x onto x”, then there exists o € Aut(F/F(t')) such that
(x')7 = x". Hence, Vi; = {t' € T(F)| (2} —a3,) - (2 —x;,) = 0} is a well defined
subset of T'(F). It follows that the set V = {t' € T(F)| v(f(t’, X)) < d} satisfies the

following condition:

(1) V=t eT(F) | {2,...,2p,} C{a},,....2},}}

iel
= € ac —:c V.- Vx. =ux;
—UNY e j=al,
iel j=1
—Uﬂ{t eT(F)| (¢} —af,) (2} — 2,) = 0}
iel j=1
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m

~UN¥
ielj

=1

Since ¢ is a closed map, Vi ; = ¢(W; ;) is a Zariski-closed subset of T". Moreover,
WiJ(F) ={(t',x') € U(F) | (2 —x},) - (2} —2;,) = 0}, so VM(F) = 1713 It follows
that V = {U;es ﬂ;nzl Vi,; 1s a Zariski-closed subset of T' defined by polynomials with

coefficients in F. Moreover, by (1), V(F) = U;c; N2y Vi (F) = User N2y Vij =V,

as desired. [ |

Given a polynomial f with coefficients in Z we consider f for each [ also as a
polynomial with coefficients in IF; with the original coefficients replaced by their residues

modulo [. We say that a scheme S over Z is absolutely integral if 55 = S xz Spec(Q)

is integral.

LEMMA 6.2: Let S be an absolutely integral affine scheme in Aj defined by polynomials
in Z[S], where S = (S1, ..., Se) is an e-tuple of variables. Let T' be an absolutely integral
affine scheme in A% defined by polynomials in Z|T], where T = (T4, ...,T}) is a k-tuple
of variables. Let f € Z[S, T][X] be a monic polynomial in X of degree m with coefficients
in Z[S, T] and let d be an integer between 1 and m. Then, for every large prime number
| the reductions Sg, and Ty, modulo | are absolutely integral and for each s € S(F;)
there exists a Zariski-closed subset Uy s of Ty, sy defined by polynomials in IF;(s)[T] such
that U; o(F;) = {t € T(F;)| v(f(s,t, X)) < d}.

Moreover, the number and the degrees of the polynomials in F;(s)[T] that define
Uis as a Zariski-closed subset of T, sy are bounded by constants that depend neither

on | nor on s.

Proof: Let Sp = S xz Spec(Q) and Ty = T xz Spec(Q) be the generic fibers of S
and T. We may write S = Spec(Z[§]) and T' = Spec(Z[t]), where § = (51,...,3.) and
t = (t1,...,%;) are tuples of some field extension of Q such that Q(8) and Q(t) are
algebraically independent regular extensions of Q [FrJ08, p. 175, Cor. 10.2.2(a)]. By
[FrJO8, p. 41, Lemma 2.6.7], Q(8) and Q(t) are linearly disjoint over Q, so Z[8] ® Z[t] =2
Z[3,t]. Hence, S xz T = Spec(Z[8, t]) and Sg xq To = Spec(Q[$, t)).
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By Lemma 6.1, there exists a Zariski-closed subvariety V of Sg xg T defined by
polynomials hq, ..., h, in Z[S,T] such that
(2) V(@) = {(s.) € S@) x T(Q)| v(f(s,%, X)) < d} .

We also have
(3) V(Q) = {(s,t) € S(Q) x T(Q) | hi(s,t) =0,...,h.(s,t) = 0}.

Thus, the following statement about Q is true.

(4) For all s and t, the polynomial f(s,t,X) has at most d distinct roots if and only if
hi(s,t) =0,...,h.(s,t) =0.

Note that Statement (4) is elementary. In other words, the statement is equivalent
to a sentence in the language of rings L£(ring,Z) with parameters in Z [FrJ08, p. 135,
Example 7.3.1]. Hence, by a consequence of the quantifier elimination procedure for
the theory of algebraically closed fields [FrJ08, p. 167, Cor. 9.2.2], that statement holds
over F; for every large prime number /. In addition, by [FrJ08, p. 179, Prop. 10.4.2],
Sr, and Ty, are absolutely integral varieties over [F; for each large I.

For each [ as in the preceding paragraph and for every s € S(F;) let Ui s be the
Zariski-closed subset of T, (s) defined by the polynomials hi(s,T),..., h.(s, T). Since
(4) holds over F;, we have
(5) Uns(l) = {t € T(F)) | v(f(s.t, X)) < d}.

Moreover, the degrees of the polynomials hq(s,T),...,h.(s, T) that define U, ¢
are at most degy hi(S,T),...,degp h,(S,T), respectively. Since the latter numbers

are independent of s, also the second statement of the lemma is true. |
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7. Counting Points

Following [Zyw16], we find in this section a set A of prime numbers with positive Dirich-
let density such that for all large [ € A there are “many” points in H;(F;) having 1 as
an eigenvalue, where H; is the reductive subgroup of GLag4 F, introduced in Proposition
4.1. Let n be a positive integer and let L be a finite Galois extension of K such that
pa,i(Gal(L)) is contained in H;(F;) with index < n (Proposition 4.1(b)). After fixing
an F;-split maximal torus T of Hj, each of those points is of the form bt™, where
b € pa,(Gal(K)) depends only on [ and t is an F;-rational point of T such that t™ is

a regular element of H;.

7.1 REDUCTION MODULO MAXIMAL IDEALS. Again, let K be a finitely generated
extension of QQ, A an abelian variety over K of positive dimension g, and L the finite
Galois extension of K given by Proposition 4.1. We use Subsection 3.2 to construct a
regular domain R which is a finitely generated extension of Z such that Quot(R) = K
and the integral closure Ry, of R in L is a ring cover. In particular, Ry /R is standard
étale.

Using [Mil85, p. 148, Rem. 20.9], we replace R by a ring R[u~!], if necessary,
where u is a non-zero element of R, such that A extends to an abelian scheme A over R.
By Subsection 5.1, for each p € Max(R) the reduction A, of A modulo p is an abelian
variety over the finite field K, = R/p.

7.2 CHARACTERISTIC POLYNOMIALS. We consider p € Max(R) and [ € L such that
| # char(K,). Then, we choose a maximal ideal p; of R4, that lies over p and
a maximal ideal pj of Ry (4,.) that lies over p;. By Lemma 5.6, reduction mod-
ulo p; (resp. modulo p;) maps A;(K) (resp. A (K)) isomorphically onto Ap’l(f{;)
(resp. Ay (Ky)

Moreover, by Subsection 5.7, the decomposition groups Dy, ,, and D, ./, are
respectively naturally isomorphic to Gal(K,(Ay,;)/Ky) and Gal(K,(Ap=)/K,). Fur-
thermore, these isomorphisms are compatible with the actions of those groups on A4
and A, ; on the one hand and on A;~ and Ay ;~ on the other hand. By Subsection 3.3,

K, (Ap =) is an algebraic extension of the finite field Ky,. As usual, we set [W}
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for the element of D,,, /, which is mapped under that isomorphism onto the Frobenius
element Frob, of Gal(K,(Ay ~)/K,). We denote the unit matrix in GL,,(B) by 1,
whenever m is a positive integer and B is a ring that are clear from the context. Then,

we set

1) Pap(X) = det (X1 pa [M})

Piee

for the corresponding characteristic polynomial. Since all prime ideals of Ry (4,.) that
lie over p are conjugate over K, Py ,(X) is a well defined monic polynomial of degree
2g with coefficients in Z;. The compatibility of the action of the Galois groups on A
and A, ;~ mentioned at the beginning of this paragraph implies that

2) Pap(X) = det(X -1 — pa, = (Froby)).

Note that the endomorphism p4, i (Froby) of T;(A,) is induced by the Frobenius endo-
morphism of A,. Hence by [Mum74, p. 180, Thm. 4], Py, is actually a monic polynomial
of degree 2g with coefficients in Z which is independent of [ (as long as [ # char(K,)).

7.3 CONJUGACY CLASS. Let n,r Iy, and L be the positive integers and the finite
Galois extension of K introduced in Proposition 4.1. Then, in the notation introduced
so far in this section, and in the notation of Section 3, we attach the following objects
to a conjugacy class C of Gal(L/K):

(3a) d(C) is the maximal number of distinct roots of Pa,(X™) in Q, where p ranges
L/TK) = (. By Proposition 3.5, the
latter set of primes is non-empty. Also, for each p € Max(R), the number of

over the elements of Max(R) that satisfy (

distinct roots of P4 ,(X™) in Q is at most the degree of P4 ,(X™) which is 2g-n!
(by Subsection 7.2). Hence, d(C) is well defined.

(3b) p(C) is an element of Max(R) such that (%) = C and Py p(c)(X™) has exactly
d(C) distinct roots in Q.

(3c) B(C) is an element of Gal(K') whose restriction to L belongs to C.

(3d) M is a finite Galois extension of QQ that satisfies the conditions of Lemma 4.3 and

contains all of the roots of P ,c)(X™), for all C.
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Next, let A be the set of prime numbers [ with the following properties:
(4a) [ splits completely in M,
(4b) 1 >y and char(R/p(C)) # [ for each conjugacy class C' of Gal(L/K),
(4c) For each conjugacy class C' of Gal(L/K), the polynomial Py ,c)(X™) modulo
has exactly d(C) distinct roots in F;, each of them belongs to F.
By the Chebotarev density theorem for number fields, the set of prime numbers [ that
satisfy Condition (4a) has a positive density (equal to m) By [FrJO8, p. 167,
Cor. 9.2.2], Py p(c)(X™) modulo [ has exactly d(C) distinct roots in Fy, if 1 is suffi-
ciently large. It follows from (3d) that if [ satisfies (4a), then all of those roots belong

to ;. Thus, A has a positive Dirichlet density.

7.4 REGULAR ELEMENTS. We denote the set of F;-split maximal tori in H; by 7; and
recall that a semi-simple element t of H; is regular if t belongs to a unique maximal
torus of H; [Bor91, p. 160, Prop.]. We denote the set of all semi-simple regular elements
of H; by Hjgssreg- By Subsection 4.2, the the rank of H; (denoted by r in Prop. 4.1) is
r = dim(T") for each T' € T;.

The following lemma generalizes [Zyw16, Sec. 3.2] from the case where K is a

number field to our case where K is a finitely generated extension of Q.

LEMMA 7.5: In the notation of Subsection 7.3, let C' be a conjugacy class in Gal(L/K)
and let | € A. Then:

(a) There exists b € pa (B(C)Gal(L)) Npa, (L(;‘(ZC){K).

(b) ForeachT € T, and every t € T(F;), we have T'(F;) = (F,)" and t™ € pa,(Gal(L)).

(c) If b satisfies (a), then

[{h € pa (B(C)Gal(L))| det(1 —h) = 0}
> % Z {t € T(IF;) | det(1 — bt"!) =0 and t" € Hi ssreg }-
(n!) TeT:
Proof of (a): By (4b), char(R/p(C)) # [, so by Remark 5.3, p(C) is étale in Rg(4,).
By Subsection 3.2, Ry is a ring cover of R. Hence, by [FrJ08, p. 110, Remark 6.1.7],
Ry a) Ry is a ring cover of Ri(4,), in particular, Ri4,)Rr = Rp(a,) is the integral

closure of Ry (4,) in L(A;). Thus, Ry 4,) is étale over R (4,), hence also over R.
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In particular, p(C) is étale in Rp(4,), so pAyl(L(:}%K) makes sense. Moreover,

by (3b) and by Subsection 3.4, (L(;LE%K)‘L = (%) = C. Hence, by (3c), there exists
B e (L(;%%K) such that 8’| = B(C)|L, so B’ € S(C)Gal(L). Then, b = pa,(f’) €

pa(B(C)Gal(L)) N PA,l(%), as (a) claims.

Proof of (b): Since T belongs to 7;, it splits over F;. Hence, by Subsection 4.2,
T(F,) = (F)". By Proposition 4.1(b), (H;(F;) : pa,(Gal(L))) < n. Therefore, if
t € T;(F;), then t™ € pa(Gal(L)).

Proof of (c): For all T € 7; and t € T'(F;) we have by (a) and (b) that

bt™ € pai(B(C)Gal(L))pai(Gal(L)) = pai(B(C)Gal(L)).
Therefore,

g {bt”! | t e T(F), det(1—bt") =0, t" € Hl,ssreg}
(5) TET

C {h € pa,(B(C)Gal(L))| det(1 — h) = 0}.

CrAM:  The union in (5) is disjoint. Indeed, consider distinct tori 77,75 € 7;. Con-
sider elements t; € T1(F;) and to € Ty(FF;) such that t7, 42" € H) sqee and bt} = bt
Then, t7 = t3', so t7' and t}' lie in the same maximal torus of H;. Since t}' € T} (IF))
and t%' € T5(F;), we have Ty = T5, as claimed.

If T €7, and t' € T(F;), then by (b), there are at most (n!)” elements t in T'(F;)
for which t™ = t’. It follows from the claim that

[{h € pau(B(C)Gal(L))| det(1 —h) = 0}
> ) [{bt™ € GLyg(F))| t € T(F,), det(1 —bt™) =0, t" € Hjsoreg}|
TeT,
=) {t" eT(F)| t € T(F), det(1—bt™) =0, t" € H) soreg}|

TeT,

> o ST € T(E) | det(1 - b(E)™) = 0, (¢)" € Hy e,
() TeT,

as claimed. |
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Remark 7.6: We consider a prime number [ € A, a point b € GLg,(F;), and a torus
T € T;. Let W = W)}, be the Zariski-closed subset of T defined by the equation det(1 —
bt™) = 0. By Proposition 4.1(a), H; contains the group of scalar matrices G,,. Since
G,y is contained in the center of H; and each element of G,, is semi-simple, G,, < T
[Bor91, p. 151, Cor. 11.11].

Let ¢: W — T'/G,,, be the restriction to W of the quotient map 7' — T'/G,,, and
set t = o(t) for each t € T'(F;). Then,

(6) e LE)(F) = {M e T(F) | AeF)S, det(1 — A"'bt™) = 0}.

Hence, |¢~!(t)(F;)| is equal to the number of solutions in F, of the equation det(1 —
X™bt™) = 0, hence also to the number of solutions in IF‘ZX of the equation det(X™1 —
bt™) = 0. Since the polynomial det(X ™1 —bt™) is monic of degree (n!)-2g, the number
of solutions in ) of the latter equation is at most (n!) - 2g. Therefore,
(7) d= max | '(®)(F) < (n)-29. W
teW (F;)

The following result is the analog of [Zyw16, Lemma 3.4] for finitely generated

extensions of (Q rather than only for number fields. The use of the Chebotarev density

theorem in the proof of [Zywl6, Lemma 3.4] is replaced here by an application of

Proposition 3.5.

LEMMA 7.7: Let A, L, n, r, ly, and H; with [ > ly be as in Proposition 4.1. Let M be
as in Lemma 4.3. Let C, d(C), B(C), p(C), and A be as in Subsection 7.3. We consider
T € 7T;, suppose in addition that [ is a sufficiently large element of A, and use Lemma
7.5(a) to choose a matrix b € pa;(5(C)Gal(L)) N pa, (L(;tggK). Then, in the notation
of Remark 7.6, there exists t € T(F;) such that ' (t)(F;) consists of d distinct points,

each belonging to W (F,).

Proof: By (3b), the polynomial Py, (X™) with coefficients in Z has exactly d(C)
distinct roots in Q. Moreover, by (1), for each maximal ideal P(C') of Rpa,) that
lies over p(C) the reduction of Py ,c)(X™) modulo [ is the polynomial det(X™1 —

PA,I [Lg(l()]/)K]) in IF;[X]. The latter is equal to det(X™1—b), because b € PA,L (L(f(%K).
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By (4c), the reduced polynomial has exactly d(C) distinct roots in F;, each belonging
to F;. By (6), this means that

e YA)(F) = {\1 € T(F) | A € F, det(1 — \"b) =0}

consists of d(C') distinct points, each belonging to W (F;). Hence, by (7), d(C) < d.
Thus, the unit matrix 1 will be the desired element t of T'(IF;) as soon as we prove that
d <d(C).

We consider two systems B and T of variables for GLy, (considered as a Zariski-
closed subset of A(9°+1) and the monic polynomial det(X™1 — BT™) in X with
coefficients in Z[B, T|. By Lemma 6.2, for each large | € L and all b’ € GLg,(F;) there

exists a Zariski-closed subset Vs of GLgg r, such that
Vi (F)) = {t € GLgy(F;) | det(X™1 — b't™) has at most d — 1 distinct roots in F;}.

Moreover, Lemma 6.2 gives positive integers ¢j and ¢}, which are independent of | and
b’ such that Vj p is defined by at most ¢j polynomials of degree at most 5.

By Lemma 4.3, T is defined in Aéifﬂ by at most ¢; polynomials of degree at
most co, where ¢; and ¢y are positive integers that do not depend on [. Hence, by the
preceding paragraph, V =V, N T is a Zariski-closed subset of 7" which is defined by
at most ¢ = ¢} + ¢; polynomials of degree at most ¢4 = max(c),cz). Again, ¢/ and
¢y are positive integers that do not depend on [ nor on b’. By Lemma 4.6, this implies
that the number of absolutely irreducible components of V;  is bounded by a constant

¢ which is independent of [ and b’. Moreover,
V(F;) = {t € T(F;)| det(X™1 —bt™) has at most d — 1 distinct roots in F;}.

By (7), there exists t € W (F;) ~ V(IF;). In particular, V is a Zariski-closed proper
subset of T'. Since T is absolutely integral of dimension r (Subsection 4.2), dim(V) <
r—1.

By Proposition 4.4, |V (F;)| < c3l""!, where again c3 is a positive integer that
depends neither on [ nor on b. By Lemma 7.5(b), |T'(F;)| = (I — 1)". Thus, for
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sufficiently large [ € A there exists t; € T(F;) such that the polynomial det(X™1—bt}')
with coefficients in F; has exactly d distinct roots in F;. By Lemma 7.5(b), t}7' e
pai(Gal(L)), so bt} € pai(B(C)Gal(L))pai(Gal(L)) = pa(B(C)Gal(L)). Thus, there
exists o € Gal(L) such that bt? = pa;(8(C)o). We consider the conjugacy class C’ of
(B(C)o)|L(a,) of Gal(L(A;)/K) and note that C'[p = C.

By Proposition 3.5, there is p € Max(R) such that [ # char(R/p) and (W) =
C’. Then, (L/TK) =Cand bt} € pa, (W). By (1), det(X™1 —bt?}) is equal to the
reduction of P4 ,(X™) modulo I. By the preceding paragraph, the former polynomial
has d distinct roots in F;. Hence Pap(X ™) has at least d distinct roots in Q. It follows
from (3a), that d < d(C'). Combining this inequality with the inequality proved in the
first paragraph of the proof, we have d = d(C), as claimed. |

LEMMA 7.8: Let [, T, and W be as in Remark 7.6, and let b € GLy4(IF;) be the matrix

chosen in Lemma 7.7.

(a) Ifl is sufficiently large, then each irreducible component of W, has dimension r —1
and is defined over ;.

(b) There exists a real constant cg that does not depend on | nor on b such that

W (F,)| > 17~ — ¢l 3.

Proof of (a) (After [Zyw16, Proof of Lemma 3.5]): By Remark 7.6, W, is the inter-
section of Ty with the hypersurface defined by the equation det(1 — bt™) = 0. This
hypersurface does not contain T , because 1 € T(F;), so A1 € T(F;) for each \ € ]F‘ZX
(Remark 7.6), and there exists A € F,* with det(1—b((A1)™)) # 0. Since T is absolutely
irreducible of dimension r, each of the irreducible components W1, ..., W, of Wy is of
dimension r — 1 [Lan58, p. 36, Thm. 11]. It remains to prove that each of the W;’s is
defined over F;.

To this end we set T' = (T/G,),. Recall that : W — T/G,, is the restriction to
W of the quotient map T' — T//Gy,. Let ¢: Wg — T be the morphism obtained from ¢
by base change from [F; to INFZ. For each 1 < i < m let ¢;: W; — T be the restriction of
@ to W;. By Remark 7.6 for t € W (F;), we have that [~ (t)(F;)] is finite and bounded
by a constant d which is independent of I. Since both W; and T are irreducible algebraic
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varieties of dimension r — 1, the morphism ¢; is dominant.

By [Mil80, p. 26, Thm. 3.14], T has a non-empty Zariski-open subset Ty and each
W; has a non-empty Zariski-open subset W;o such that the restriction ¢;g of ; to W;g
is a standard étale morphism onto Tp. In particular, ¢, is a finite morphism [FrJ08,
p. 109, Lemma 6.1.2 and Definition 6.1.3]. Let d; = deg(yio) be the degree of the
function field of Wjy over the function field of 7. By [Liu06, p. 176, Exer. 1.25(a) of
Chap. 5],
(8) | (0)(F;)| = d; for each @ € Tp(IF)).

Next, we observe that for ¢ # j we have dim(W; N W;) < r — 2. Hence,

dim(|_JWinW;) <r—2.
i#]
Therefore, the dimension of the Zariski-closure Z of (U, .; W:NWj) in T is also < r—2,
so dim(Z) < r —2 < r —1 = dim(T), in particular T(F;) ~ Z(F;) is non-empty.

By Remark 7.6, ¢~ !(a)(F;) is finite for each u € W(IF;), i.e. ¢ is a quasi-finite
morphism. Let t be the element of T/G,, given by Lemma 7.7 with the property that
(9) ¢ ' (t)(F;) consists of d points of W (F;), each lying in W (IF;).

By [Gro66, p. 231, Prop. 15.5.1(i)], the set of all i € T such that [g~*(@)| > |~ L(t)| = d
is Zariski-open. Hence, there exists @ € Ty(F;) ~ Z(F;) such that |3~ (@) (F;)| > d. Tt
follows from (7), that |¢~*(a)(F,;)| = d.

Then, ¢y ' () (F1) = U2, o5’ (@)(F1), so, by (8),

(10) d = ey (@)(F)] = e (@F) =) di.
i=0 i=0

By [Gro66, p. 231, Lemme 15.5.2], |p; ' (t)(F;)| < d; for i = 1,...,m. Since
P~ (OF) = ULy 7 ' (8)(F1), we have

A=l ®F) < Sl ®E) <> di=d.
=1 =1

Hence,

(11) |p; ' (8)(F;)| = d; > 1 for each i between 1 and m and o~ (t)(F;) = U, 7 *(€)(F) ]
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In other words, each point in ¢~ *(t)(F;) belongs to W;(IF;) for a unique i between 1 and
m and @ (t)(F;) = ¢~ (t)(F;) N W;(F,) is non-empty.

Finally we consider i between 1 and m and choose w; € W;(F;) (by (9)). Then,
for each o € Gal(F;) we have w? = w;, so w; € W;(F;) N W;(IF;)?. It follows from the
uniqueness property mentioned in the preceding paragraph, that W7 = W;. Since F; is
a perfect field, it follows from [Lan58, p. 74, the equivalence between the conditions C2
and C6] that W; is defined over F;, as claimed.

Proof of (b): Statement (b) follows from (a) and from Lemma 4.6 and Proposition 4.4.
|

LEMMA 7.9: There exists a positive real number c4 that depends only on r such that

|T(F}) ™ Hj ssreg(F1)| < cql™ ! for all | € A and every maximal torus T of Hj.

Proof:  Our lemma coincides with [Zyw16, Lemma 3.6] that depends only on the fact
that the H;’s are split reductive groups over IF; of rank r which is independent of /. By
Proposition 4.1, this fact holds in our case.

Alternatively, Proposition 4.1 ensures that the groups H; arise from an abelian
variety A of dimension g over a number field. Hence, we may use [Zyw16, Lemma 3.6]
for our abelian variety A.

Nevertheless, for the convenience of the reader we highlight the main points of
Zywina’s proof. For references and more details the reader is referred to the original
proof.

Let X (T') be the group of all characters a: T — G,, 5, of T" and let R be the
finite set of weights of T. By definition, each o € R is an element of X (7T) for which
there exists a non-zero v € IFlZg such that tv = a(t)v for all t € T. One knows that an

element t € T'(F;) is regular if and only if a(t) # 1 for each o € R, so

{t € T(F,)| t is not regular in H;} = U Ker(a)(F;).
a€R

Thus, it suffices to bound the order of R and the order of Ker(a)(F;) for each o € R in

terms of r only.
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One also knows that Ker(a) = DO x F,,, where D? is a split torus over F; of rank
r — 1 and F, is finite. Since dim(7") = r, the group F,, is isomorphic to a subgroup of
IF‘ZX, so F, is cyclic. It follows that |Ker(a)(F;)| < |F,|i"~1. Thus, it suffices to bound
|R| and |F,| for each o € R in terms of r only.

In order to do this we assume that H;, T, and Ker(«) are defined over F,. Then,
using the theory of root datum and the fact that F, is cyclic, one finds 5 € X(T)
such that o = nf for some positive integral multiple n of |F,|. Then, with a" being
the dual of @ we have 2 = (o, a") = n(8,a") =0 mod |F,|. It follows that |F,| < 2.

Finally, we view R as a root system in a Euclidean space of dimension at most
r. Using the correspondence between such systems and Dynkin diagrams, one recalls

that there are only finitely many root systems of rank < r (up to isomorphisms). In

particular, |R| is bounded in terms of r only, as desired. i

LEMMA 7.10: Let | be a sufficiently large element of A, C a conjugacy class of
Gal(L/K), and b a matrix in GLyy(F;) that satisfies Condition (a) of Lemma 7.5.
Then, there exists a positive real number cs not depending on the choice of | and b such

that |{t € T(F;)| det(1 —bt™) =0 and t"™ € Hj eg}| > 1771 — sl 3.

Proof:  We consider the set D = {t € T(F))| t" ¢ Hjseg}- Since T(F;) = (F)"
(Lemma 7.5(b)), for each t' € T(F;) there exist at most (n!)" elements t € T'(F;) such

that t™' = t’. Hence, by Lemma 7.9 we have for sufficiently large [ in A that
(12) D] < (n)"{t" € T(Fy) | ¢ & Hissreg}| < ca(n)™0" .

Note that the group F acts on D by multiplication. Indeed, let t € D and
A € F). Then, there exists a torus 7 € T such that T # T and t" € T(F;) N T (F,).
Hence, At € T(F;) and (\t)™ € T(F;) N T'(F;), so At € D.

By (7), for each t € D there are at most d values of A in F; such that At € W (IF;).
Hence, by (12), [{t € W(F)) | t™ ¢ Hjseg}| < % < deg(n!)"I"2. Tt follows from

Lemma 7.8(b) that there exists a real positive constant c5 such that
|{t < T(Fl) | te W(Fl) and tn! € Hl,ssreg}| > lril — C5lr7%7

as claimed. |
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8. Main Result

The results achieved so far lead in this section to the proof of the main theorem of our
work: For almost all ¢ € Gal(K) there are infinitely many [ € L such that A;(K(c)) # 0.

The proof uses an analog of a combinatorial argument that appears in [Zyw16, Sec. 1].

LEMMA 8.1: Let K be a finitely generated extension of Q and A an abelian variety
over K of positive dimension g. Let L,n,r be as in Proposition 4.1. Let A be the set of
prime numbers of positive Dirichlet density introduced in Subsection 7.3. Then, there
exists a positive real number ¢ such that after deleting finitely many elements from A,
the following hold:

(a) For alll € A and € Gal(K) we have

[{h € pai(BGal(L)) | det(1 —h) = 0} _
P41 (BGal(L))| -

~I| O

(b) The family (L(A;))eL of Galois extensions of L is linearly disjoint.

Proof: Statement (b) holds by virtue of Proposition 4.1(b) and Remark 2.3, so we only
have to prove (a).

We consider an element 5 € Gal(K) and the conjugacy class C' of Gal(L/K) that
contains f|r. Then B(C) = [ satisfies (3c) in Subsection 7.3. Let p(C) be the chosen

element of Max(R) that satisfies (3b) in Subsection 7.3. Next we consider [ € A and

LUAY/K).

use Lemma 7.5(a) to choose a point b € pa(8Gal(L)) N pa,( ()

By Lemma 7.5(c) and Lemma 7.10,

(1) [{h € pa(BGal(L))]| det(1 —h) = 0}
> 1 STt € T(Fy) | det(1—bt™) =0, t" € Hissreg)]
(n!)r TeT,
1 3
l'r’—l o "2
= (nh)r Tez’n( “ )

where c5 is a positive constant that does not depend on [.
We consider T' € 7;. Since H; is a reductive group (Proposition 4.1), T coincides

with its centralizer in H; [Bor91, p. 175, Cor2(c)]. Hence, denoting the normalizer of
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T in H; by N, we get that Wy, = N/T is the Weyl group of H;. It follows that the
subgroup N; = {h € H;(F;)| T = T} of H;(F,) satisfies N;/T(F;) < W, .
By Subsection 4.2, all elements of 7; are conjugate in H;(F;) and |T'(F;)| = (I—1)".

Hence,

Ti = [ H (F1)| | Hy(F)| _ [ Hy (F)| | Hy (F)|
l (Nl (N TE)TE)) (N TED) =17~ W [(E=1)7

Therefore, by (1),

(2) [{h € pai(BGal(L)) ]| det(1 —h) = 0}

L [H(F|" —esl"2))
— (nh) (W |(1 = 1)

Note that

=l —eslmm2 T (1 —eslmE) T 1 —eslTE) 15l

1—-1nr (I—1) - Ir I

Therefore, by (2),

1 [Hy(F)|(1 =5l 2)
(n')T |WH1| -

(3) [{h € pai(BGal(L))| det(1 —h) = 0}| >

Using the relations |H;(F;)| > |pa(Gal(L))| = |pa(BGal(L))|, we get from (3) that

{h € pas(BGal(L))| det(1-h) =0} _ 1 1- sl 2 .

) [pa1(BGal(L)) e

By [Zyw16, end of Subsection 3.2], there exists a positive constant ¢7 such that Wy, | <

cr for all [ € L. Hence, using (4), we get for ¢ = that for each [ € A with

1
2(n)7er?
[ > (2¢5)?, we have

[{h € pai(BGal(L)) | det(1 —h) =0} _
P, 1(BGal(L))| -

¢
l )

as claimed. |

This allows us to prove our main result:
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THEOREM 8.2: Let K be a finitely generated extension of Q and A an abelian variety
over K of positive dimension. Then, for almost all o € Gal(K) there are infinitely many

prime numbers [ such that A;(K(c)) # 0.

Proof: Let L and A be as in Lemma 8.1. Let ux be the normalized Haar measure of K
and for each 8 € Gal(K) let pu, g be the measure of the space fGal(L) defined for each
measurable set B of Gal(K) which is contained in fGal(L) by pr s(B) = [L : K|uk(B).
In particular, py, = pr1 is the normalized Haar measure of Gal(L). Since px is a Haar
measure, the map 7 — B717 is a measure preserving homeomorphism from SGal(L)
onto Gal(L).

For l € L let Ug; = {o € fGal(L)| det(1 — pa (o)) = 0}. The condition det(1 —
pa,i(c)) = 0 holds if and only if 1 is an eigenvalue of p4 (o). The latter condition is
equivalent to the existence of a non-zero point a of A;(K) such that ca = a. It follows
that U = {0 € fCal(L) | A;(K(0)) # 0}.

By definition, 87'Ug,; C Gal(L) and (palcair)) (pa (87 Us)) = B~ Us,.
Let ¢ be the constant mentioned in Lemma 8.1. Then, by (a) of that lemma,

_ lpaa(B~ Ul _ 1paa(Us)
[pai(Gal(L))]  [pai(BGal(L))]
_ H{b € pau(BGal(L)) | det(1 —h) = O}

[pa1(BGal(L))|

Now let Ug be the set of all 0 € fGal(L) that belong to infinitely many of the

(5)  prsUpt) = pr(B~'Us.)

>

~I1 0

sets Ug; with [ € A. Since the Dirichlet density of A is positive, (5) implies that
Siea (B Us1) = 3 cn § = oo [FrJ08, first paragraph of Sec. 6.3]. It follows from
(b) of Lemma 8.1 and from Borel-Cantelli [FrJ08, Lemma 18.3.4] that the set of all
o € Gal(L) that belong to infinitely many sets 371Uz, has pr-measure 1. Hence, by
the first paragraph of the proof, pur, s(Ug) = 1.

Finally, we choose a set of representatives B for Gal(K) modulo Gal(L). Thus,
Gal(K) = [Jzep BGal(L) and |B| = [L : K]. Moreover, since Ug C BGal(L), the
sets Ug 1, where 3 ranges over B, are disjoint. Therefore, by the preceding paragraph,
i (UpenUs) = Xpep i (Us) = Lpep "2 = Spcn mag = g = 1+ By the

definition of the Ug’s, for each element of sep Up there are infinitely many [ € A with
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Aj(K(0)) # 0. Hence, the set of all ¢ € Gal(K) for which there exist infinitely many

[ € L with A;(K(0)) # 0 has px-measure 1, as claimed. i
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