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Introduction

The goal of this work is to complete the proof of an old conjecture of Geyer-Jarden in

characteristic 0. The conjecture deals with a finitely generated field K of Q. We fix an

algebraic closure K̃ ofK. Then, the absolute Galois group Gal(K) = Gal(K̃/K) ofK

is a profinite group. It is equipped with a unique Haar measure µK with µK(Gal(K)) = 1

[FrJ08, p. 378, Sec. 18.5]. For each positive integer e ≥ 1, the group Gal(K)e is equipped

with the product measure, which we also denote by µK . We say that a certain statement

holds for almost all σ ∈ Gal(K)e if the set of σ ∈ Gal(K)e for which that statement

holds has µK-measure 1. For each σ = (σ1, . . . , σe) ∈ Gal(K)e, we consider the field

K̃(σ) = {x ∈ K̃ | σix = x, i = 1, . . . , e}.

Given an abelian variety A over K and a positive integer m, we denote the kernel of

the multiplication of A by m with Am. For a prime number l, we write Al∞ =
⋃∞
i=1Ali .

Conjecture A ([GeJ78, p. 260, Conjecture]): Let K be a finitely generated field over

Q, let A be a non-zero Abelian variety over K, and let e be a positive integer. Then,

for almost all σ ∈ Gal(K)e the following holds:

(a) If e = 1, then there exist infinitely many prime numbers l with Al(K̃(σ)) 6= 0.

(b) If e ≥ 2, then there exist only finitely many prime numbers l with Al(K̃(σ)) 6= 0.

(c) If e ≥ 1 and l is a prime number, then Al∞(K̃(σ)) is finite.

B. Previous results. Conjecture A along with its analog to positive characteristics

has been proved in [GeJ78, p. 259, Thm. 1.1] when A is an elliptic curve. The analog of

the conjecture is true for an arbitrary abelian variety over a finite field [JaJ84, p. 114,

Prop. 4.2]. Note that the latter paper contains a proof of Part (a) of Conjecture A and

its analog to positive characteristic. Unfortunately, that proof is false as indicated in

[JaJ85].

Part (c) of Conjecture A along with its analog to positive characteristic and Part

(b) of the conjecture appears in [JaJ01, Main Theorem].

The main result of [GeJ05] considers a non-zero abelian variety A over a number

field K and says that there exists a finite Galois extension L of K such that for almost

all σ ∈ Gal(L) there exist infinitely many primes l with Al(K̃(σ)) 6= 0.
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Finally, David Zywina [Zyw16] improves [GeJ05] by proving Part (a) of Conjecture

A for a number field K not only for almost all σ ∈ Gal(L) for some L as [GeJ05] does

but for almost all σ ∈ Gal(K).

We generalize Zywina’s result to an arbitrary finitely generated extension K of Q:

Theorem C: Let A be a non-zero abelian variety over a finitely generated extension

K of Q. Then, for almost all σ ∈ Gal(K) there exist infinitely many prime numbers l

with Al(K̃(σ)) 6= 0.

D. On the proof. Let g = dim(A). For each prime number l let ρA,l: Gal(K) →

GL2g(Fl) be the l-ic representation (also called the mod-l representation) of Gal(K)

induced by the action of Gal(K) on the vector space Al over Fl of dimension 2g.

D1. Serre’s theorem. The proof of [GeJ05] uses the main result of [Ser86]. That result

deals with a number field K. Omong others, it gives a finite Galois extension L of K,

a positive integer n, and for each l a connected reductive subgroup Hl of GL2g,Fl such

that (Hl(Fl) : ρA,l(Gal(L))) divides n. In addition, the fields L(Al) with l ranging over

all prime numbers are linearly disjoint over L. Another important feature of Serre’s

theorem is the existence of a set Λ of prime numbers of positive Dirichlet density, such

that Hl splits over Fl for each l ∈ Λ.

D2. Borel-Cantelli Lemma. For each l let Sl = {σ ∈ Gal(L) | ρA,l(σ) has eigenvalue 1}.

Then, [GeJ05] proves the existence of a positive constant c and a set Λ of positive Dirich-

let density such that µL(Sl) >
c
l for each l ∈ Λ. Thus,

∑
l∈Λ µL(Sl) =∞. In addition,

by D1, the sets Sl with l ranging over Λ are µL-independent. It follows from the Borel-

Cantelli Lemma, that almost all σ ∈ Gal(L) lie in infinitely many Sl’s with l ∈ Λ. Thus,

for almost all σ ∈ Gal(L) there exist infinitely many l’s such that Al(K̃(σ)) 6= 0, which

is the desired result over L.

D3. Zywina’s combinatorial approach. Zywina makes a more careful use of the Borel-

Cantelli Lemma. In [Zyw16] he chooses a set B of representatives of Gal(K) modulo

Gal(L). For each l and every β ∈ B he considers the set

Uβ,l = {σ ∈ βGal(L) | ρA,l(σ) has eigenvalue 1}.
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Then, he constructs a positive constant c and a set Λβ of prime numbers having positive

Dirichlet density such that

(1) µK(Uβ,l) ≥
c

l
for each l ∈ Λβ .

Again, by the Borel-Cantelli Lemma, this leads to the conclusion that the µK-measure

of the set Uβ of all σ ∈ Gal(K) that belong to infinitely many Uβ,l is 1
[L:K] . Since

the Uβ ’s with β ∈ B are disjoint, it follows that for almost all σ ∈ Gal(K) there are

infinitely many l’s such that Al(K̃(σ)) 6= 0.

D4. Function fields. Now assume that K is a finitely generated extension of Q of

positive transcendence degree and choose a subfield E of K such that K/E is a regular

extension of transcendence degree 1. We wish to find a place of K/E with residue field

K̄ that induces a good reduction of A onto an abelian variety Ā over K̄ such that

(2) Gal(K(Al)/K) ∼= Gal(K̄(Āl)/K̄)

for at least every l in a set of positive Dirichlet density.

D5. Hilbert irreducibility theorem. The first idea that comes into mind is to use

Hilbert Irreducibility Theorem. However, that theorem can take care of only finitely

many prime numbers, so it is of no use for our problem.

D6. Openness theorem. Instead, we choose a smooth curve S over E whose function

field is K such that A has a good reduction along S and set K̂ =
∏
l∈LK(Al), where

L is the set of al prime numbers. Using a combination of results of Anna Cadoret and

Akio Tamagawa that goes under the heading “openness theorem” (Proposition 1.6),

we find a closed point s of S with an open decomposition group in Gal(K̂/K). Let

K̄s be the residue field of K at s and K̂s =
∏
l∈L K̄s(As,l), where As is the reduction

of A at s. Then, there exists a finite extension K ′ of K in K̂ such that the reduction

modulo s induces an isomorphism Gal(K̂/K ′) ∼= Gal(K̂s/K̄s). This gives the desired

isomorphism (2) for K ′ rather than for K and for all prime numbers l.

D7. Serre’s theorem over K. Now we use a result of [GaP13] and find a finite Galois

extension L of K that contains K ′ and satisfies the same reduction conditions that K ′
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does and in addition the fields L(Al), with l ranging over all prime numbers, are linearly

disjoint over L.

Note that K̄s is again finitely generated over Q and the transcendence degree of

K̄s over Q is one less than that of K. Starting with Serre’s theorem for number fields

mentioned above and using induction on the transcendence degree over Q, we now prove

the theorem of Serre mentioned in D1 over our current field K.

D8. Strongly regular points. Having Serre’s theorem for our function field K at our

disposal, we now follow the proof of [Zyw16] to obtain the estimates (1) for our abelian

variety A/K. The proof contains a careful analysis of regular points of the reductive

groups Hl mentioned in Serre’s theorem for l ∈ Λ. It uses Zywina’s crucial observation

that if T is an Fl-split maximal torus of Hl and t ∈ T (Fl), then tn ∈ ρA,l(Gal(L)).

Moreover, if t is a regular element of Hl and T is the unique maximal torus of Hl that

contains t, then the number of points t′ ∈ T (Fl) with (t′)n = tn is at most nr, where

r = rank(Hl) = dim(T ). Finally, still following [Zyw16], we make use of the Lang-

Weil estimates (or rather the more accurate version of these estimates that [Zyw16]

provides) to prove that “most of the points” of ρA,l(Gal(K)) are regular points of Hl

whose characteristic polynomials have “maximal numbers of roots in Fl” (We may refer

to these points as “strongly regular”).

D9. Serre’s density theorem. At some point of the proof, [Zyw16] uses the Chebotarev

density theorem for number fields to choose a prime of K whose Artin class is equal

to a previously chosen conjugacy class in Gal(L(Al)/K) (where L is the number field

mentioned in Serre’s theorem for number field). Instead, we use Serre’s generalization

of the Chebotarev density theorem (Proposition 3.5) to our function field K in order to

find a prime p of K with the same properties as above.

Acknowledgement: Part of this wark was done during research visits of the first

author at the University of Kassel. We thank Wulf-Dieter Geyer and Aharon Razon for

careful reading of this work and the referee for helpful comments to an earlier version

of it.
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1. Adelic Openness

Let K be a finitely generated transcendental extension of Q and A an abelian variety

over K. We consider K as a function field of one variable over a field E. Using results

of Cadoret and Tamagawa, we prove that there exists a finite extension K ′ of K in

K̂ =
∏
lK(Al), with l ranging over all prime numbers, such that the reduction modulo

“almost every valuation v of K ′ over E” maps the group Gal(K ′(Al)/K
′), for each l,

isomorphically onto the corresponding group with respect to the reduced objects.

To be more specific, let E be a finitely generated extension of Q, S an absolutely

integral smooth curve over E, K = E(S) the function field of S, and A an abelian

variety over K of dimension g > 0 with good reduction along S [Shi98, p. 95, Prop. 25].

Let A(K̃) be the abelian group of all K̃-rational points of A. For each m ∈ N let Am

be the kernel of multiplication of A by m. By [Mil85, p. 116, Remark 8.4], Am(K̃) is a

free Z/mZ-module of rank 2g. Moreover, since A is defined over K, each σ ∈ Gal(K)

gives rise to an automorphism of A(K̃) that leaves Am(K̃) invariant.

We denote the set of all prime numbers by L. For each l ∈ L let Tl(A) =

lim←−Ali(K̃) be the Tate module of A associated with l. Then, Al(K̃) ∼= F2g
l and

Tl(A) ∼= Z2g
l , so Aut(Al) ∼= GL2g(Fl) and Aut(Tl(A)) ∼= GL2g(Zl). Thus, the action of

Gal(K) on A(K̃) mentioned in the preceding paragraph gives rise to homomorphisms

(1) ρA,l: Gal(K)→ GL2g(Fl), ρA,l∞ : Gal(K)→ GL2g(Zl).

Since Ker(ρA,l) = Gal(K(Al)) and Ker(ρA,l∞) = Gal(K(Al∞)) = Gal(
⋃∞
i=1K(Ali)),

the homomorphism ρA,l (resp. ρA,l∞) (also called the l-ic and the l-adic representations

of Gal(K)) induces (under an abuse of notation) a homomorphism ρA,l: Gal(N/K) →

GL2g(Fl) (resp. ρA,l∞ : Gal(N/K) → GL2g(Zl)) for each Galois extension N of K that

contains K(Al) (resp. K(Al∞)).

We denote the set of closed points of S by Sclosed. By Hilbert Nullstellensatz,

Sclosed is an infinite set.

Since S is a smooth curve, each s ∈ Sclosed induces a discrete valuation vs of K

with residue field K̄s which is a finite extension of E in Ẽ [Lan58, p. 151, Thm. 1] and

where Ẽ is the algebraic closure of E in K̃.
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Let Kur = Kur,S be the maximal Galois extension of K which is unramified along

S and observe that Ẽ ⊆ Kur, because char(E) = 0. Thus, Gal(Kur/K) is the étale

fundamental group of S. Since char(K̄s) = 0 for each s ∈ Sclosed, [SeT68, Thm. 1]

implies that

(2) K(Am) ⊆ Kur for each m ∈ N.

By what we said above, ρA,l and ρA,l∞ give rise to homomorphisms

ρl: Gal(Kur/K)→ Aut(Al), ρl∞ : Gal(Kur/K)→ Aut(Tl(A)).

Writing πl: Aut(Tl(A)) → Aut(Al) for the epimorphism defined by the reduction

GL2g(Zl) → GL2g(Fl) modulo l, we have ρl = πl ◦ ρl∞ . Further, the products of

the ρl’s, the ρl∞ ’s, and the πl’s, with l ranging over L, give rise to homomorphisms that

fit into the following commutative diagram:

(3) Gal(Kur/K)

ρ∞

vvmmm
mmm

mmm
mmm

m
ρ

((PP
PPP

PPP
PPP

P

∏
l∈L Aut(Tl(A))

π // ∏
l∈L Aut(Al)

Next we consider a point s ∈ Sclosed and choose an extension vs,ur of vs to Kur.

Since Ẽ ⊆ Kur, the residue field of vs,ur is Ẽ. For each Galois extension L of K in Kur

we consider the decomposition group of vs,ur|L over K,

Ds,L/K = {σ ∈ Gal(L/K) | for all x ∈ L: vs,ur(σx) ≥ 0⇐⇒ vs,ur(x) ≥ 0}.

Since vs,ur/vs is unramified, reduction modulo the prime ideal of the valuation ring of

vs,ur gives rise to an isomorphism ϕs: Ds,Kur/K → Gal(K̄s) [EnP10, second paragraph

of page 123 and the “first exact sequence” on page 124].

(4) Let ψs: Gal(K̄s) → Ds,Kur/K be the inverse of ϕs. For each l ∈ L we con-

sider the homomorphism ρl∞,s = ρl∞ ◦ ψs: Gal(K̄s) → Aut(Tl(A)). It satisfies

ρl∞,s(Gal(K̄s)) = ρl∞(Ds,Kur/K). We also consider the homomorphisms

ρs = ρ◦ψs: Gal(K̄s)→
∏
l∈L

Aut(Al) and ρ∞,s = ρ∞◦ψs: Gal(K̄s)→
∏
l∈L

Aut(Tl(A)).
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They satisfy ρs(Gal(K̄s)) = ρ(Ds,Kur/K) and ρ∞,s(Gal(K̄s)) = ρ∞(Ds,Kur/K).

The following result of Anna Cadoret is the main theorem of [Cad15], rewritten

in our notation:

Proposition 1.1: We consider a point s ∈ Sclosed. If there exists l ∈ L such that

the group ρl∞,s(Gal(K̄s)) is open in ρl∞(Gal(Kur/K)), then ρ∞,s(Gal(K̄s)) is open in

ρ∞(Gal(Kur/K)).

Our goal is to prove the assumption of Proposition 1.1, hence to make the con-

sequence of that theorem valid. To this end we combine two theorems of Cadoret and

Akio Tamagawa:

Proposition 1.2 (Cadoret-Tamagawa): Given l ∈ L and d ∈ N, we set

S(d) = {s ∈ Sclosed | [K̄s : E] ≤ d} and consider the set

Sl = {s ∈ Sclosed | ρl∞,s(Gal(K̄s)) is not open in ρl∞(Gal(Kur/K))}.

Then, Sl ∩ S(d) is finite.

Proof: By [CaT12, Thm. 5.1], ρl∞ is a GSRP-representation. In other words, the

maximal abelian quotient of each open subgroup of ρl∞(Gal(Kur/ẼK)) is finite. It

follows from [CaT13, Thm. 1.1] that Sl ∩ S(d) is finite, as claimed.

Corollary 1.3: There exists s ∈ Sclosed such that the group ρ∞,s(Gal(K̄s)) is open

in ρ∞(Gal(Kur/K)).

Proof: Since K is the function field of the curve S over E, there exists t ∈ K which is

transcendental over E such that d = [K : E(t)] <∞. For all but finitely many elements

t̄ ∈ E, the map t → t̄ gives rise to a point s ∈ Sclosed such that [K̄s : E] ≤ d. Hence,

S(d) is infinite.

Now we choose l ∈ L. By Proposition 1.2 and the preceding paragraph, S(d) rSl is

infinite. Thus, there exists s ∈ Sclosed such that ρl∞,s(Gal(K̄s)) is open in ρl∞(Gal(Kur/K)).

It follows from Proposition 1.1 that ρ∞,s(Gal(K̄s)) is open in ρ∞(Gal(Kur/K)), as

claimed.
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Corollary 1.4: There exists s ∈ Sclosed such that the group ρs(Gal(K̄s)) is open in

ρ(Gal(Kur/K)).

Proof: Let s be a point in Sclosed that satisfies the conclusion of Corollary 1.3. Then,

by (4), the commutative diagram (3) extends to a commutative diagram

(5) Gal(K̄s)

ρ∞,s

}}{{
{{
{{
{{
{{
{{
{{
{{
{{
{{

ψs

��
ρs

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

Gal(Kur/K)

ρ∞

vvmmm
mmm

mmm
mmm

m
ρ

((PP
PPP

PPP
PPP

P

∏
l∈L Aut(Tl(A))

π // ∏
l∈L Aut(Al) .

In particular,

π(ρ∞,s(Gal(K̄s))) = ρs(Gal(K̄s)) and π(ρ∞(Gal(Kur/K))) = ρ(Gal(Kur/K)).

By Corollary 1.3, ρ∞,s(Gal(K̄s)) is open in ρ∞(Gal(Kur/K)). By [FrJ08, p. 5], π is an

open map. Therefore, ρs(Gal(K̄s)) is open in ρ(Gal(Kur/K)).

Setup 1.5: We interpret Corollary 1.4 in terms of Galois groups. To this end we fix

a point s ∈ Sclosed such that ρs(Gal(K̄s)) is open in ρ(Gal(Kur/K)). Since A has

good reduction at s, its reduction As with respect to vs is an abelian variety over

K̄s, in particular, it is non-empty and absolutely integral [Shi98, p. 83, Section 11.1].

Moreover, by the last paragraph of [Shi98, p. 70], dim(As) = dim(A) = g. We write

K̂ =
∏
l∈LK(Al) and K̂s =

∏
l∈L K̄s(As,l). By (2), K̂ ⊆ Kur. Moreover, by [SeT68,

p. 495, Lemma 2], for each l ∈ L, reduction modulo s induces an isomorphism Al(K̃)→

As,l(
˜̄Ks).

We denote the restriction of vs,ur to K̂ by v̂s. Then, K̂s is the residue field of K̂

with respect to v̂s. Also, Ds,K̂/K is the image of Ds,Kur/K under the restriction map

res: Gal(Kur/K) → Gal(K̂/K). We write K ′ for the fixed field of Ds,K̂/K in K̂ (and

note that K ′ depends on s). Then, ψs induces a monomorphism ψ̂s: Gal(K̂s/K̄s) →

Gal(K̂/K) whose image is Gal(K̂/K ′). Let ϕ̂s: Gal(K̂/K ′) → Gal(K̂s/K̄s) be the

inverse of ψ̂s. Again, by [SeT68, p. 495, Lemma 2], the isomorphism Al(K̃)→ As,l(
˜̄Ks)
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induces an isomorphism αl: Aut(Al) → Aut(As,l) that commutes with the action of

Gal(K̂/K ′). Thus, αl ◦ ρA,l|Gal(K̂/K′) = ρAs,l ◦ ϕ̂s|Gal(K̂s/K̄s) for each l ∈ L. The

product of the αl’s gives rise to an isomorphism α:
∏
l∈L Aut(Al) →

∏
l∈L Aut(As,l).

Proposition 1.6: In the notation of Setup 1.5 and in particular with the choice of the

closed point s of S made in the Setup, K ′ is a finite extension of K in K̂.

Proof: Observe that ρ: Gal(Kur/K) →
∏
l∈L Aut(Al) naturally decomposes as ρ =

ρ̂◦resKur/K̂
, where ρ̂: Gal(K̂/K)→

∏
l∈L Aut(Al) is defined by the action of Gal(K̂/K)

on the Al’s. Since K̂ =
∏
l∈LK(Al), the homomorphism ρ̂ is injective.

Similarly, we write ρ′s: Gal(K̂s/K̄s)→
∏
l∈L Aut(As,l) for the corresponding mono-

morphism associated with K̄s and As. It fits into the following commutative diagram:

(6) Gal(Kur/K)
res //

ρ

++
Gal(K̂/K)

ρ̂ // ∏
l∈L Aut(Al)

α

��
Gal(K̄s)

res //

ψs

OO

ρs

33
Gal(K̂s/K̄s)

ρ′s //

ψ̂s

OO

∏
l∈L Aut(As,l).

Note that in the notation of Corollary 1.4, ρ′s ◦ res˜̄Ks/K̂s
= ρs. We use Corollary 1.4 in

order to choose s ∈ S(Ẽ) such that the group ρs(Gal(K̄s)) is open in ρ(Gal(Kur/K)).

Since both restrictions maps in (6) are surjective, α−1(ρ′s(Gal(K̂s/K̄s))) is open in

ρ̂(Gal(K̂/K)). Since ψ̂s is injective, since α is bijective, and since both ρ′s and ρ̂ are

injective, the group Ds,K̂/K = ψ̂s(Gal(K̂s/K̄s)) is open in Gal(K̂/K). It follows that

K ′, which is the fixed field of Ds,K̂/K in K̂, is a finite extension of K in K̂, as claimed.
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2. Independent Homomorphisms

Let Γ be a profinite group and I a set. For each i ∈ I let ρi be a homomorphism of Γ

into a profinite group Γi. Here we follow the usual convention and always assume that a

homomorphism between profinite groups is continuous. In addition, every finite group

is equipped with the discrete topology. Let ρ =
∏
i∈I ρi be the direct product of the

ρi’s. That is, ρ is the homomorphism from Γ to
∏
i∈I Γi defined by ρ(x) = (ρi(x))i∈I .

Following [Ser13] and [GaP13], we say that the family (ρi)i∈I is independent if ρ(Γ) =∏
i∈I ρi(Γ).

Note that if a family (ρi)i∈I of homomorphisms as in the preceding paragraph

is independent and α: Γ′ → Γ is an epimorphism of profinite groups, then the family

(ρi ◦ α)i∈I is also independent.

Lemma 2.1: Let (Gi)i∈I be a family of closed subgroups of a profinite group G and let

H be an open subgroup of G. Suppose that
⋂
i∈I Gi = 1. Then, I has a finite subset J

such that
⋂
i∈J Gi ≤ H.

Proof: Assume toward contradiction that the lemma does not hold. Then, for each

finite subset J of I the closed subset
⋂
j∈J Gj rH is non-empty. If J ′ is a finite subset of

I that contains J , then
⋂
j∈J′ Gj rH ⊆

⋂
j∈J Gj rH. It follows from the compactness

of G that the set
⋂
i∈I GirH is non-empty. This contradicts the assumption that⋂

i∈I Gi = 1 ∈ H.

One of the ingredients of the proof of the following lemma appears in [GaP13,

Remark 3.2(b)(ii)].

Lemma 2.2: Let Γ be a profinite group. For each i in a set I let ρi be a homomor-

phism of Γ into a finite group Γi. Suppose that the family (ρi)i∈I is independent,⋂
i∈I Ker(ρi) = 1, and ∆ is an open subgroup of Γ. Then, ∆ has an open subgroup ∆′

which is normal in Γ such that the family (ρi|∆′)i∈I is independent.

Proof: By assumption, the homomorphism ρ =
∏
i∈I ρi satisfies ρ(Γ) =

∏
i∈I ρi(Γ).

Since ∆ is open in Γ, the subgroup ρ(∆) of
∏
i∈I ρi(Γ) is open [FrJ08, p. 6, Remark

1.2.1(f)]. Thus, I has a finite subset J such that
∏
i∈J 1×

∏
i∈I r J ρi(Γ) ≤ ρ(∆).
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Since
⋂
i∈I Ker(ρi) = 1, we may use Lemma 2.1 to enlarge J such that ∆′ =⋂

i∈J Ker(ρi) ≤ ∆. In particular, ∆′ is normal in Γ. Since the Γi’s are finite, ∆′ is open

in ∆.

Given a family (xi)i∈I in (∆′)I , we have ρi(xi) = 1 for each i ∈ J . Thus,

(ρi(xi))i∈I ∈
∏
i∈J 1 ×

∏
i∈I r J ρi(Γ) ≤ ρ(∆). Hence, there exist x ∈ ∆ with ρ(x) =

(ρi(xi))i∈I . In particular, ρi(x) = ρi(xi) = 1 for each i ∈ J , so x ∈ ∆′. It follows that

ρ(∆′) =
∏
i∈I ρi(∆

′). This means that the family (ρi|∆′)i∈I is independent, as claimed.

Remark 2.3: Let K be a field. For each i ∈ I let ρi: Gal(K)→ Gi be a homomorphism

of profinite groups and let Ki be the fixed field of Ker(ρi) in K̃. Consider a Galois

extension K̂ of K in K̃ that contains each Ki and let ρ̂i: Gal(K̂/K) → Gi be the

homomorphism induced by ρi. As noticed in [GaP13, Remark 3.1], the family (Ki)i∈I

is linearly disjoint over K if and only if the restriction maps

ρ̂i: Gal(K̂/K)→ Gi, i ∈ I

are independent (see also [FrJ08, Lemma 2.5.6]).
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3. Serre’s Density Theorem

We give in this section an account of a generalization of the Chebotarev density theorem

to finitely generated extensions of Q due to Jean-Pierre Serre. We call this generalization

“Serre’s density theorem”.

3.1 Nagata Rings. Recall that a Noetherian ring A (commutative with 1) is called

a Nagata ring if for every prime ideal P of A and for every finite extension L of

Quot(A/P ) the integral closure of A/P in L is a finitely generated A/P -module (see

[Mat80, p. 231] or [Liu06, p. 340, Def. 2.27]). In particular, every field and every

Dedekind domain of characteristic 0 are Nagata rings [Liu06, p. 340, Example 2.28]. It

follows from the definition that if A is a Nagata ring and U is a multiplicative subset

of A, then U−1A is also a Nagata ring. The main theorem about Nagata rings, due

to Nagata, says that each finitely generated ring extension of a Nagata ring is again a

Nagata ring [Mat80, p. 240, Thm. 72]. In particular, every finitely generated Z-algebra

is a Nagata ring.

3.2 Regular Rings. Let K be a finitely generated extension of Q and L a finite

Galois extension of K and choose a transcendence base (t1, . . . , tr) for K/Q. By Sub-

section 3.1, R0 = Z[t1, . . . , tr] is a Nagata ring and the Krull dimension, dim(R0), of

R0 is r + 1 = trans.deg(K/Q) + 1. Therefore, the integral closure R of R0 in K is a

finitely generated R0-module with Quot(R) = K. Thus, R = Z[x1, . . . , xk] for some

x1, . . . , xk ∈ K and R is a Nagata ring with dim(R) = dim(R0) = trans.deg(K/Q) + 1.

The set

U = {p ∈ Spec(R) | Rp is a regular ring}

is open in Spec(R) [GRO65, p. 166, Cor 6.12.6]. Moreover, U is non-empty, because it

contains the generic point of Spec(R). Therefore, there exists a non-zero element f ∈ R

such that Spec(R[f−1]) ⊆ U . In particular, the ring R[f−1] is regular. Adding f−1

to the set {x1, . . . , xk}, if necessary, we may assume that Spec(R) is smooth, so R is a

regular ring.

Since R is a Nagata ring, its integral closure RL in L is a finitely generated R-

module, hence a finitely generated ring extension of Z. Moreover, the fixed ring of
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RL under Gal(L/K) is R. Hence, Spec(R) is isomorphic to the quotient scheme of

Spec(RL) modulo Gal(L/K), where Gal(L/K) acts on Spec(RL) in the natural way

[GoW10, p. 331, Prop. 12.27]. Finally, we replace R and RL by R[u] and RL[u], if

necessary, where u is an appropriate element of K×, to assume that RL is a ring cover

of R in the terminology of [FrJ08, p. 109, Remark 6.1.5]. This means that RL = R[z],

where discr(irr(z,K)) is a unit of R and irr(z,K) is the monic irreducible polynomial

of z over K. In particular, RL is standard étale over R [Ray70, p. 19, (2)].

3.3 Dirichlet Density. We denote the set of maximal ideals of R by Max(R). For

each p ∈ Max(R), the residue ring R/p is a finite field (see [Ser65, p. 83, Sec. 1.3] or

[Eis95, p. 132, Thm. 4.19]) and we set Np = |R/p|. Note that Max(R) (resp. Max(RL))

is the set of closed points of Spec(R) (resp. Spec(RL)).

This allows us to use the notation and the results of [Ser65, Sec. 2.7] for X =

Spec(RL), G = Gal(L/K), and Y = Spec(R). Let d = dim(Y ). Then, d = trans.deg(K)+

1. Accordingly, the Dirichlet density of a subset B of Max(R) is defined as the limit

(1) δ(B) = lim
s→d+

∑
p∈B

1
Nps∑

p∈Max(R)
1

Nps

,

if it exists. By [Ser65, p. 84, Cor.2], the denominator of the fraction in (1) diverges as

s→ d+. Hence, δ(B) = 0 if B is finite. In other words, if δ(B) > 0, then B is infinite.

3.4 Artin Symbol. Next we consider p ∈ Max(R) and choose pL ∈ Max(RL) over p.

Then, RL/pL is a finite Galois extension of the finite field R/p. By our choice of R and

RL, the maximal ideal pL is unramified over R, so the decomposition group D = DpL/p

of pL over p is isomorphic to D̄ = Gal((RL/pL)/(R/p)) [FrJ08, p. 109, Lemma 6.1.4].

As usual we denote the element of D that corresponds to the Frobenius element of D̄

by
[L/K

pL

]
and the conjugacy class of

[L/K
pL

]
in G = Gal(L/K) by

(L/K
p

)
. This conjugacy

class does not depend on the choice of pL. If L′ is a finite Galois extension of K that

contains L and p is unramified in RL′ , then our definition implies that
(L′/K

p

)∣∣
L

=
(L/K

p

)
.

With this notation, we may now state the Serre density theorem (that Serre

calls the “Artin-Chebotarev density theorem”):
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Proposition 3.5 ([Ser65, p. 258, Thm. 7]): In the above notation, let C be a conjugacy

class of G. Then, the Dirichlet density of the set of all p ∈ Max(R) such that
(L/K

p

)
= C

is equal to |C||G| . In particular, that set is infinite.

In the case where K is a number field, Proposition 3.5 reduces to the usual Cheb-

otarev density theorem.
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4. Images of l-ic representations

Let A be an abelian variety over a number field K. Using previous results of Faltings and

Nori, Serre proved the existence of a finite Galois extension L of K with a great amount

of information about the groups ρA,l(Gal(L)). We use Proposition 1.6 to generalize

Serre’s result to finitely generated extensions of Q, but limit our generalization only to

properties we need in the sequel.

Proposition 4.1: Let A be an abelian variety of positive dimension g over a finitely

generated extension K of Q. Then, there exist positive integers n, r, l0 and for each

l ≥ l0 there exists a connected reductive subgroup Hl of GL2g,Fl of rank r with the

following properties:

(a) There exist a number field K0, an abelian variety A0 over K0 of dimension g, a

finite Galois extension L0 of K0, and a positive integer n0 that divides n such that

ρA0,l(Gal(L0)) is a subgroup of Hl(Fl) of index ≤ n0. Moreover, Hl contains the

group Gm of homotheties of GL2g,Fl . Furthermore, the family (ρA0,l|Gal(L0))l≥l0 of

homomorphisms is independent.

(b) There exists a finite Galois extension L of K such that the group ρA,l(Gal(L))

is contained in Hl(Fl) with index ≤ n. Moreover, the family (ρA,l|Gal(L))l≥l0 of

homomorphisms is independent.

Proof: First suppose that K is a number field. By Serre, there exist positive integers

n0, r, l0 and for each l ≥ l0 there exists a connected reductive subgroup Hl of GL2g,Fl

of rank r such that (a) holds with K0 = K, A0 = A, L0 = L, and n = n0. See [Zyw16,

Thm. 3.1] for the statement. A full account of statement (a) and the proof can be found

in [Ser86]. See also letters from Serre to M.-F. Vignéra [Ser00, #137] and K. Ribet

[Ser00, #138]. Finally, the statement about the independence of the family (ρA,l|l≥l0)

is proved in [Ser13, Thm. 1].

Thus, (a) and (b) hold when K is a number field.

Now assume that the transcendence degree of K over Q is positive. In Section 1

and in particular in Setup 1.5 we have introduced the following objects: E is a finitely

generated extension of Q, S is a smooth curve over E whose function field is K, s is
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closed point of S, Kur is the maximal unramified extension of K along S, it contains

K(Al) for each l ∈ L, K̄s is the residue field of K at s, it is a finite extension of E with

trans.deg(K̄s/Q) = trans.deg(K/Q)− 1, As is an abelian variety over K̄s of dimension

g, K ′ is a finite extension of K (Proposition 1.6), ψ̂s: Gal(K̂s/K̄s)→ Gal(K̂/K ′) is an

isomorphism, and ϕ̂s: Gal(K̂/K ′)→ Gal(K̂s/K̄s) is the inverse of ψ̂s.

An induction hypothesis on the transcendence degree over Q applied to K̄s and

As gives a number field K0, an abelian variety A0 over K0, a finite Galois extensions

L0 of K0 and positive integers n0, r, l0 such that

(1a) For each prime number l ≥ l0 there is a connected reductive subgroup Hl of GL2g,Fl

such that ρA0,l(Gal(L0)) is a subgroup of Hl(Fl) of index ≤ n0. Moreover Hl is of

rank r and contains the center Gm of GL2g,Fl .

(1b) The family (ρA0,l|Gal(L0))l≥l0 of homomorphisms is independent.

Moreover, there exists a finite Galois extension Ls of K̄s and a positive integral

multiple ns of n0 with the following properties:

(2a) For all l ≥ l0, ρA0,l
(Gal(Ls)) ≤ Hl(Fl), and (Hl(Fl) : ρAs,l(Gal(Ls))) ≤ ns.

(2b) The family (ρAs,l|Gal(Ls))l≥l0 of homomorphisms is independent.

Let L′ be the fixed field in Kur of ψs(Gal(Ls)). Then, L′ is a finite Galois extension

of K ′ in Kur and, by the last statement of Setup 1.5, we have the following commutative

diagram:

Gal(K ′)
res //

ρA,l|Gal(K′)

''
Gal(Kur/K

′)
ϕs // Gal(K̄s)

ρAs,l// Hl(Fl)

Gal(L′)
res //

OO

Gal(Kur/L
′)

ϕs //

OO

Gal(Ls)

OO

ρAs,l // Hl(Fl).

Since ϕs maps Gal(Kur/L
′) surjectively onto Gal(Ls), it follows from (2b) that the fam-

ily (ρA,l|Gal(L′))l≥l0 of homomorphisms is independent (Section 2, second paragraph).

Since K ′ is a finite extension of K, so is L′. However, L′ need not be Galois over

K. Nevertheless, by Lemma 2.2, K has a finite Galois extension L in Kur that contains

L′ such that the family (ρA,l|Gal(L))l≥l0 is independent. Moreover, for each l ≥ l0 we
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have ρA,l(Gal(L)) ≤ ρA,l(Gal(L′)) ≤ Hl(Fl) and, by (2a),

(Hl(Fl) : ρA,l(Gal(L))) = (Hl(Fl) : ρA,l(Gal(L′))) · (ρA,l(Gal(L′)) : ρA,l(Gal(L)))

≤ (Hl(Fl) : ρAs,l(Gal(Ls))) · [L : L′] ≤ ns[L : L′].

Thus, L satisfies Conditions (a) and (b) of the proposition with n = ns[L : L′].

4.2 Tori in reductive groups. Let H be a connected reductive group over a field

F and let T be a maximal torus of H over F . Then, T (F̃ ) is isomorphic to (F̃×)r

for some positive integer r, called the rank of H [Spr98, p. 117, Subsection 7.2.1]. In

particular, T is absolutely integral. By [Spr98, p. 108, Prop. 6.4.2], all maximal tori of

H are conjugate, so the rank of H is independent of T .

We say that T F -splits if T is isomorphic over F to the group Dr of diagonal

matrices. Thus, in this case T (F ) ∼= (F×)r. We say that H F -splits if H has a maximal

F -split torus [Spr98, p. 271, Sec. 16.2.1], By [Spr98, p. 256, Thm. 15.2.6], all F -split

maximal tori are conjugate by an element of H(F ).

A result of Zywina gives additional information on the groups Hl mentioned in

Proposition 4.1.

Lemma 4.3: Let A, g, K, L, n, r, l0, and Hl with l ≥ l0, be as in Proposition 4.1. Then,

there is a finite Galois extension M of Q such that if l ∈ L splits completely in M and

is sufficiently large, then the following holds:

(a) The reductive group Hl Fl-splits.

(b) Let (Xij , Y )1≤i,j≤2g be independent variables. We identify GL2g(Fl) with the

closed subvariety of Spec(Fl[Xij , Y ]1≤i,j≤2g) = A4g2+1
Fl defined by the equation

det((Xij)1≤i,j≤2g)Y = 1.

Let T be an Fl-split maximal torus of Hl. Then, the torus T , viewed as a

closed subvariety of A4g2+1
Fl is defined by at most c1 polynomials of degree at most

c2, where c1 and c2 are constants that do not depend on l.

Proof: By Proposition 4.1, the subgroups Hl satisfy Conditions (a) and (b) of that

Proposition with respect to an abelian variety A0 of dimension g defined over a number

field K0 and with respect to a finite Galois extension L0 of K0. Therefore, our lemma

follows from [Zyw16, Lemma 3.2] (in which A = A0, K = K0, and L = L0).
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Another auxiliary tool that we quote from [Zyw16] is the following variant of a

theorem of Lang-Weil:

Proposition 4.4 ([Zyw16, Thm. 2.1]): Let q be a power of a prime number and con-

sider a Zariski-closed subset V of AkFq with k > 1 defined by the simultaneous vanishing

of s polynomials f1, . . . , fs in Fq[X1, . . . , Xk], each of which of degree at most e. Let

V1, . . . , Vm be the irreducible components of VF̃q which have the same dimension as V .

Then,

(a) |V (Fq)| ≤ mqdim(V ) + 6(3 + se)k+12sqdim(V )− 1
2 .

If all of the components V1, . . . , Vm are defined over Fq, then

(b) | |V (Fq)| −mqdim(V )| ≤ 6(3 + se)k+12sqdim(V )− 1
2 .

In the rest of this section we bound the constant m that appears in Proposition

4.4 in terms of the degrees of f1, . . . , fs.

Lemma 4.5: Let F be an algebraically closed field, Y an irreducible algebraic variety

in AnF , H a hypersurface in AnF , and Z1, . . . , Zs the irreducible components of Y ∩H.

Then,
∑s
j=1 deg(Zj) ≤ deg(Y ) deg(H).

Proof: The degrees of Y and H don’t change by taking the Zariski-closures of these

varieties in PnF . The number of the components of Y ∩H may only increase. Hence, we

may assume that Y and H are projective.

If Y ⊆ H, then Y = Y ∩ H is the unique irreducible component of Y ∩ H and

deg(Y ) ≤ deg(Y ) deg(H). If on the other hand Y 6⊆ H, then by [Har77, p. 53, Thm. 7.7],

(3)

s∑
j=1

i(Y,H;Zj) deg(Zj) = deg(Y ) deg(H).

Since the intersection multiplicities i(Y,H;Zj) are positive integers, the conclusion of

the lemma follows from (3).

18



Lemma 4.6: Let F be an algebraically closed field and let f1, . . . , fk ∈ F [X1, . . . , Xn]

be non-zero polynomials. Let

V = V (f1, . . . , fk) = Spec(F [X1, . . . , Xn]/

n∑
i=1

F [X1, . . . , Xn]fi)

be the algebraic variety in AnF defined by f1, . . . , fk and let Z1, . . . , Zm be the irreducible

components of V . Then, m ≤
∑m
i=1 deg(Zi) ≤

∏k
i=1 deg(fi).

Proof: Since deg(Zi) ≥ 1 for all i, the left inequality is clear. We prove the right

inequality.

First we consider the case where k = 1. Let f1 = cgd11 · · · gdmm be the decom-

position of f1 into a product of powers of irreducible polynomials in F [X1, . . . , Xn],

no one of which is a product of the other with an element of K×, and c ∈ K×.

Then, V (g1), . . . , V (gm) are the irreducible components of V (f1). By [Har77, p. 52,

Prop. 7.6(d)], we have
∑m
i=1 deg(V (gi)) =

∑m
i=1 deg(gi) ≤

∑m
i=1 di deg(gi) = deg(f1).

Now we assume that k ≥ 2, set Vk−1 = V (f1, . . . , fk−1), and let W1, . . . ,Wm′ be

the irreducible components of Vk−1. An induction assumption implies that

(4)

m′∑
i=1

deg(Wi) ≤ deg(f1) · · · deg(fk−1).

For each 1 ≤ i ≤ m′ let Zi,1, . . . , Zi,m′i be the irreducible components of Wi ∩ V (fk).

Then, the Zij with i = 1, . . . ,m′ and j = 1, . . . ,m′i are the irreducible components of

V (eventually with repetitions). By Lemma 4.5,
∑m′i
j=1 deg(Zij) ≤ deg(Wi) deg(fk). It

follows from (4) that

m′∑
i=1

m′i∑
j=1

deg(Zij) ≤
m′∑
i=1

deg(Wi) deg(fk) ≤ deg(f1) · · · deg(fk−1) deg(fk),

and this implies the desired inequality.
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5. Good Reduction of Abelian Varieties

We generalize results of Serre and Tate in [SeT68] about good reduction of Abelian

schemes over discrete valuation rings to results about good reduction of Abelian schemes

over more general integral domains.

5.1 Abelian scheme over a domain. Let R be a Noetherian integrally closed

domain with quotient field K and let π: A → Spec(R) be an abelian scheme. Thus, π

is a proper and smooth morphism with connected geometric fibers [Mil85, p. 145, first

paragraph of §20].

Moreover, for each p ∈ Spec(R) let K̄p = Quot(R/p) and set K̃p for the algebraic

closure of K̄p. Also, let Ap = A ×R Spec(K̄p). Then, πp: Ap → Spec(K̄p) is a proper

and smooth morphism with a connected geometric fiber, so Ap is an abelian variety

over K̄p that we call the reduction of A modulo p.

Note that π is of finite type and set g = dim(A)−dim(R) for the relative dimension

of A. Then, dim(Ap) = g for each p ∈ Spec(R) [Mum88, p. 304, Thm. III.10.3’].

In particular, let o be the zero ideal of R. Then, the generic fiber A = Ao of A

is an abelian variety over K of dimension g.

5.2 Multiplication with m. By [Mil85, p. 116, Remark 8.4], multiplication of A by

a positive integer m is a finite and flat morphism of A onto A. Moreover, the kernel Am
of that morphism is a finite flat group scheme over Spec(R) of order m2g. In particular,

the finiteness of the morphism Am → Spec(R) implies that Am = Spec(B), where

B = Bm is a ring extension of R which is finitely generated as an R-module [Mum88,

p. 172, Def. II.7.3]. In other words, B is an integral extension of R.

Remark 5.3: If none of the residue characteristics of R divides m (equivalently, m /∈ p

for each p ∈ Spec(R); equivalently, m is a unit of R), then multiplication of A by m

as well as Am → Spec(R) are étale morphisms [Mil85, p. 147, Prop. 20.7]. Hence, B is

étale over R.

5.4 Reduction modulo p. We consider a prime ideal p ∈ Spec(R) and compose each

β ∈ HomR(B,R) with the quotient map R→ R/p followed by the inclusion R/p→ K̄p
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to get a homomorphism βp as in the following commutative diagram

B
β //

βp

''
R // R/p // K̄p.

The map β 7→ βp gives rise to a reduction map modulo p:

(1) HomR(B,R)→ HomR(B, K̄p).

There is a natural bijection HomR(B,R) → MorR(Spec(R),Spec(B)) that maps each

β ∈ HomR(B,R) onto the R-morphism Spec(R)→ Spec(B) that maps each prime ideal

of R onto its inverse image in B under β [Liu06, p. 48, Prop. 2.3.25]. By definition,

Am(R) = MorR(Spec(R),Spec(B)). An analogous rule applies to K̄p rather than to R.

This gives a commutative diagram

(2) Am(R)
fp // Ap,m(K̄p)

MorR(Spec(R),Spec(B))
fp // MorR(Spec(K̄p),Spec(B))

HomR(B,R) //

OO

HomR(B, K̄p),

OO

where the vertical arrows are bijections. Note that if s ∈ MorR(Spec(R),Spec(B)), then

fp(s) = s ◦ ip, where ip is the natural map Spec(K̄p) → Spec(R/p) → Spec(R) that

maps the zero ideal of K̄p onto p. Thus,

(3) if s, s′ ∈ MorR(Spec(R),Spec(B)) and fp(s) = fp(s′), then s(p) = s′(p).

Lemma 5.5: Let R and A be as in Subsection 5.1 and let m be a positive integer.

Consider a prime ideal p of R and let o be the zero ideal of R. Then, the following

statements about the objects introduced in this section are true:

(a) The map fo: Am(R)→ Am(K) is bijective.

(b) Let p be a prime ideal of R such that char(K̄p) - m. Then, the map fp: Am(R)→

Ap,m(K̄p) is injective, hence
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(c) the specialization map Am(K)
f−1
o // Am(R)

fp // Ap,m(K̄p) is injective.

Proof of (a): We consider Diagram (2) in the case where p is the zero ideal o of R.

In this case, K̄p = K. Let ι: R → K be the inclusion map. By the commutativity of

that Diagram it suffices to prove that the map HomR(B,R)→ HomR(B,K) defined by

α 7→ ι ◦ α is bijective.

Indeed, the map α 7→ ι ◦ α is injective, because ι is injective. In order to prove

that the map is surjective it suffices to prove that β(B) ⊆ R for each β ∈ HomR(B,K).

Indeed, if x ∈ B, then x is integral over R (by Subsection 5.2). Hence, so is β(x).

Since R is integrally closed, β(x) ∈ R, as has to be proved.

Proof of (b): Since char(K̄p) - m, we have char(K) - m. Hence, we may consider the

integrally closed integral domain R′ = R[m−1]. Then we make a base change from R to

R′ and consider the prime ideal p′ = pR′ of R′. We also set A′ = AR′ and B′ = B[m−1].

Then, Quot(R′) = Quot(R) = K, Quot(R′/p′) = Quot(R/p) = K̄p, A′m = Spec(B′).

Finally, we may identify HomR(B, K̄p) with HomR′(B
′, K̄p). Hence, by Diagram(2), we

may identify Ap,m(K̄p) with A′p′,m(K̄p).

By (a) (applied to R and to R′), we may identify Am(R) and A′m(R′) with Am(K),

hence we may identify Am(R) and Am(R′). Let f ′p′ : A′m(R′)→ Ap,m(K̄p) = A′p′,m(K̄p)

be the analogous map to fp: Am(R) → Ap,m(K̄p). Then, the following diagram com-

mutes:

A′m(R′)
f ′
p′ //

ttt
ttt

ttt
t

ttt
ttt

ttt
t

A′p′,m(K̄p)

Am(K) Am(R)
fp // Ap,m(K̄p)

Thus, it suffices to prove that the morphism f ′p′ is injective.

Let s, t be elements of A′m(R′) such that f ′p′(s) = f ′p′(t). By (3) for R′ rather than

for R, s(p′) = t(p′). Diagram (2) identifies both s and t as elements of

MorR′(Spec(R′),Spec(B′)), i.e. as sections of the morphism h: Spec(B′) → Spec(R′)

induced from the inclusion R′ ⊆ B′. Since m is a unit of R′, Remark 5.3 implies that

B′ is étale over R′. Since h is affine, it is separated [Liu06, p. 100, Prop. 3.3.4]. Hence,

by [Mil80, p. 25, Cor. 3.12] or [Gro71, Exposé 1, p. 6, Cor. 5.3] , s = t, as claimed.
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Proof of (c): This follows from (b) and from (a).

Let π: A → Spec(R) be as in Subsection 5.1 and let m be a positive integer. We

use Lemma 5.5(a) to identify Am(R) and Am(K).

If char(K̄p) - m, then by Lemma 5.5(c), the injective map fp: Am(R)→ Ap,m(K̄p)

can be considered as an injective homomorphism fp: Am(K)→ Ap,m(K̄p) that we call

the reduction map modulo p. If m′ is a multiple of m and m′ /∈ p, then the reduction

map modulo p with respect to m′ extends the reduction map modulo p with respect to

m.

Lemma 5.6: Let R and A be as in Subsection 5.1. Let m be a positive integer and

N an algebraic extension of K that contains K(Am). We denote the integral closure

of R in N by RN . Consider a prime ideal p of R that does not contain m. Then,

for each P ∈ Spec(RN ) over p, reduction modulo P maps Am(N) isomorphically onto

Ap,m(N̄P).

Proof: By Subsection 5.1, dim(Ap) is equal to the relative dimension g of A over R.

Hence, by [Mil85, p. 116, Remark 8.4], |Am(N)| = m2g and |AP,m(N̄P)| = |Ap,m(N̄P)| ≤

m2g. By Lemma 5.5(c) for RN and N rather than R and K, the reduction map

Am(N) → AP,m(N̄P) is injective. Hence, that map is bijective, so it is an isomor-

phism.

5.7 Good reduction of representations. Again, let R, A, B, and m be as in

Subsection 5.2. In particular, B = R[x1, . . . , xk] is a finitely generated ring extension of

R. Let I be the kernel of the R-homomorphism R[X1, . . . , Xk]→ B that maps Xi onto

xi for i = 1, . . . , k.

We consider again a Galois extension N of K that contains K(Am), a prime ideal

p of R that does not contain m, and a prime ideal P of the integral closure RN of

R in N that lies over p. Then, Ap,m(N̄P) = HomR(B, N̄P). As usual, we identify

each element of HomR(B, N̄P) with a k-tuple (x1,P, . . . , xk,P) with coordinates in N̄P

at which every h ∈ I vanishes. Then, x1, . . . , xk lie in RN and reduction modulo P

maps x1, . . . , xk onto x1,P, . . . , xk,P, respectively. This gives another presentation to

the reduction modulo P of Am(N) mentioned in Lemma 5.6 and its proof.
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Next, we recall that B is étale over R (Subsection 5.3) and assume that RN is also

étale over R, at least locally over p (e.g. N = K(Am′), where m′ is a multiple of m that

does not belong to p). Let DP/p = {σ ∈ Gal(N/K) | σP = P} be the decomposition

group of P over p. Then, the reduction x 7→ x̄ modulo P (with x ∈ RN ) induces an

isomorphism σ → σ̄ of DP/p onto Gal(N̄P/K̄p) defined by σ̄x̄ = σx. Indeed, if N/K

is finite, then RN/R is locally standard étale in a Zariski-open neighborhood of p

[Mil80, p. 26, Thm. 3.14]. Thus, there exists z ∈ N such that RN,P = Rp[z], where the

discriminant of irr(z,K) is a unit of Rp (Subsection 3.2). Now apply [FrJ08, p. 109,

Lemma 6.1.4].

This isomorphism is then compatible with the isomorphism Am(N)→ Ap,m(N̄P)

given by Lemma 5.6, which leads to the following commutative triangle:

DP/p
//

ρA,m

��

Gal(N̄P/K̄p)

ρAp,mvvnnn
nnn

nnn
nnn

GL2g(Z/mZ),

where ρA,m is the m-ic representation induced by the action of Gal(K) on Am(K̃). If

l is a prime number that does not belong to p and if K(Al∞) ⊆ N , the preceding diagram

applied to l, l2, l3, . . . gives rise to a commutative diagram for the l-adic representations:

DP/p
//

ρA,l∞

��

Gal(N̄P/K̄p)

ρAp,l∞wwppp
ppp

ppp
pp

GL2g(Zl).

24



6. Bounds on Degrees

Given a field F and a non-zero polynomial f ∈ F [X], we denote the number of distinct

roots of f(X) in F̃ by ν(f(X)). We prove that the condition “ν(f(X)) ≤ d” is equivalent

to a “Zariski-closed condition on the coefficients of f”.

Lemma 6.1: Let F be a field, t1, . . . , te elements of a field extension of F , T =

Spec(F [t]) (with t = (t1, . . . , te)), f ∈ F [t][X] a monic polynomial in X of degree

m with coefficients in F [t], and d an integer between 1 and m. Then, there exists a

Zariski closed subset V of T such that V (F̃ ) = {t′ ∈ T (F̃ ) | ν(f(t′, X)) ≤ d}.

Proof: Let f(t, X) =
∏m
i=1(X − xi) be the decomposition of f(t, X) in F̃ (t). We set

x = (x1, . . . , xm). Then, F (t,x)/F (t) is a finite normal extension of fields. Moreover,

F [t,x]/F [t] is an integral extension of integral domains. Hence, by [Mum88, p. 171,

Prop. II.7.4], the corresponding morphism ϕ: U = Spec(F [t,x])→ Spec(F [t]) is closed.

Let I be the set of all d-tuples i = (i1, . . . , id) of integers between 1 and m. For

each i ∈ I and 1 ≤ j ≤ m we consider the Zariski-closed subset Wi,j of U defined by

the equation (Xj −Xi1) · · · (Xj −Xid) = 0.

Since F [t,x]/F [t] is an integral extension, for each t′ ∈ T (F̃ ) the map t 7→ t′

extends to an F -homomorphism F [t,x]→ F [t′,x′] that maps x onto x′ = (x′1, . . . , x
′
m)

with x′1, . . . , x
′
m ∈ F̃ such that f(t′, X) =

∏m
i=1(X − x′i). If x′′ = (x′′1 , . . . , x

′′
m) is

another m-tuple in F̃m such that the map t 7→ t′ extends to an F -homomorphism

F [t,x]→ F [t′,x′′] that maps x onto x′′, then there exists σ ∈ Aut(F̃ /F (t′)) such that

(x′)σ = x′′. Hence, Ṽi,j = {t′ ∈ T (F̃ ) | (x′j − x′i1) · · · (x′j − x′id) = 0} is a well defined

subset of T (F̃ ). It follows that the set Ṽ = {t′ ∈ T (F̃ ) | ν(f(t′, X)) ≤ d} satisfies the

following condition:

Ṽ =
⋃
i∈I

{t′ ∈ T (F̃ ) | {x′1, . . . , x′m} ⊆ {x′i1 , . . . , x
′
id
}}(1)

=
⋃
i∈I

m⋂
j=1

{t′ ∈ T (F̃ ) | x′j = x′i1 ∨ · · · ∨ x
′
j = x′id}

=
⋃
i∈I

m⋂
j=1

{t′ ∈ T (F̃ ) | (x′j − x′i1) · · · (x′j − x′id) = 0}
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=
⋃
i∈I

m⋂
j=1

Ṽi,j .

Since ϕ is a closed map, Vi,j = ϕ(Wi,j) is a Zariski-closed subset of T . Moreover,

Wi,j(F̃ ) = {(t′,x′) ∈ U(F̃ ) | (x′j − x′i1) · · · (x′j − x′id) = 0}, so Vi,j(F̃ ) = Ṽi,j . It follows

that V =
⋃

i∈I
⋂m
j=1 Vi,j is a Zariski-closed subset of T defined by polynomials with

coefficients in F . Moreover, by (1), V (F̃ ) =
⋃

i∈I
⋂m
j=1 Vi,j(F̃ ) =

⋃
i∈I
⋂m
j=1 Ṽi,j = Ṽ ,

as desired.

Given a polynomial f with coefficients in Z we consider f for each l also as a

polynomial with coefficients in Fl with the original coefficients replaced by their residues

modulo l. We say that a scheme S over Z is absolutely integral if SQ̃ = S×Z Spec(Q̃)

is integral.

Lemma 6.2: Let S be an absolutely integral affine scheme in AeZ defined by polynomials

in Z[S], where S = (S1, . . . , Se) is an e-tuple of variables. Let T be an absolutely integral

affine scheme in AkZ defined by polynomials in Z[T], where T = (T1, . . . , Tk) is a k-tuple

of variables. Let f ∈ Z[S,T][X] be a monic polynomial inX of degreem with coefficients

in Z[S,T] and let d be an integer between 1 and m. Then, for every large prime number

l the reductions SFl and TFl modulo l are absolutely integral and for each s ∈ S(F̃l)

there exists a Zariski-closed subset Ul,s of TFl(s) defined by polynomials in Fl(s)[T] such

that Ul,s(F̃l) = {t ∈ T (F̃l) | ν(f(s, t, X)) ≤ d}.

Moreover, the number and the degrees of the polynomials in Fl(s)[T] that define

Ul,s as a Zariski-closed subset of TFl(s) are bounded by constants that depend neither

on l nor on s.

Proof: Let SQ = S ×Z Spec(Q) and TQ = T ×Z Spec(Q) be the generic fibers of S

and T . We may write S = Spec(Z[ŝ]) and T = Spec(Z[t̂]), where ŝ = (ŝ1, . . . , ŝe) and

t̂ = (t̂1, . . . , t̂k) are tuples of some field extension of Q such that Q(ŝ) and Q(t̂) are

algebraically independent regular extensions of Q [FrJ08, p. 175, Cor. 10.2.2(a)]. By

[FrJ08, p. 41, Lemma 2.6.7], Q(ŝ) and Q(t̂) are linearly disjoint over Q, so Z[ŝ]⊗Z[t̂] ∼=

Z[ŝ, t̂]. Hence, S ×Z T ∼= Spec(Z[ŝ, t̂]) and SQ ×Q TQ ∼= Spec(Q[ŝ, t̂]).
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By Lemma 6.1, there exists a Zariski-closed subvariety V of SQ ×Q TQ defined by

polynomials h1, . . . , hr in Z[S,T] such that

(2) V (Q̃) = {(s, t) ∈ S(Q̃)× T (Q̃) | ν(f(s, t, X)) ≤ d} .

We also have

(3) V (Q̃) = {(s, t) ∈ S(Q̃)× T (Q̃) | h1(s, t) = 0, . . . , hr(s, t) = 0}.

Thus, the following statement about Q̃ is true.

(4) For all s and t, the polynomial f(s, t, X) has at most d distinct roots if and only if

h1(s, t) = 0, . . . , hr(s, t) = 0.

Note that Statement (4) is elementary. In other words, the statement is equivalent

to a sentence in the language of rings L(ring,Z) with parameters in Z [FrJ08, p. 135,

Example 7.3.1]. Hence, by a consequence of the quantifier elimination procedure for

the theory of algebraically closed fields [FrJ08, p. 167, Cor. 9.2.2], that statement holds

over F̃l for every large prime number l. In addition, by [FrJ08, p. 179, Prop. 10.4.2],

SFl and TFl are absolutely integral varieties over Fl for each large l.

For each l as in the preceding paragraph and for every s ∈ S(F̃l) let Ul,s be the

Zariski-closed subset of TFl(s) defined by the polynomials h1(s,T), . . . , hr(s,T). Since

(4) holds over F̃l, we have

(5) Ul,s(F̃l) = {t ∈ T (F̃l) | ν(f(s, t, X)) ≤ d}.

Moreover, the degrees of the polynomials h1(s,T), . . . , hr(s,T) that define Ul,s

are at most degT h1(S,T), . . . ,degT hr(S,T), respectively. Since the latter numbers

are independent of s, also the second statement of the lemma is true.
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7. Counting Points

Following [Zyw16], we find in this section a set Λ of prime numbers with positive Dirich-

let density such that for all large l ∈ Λ there are “many” points in Hl(Fl) having 1 as

an eigenvalue, where Hl is the reductive subgroup of GL2g,Fl introduced in Proposition

4.1. Let n be a positive integer and let L be a finite Galois extension of K such that

ρA,l(Gal(L)) is contained in Hl(Fl) with index ≤ n (Proposition 4.1(b)). After fixing

an Fl-split maximal torus T of Hl, each of those points is of the form btn!, where

b ∈ ρA,l(Gal(K)) depends only on l and t is an Fl-rational point of T such that tn! is

a regular element of Hl.

7.1 Reduction modulo maximal ideals. Again, let K be a finitely generated

extension of Q, A an abelian variety over K of positive dimension g, and L the finite

Galois extension of K given by Proposition 4.1. We use Subsection 3.2 to construct a

regular domain R which is a finitely generated extension of Z such that Quot(R) = K

and the integral closure RL of R in L is a ring cover. In particular, RL/R is standard

étale.

Using [Mil85, p. 148, Rem. 20.9], we replace R by a ring R[u−1], if necessary,

where u is a non-zero element of R, such that A extends to an abelian scheme A over R.

By Subsection 5.1, for each p ∈ Max(R) the reduction Ap of A modulo p is an abelian

variety over the finite field K̄p = R/p.

7.2 Characteristic polynomials. We consider p ∈ Max(R) and l ∈ L such that

l 6= char(K̄p). Then, we choose a maximal ideal pl of RK(Al) that lies over p and

a maximal ideal pl∞ of RK(Al∞ ) that lies over pl. By Lemma 5.6, reduction mod-

ulo pl (resp. modulo pl∞) maps Al(K̃) (resp. Al∞(K̃)) isomorphically onto Ap,l(
˜̄Kp)

(resp. Ap,l∞( ˜̄Kp))

Moreover, by Subsection 5.7, the decomposition groups Dpl/p and Dpl∞/p are

respectively naturally isomorphic to Gal(K̄p(Ap,l)/K̄p) and Gal(K̄p(Ap,l∞)/K̄p). Fur-

thermore, these isomorphisms are compatible with the actions of those groups on Al

and Ap,l on the one hand and on Al∞ and Ap,l∞ on the other hand. By Subsection 3.3,

K̄p(Ap,l∞) is an algebraic extension of the finite field K̄p. As usual, we set
[K(Al∞ )/K

pl∞

]
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for the element of Dpl∞/p which is mapped under that isomorphism onto the Frobenius

element Frobp of Gal(K̄p(Ap,l∞)/K̄p). We denote the unit matrix in GLm(B) by 1,

whenever m is a positive integer and B is a ring that are clear from the context. Then,

we set

(1) PA,p(X) = det
(
X · 1− ρA,l∞

[
K(Al∞)/K

pl∞

])
for the corresponding characteristic polynomial. Since all prime ideals of RK(Al∞ ) that

lie over p are conjugate over K, PA,p(X) is a well defined monic polynomial of degree

2g with coefficients in Zl. The compatibility of the action of the Galois groups on Al∞

and Ap,l∞ mentioned at the beginning of this paragraph implies that

(2) PA,p(X) = det(X · 1− ρAp,l∞(Frobp)).

Note that the endomorphism ρAp,l∞(Frobp) of Tl(Ap) is induced by the Frobenius endo-

morphism of Ap. Hence by [Mum74, p. 180, Thm. 4], PA,p is actually a monic polynomial

of degree 2g with coefficients in Z which is independent of l (as long as l 6= char(K̄p)).

7.3 Conjugacy class. Let n, r, l0, and L be the positive integers and the finite

Galois extension of K introduced in Proposition 4.1. Then, in the notation introduced

so far in this section, and in the notation of Section 3, we attach the following objects

to a conjugacy class C of Gal(L/K):

(3a) d(C) is the maximal number of distinct roots of PA,p(Xn!) in Q̃, where p ranges

over the elements of Max(R) that satisfy
(L/K

p

)
= C. By Proposition 3.5, the

latter set of primes is non-empty. Also, for each p ∈ Max(R), the number of

distinct roots of PA,p(Xn!) in Q̃ is at most the degree of PA,p(Xn!) which is 2g ·n!

(by Subsection 7.2). Hence, d(C) is well defined.

(3b) p(C) is an element of Max(R) such that
(L/K
p(C)

)
= C and PA,p(C)(X

n!) has exactly

d(C) distinct roots in Q̃.

(3c) β(C) is an element of Gal(K) whose restriction to L belongs to C.

(3d) M is a finite Galois extension of Q that satisfies the conditions of Lemma 4.3 and

contains all of the roots of PA,p(C)(X
n!), for all C.
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Next, let Λ be the set of prime numbers l with the following properties:

(4a) l splits completely in M ,

(4b) l ≥ l0 and char(R/p(C)) 6= l for each conjugacy class C of Gal(L/K),

(4c) For each conjugacy class C of Gal(L/K), the polynomial PA,p(C)(X
n!) modulo l

has exactly d(C) distinct roots in F̃l, each of them belongs to Fl.

By the Chebotarev density theorem for number fields, the set of prime numbers l that

satisfy Condition (4a) has a positive density (equal to 1
[M :Q] ). By [FrJ08, p. 167,

Cor. 9.2.2], PA,p(C)(X
n!) modulo l has exactly d(C) distinct roots in F̃l, if l is suffi-

ciently large. It follows from (3d) that if l satisfies (4a), then all of those roots belong

to Fl. Thus, Λ has a positive Dirichlet density.

7.4 Regular elements. We denote the set of Fl-split maximal tori in Hl by Tl and

recall that a semi-simple element t of Hl is regular if t belongs to a unique maximal

torus of Hl [Bor91, p. 160, Prop.]. We denote the set of all semi-simple regular elements

of Hl by Hl,ssreg. By Subsection 4.2, the the rank of Hl (denoted by r in Prop. 4.1) is

r = dim(T ) for each T ∈ Tl.

The following lemma generalizes [Zyw16, Sec. 3.2] from the case where K is a

number field to our case where K is a finitely generated extension of Q.

Lemma 7.5: In the notation of Subsection 7.3, let C be a conjugacy class in Gal(L/K)

and let l ∈ Λ. Then:

(a) There exists b ∈ ρA,l(β(C)Gal(L)) ∩ ρA,l
(L(Al)/K

p(C)

)
.

(b) For each T ∈ Tl and every t ∈ T (Fl), we have T (Fl) ∼= (F×l )r and tn! ∈ ρA,l(Gal(L)).

(c) If b satisfies (a), then

|{h ∈ ρA,l(β(C)Gal(L)) | det(1− h) = 0}|

≥ 1

(n!)r

∑
T∈Tl

|{t ∈ T (Fl) | det(1− btn!) = 0 and tn! ∈ Hl,ssreg}|.

Proof of (a): By (4b), char(R/p(C)) 6= l, so by Remark 5.3, p(C) is étale in RK(Al).

By Subsection 3.2, RL is a ring cover of R. Hence, by [FrJ08, p. 110, Remark 6.1.7],

RK(Al)RL is a ring cover of RK(Al), in particular, RK(Al)RL = RL(Al) is the integral

closure of RK(Al) in L(Al). Thus, RL(Al) is étale over RK(Al), hence also over R.
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In particular, p(C) is étale in RL(Al), so ρA,l
(L(Al)/K

p(C)

)
makes sense. Moreover,

by (3b) and by Subsection 3.4,
(L(Al)/K

p(C)

)∣∣∣
L

=
(L/K
p(C)

)
= C. Hence, by (3c), there exists

β′ ∈
(L(Al)/K

p(C)

)
such that β′|L = β(C)|L, so β′ ∈ β(C)Gal(L). Then, b = ρA,l(β

′) ∈

ρA,l(β(C)Gal(L)) ∩ ρA,l
(L(Al)/K

p(C)

)
, as (a) claims.

Proof of (b): Since T belongs to Tl, it splits over Fl. Hence, by Subsection 4.2,

T (Fl) ∼= (F×l )r. By Proposition 4.1(b), (Hl(Fl) : ρA,l(Gal(L))) ≤ n. Therefore, if

t ∈ Tl(Fl), then tn! ∈ ρA,l(Gal(L)).

Proof of (c): For all T ∈ Tl and t ∈ T (Fl) we have by (a) and (b) that

btn! ∈ ρA,l(β(C)Gal(L))ρA,l(Gal(L)) = ρA,l(β(C)Gal(L)).

Therefore,

(5)

⋃
T∈Tl

{
btn!

∣∣ t ∈ T (Fl), det(1− btn!) = 0, tn! ∈ Hl,ssreg

}
⊆ {h ∈ ρA,l(β(C)Gal(L)) | det(1− h) = 0}.

Claim: The union in (5) is disjoint. Indeed, consider distinct tori T1, T2 ∈ Tl. Con-

sider elements t1 ∈ T1(Fl) and t2 ∈ T2(Fl) such that tn!
1 , t

n!
2 ∈ Hl,ssreg and btn!

1 = btn!
2 .

Then, tn!
1 = tn!

2 , so tn!
1 and tn!

2 lie in the same maximal torus of Hl. Since tn!
1 ∈ T1(Fl)

and tn!
2 ∈ T2(Fl), we have T1 = T2, as claimed.

If T ∈ Tl and t′ ∈ T (Fl), then by (b), there are at most (n!)r elements t in T (Fl)

for which tn! = t′. It follows from the claim that

|{h ∈ ρA,l(β(C)Gal(L)) | det(1− h) = 0}|

≥
∑
T∈Tl

|{btn! ∈ GL2g(Fl) | t ∈ T (Fl), det(1− btn!) = 0, tn! ∈ Hl,ssreg}|

=
∑
T∈Tl

|{tn! ∈ T (Fl) | t ∈ T (Fl), det(1− btn!) = 0, tn! ∈ Hl,ssreg}|

≥ 1

(n!)r

∑
T∈Tl

|{t′ ∈ T (Fl) | det(1− b(t′)n!) = 0, (t′)n! ∈ Hl,ssreg}|,

as claimed.

31



Remark 7.6: We consider a prime number l ∈ Λ, a point b ∈ GL2g(Fl), and a torus

T ∈ Tl. Let W = Wb be the Zariski-closed subset of T defined by the equation det(1−

btn!) = 0. By Proposition 4.1(a), Hl contains the group of scalar matrices Gm. Since

Gm is contained in the center of Hl and each element of Gm is semi-simple, Gm ≤ T

[Bor91, p. 151, Cor. 11.11].

Let ϕ: W → T/Gm be the restriction to W of the quotient map T → T/Gm and

set t̄ = ϕ(t) for each t ∈ T (F̃l). Then,

(6) ϕ−1(t̄)(F̃l) = {λt ∈ T (F̃l) | λ ∈ F̃×l , det(1− λn!btn!) = 0}.

Hence, |ϕ−1(t̄)(F̃l)| is equal to the number of solutions in F̃×l of the equation det(1 −

Xn!btn!) = 0, hence also to the number of solutions in F̃×l of the equation det(Xn!1−

btn!) = 0. Since the polynomial det(Xn!1−btn!) is monic of degree (n!)·2g, the number

of solutions in F̃×l of the latter equation is at most (n!) · 2g. Therefore,

(7) d = max
t∈W (F̃l)

|ϕ−1(t̄)(F̃l)| ≤ (n!) · 2g .

The following result is the analog of [Zyw16, Lemma 3.4] for finitely generated

extensions of Q rather than only for number fields. The use of the Chebotarev density

theorem in the proof of [Zyw16, Lemma 3.4] is replaced here by an application of

Proposition 3.5.

Lemma 7.7: Let A, L, n, r, l0, and Hl with l ≥ l0 be as in Proposition 4.1. Let M be

as in Lemma 4.3. Let C, d(C), β(C), p(C), and Λ be as in Subsection 7.3. We consider

T ∈ Tl, suppose in addition that l is a sufficiently large element of Λ, and use Lemma

7.5(a) to choose a matrix b ∈ ρA,l(β(C)Gal(L)) ∩ ρA,l
(L(Al)/K

p(C)

)
. Then, in the notation

of Remark 7.6, there exists t ∈ T (Fl) such that ϕ−1(t̄)(F̃l) consists of d distinct points,

each belonging to W (Fl).

Proof: By (3b), the polynomial PA,p(C)(X
n!) with coefficients in Z has exactly d(C)

distinct roots in Q̃. Moreover, by (1), for each maximal ideal P(C) of RL(Al) that

lies over p(C) the reduction of PA,p(C)(X
n!) modulo l is the polynomial det(Xn!1 −

ρA,l
[L(Al)/K

P(C)

]
) in Fl[X]. The latter is equal to det(Xn!1−b), because b ∈ ρA,l

(L(Al)/K
p(C)

)
.
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By (4c), the reduced polynomial has exactly d(C) distinct roots in F̃l, each belonging

to Fl. By (6), this means that

ϕ−1(1)(F̃l) = {λ1 ∈ T (F̃l) | λ ∈ F̃×l , det(1− λn!b) = 0}

consists of d(C) distinct points, each belonging to W (Fl). Hence, by (7), d(C) ≤ d.

Thus, the unit matrix 1 will be the desired element t of T (Fl) as soon as we prove that

d ≤ d(C).

We consider two systems B and T of variables for GL2g (considered as a Zariski-

closed subset of A(2g)2+1) and the monic polynomial det(Xn!1 − BTn!) in X with

coefficients in Z[B,T]. By Lemma 6.2, for each large l ∈ L and all b′ ∈ GL2g(Fl) there

exists a Zariski-closed subset Vl,b′ of GL2g,Fl such that

Vl,b′(F̃l) = {t ∈ GL2g(F̃l) | det(Xn!1− b′tn!) has at most d− 1 distinct roots in F̃l}.

Moreover, Lemma 6.2 gives positive integers c′1 and c′2 which are independent of l and

b′ such that Vl,b′ is defined by at most c′1 polynomials of degree at most c′2.

By Lemma 4.3, T is defined in A4g2+1
Fl by at most c1 polynomials of degree at

most c2, where c1 and c2 are positive integers that do not depend on l. Hence, by the

preceding paragraph, V = Vl,b′ ∩ T is a Zariski-closed subset of T which is defined by

at most c′′1 = c′1 + c1 polynomials of degree at most c′′2 = max(c′2, c2). Again, c′′1 and

c′′2 are positive integers that do not depend on l nor on b′. By Lemma 4.6, this implies

that the number of absolutely irreducible components of Vl,b′ is bounded by a constant

c′3 which is independent of l and b′. Moreover,

V (F̃l) = {t ∈ T (F̃l) | det(Xn!1− btn!) has at most d− 1 distinct roots in F̃l}.

By (7), there exists t ∈W (F̃l)rV (F̃l). In particular, V is a Zariski-closed proper

subset of T . Since T is absolutely integral of dimension r (Subsection 4.2), dim(V ) ≤

r − 1.

By Proposition 4.4, |V (Fl)| ≤ c3l
r−1, where again c3 is a positive integer that

depends neither on l nor on b. By Lemma 7.5(b), |T (Fl)| = (l − 1)r. Thus, for
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sufficiently large l ∈ Λ there exists t1 ∈ T (Fl) such that the polynomial det(Xn!1−btn!
1 )

with coefficients in Fl has exactly d distinct roots in F̃l. By Lemma 7.5(b), tn!
1 ∈

ρA,l(Gal(L)), so btn!
1 ∈ ρA,l(β(C)Gal(L))ρA,l(Gal(L)) = ρA,l(β(C)Gal(L)). Thus, there

exists σ ∈ Gal(L) such that btn!
1 = ρA,l(β(C)σ). We consider the conjugacy class C ′ of

(β(C)σ)|L(Al) of Gal(L(Al)/K) and note that C ′|L = C.

By Proposition 3.5, there is p ∈ Max(R) such that l 6= char(R/p) and
(L(Al)/K

p

)
=

C ′. Then,
(L/K

p

)
= C and btn!

1 ∈ ρA,l
(L(Al)/K

p

)
. By (1), det(Xn!1−btn!

1 ) is equal to the

reduction of PA,p(Xn!) modulo l. By the preceding paragraph, the former polynomial

has d distinct roots in F̃l. Hence PA,p(Xn!) has at least d distinct roots in Q̃. It follows

from (3a), that d ≤ d(C). Combining this inequality with the inequality proved in the

first paragraph of the proof, we have d = d(C), as claimed.

Lemma 7.8: Let l, T , and W be as in Remark 7.6, and let b ∈ GL2g(Fl) be the matrix

chosen in Lemma 7.7.

(a) If l is sufficiently large, then each irreducible component of WF̃l has dimension r−1

and is defined over Fl.

(b) There exists a real constant c6 that does not depend on l nor on b such that

|W (Fl)| ≥ lr−1 − c6lr−
3
2 .

Proof of (a) (After [Zyw16, Proof of Lemma 3.5]): By Remark 7.6, WF̃l is the inter-

section of TF̃l with the hypersurface defined by the equation det(1 − btn!) = 0. This

hypersurface does not contain TF̃l , because 1 ∈ T (F̃l), so λ1 ∈ T (F̃l) for each λ ∈ F̃×l
(Remark 7.6), and there exists λ ∈ F̃×l with det(1−b((λ1)n!)) 6= 0. Since T is absolutely

irreducible of dimension r, each of the irreducible components W1, . . . ,Wm of WF̃l is of

dimension r − 1 [Lan58, p. 36, Thm. 11]. It remains to prove that each of the Wi’s is

defined over Fl.

To this end we set T̄ = (T/Gm)F̃l . Recall that ϕ: W → T/Gm is the restriction to

W of the quotient map T → T/Gm. Let ϕ̃: WF̃l
→ T̄ be the morphism obtained from ϕ

by base change from Fl to F̃l. For each 1 ≤ i ≤ m let ϕi: Wi → T̄ be the restriction of

ϕ̃ to Wi. By Remark 7.6 for t ∈W (F̃l), we have that |ϕ̃−1(t̄)(F̃l)| is finite and bounded

by a constant d which is independent of l. Since both Wi and T̄ are irreducible algebraic
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varieties of dimension r − 1, the morphism ϕi is dominant.

By [Mil80, p. 26, Thm. 3.14], T̄ has a non-empty Zariski-open subset T̄0 and each

Wi has a non-empty Zariski-open subset Wi0 such that the restriction ϕi0 of ϕi to Wi0

is a standard étale morphism onto T̄0. In particular, ϕi0 is a finite morphism [FrJ08,

p. 109, Lemma 6.1.2 and Definition 6.1.3]. Let di = deg(ϕi0) be the degree of the

function field of Wi0 over the function field of T̄ . By [Liu06, p. 176, Exer. 1.25(a) of

Chap. 5],

(8) |ϕ−1
i0 (ū)(F̃l)| = di for each ū ∈ T̄0(F̃l).

Next, we observe that for i 6= j we have dim(Wi ∩Wj) ≤ r − 2. Hence,

dim(
⋃
i 6=j

Wi ∩Wj) ≤ r − 2.

Therefore, the dimension of the Zariski-closure Z of ϕ(
⋃
i 6=jWi∩Wj) in T̄ is also ≤ r−2,

so dim(Z) ≤ r − 2 < r − 1 = dim(T̄ ), in particular T̄ (F̃l)rZ(F̃l) is non-empty.

By Remark 7.6, ϕ̃−1(ū)(F̃l) is finite for each u ∈ W (F̃l), i.e. ϕ̃ is a quasi-finite

morphism. Let t̄ be the element of T/Gm given by Lemma 7.7 with the property that

(9) ϕ−1(t̄)(F̃l) consists of d points of W (F̃l), each lying in W (Fl).

By [Gro66, p. 231, Prop. 15.5.1(i)], the set of all ū ∈ T̄ such that |ϕ̃−1(ū)| ≥ |ϕ̃−1(t̄)| = d

is Zariski-open. Hence, there exists ū ∈ T̄0(F̃l)rZ(F̃l) such that |ϕ̃−1(ū)(F̃l)| ≥ d. It

follows from (7), that |ϕ̃−1(ū)(F̃l)| = d.

Then, ϕ−1
0 (ū)(F̃l) =

⋃
· mi=1 ϕ

−1
i0 (ū)(F̃l), so, by (8),

(10) d = |ϕ−1
0 (ū)(F̃l)| =

m∑
i=0

|ϕ−1
i0 (ū)(F̃l)| =

m∑
i=0

di.

By [Gro66, p. 231, Lemme 15.5.2], |ϕ−1
i (t̄)(F̃l)| ≤ di for i = 1, . . . ,m. Since

ϕ−1(t̄)(F̃l) =
⋃m
i=1 ϕ

−1
i (t̄)(F̃l), we have

d = |ϕ−1(t̄)(F̃l)| ≤
m∑
i=1

|ϕ−1
i (t̄)(F̃l)| ≤

m∑
i=1

di = d.

Hence,

(11) |ϕ−1
i (t̄)(F̃l)| = di ≥ 1 for each i between 1 andm and ϕ−1(t̄)(F̃l) =

⋃
· mi=1 ϕ

−1
i (t̄)(F̃l).
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In other words, each point in ϕ−1(t̄)(F̃l) belongs to Wi(F̃l) for a unique i between 1 and

m and ϕ−1
i (t)(F̃l) = ϕ−1(t)(F̃l) ∩Wi(F̃l) is non-empty.

Finally we consider i between 1 and m and choose wi ∈ Wi(Fl) (by (9)). Then,

for each σ ∈ Gal(Fl) we have wσ
i = wi, so wi ∈ Wi(Fl) ∩Wi(Fl)σ. It follows from the

uniqueness property mentioned in the preceding paragraph, that Wσ
i = Wi. Since Fl is

a perfect field, it follows from [Lan58, p. 74, the equivalence between the conditions C2

and C6] that Wi is defined over Fl, as claimed.

Proof of (b): Statement (b) follows from (a) and from Lemma 4.6 and Proposition 4.4.

Lemma 7.9: There exists a positive real number c4 that depends only on r such that

|T (Fl)rHl,ssreg(Fl)| ≤ c4lr−1 for all l ∈ Λ and every maximal torus T of Hl.

Proof: Our lemma coincides with [Zyw16, Lemma 3.6] that depends only on the fact

that the Hl’s are split reductive groups over Fl of rank r which is independent of l. By

Proposition 4.1, this fact holds in our case.

Alternatively, Proposition 4.1 ensures that the groups Hl arise from an abelian

variety A0 of dimension g over a number field. Hence, we may use [Zyw16, Lemma 3.6]

for our abelian variety A.

Nevertheless, for the convenience of the reader we highlight the main points of

Zywina’s proof. For references and more details the reader is referred to the original

proof.

Let X(T ) be the group of all characters α: T → Gm,Fl of T and let R be the

finite set of weights of T . By definition, each α ∈ R is an element of X(T ) for which

there exists a non-zero v ∈ F2g
l such that tv = α(t)v for all t ∈ T . One knows that an

element t ∈ T (Fl) is regular if and only if α(t) 6= 1 for each α ∈ R, so

{t ∈ T (Fl) | t is not regular in Hl} =
⋃
α∈R

Ker(α)(Fl).

Thus, it suffices to bound the order of R and the order of Ker(α)(Fl) for each α ∈ R in

terms of r only.
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One also knows that Ker(α) = D0
α×Fα, where D0

α is a split torus over Fl of rank

r − 1 and Fα is finite. Since dim(T ) = r, the group Fα is isomorphic to a subgroup of

F̃×l , so Fα is cyclic. It follows that |Ker(α)(Fl)| ≤ |Fα|lr−1. Thus, it suffices to bound

|R| and |Fα| for each α ∈ R in terms of r only.

In order to do this we assume that Hl, T , and Ker(α) are defined over F̃l. Then,

using the theory of root datum and the fact that Fα is cyclic, one finds β ∈ X(T )

such that α = nβ for some positive integral multiple n of |Fα|. Then, with α∨ being

the dual of α we have 2 = 〈α, α∨〉 = n〈β, α∨〉 ≡ 0 mod |Fα|. It follows that |Fα| ≤ 2.

Finally, we view R as a root system in a Euclidean space of dimension at most

r. Using the correspondence between such systems and Dynkin diagrams, one recalls

that there are only finitely many root systems of rank ≤ r (up to isomorphisms). In

particular, |R| is bounded in terms of r only, as desired.

Lemma 7.10: Let l be a sufficiently large element of Λ, C a conjugacy class of

Gal(L/K), and b a matrix in GL2g(Fl) that satisfies Condition (a) of Lemma 7.5.

Then, there exists a positive real number c5 not depending on the choice of l and b such

that |{t ∈ T (Fl) | det(1− btn!) = 0 and tn! ∈ Hl,ssreg}| ≥ lr−1 − c5lr−
3
2 .

Proof: We consider the set D = {t ∈ T (Fl) | tn! /∈ Hl,ssreg}. Since T (Fl) ∼= (F×l )r

(Lemma 7.5(b)), for each t′ ∈ T (Fl) there exist at most (n!)r elements t ∈ T (Fl) such

that tn! = t′. Hence, by Lemma 7.9 we have for sufficiently large l in Λ that

(12) |D| ≤ (n!)r|{t′ ∈ T (Fl) | t′ /∈ Hl,ssreg}| ≤ c4(n!)rlr−1.

Note that the group F×l acts on D by multiplication. Indeed, let t ∈ D and

λ ∈ F×l . Then, there exists a torus T ′ ∈ Tl such that T ′ 6= T and tn! ∈ T (Fl) ∩ T ′(Fl).

Hence, λt ∈ T (Fl) and (λt)n! ∈ T (Fl) ∩ T ′(Fl), so λt ∈ D.

By (7), for each t ∈ D there are at most d values of λ in F×l such that λt ∈W (Fl).

Hence, by (12), |{t ∈ W (Fl) | tn! /∈ Hl,ssreg}| ≤ d|D|
l−1 ≤ dc4(n!)rlr−2. It follows from

Lemma 7.8(b) that there exists a real positive constant c5 such that

|{t ∈ T (Fl) | t ∈W (Fl) and tn! ∈ Hl,ssreg}| ≥ lr−1 − c5lr−
3
2 ,

as claimed.
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8. Main Result

The results achieved so far lead in this section to the proof of the main theorem of our

work: For almost all σ ∈ Gal(K) there are infinitely many l ∈ L such that Al(K̃(σ)) 6= 0.

The proof uses an analog of a combinatorial argument that appears in [Zyw16, Sec. 1].

Lemma 8.1: Let K be a finitely generated extension of Q and A an abelian variety

over K of positive dimension g. Let L, n, r be as in Proposition 4.1. Let Λ be the set of

prime numbers of positive Dirichlet density introduced in Subsection 7.3. Then, there

exists a positive real number c such that after deleting finitely many elements from Λ,

the following hold:

(a) For all l ∈ Λ and β ∈ Gal(K) we have

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|
|ρA,l(βGal(L))|

≥ c

l
.

(b) The family (L(Al))l∈L of Galois extensions of L is linearly disjoint.

Proof: Statement (b) holds by virtue of Proposition 4.1(b) and Remark 2.3, so we only

have to prove (a).

We consider an element β ∈ Gal(K) and the conjugacy class C of Gal(L/K) that

contains β|L. Then β(C) = β satisfies (3c) in Subsection 7.3. Let p(C) be the chosen

element of Max(R) that satisfies (3b) in Subsection 7.3. Next we consider l ∈ Λ and

use Lemma 7.5(a) to choose a point b ∈ ρA,l(βGal(L)) ∩ ρA,l
(L(Al)/K

p(C)

)
.

By Lemma 7.5(c) and Lemma 7.10,

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|(1)

≥ 1

(n!)r

∑
T∈Tl

|{t ∈ T (Fl) | det(1− btn!) = 0, tn! ∈ Hl,ssreg}|

≥ 1

(n!)r

∑
T∈Tl

(lr−1 − c5lr−
3
2 ) ,

where c5 is a positive constant that does not depend on l.

We consider T ∈ Tl. Since Hl is a reductive group (Proposition 4.1), T coincides

with its centralizer in Hl [Bor91, p. 175, Cor2(c)]. Hence, denoting the normalizer of
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T in Hl by N , we get that WHl = N/T is the Weyl group of Hl. It follows that the

subgroup Nl = {h ∈ Hl(Fl) | Th = T} of Hl(Fl) satisfies Nl/T (Fl) ≤ WHl .

By Subsection 4.2, all elements of Tl are conjugate in Hl(Fl) and |T (Fl)| = (l−1)r.

Hence,

|Tl| =
|Hl(Fl)|
|Nl|

=
|Hl(Fl)|

(Nl : T (Fl))|T (Fl)|
=

|Hl(Fl)|
(Nl : T (Fl))(l − 1)r

≥ |Hl(Fl)|
|WHl |(l − 1)r

.

Therefore, by (1),

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|(2)

≥ 1

(n!)r
|Hl(Fl)|(lr−1 − c5lr−

3
2 )|

|WHl |(l − 1)r
.

Note that

lr−1 − c5lr−
3
2

(l − 1)r
=
lr−1(1− c5l−

1
2 )

(l − 1)r
≥ lr−1(1− c5l−

1
2 )

lr
=

1− c5l−
1
2

l
.

Therefore, by (2),

(3) |{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}| ≥ 1

(n!)r
|Hl(Fl)|(1− c5l−

1
2 )

|WHl | · l
.

Using the relations |Hl(Fl)| ≥ |ρA,l(Gal(L))| = |ρA,l(βGal(L))|, we get from (3) that

(4)
|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|

|ρA,l(βGal(L))|
≥ 1

(n!)r|WHl
|

1− c5l−
1
2

l
.

By [Zyw16, end of Subsection 3.2], there exists a positive constant c7 such that |WHl | ≤

c7 for all l ∈ L. Hence, using (4), we get for c = 1
2(n!)rc7

, that for each l ∈ Λ with

l ≥ (2c5)2, we have

|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|
|ρA,l(βGal(L))|

≥ c

l
,

as claimed.

This allows us to prove our main result:
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Theorem 8.2: Let K be a finitely generated extension of Q and A an abelian variety

over K of positive dimension. Then, for almost all σ ∈ Gal(K) there are infinitely many

prime numbers l such that Al(K̃(σ)) 6= 0.

Proof: Let L and Λ be as in Lemma 8.1. Let µK be the normalized Haar measure of K

and for each β ∈ Gal(K) let µL,β be the measure of the space βGal(L) defined for each

measurable set B of Gal(K) which is contained in βGal(L) by µL,β(B) = [L : K]µK(B).

In particular, µL = µL,1 is the normalized Haar measure of Gal(L). Since µK is a Haar

measure, the map τ 7→ β−1τ is a measure preserving homeomorphism from βGal(L)

onto Gal(L).

For l ∈ L let Uβ,l = {σ ∈ βGal(L) | det(1− ρA,l(σ)) = 0}. The condition det(1−

ρA,l(σ)) = 0 holds if and only if 1 is an eigenvalue of ρA,l(σ). The latter condition is

equivalent to the existence of a non-zero point a of Al(K̃) such that σa = a. It follows

that Uβ,l = {σ ∈ βGal(L) | Al(K̃(σ)) 6= 0}.

By definition, β−1Uβ,l ⊆ Gal(L) and (ρA,l|Gal(L))
−1(ρA,l(β

−1Uβ,l)) = β−1Uβ,l.

Let c be the constant mentioned in Lemma 8.1. Then, by (a) of that lemma,

µL,β(Uβ,l) = µL(β−1Uβ,l) =
|ρA,l(β−1Uβ,l)|
|ρA,l(Gal(L))|

=
|ρA,l(Uβ,l)|
|ρA,l(βGal(L))|

(5)

=
|{h ∈ ρA,l(βGal(L)) | det(1− h) = 0}|

|ρA,l(βGal(L))|
≥ c

l
.

Now let Uβ be the set of all σ ∈ βGal(L) that belong to infinitely many of the

sets Uβ,l with l ∈ Λ. Since the Dirichlet density of Λ is positive, (5) implies that∑
l∈Λ µL(β−1Uβ,l) ≥

∑
l∈Λ

c
l = ∞ [FrJ08, first paragraph of Sec. 6.3]. It follows from

(b) of Lemma 8.1 and from Borel-Cantelli [FrJ08, Lemma 18.3.4] that the set of all

σ ∈ Gal(L) that belong to infinitely many sets β−1Uβ,l has µL-measure 1. Hence, by

the first paragraph of the proof, µL,β(Uβ) = 1.

Finally, we choose a set of representatives B for Gal(K) modulo Gal(L). Thus,

Gal(K) =
⋃
· β∈B βGal(L) and |B| = [L : K]. Moreover, since Uβ ⊆ βGal(L), the

sets Uβ,l, where β ranges over B, are disjoint. Therefore, by the preceding paragraph,

µK(
⋃
· β∈B Uβ) =

∑
β∈B µK(Uβ) =

∑
β∈B

µL,β(Uβ)
[L:K] =

∑
β∈B

1
[L:K] = |B|

[L:K] = 1. By the

definition of the Uβ ’s, for each element of
⋃
β∈B Uβ there are infinitely many l ∈ Λ with
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Al(K̃(σ)) 6= 0. Hence, the set of all σ ∈ Gal(K) for which there exist infinitely many

l ∈ L with Al(K̃(σ)) 6= ∅ has µK-measure 1, as claimed.
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