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Introduction

A field K is said to be PAC (pseudo algebraically closed) if every absolutely ir-

reducible variety V defined over K (i.e. a geometrically integral K-scheme) has a K-

rational point. Here and throughout the paper we use K̃ to denote a fixed algebraic

closure of K.

The notion of PAC fields has been introduced in [Ax68] (although not by this

name) in connection with the decidability of the elementary theory of finite fields. Each

countable Hilbertian field K has an abundance of separable algebraic extensions of K

which are PAC. Indeed, for each positive integer e and for almost all σ ∈ Gal(K)e,

the fixed field Ks(σ) is PAC [FrJ08, Thm. 18.6.1]. Here Ks is the separable algebraic

closure of K, Gal(K) = Gal(Ks/K) is the absolute Galois group of K, “almost all” is

meant in the sense of the Haar measure of Gal(K)e with respect to its Krull topology,

and Ks(σ) is the fixed field in Ks of the coordinates of σ = (σ1, . . . , σe).

Chapter 11 of [FrJ08] gives an extensive treatment of PAC fields. In particular,

it points out that if K is PAC, then V (K) is Zariski dense in V (K̃) for each absolutely

irreducible variety V defined over K [FrJ08, p. 192, Prop. 11.1.1] and asks whether

V (K) is even v-dense in V (K̃) for each valuation v of K̃ [FrJ05, Problem 11.5.4]. If this

happens, we say that K has the density property.

The latter problem goes back to [GeJ75, Problem 1], where the following theorem

is proved: Let K be a countable Hilbertian field and e a positive integer. Then for every

valuation v of K̃, for almost all σ ∈ Gal(K)e, and for every absolutely irreducible variety

V defined over K, the set V (Ks(σ)) is v-dense in V (K̃) [GeJ75, Thm. 6.2]. Note that

the order of the quantifiers “for every valuation v” and “for almost all σ ∈ Gal(K)e” can

not be exchanged without a substantial argument, because K̃ has in general uncountably

many valuations. That argument is supplied in [FrJ76], where the “stability of PAC

fields” is proved [FrJ76, Thm. 3.4]. As a result, it is proved that Ks(σ) has the density

property for almost all σ ∈ Gal(K)e.

For a general PAC fieldK and an arbitrary valuation v of K̃, Prestel proved thatK

is v-dense in K̃ [FrJ08, p. 204, Prop. 11.5.3]. The proof is based on the observation that if

f ∈ K[X] is a nonconstant separable polynomial and c ∈ K×, then f(X1)f(X2)−c2 is an
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absolutely irreducible polynomial. Thus, there exist x1, x2 ∈ K with f(x1)f(x2) = c2,

so v(f(x1)) ≥ v(c) or v(f(x2)) ≥ v(c).

János Kollár refined Prestel’s trick and proved that every PAC field has the density

property [Kol07, Thm. 2]. Using the stability property of PAC fields with an extra

condition (which Kollár proves), he reduces the theorem to proving that if K is a PAC

field and f ∈ K[X,Y ] is an absolutely irreducible polynomial which is Galois in Y , then

one can approximate each zero (0, b̃) ∈ K̃2 of f by a zero (a, b) ∈ K2. The main point

is to find c ∈ K× with v(c) large such that the algebraic set defined by f(X1, Y1) = 0,

f(X2, Y2) = 0, and X1X2 = c2 is an absolutely irreducible variety defined over K. This

is done by using a lemma of Enriques-Severi-Zariski followed by smoothness arguments.

The first goal of this note is to give a self contained presentation of Kollár’s proof.

Then we present Abraham Robinson’s proof that the theory of non-trivial algebraically

closed valued field is model complete. Finally, we apply the density property of PAC

fields and Robinson’s result to prove that the elementary theory of PAC valued fields,

in an appropriate first order language, is itself model complete. Moreover, it admits

elimination of quantifiers.

Acknowledgement: The authors are indebted to Dan Haran for a useful discussion

on the subject and to Aharon Razon for a critical reading of the manuscript.

1. Convention

We follow [Wei62, Section I.1] and choose a universal extension f of K that contains

the algebraic closure K̃ of K. Thus, f is an algebraically closed field containing K̃ with

trans.deg(f/K) = ∞. For each non-negative integer n and every field K ⊆ L ⊆ f

we follow the classical algebraic geometry and consider An(L) as the set of all points

a = (a1, . . . , an) with coordinates a1, . . . , an ∈ L. Likewise we consider Pn(L) as the

set of all points a = (a0:a1: · · · :an) which are, as usual, equivalence classes of (n + 1)-

tuples (a0, a1, . . . , an) of elements of f modulo multiplication by a non-zero element

of f such that there exists 0 ≤ i ≤ n with ai ̸= 0 and
aj

ai
∈ L for j = 0, . . . , n. In

this case K
(
a0

ai
, a1

ai
, . . . , an

ai
) is the residue field of a. The elements a0, a1, . . . , an are

homogeneous coordinates of a.
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Next we consider the affine n-dimensional space An
K = Spec(K[X1, . . . , Xn])

over K and the projective n-dimensional space Pn
K = Proj(K[X0, . . . , Xn]) over

K. We say that V is an absolutely irreducible variety in An
K (resp. Pn

K) defined

over K, if V is a Zariski-closed subscheme of An
K (resp. Pn

K) such that the scheme

V ×K f obtained from V by extending the field of scalars from K to f is integral.

Equivalently, V ×K K̃ is an integral scheme.

If V = Spec(K[X1, . . . , Xn]/I) (resp. V = Proj(K[X0, . . . , Xn]/I)) is an abso-

lutely irreducible variety in An
K (resp. Pn

K) defined over K, then for each field K ⊆ L ⊆

f, we consider V (L) as the set of all zeros a ∈ An(L) (resp. a ∈ Pn(L)) of I. Note

that there is a natural bijective correspondence between V (L) and MorK(Spec(L), V ).

In particular, we may identify each point a ∈ V (K) with a unique scheme theoretic

K-rational point of V (i.e. a point of V whose residue field is K).

A point x ∈ V (f) is a generic point of V over K if the field F = K(x) is

regular over K and trans.deg(F/K) = dim(V ). In this case, F is the function field

of V over K. Note that F is unique up to a K-isomorphism. Moreover, it is always

possible to choose the homogeneous coordinates of x in F . Indeed, if in the projective

case x = (x0: · · · :xn) and xi ̸= 0, then F = K(x−1
i x0, , . . . , x

−1
i xn).

With this notation, a reduced closed subscheme V of An
K is an absolutely irre-

ducible variety in An
K defined over K if and only if the scheme V ×K f (alternatively

V ×K K̃) is irreducible and the ideal of f[X1, . . . , Xn] (alternatively K̃[X1, . . . , Xn]) of

all polynomials that vanish on V (f) (alternatively V (K̃)) is generated by polynomials

with coefficients in K.

Note that if p = char(K) > 0, a ∈ K has no pth root in K, and we set V =

Spec(K[X]/K[X](Xp−a)), then V (K̃) consists of one point, namely p
√
a. In particular

VK̃ is irreducible. However, the polynomial X − p
√
a vanishes on V (K̃) but does not

belong to K̃[X](Xp − a), so V is not an absolutely irreducible variety in A1
K defined

over K.

A reduced closed subscheme V of Pn
K is an absolutely irreducible variety in

Pn
K which is defined over K if and only if each of the standard affine open subsets

of V is an absolutely irreducible variety in An
K defined over K.
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By [FrJ08, p. 175, Cor. 10.2.2(a)] or [GoW10, p. 136, Prop. 5.51], a reduced

irreducible closed subscheme V of An
K or Pn

K is an absolutely irreducible variety which

is defined over K if and only if the function field F of V is a regular extension of K,

i.e. K is algebraically closed in K and F/K is separable.

Thus, our definition of an “absolutely irreducible variety in An
K (resp. Pn

K) defined

over K” is equivalent to the definition of the same notion in the classical language of

algebraic geometry (see also [FrJ08, Sec. 10.2]).

For each absolutely irreducible variety V defined over K we write Ṽ for the variety

V ×K K̃ obtained from V by extending the base field from K to K̃. We also say that

Ṽ is defined over K. If φ: V → W is a morphism of absolutely irreducible varieties

defined over K and L is a field extension of K in f, we abuse notation and write

φ: V (L) →W (L) also for the set theoretic map induced from the morphism φ. Finally

we write φ̃: Ṽ → W̃ for the morphism obtained from φ by extending the base field from

K to K̃.

2. Conics in P1
K × P1

K

We consider the direct product P1
K × P1

K of two copies of the projective line over an

arbitrary field K, define a pencil of conics in that space, and then blow it up at two

points.

2.1 The Conics Ha. We consider two copies of P1
K , one with homogeneous coor-

dinates (X0:X1) and the other one with homogeneous coordinates (Y0:Y1). For each

a = (a0:a1) ∈ P1(K̃) we associate the conic H̃a in P1
K̃

× P1
K̃

defined by the bi-

homogeneous equation

(1) a1X0Y0 = a0X1Y1.

If a ∈ P1(K), we denote by Ha the conic in P1
K × P1

K defined by (1). In this case we

also have a ∈ P1(K̃) and H̃a = Ha ×K K̃, in accordance with our convention.

The scheme P1 × P1 is covered by the open subsets

U ij = {(x,y) ∈ P1 × P1 | xiyj ̸= 0}, i, j = 0, 1
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which are isomorphic to the affine plane A2 with the affine coordinates Xi′ =
Xi′
Xi

and

Yj′ =
Yj′

Yj
, where {i, i′} = {j, j′} = {0, 1}. Therefore, the conic H̃a is covered by the

open affine subsets H̃ij
a = U ij ∩ H̃a for i, j = 0, 1. As subsets of A2 the latter subsets

are defined by the following equations:

(2)
H̃00

a : a1 = a0X1Y1, H̃01
a : a1Y0 = a0X1

H̃10
a : a1X0 = a0Y1, H̃11

a : a1X0Y0 = a0.

Thus, H̃ij
a is a line or a hyperbola. Hence,

(3) if a ∈ P1(K̃) is not in the set B = {(1:0), (0:1)} of the base points of P1, i.e. if

a0a1 ̸= 0, then H̃a is a smooth absolutely irreducible curve defined over K(a).

The origins of the affine planes U01 and U10 are the points

q1 = ((1:0), (0:1)), respectively q2 = ((0:1), (1:0)),

which are the only points (x,y) ∈ P1 × P1 with x0y0 = 0 = x1y1. They satisfy:

(4) For each a ∈ P1(K̃) we have q1,q2 ∈ H̃a. Moreover, if a /∈ B, then the slope of the

tangent of H̃a at q1 (resp. q2) is
a0

a1
(resp. a1

a0
) if a1 ̸= 0 (resp. a0 ̸= 0).

(5) The conic H̃(1:0) is defined by the equation X1Y1 = 0. Let L1 = (1:0)× P1
K̃

be the

line defined by X1 = 0 and L2 = P1
K̃
× (1:0) be the line defined by Y1 = 0. Then L1

goes through q1, L2 goes through q2, H̃(1:0) = L1 ∪ L2, and both lines go through

((1:0), (1:0)) which is therefore a node of H̃(1:0) and actually its only singular point.

(6) The conic H̃(0:1) is defined by the equation X0Y0 = 0. Let L′
1 = (0:1)× P1

K̃
be the

line defined by X0 = 0, L′
2 = P1

K̃
× (0:1) be the line defined by Y0 = 0. Then L′

1

goes through q2, L
′
2 goes through q1, H̃(0:1) = L′

1 ∪ L′
2, and both lines go through

((0:1), (0:1)) which is therefore a node of H̃(0:1) and actually its only singular point.

Summing up the information about the tangents of the H̃a’s at q1 and q2, we

have:

(7) Let i ∈ {1, 2}. If a and a′ are distinct points of P1(K̃), then the tangents of H̃a and

H̃a′ at qi are distinct. Moreover, as a ranges over all points of P1(K̃), the tangents

of H̃a at q1 (resp. q2) form the full pencil of lines through q1 (resp. q2) in U01

(resp. in U10).
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(8) If a ̸= a′, then q1 and q2 are the only points of intersection of H̃a and H̃a′ .

Indeed, suppose q ∈ H̃a ∩ H̃ ′
a with q = ((x0:x1), (y0:y1)) ̸= q1,q2 and a ̸= a′.

Then,

(8a) a1x0y0 = a0x1y1 and a′1x0y0 = a′0x1y1,

and

(8b) x0y0 ̸= 0 or x1y1 ̸= 0 (otherwise x0 = y1 = 0 and q = q2 or y0 = x1 = 0 and

q = q1).

If a,a′ /∈ B, then a1

a0
x0y0 =

a′
1

a′
0
x0y0 and a0

a1
x1y1 =

a′
0

a′
1
x1y1, hence a = a′. If

a = (1:0), then x1y1 = 0 and a′1 ̸= 0, so x0y0 = 0 in contrast to (8b). If a = (0:1), then

x0y0 = 0 and a′0 ̸= 0, so x1y1 = 0, in contrast to (8b). Similarly, the assumption a′ ∈ B

contradicts (8b).

(9) P1(K̃)× P1(K̃) =
∪

a∈P1(K̃) H̃a(K̃).

Indeed, if ((x0:x1), (y0:y1)) ̸= q1,q2, then x0y0 ̸= 0 or x1y1 ̸= 0. Hence, the

equality (x1y1)x0y0 = (x0y0)x1y1 implies that ((x0:x1), (y0:y1)) ∈ H̃(x0y0:x1y1). This

together with (8) proves (9).

Lemma 2.2: Let φ: H ′ → H be a birational surjective morphism of a curve H ′ onto a

normal curve H over K̃. Then φ is an isomorphism.

Proof: Let F be the common field of functions of H and H ′ over K̃. Consider p′ ∈

H ′(K̃) and let p = φ(p′). Then OH,p ⊆ OH′,p′ ⊂ F . By assumption, OH,p is a discrete

valuation ring and OH′,p′ a proper local ring of F . Hence, OH,p = OH′,p′ . Therefore,

φ is an isomorphism.

2.3 Blowing up. We blow up P1
K × P1

K at the set {q1,q2} to obtain a surface S in

(P1
K × P1

K)× P1
K × P1

K such that the projection σ: S → P1
K × P1

K on the first factor is

a birational projective K-morphism, (the second factor P1
K comes from blowing up at

q1, and the third factor P1
K comes from blowing up at q2). The morphism σ has the

following properties [Mum88, pp. 219-225]:

(10a) S is an absolutely irreducible surface defined over K. We set S̃ = S ×K K̃ but

use σ to denote also the map S̃ → P1
K̃
× P1

K̃
obtained by extending the base field

from K to K̃. Note that S̃(K̃) can be naturally identified with S(K̃).

6



(10b) The restriction of σ to Srσ−1({q1,q2}) is an isomorphism onto P1
K×P1

K
r{q1,q2}.

In particular, over each point (a,a′) ∈ P1(K̃) × P1(K̃) not in {q1,q2} there lies

a unique point of S(K̃) which we also denote by (a,a′).

(10c) For i = 1, 2, the fiber σ−1(qi) is of dimension 1, indeed the fiber is isomorphic to

P1
K .

(10d) For each a ∈ P1(K̃) let H ′
a be the Zariski-closure in S̃ of σ−1(H̃a r{q1,q2}).

Then σ maps H ′
a isomorphically onto H̃a.

Proof of (10d): Since σ is a morphism, it is Zariski-continuous. Hence, using a bar to

denote the Zariski-closure, we have

σ(H ′
a) = σ

(
σ−1(H̃a r{q1,q2})

)
⊆ σ(σ−1(H̃a r{q1,q2})) = H̃a − {q1,q2} = H̃a.

Since σ is projective, it is closed [Liu06, p. 108]. Hence, σ(H ′
a) is a Zariski-closed subset

of H̃a. Since H̃a r{q1,q2} ⊆ σ(H ′
a), we get that σ(H ′

a) = H̃a. Further, since by (10b)

σ maps σ−1(H̃a r{q1,q2}) isomorphically onto H̃a r{q1,q2}, σ maps H ′
a birationally

onto H̃a.

If a ̸= (0:1), (1:0), then, by (3), H̃a is smooth, hence normal. By Lemma 2.2, σ

maps H ′
a isomorphically onto H̃a.

If a = (1:0), then by (5), H̃a is defined in P1
K̃

× P1
K̃

by the equation X1Y1 = 0.

Thus, H̃a = L1 ∪ L2, where L1 is the line defined by X1 = 0 and L2 is the line defined

by Y1 = 0. For i = 1, 2 consider the closed set L′
i = σ−1(Li) ∩H ′

a. Since Li is smooth,

we have as in the previous case that σ maps L′
i isomorphically onto Li. Next note that

the point L1 ∩ L2 = ((1:0), (1:0)) (see (5)) is different from q1 and from q2. Since σ

is an isomorphism beyond σ−1({q1,q2}), σ maps H ′
a = L′

1 ∪ L′
2 isomorphically onto

H̃a = L1 ∪ L2.

The case where a = (0:1) is symmetric to the case where a = (1:0).

(11) S(K̃) =
∪
· a∈P1(K̃)H

′
a(K̃).

Proof of (11): By the second part of (7), the lines σ−1(q1) and σ
−1(q2) are contained

in the right hand side of (11). Taking the inverse images of (9) under σ and using

(10d), we have that S(K̃) =
∪

a∈P1(K̃)H
′
a(K̃). It remains to prove that the union
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is disjoint. To this end let i ∈ {1, 2} and note that since qi is a simple point of

P1(K)×P1(K), σ−1(qi) is isomorphic to the projectivised tangent cone of P1
K ×P1

K at

that point [Mum88, p. 225 (V.)]. Let i ∈ {1, 2} and let a,a′ be distinct points of P1(K̃).

Then, H ′
a(K̃)∩σ−1(qi)(K̃) andH ′

a′(K̃)∩σ−1(qi)(K̃) are points of S(K̃) that correspond

under that isomorphism to the tangents of H̃a and H̃a′ , respectively, at qi. By (7), those

tangents are distinct. Hence, H ′
a(K̃) ∩H ′

a′(K̃) ∩ σ−1({q1,q2})(K̃) = ∅. Since, by (8),

H̃a(K̃)∩H̃a′(K̃) = {q1,q2}, it follows from (10b) that H ′
a(K̃)∩H ′

a′(K̃) = ∅, as claimed.

(12) For each a ∈ P1(K̃), the projection π of S̃ on the second factor P1
K̃

of

(P1
K̃
× P1

K̃
)× P1

K̃
× P1

K̃
is an epimorphism that maps each H ′

a onto a.

Proof of (12): The affine (Y0, X1)-plane A = U01 is a Zariski-open neighborhood of

q1 in P1
K̃
×P1

K̃
. By (2), the intersection H̃01

a = H̃a ∩A is defined by a1Y0 = a0X1. The

blow up of A at q1 is the subset A′ of A × P1
K̃

defined by the equation Z1Y0 = Z0X1,

where (Z0:Z1) are the homogeneous coordinates of P1
K̃
. Let π1: A × P1

K̃
→ P1

K̃
be the

projection on the second factor. Then, π−1
1 (a)∩A′ = H̃01

a . Since the blow up of P1
K×P1

K

is done in two stages, first in q1 and then in the inverse image of q2 (which we identify

with q2) and since q2 /∈ A(K̃), we have π(σ−1(H̃01
a )) = a. By the Zariski-continuity of

π, we have π(H ′
a) = a, as claimed.

Since, by (11), the H ′
a are disjoint,

(13) π−1(a) = H ′
a.

3. Irreducible Curves

Let K̃ be a fixed algebraic closure of a field K, D̃ a smooth projective irreducible curve

over K̃, and φ̃: D̃ → P1
K̃

a surjective morphism. Given a morphism α: X → Y of

schemes and a point y ∈ Y , we say that α is smooth over y if α is smooth at each

x ∈ X with α(x) = y. With this terminology, we assume

(1) φ̃ is smooth over (0:1).

As in Section 2 we consider two copies of P1
K̃

with respective homogeneous coor-

dinates (X0:X1) and (Y0:Y1). For each a = (a0:a1) ∈ P1(K̃) we consider the conic H̃a

defined in P1
K̃

× P1
K̃

by the equation a1X0Y0 = a0X1Y1. Let δ̃: D̃ × D̃ → P1
K̃

× P1
K̃

be
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the product φ̃ × φ̃ and consider the inverse image Ĩa = δ̃−1(H̃a). By [AlK70, p. 129,

Prop. 1.7(d)],

(2a) δ̃: D̃ × D̃ → P1
K̃
× P1

K̃
is smooth over ((0:1), (0:1)).

Since D̃ is a smooth projective curve and φ̃: D̃ → P1
K̃

is a surjective morphism, φ̃

is finite (see [Sha77, p. 122, Thm. 11] or [Har77, p. 137, Prop. 6.8]). Since the property of

being finite is stable under composition and base change [GoW, p. 325, Prop. 12.11(3)],

(2b) δ̃ is a finite morphism, hence proper [GoW10, p. 325, Prop. 12.12].

Since dim(H̃a) = 1, it follows from (2b) that dim(Ĩa) = 1. By (9) of Section 2,

D̃(K̃)× D̃(K̃) =
∪

a∈P1(K̃) Ĩa(K̃).

Lemma 3.1: For all a ∈ P1(K̃)r{(0:1), (1:0)}, Ĩa is a connected scheme.

Proof: First we note that

(3) each of the conics H̃a, with a = (a0:a1) ∈ P1(K̃)r{(0:1), (1:0)}, considered as an

irreducible divisor of P1
K̃
× P1

K̃
, is very ample.

To this end we consider the Segre embedding s: P1
K̃

× P1
K̃

→ P3
K̃

given by

s((x0:x1), (y0:y1)) = (z0:z1:z2:z3), where z0 = x0y0, z1 = x0y1, z2 = x1y0, and

z3 = x1y1. Then s is a closed immersion onto a closed subsurface P of P3
K̃

[GoW10,

p. 112, Prop. 4.39]. Hence, s induces an isomorphism of OP (1) represented by the di-

visor Pa of P3
K̃

defined by the linear equation a1Z0 = a0Z3 onto the invertible sheaf La

of P1
K̃
× P1

K̃
corresponding to H̃a. By definition, H̃a is very ample [Har77, p. 120, Def.

and p. 307].

By (3) and by definition [Har77, p. 307], H̃a is an effective ample divisor. By

(2b) and [Har77, p. 232, Exer. 5.7(d)], Ĩa = δ̃−1(H̃a) is an effective ample divisor of

D̃× D̃. By assumption, D̃× D̃ is an integral smooth (hence normal) projective variety.

It follows from a Lemma of Enriques-Severi-Zariski [Har77, p. 244, Cor. 7.9] that Ĩa is

connected.

Remark 3.2: Singular points. Let κ: X → Y be a morphism of finite type between

schemes of finite type over the algebraically closed field K̃. We set

Sing(κ) = {x ∈ X | κ is not smooth at x}.
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By [Gro64, 6.8.7] or [Liu06, p. 224, Cor. 2.12], Sing(κ) is a closed subset of X. If

λ: Y → Z is another morphism of finite type between schemes of finite type over K̃,

then

(4) Sing(λ ◦ κ) ⊆ Sing(κ) ∪ κ−1(Sing(λ)),

because composition of smooth morphisms is smooth [Liu06, p. 143, Prop. 3.38]. If

Y = Spec(K̃), then Sing(X) = Sing(κ) is the set of singular points of X. Applying

the equivalent definition of smoothness given by [Liu06, p. 142, Definition 3.35], we find

that

(5) Sing(κ) =
∪
y∈Y

Sing(κ−1(y))

if κ is flat.

Lemma 3.3: For almost all a ∈ P1(K̃), Ĩa is a smooth scheme.

Proof: As in Section 2, we consider the points q1 = ((1:0), (0:1)) and q2 = ((0:1), (1:0))

of P1(K̃)×P1(K̃). As in Subsection 2.3, let S be the closed K̃-subsurface of (P1
K̃
×P1

K̃
)×

P1
K̃
×P1

K̃
obtained by blowing up P1

K̃
×P1

K̃
at the set {q1,q2}, let σ: S → (P1

K̃
×P1

K̃
) be

the projection on the first factor, and π: S → P1
K̃

the projection on the second factor.

Both morphisms are projective, hence proper [Liu06, p. 108, Thm. 3.30]. Now we break

up the rest of the proof into several parts.

Part A: A commutative diagram. Let T = (D̃×D̃)×(P1
K̃
×P1

K̃
)S be the fibred product

of δ̃ and σ. Let τ : T → S be the projection on the second factor and let πT = π ◦ τ .

Since δ̃ is proper (by (2b)), so is τ [Liu06, p. 104, Cor. 3.16(c)]. Since also π is proper,

(6) πT = π ◦ τ is also proper [Liu06, p. 104, Cor. 3.16(b)].

By (11) of Section 2, S(K̃) =
∪
· a∈P1(K̃)H

′
a(K̃), where H ′

a is a curve on S that

σ maps isomorphically onto H̃a. For each a ∈ P1(K̃) let I ′a = τ−1(H ′
a) = Ĩa ×H̃a

H ′
a.

Then, T (K̃) =
∪
· a∈P1(K̃) I

′
a(K̃). Moreover, by (13) of Section 2, π−1(a) = H ′

a, so with

πT = π ◦ τ , we have

(7) π−1
T (a) = τ−1(π−1(a)) = τ−1(H ′

a) = I ′a for each a ∈ P1(K̃).
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This gives a commutative diagram

(8)
∪

a∈P1(K̃) Ĩa =D̃ × D̃

δ̃

��

T =
∪
· a∈P1(K̃) I

′
a

τ

��

σToo πT // P1
K̃

∪
a∈P1(K̃) H̃a =P1

K̃
× P1

K̃
S =

∪
· a∈P1(K̃)H

′
a

σoo π // P1
K̃

,

where the left square is cartesian. By (2b), δ̃ is finite. Since finiteness of morphisms is

preserved under base change [GoW10, p. 325, Prop. 12.11(2)],

(9) τ is a finite morphism.

Since dim(P1
K̃
) = 1 and P1

K̃
is smooth, P1

K̃
is a Dedekind scheme. In addition π is

not a constant map. Since σ is birational, S is integral, so by [Liu06, p. 137, Cor. 3.10],

(10) π is flat.

Similarly, since σT is birational, T is integral, so by [Liu06, p. 137, Cor. 3.10],

(11) πT = π ◦ τ is flat.

Part B: Finiteness of τ−1(Sing(π)). By (10) and (5), and by (13) of Section 2,

(12) Sing(π) =
∪

a∈P1(K̃)

Sing(π−1(a)) =
∪

a∈P1(K̃)

Sing(H ′
a).

Let a ∈ P1(K̃). By (10d) of Section 2, H ′
a
∼= H̃a. By (3) of Section 2, H̃a is smooth if

a ̸= (1:0), (0:1), so Sing(H ′
a) is empty. By (5) and (6) of Section 2, each of the conics

H(1:0) and H(0:1) has a unique singular point. It follows from (12) that Sing(π) is finite.

By (9), the set τ−1(Sing(π)) is finite.

Part C: Finiteness of πT (Sing(πT ) ∩ Sing(τ)). Let a ∈ P1(K̃). By (10d) of Section

2, the morphism σ maps H ′
a isomorphically onto H̃a. Since the diagram

δ̃−1(H̃a) =Ĩa

δ̃a
��

I ′a = τ−1(H ′
a)

τa

��

σT,aoo

H̃a H ′
a ,

σaoo

where the arrows are the corresponding restrictions of the arrows of the left square of

Diagram (8), is cartesian,
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(13) σT,a maps I ′a isomorphically onto Ĩa.

By (6) of Section 2, H̃(0:1) = ((0:1)×P1
K̃
)∪ (P1

K̃
× (0:1)). Therefore, by (13), I ′(0:1)

is isomorphic to I(0:1) = (φ̃−1((0:1)) × D̃) ∪ (D̃ × φ̃−1((0:1)). Since D̃ is smooth, the

latter scheme is smooth except for nodes lying over the intersection point of the two

components of H̃(0:1), namely over ((0:1), (0:1)). Therefore, using Convention (10b) of

Section 2,

(14) τ(Sing(I ′(0:1))) = {((0:1), (0:1))}.

By (13) of Section 2, π−1((0:1)) = H ′
(0:1). Hence,

(15) π−1
T ((0:1)) = τ−1(π−1((0:1))) = τ−1(H ′

(0:1)) = I ′(0:1).

Therefore, by (11) and (5),

Sing(I ′(0:1)) = Sing(π−1
T ((0:1))) = Sing(πT ) ∩ I ′(0:1).

It follows by (14) that

(16) τ(Sing(πT ) ∩ I ′(0:1)) = τ(Sing(I ′(0:1))) = {((0:1), (0:1))}.

On the other hand, by (2a), δ̃ is smooth over ((0:1), (0:1)), so by [Liu06, p. 143,

Prop. 3.38], τ is also smooth over the point ((0:1), (0:1)) of S (Convention (10b) of

Section 2). In other words,

(17) τ−1(((0:1), (0:1))) ∩ Sing(τ) = ∅.

It follows from (16) and (17) that

(18) Sing(πT ) ∩ Sing(τ) ∩ I ′(0:1) = ∅.

By (6), πT is proper. By Remark 3.2, Sing(πT ) ∩ Sing(τ) is closed in T . Hence,

the set πT (Sing(πT ) ∩ Sing(τ)) is closed in P1
K̃
. Therefore, πT (Sing(πT ) ∩ Sing(τ)) is

either P1
K̃

or a finite set. In the former case, each point in I ′(0:1) = π−1
T ((0:1)) (see (15))

lies in Sing(πT ) ∩ Sing(τ) ), which contradicts (18). Therefore,

(19) the set πT (Sing(πT ) ∩ Sing(τ)) is finite.
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Part D: Finiteness of πT (Sing(πT )). Now note by (4) that Sing(πT ) = Sing(π ◦ τ) ⊆

Sing(τ) ∪ τ−1(Sing(π)). Hence,

πT (Sing(πT )) ⊆ πT (Sing(πT ) ∩ Sing(τ)) ∪ πT (τ−1(Sing(π))).

It follows from (19) and the finiteness of τ−1(Sing(π)) (Part B) that πT (Sing(πT )) is

finite.

Part E: End of proof. We consider a ∈ P1(K̃)rπT (Sing(πT )). By (7), π−1
T (a) = I ′a.

Hence, I ′a is smooth. By (13), I ′a is isomorphic to Ĩa. Hence, Ĩa is smooth. It follows

from Part D that Ĩa is smooth for almost all a ∈ P1(K̃), as claimed.

Since normal (in particular, smooth) connected K̃-schemes of finite type are irre-

ducible (e.g. [GoW10, p. 168, Exer. 6.20]), a combination of Lemma 3.1 and Lemma 3.3

yields the following result:

Corollary 3.4: For almost all a ∈ P1(K̃), Ĩa is an irreducible smooth curve.

4. The Open Mapping Theorem

As in Section 2, we fix an algebraic closure K̃ of a field K. We also fix a valuation v of

K̃ and prove an open map theorem for varieties over K̃ in the v-topology.

Our proof is based on a theorem about the continuity of roots for not necessarily

separable polynomials. A convenient reference is [Jar91, Prop. 12.2].

Lemma 4.1: Let p(X) =
∏n

i=1(X − ai) be a monic polynomial with coefficients in

K̃. Then, for each c ∈ K̃× there exists c′ ∈ K̃× such that if q ∈ K̃[X] is a monic

polynomial of degree n and v(q − p) > v(c′), then q(X) may be presented as a product

q(X) =
∏n

i=1(X − bi) such that v(bi − ai) > v(c) for i = 1, . . . , n.

Here and throughout we write v
(∑n

i=0 ciX
i) > v(b) for c0, . . . , cn ∈ K̃ and b ∈ K̃×

as an abbreviation for “v(ci) > v(b) for i = 0, . . . , n.”

Lemma 4.2: Let V be a vector space of finite dimension d over an infinite field K0.

Then V has an infinite subset V0 such that every subset of V0 of cardinality d is a basis

of V .
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Proof: By assumption, V has a subset of cardinality d which is a basis of V . Inductively

suppose that U is a finite subset of V with e ≥ d elements such that every subset

of U of cardinality d is a basis of V . We denote the collection of all subsets of U

of cardinality d − 1 by U . By assumption, for each U0 ∈ U the dimension of the

subspace
∑

u∈U0
K0u of V is d − 1, so that subspace is properly contained in V . It

follows that also
∪

U0∈U
∑

u∈U0
K0u is a proper subset of V . We choose an element v ∈

V r∪
U0∈U

∑
u∈U0

K0u. Then, for each U0 ∈ U we have dim(K0v +
∑

u∈U0
K0u) = d,

so {v} ∪ U0 is a basis of V . Consequently, every subset of U ∪ {v} of cardinality d is a

basis of V . This completes the induction and the proof of the lemma.

Remark 4.3: The v-topology onMax(A). Let B be a finitely generated integral domain

over K̃. We denote the set of all maximal ideals of B by Max(B). For each q ∈ Max(B)

we identify B/q with K̃ and let x(q) be the residue of x ∈ B at q. The v-topology of K̃

induces a v-topology on Max(B). A basic open neighborhood of a point q0 ∈ Max(B)

is a set

(1) V =
r∩

i=1

{q ∈ Max(B) | v(yi(q)− yi(q0)) > v(c0)},

where y1, . . . , yr ∈ B and c0 ∈ K̃×. Thus, each x ∈ B may be viewed as a v-continuous

(i.e. continuous in the v-topology) map from Max(B) to K̃.

Let A be an integral domain that contains K̃ with quotient field E. Suppose

that F = Quot(B) is an extension of E and that B is an integral extension of A.

If q ∈ Max(B), then p = q ∩ A ∈ Max(A) and we identify x(p) with x(q) for each

x ∈ A. Then, the canonical morphism φ: Max(B) → Max(A) defined by φ(q) = q ∩ A

is v-continuous.

Indeed, consider a basic open neighborhood

U =
m∩
i=1

{p ∈ Max(A) | v(xi(p)− xi(p0)) > v(a0)}

of a point p0 ∈ Max(A) with x1, . . . , xm ∈ A and a0 ∈ K̃×. By the going up theorem,

φ(Max(B)) = Max(A) [Lan93, p. 339, Prop. 1.10]. Hence, with q0 ∈ φ−1(p0),

φ−1(U) =
m∩
i=1

{q ∈ Max(B) | v(xi(q)− xi(q0)) > v(a0)},
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is v-open in Max(B).

We use Lemma 4.1 to prove that the map φ of Remark 4.3 is v-open if F/E is

finite and separable and A is integrally closed.

Lemma 4.4: Let A be an integrally closed domain which contains K̃, E = Quot(A),

F a finite separable extension of E, and B a subdomain of F which contains A and

is integral over A. Then the canonical morphism φ: Max(B) → Max(A) defined by

φ(q) = q ∩A is a v-open map.

Proof: Let F̂ be the Galois closure of F/E, B̂ the integral closure of B in F̂ , and

ψ: Max(B̂) → Max(B) the canonical map. Then, B̂ is also the integral closure of A in

F̂ and φ̂ = φ ◦ψ is the canonical map of Max(B̂) to Max(A). Let V be a v-open subset

of Max(B). By Remark 4.3, ψ is v-continuous. Hence, V̂ = ψ−1(V) is a v-open subset

of Max(B̂). If φ̂(V̂) is v-open in Max(A), then so is φ(V) = φ̂(ψ−1(V)). Therefore,

replacing F by F̂ , we may assume that F/E is Galois of degree n with G = Gal(F/E)

and B is the integral closure of A in F .

Consider a point q ∈ Max(B) and let p = φ(q). It suffices to prove that for

every basic v-open neighborhood V =
∩r

i=1{q′ ∈ Max(B) | v(yi(q′) − yi(q)) > v(c)} of

q in Max(B) with y1, . . . , yr ∈ B, and c ∈ K̃×, the point p of Max(A) has a v-open

neighborhood in φ(V). We break the proof of this statement into several parts.

Part A: Many bases of a vector space. We consider the vector space V =
∑r

i=1 K̃yi

spanned by y1, . . . , yr over K̃ and let d = dim(V ). By Lemma 4.2, there exists an

infinite subset Z ′′ of V such that every subset of Z ′′ of cardinality d is a basis of V . We

choose a finite subset Z ′ of Z ′′ of cardinality greater than (d− 1)n. Since K̃ ⊆ A, the

vector space V is contained in B, hence Z ′ ⊆ B. In particular, every z ∈ Z ′ is integral

over A.

Let Z be the collection of all subsets of Z ′ of cardinality d. For every 1 ≤ i ≤ r

and Z ∈ Z there exists a presentation

(2) yi =
∑
z∈Z

ai,Z,zz with ai,Z,z ∈ K̃.
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We set

(3) α = min(v(ai,Z,z)i=1,...,r ,Z∈Z, z∈Z)

Part B: Continuity of roots. Since A is integrally closed, Part A implies that for each

z ∈ Z ′

(4) fz(X) =
∏

σ∈G(X − σz) is a monic polynomial of degree n with coefficients in A.

Then,

(5) fz(p)(X) = fz(q)(X) =
∏
σ∈G

(X − (σz)(q)) =
∏
σ∈G

(X − z(σ−1q)).

Let p′ ∈ Max(A) and choose q′ ∈ Max(B) over p′. As in (5), fz(p
′)(X) =∏

σ∈G(X − z(σ−1q′)). By Lemma 4.1, there exists c′ ∈ K̃× and there exists σz ∈ G

such that

(6) if v(fz(p
′)− fz(p)) > v(c′), then v(z(σ−1

z q′)− z(q)) > v(c)− α.

Let s: Z ′ → G be the map defined by s(z) = σz. Then (d − 1)n < |Z ′| =∑
σ∈G |s−1(σ)|. Hence, there exists σ ∈ G such that |s−1(σ)| ≥ d. Choose a subset Z

of s−1(σ) of cardinality d, in particular Z ∈ Z. By (6), if v(fz(p
′) − fz(p)) > v(c′) for

each z ∈ Z, then

(7) v(z(σ−1q′)− z(q)) > v(c)− α for all z ∈ Z.

Part C: Conclusion of the proof. We prove that the open neighborhood

U = {p′ ∈ Max(A) |
∧
z∈Z

v(fz(p
′)− fz(p)) > v(c′)}

of p in Max(A) is contained in φ(V).

Indeed, let p′ ∈ U and choose q′ ∈ Max(B) with φ(q′) = p′. Then, v(fz(p
′) −

fz(p)) > v(c′) for each z ∈ Z, so (7) holds. We set q′′ = σ−1q′ and notice that

φ(q′′) = p′. By (7), v(z(q′′) − z(q)) > v(c) − α for each z ∈ Z. In addition, by (3),

v(ai,Z,z) ≥ α for i = 1, . . . , r and for each z ∈ Z. It follows from (2) that

v(yi(q
′′)−yi(q)) = v

(∑
z∈Z

ai,Z,z(z(q
′′)−z(q))

)
≥ min

z∈Z

(
v(ai,Z,z)+v(z(q

′′)−z(q))
)
> v(c)

for i = 1, . . . , r. Consequently, q′′ ∈ V, as claimed.
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Proposition 4.5: Let (K̃, v) be an algebraically closed valued field and φ: W → V a

finite morphism of absolutely irreducible varieties defined over K̃ with V normal. Then,

the v-continuous map φ:W (K̃) → V (K̃) is v-open.

Proof: The morphism φ decomposes into a purely inseparable finite morphism fol-

lowed by a separable finite morphism. Since inseparable finite morphisms induce v-

homeomorphisms on the corresponding sets of K-rational points, we may assume that

φ is separable.

By definition, V has a cover consisting of affine Zariski-open subsets Vi whose

inverse imagesWi under φ are also affine, such that for each i, Γ(Vi,OV ) is an integrally

closed domain, Γ(Wi,OW ) is an integral domain which is finitely generated as a module

over Γ(Vi,OV ). It follows that Γ(Wi,OW ) is integral over Γ(Vi,OV ). Since every

Zariski-open subset of a variety is also v-open, our proposition is a consequence of

Lemma 4.4.

Remark 4.6: Proposition 4.5 is related to [GPR95, Thm. 9.4(1)]. The latter result

says that if (K, v) is an arbitrary Henselian field and φ:W → V is a smooth surjective

morphism of absolutely irreducible varieties V and W defined over K, then the map

φ:W (K) → V (K) is v-open.

5. A Density Property of Smooth Curves over PAC Fields

The aim of this short section is to prove a density result for curves over PAC fields.

We start with an arbitrary field K. As in Section 2 we consider for each a =

(a0:a1) ∈ P1(K) the conic Ha defined in P1
K × P1

K by the equation a1X0Y0 = a0X1Y1.

We consider a smooth projective absolutely irreducible curve D defined over K. Using

the Segre embedding [GoW10, p. 112, Prop. 4.39], we may consider Ha also as a closed

subscheme of P3
K . Let φ: D → P1

K be a non-constant separable morphism. We assume

that

(1) φ is smooth over (0:1).

Let δ: D ×D → P1
K × P1

K be the product φ × φ and consider the inverse image

Ia = δ−1(Ha).
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Recall that we use a tilde to denote the constant extension from K to K̃ of

algebro-geometrical objects.

Lemma 5.1: Under Assumption (1), for almost all a ∈ P1(K), the scheme Ia is an

absolutely irreducible smooth curve defined over K.

Proof: Since D is absolutely irreducible and defined over K, the curve D̃ is K̃-

irreducible, and the morphism φ̃: D̃ → P1
K̃

is surjective [Har77, p. 137, Prop. 6.8] and

smooth over (0:1). Also, Ĩa = (δ̃)−1(H̃a). By Corollary 3.4, for almost all a ∈ P1(K̃),

Ĩa is irreducible. Moreover, by the latter corollary, Ĩa is also smooth. Hence, each

point p of Ĩa is regular. Therefore, OĨa,p
is an integral domain. It follows that Ia is an

absolutely irreducible curve defined over K.

Lemma 5.2: Let ψ: W → V be a finite morphism of integral schemes over a field K

such that V is normal. Consider the inclusion of the function field E of V into the

function field F of W that ψ induces and assume that F/E is Galois. Suppose that the

natural action of G = Gal(F/E) on the generic point of W extends to an action on W

over V such that OV is the fixed subsheaf of the induced action of G on OW . Then, for

every q,q′ ∈W with ψ(q) = ψ(q′) there exists σ ∈ G such that σq = q′.

Proof: Let p ∈ V and q,q′ ∈W such that ψ(q) = p and ψ(q′) = p. Let V0 = Spec(A)

be an affine Zariski-open neighborhood of p in V . Since V is integral and normal, A is

an integrally closed domain with Quot(A) = E. Since ψ is finite, W0 = φ−1(V0) is also

affine, say W0 = Spec(B), where B is an integral domain which is integral over A. By

assumption, F = Quot(B) is a finite Galois extension of E. Also, G acts on B with A

being the fixed ring of B under G. Finally, we may identify q and q′ with prime ideals

of B and p with the prime ideal of A lying under both q and q′. By [Bou89, p. 331,

Thm. 2(i)], there exists σ ∈ G such that σq = q′, as claimed.

The proof of the following lemma uses a trick of Prestel [FrJ08, p. 204, proof of

Prop. 11.5.3].

Lemma 5.3: Let K be a PAC field and let v be a valuation of K̃. Let E be the function

field of P1
K and let F̂ be a finite Galois extension of E which is regular over K. Suppose
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the morphism φ: D → P1
K introduced at the beginning of this section (in particular φ

satisfies (1)) is the normalization of P1
K in F̂ [Liu06, p. 120, Def. 1.24].

Let p be a point in D(K̃) such that φ̃(p) = (1:0) and let V be a v-open neighbor-

hood of p in D(K̃). Then V ∩D(K) ̸= ∅.

Proof: Let G = Gal(F̂ /E). Since F̂ is a regular extension of K, we may identify G

with Gal(F̂ K̃/EK̃). Note that F̂ K̃/EK̃ is the function field extension that corresponds

to the morphism φ̃: D̃ → P1
K̃
. Thus, the action of G on D extends to an action of G

on D̃. Moreover, P1
K̃

is normal and OP1
K̃

is the fixed subsheaf under the action of G

on OD̃. Also, by [Liu06, p. 121, Prop. 1.25], φ is finite, hence φ̃ is finite. It follows

from Lemma 5.2 (with K̃ replacing K, φ̃: D̃ → P1
K̃

replacing ψ:W → V , and F̂ K̃/EK̃

replacing F/E) that if q,q′ ∈ D(K̃) and φ̃(q) = φ̃(q′), then there exists σ ∈ G such

that σq = q′. Since σ fixes the elements of K, we have

(2) if q ∈ D(K), then q′ = σq ∈ σ(D(K)) = D(K).

By Proposition 4.5, U = φ̃(V) is a v-open neighborhood of (1:0) in P1(K̃). Hence,

there exists a ∈ K× such that

(3) if b ∈ K̃× and v(b) ≥ v(a), then (1:b) ∈ U .

By definition, I(1:a2) ⊂ D ×D. Avoiding finitely many elements of K×, we may

use Lemma 5.1 to choose a in K such that the curve I(1:a2) is absolutely irreducible and

is defined over K. Moreover, H(1:a2) = δ(I(1:a2)) is defined by the equation a2X0Y0 =

X1Y1. Let U be the nonempty Zariski-open subset of H(1:a2) defined by the inequalities

X0 ̸= 0 and Y0 ̸= 0. Let V = δ−1(U). Since K is PAC, there exists (q, r) ∈ V (K).

That is, q, r ∈ D(K), φ(q) = (1:b), φ(r) = (1:c), and bc = a2 for some b, c ∈ K×.

Thus, v(b) + v(c) = 2v(a). We may assume without loss that v(b) ≥ v(a). By (3),

φ̃(q) = (1:b) ∈ U . Hence, there exists q′ ∈ V with φ̃(q′) = φ̃(q). Since q ∈ D(K), it

follows from (2) that q′ ∈ D(K). Consequently, V ∩D(K) ̸= ∅.

6. On the Density Property of PAC Fields

We prove Kollár’s result saying that if V is an absolutely irreducible variety defined

over a PAC field K and v is a valuation of K̃, then V (K) is v-dense in V (K̃).
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Remark 6.1: Let F/E be a Galois extension of degree n.

Claim: If w,w′ are valuations of F such that Ow = Ow′ and w|E = w′|E , then w = w′.

Indeed, let x ∈ F . Since (w(F×) : w(E×))|n, there exists a ∈ E such that nw(x) = w(a).

Hence, w(xna−1) = 0, so xna−1 ∈ O×
w . Therefore, x

na−1 ∈ O×
w′ , hence, w′(xna−1) = 0,

so nw′(x) = w′(a). Since w(a) = w′(a), we get nw(x) = nw′(x), consequently w(x) =

w′(x), as claimed.

In particular, if an element σ of Gal(F/E) belongs to the decomposition group

Dw of w over E, then Ow◦σ = Ow. In addition w ◦ σ|E = w|E . Hence, by the claim,

w = w ◦ σ.

Now suppose that w1, . . . , wm are all of the extensions to F (up to equivalence)

of a valuation v of E. Then Ow1 , . . . , Owm are all of the valuation rings of F whose

intersections with E are Ov. Then for each 1 ≤ i ≤ n there exists σi ∈ Gal(F/E) such

that Ow1 = σiOwi , that is Ow1◦σi = Owi . By the preceding paragraph, wi = w1 ◦ σi.

Lemma 6.2: Let (E, v) be a valued field, F a finite separable extension of E, and F̂

the Galois closure of F/E. Suppose v totally splits in F . Then v totally splits in F̂ .

Proof: Let w be a valuation of F̂ lying over v. It suffices to prove that the decompo-

sition group Dw/v of w over v is trivial. Consider σ ∈ Dw/v.

Claim: σ ∈ Gal(F̂ /F ). Let d = [F : E]. By assumption F has d distinct valuations

v1, . . . , vd extending v. For each 1 ≤ i ≤ d we extend vi to a valuation wi of F̂ such

that w1 = w. By Remark 6.1, there exists σi ∈ Gal(F̂ /E) such that wi = w ◦ σi
and σ1 = 1. If some 1 ≤ j ≤ d satisfies σiGal(F̂ /F ) = σjGal(F̂ /F ), then for each

x ∈ F we have vi(x) = wi(x) = w(σix) = w(σjx) = wj(x) = vj(x), so vi = vj ,

hence i = j. Thus, σ1Gal(F̂ /F ), . . . , σdGal(F̂ /F ) are distinct cosets of Gal(F̂ /F ) in

Gal(F̂ /E). Since (Gal(F̂ /E) : Gal(F̂ /F )) = d, we have Gal(F̂ /E) =
∪
· d
i=1 σiGal(F̂ /F ).

It follows that σ = σiη for some 1 ≤ i ≤ d and η ∈ Gal(F̂ /F ). If 2 ≤ i ≤ d, then

v1 = w|F = w ◦ σ|F = w ◦ σi ◦ η|F = wi|F = vi, which is a contradiction. It follows that

i = 1, so σ ∈ Gal(F̂ /F ), as claimed.
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Now, since v totally splits in F , it totally splits in each of the conjugates F ′ of

F over E. By the claim, σ belongs to Gal(F̂ /F ′). Since the compositum of all of the

fields F ′ is F̂ , we conclude that σ = 1, as asserted.

When we speak about a function field of one variable F/K, we always assume

that F/K is a regular extension [FrJ08, Section 3.1]. If D =
∑n

i=1 aiPi is a divisor

of F/K with distinct prime divisors P1, . . . , Pn and integral coefficients a1, . . . , an, we

write vP (D) = ai for a prime divisor P of F/K, if P = Pi for some i between 1 and n,

and vP (D) = 0 otherwise. The divisor and the pole divisor of an element f ∈ F×

are div(f) =
∑

P vP (f)P and div∞(f) = −
∑

vP (f)<0 vP (f)P , where P ranges over all

prime divisors of F/K and vP is here the normalized valuation of F associated with

P . Note that deg(div∞(f)) = [F : K(f)]. We say that div∞(f) totally splits in F

if div∞(f) = P1 + · · · + Pm, where m = [F : K(f)] and P1, . . . , Pm are distinct prime

divisors of F/K. This holds if and only if the valuation v∞ of K(f)/K defined by

v∞(f) = −1 totally splits in F .

Lemma 6.3: Let F be a function field of one variable over a PAC field K. Then F/K

has a separating transcendental element f such that the Galois closure F̂ of F/K(f) is

a regular extension of K. Moreover, given a prime divisor P of FK̃/K̃, we may choose

f ∈ F such that vP (f) > 0 and div∞(f) totally splits in F and in F̂ .

Proof: The prime divisor P is already defined over a finite extension M of K. Let

σ1, . . . , σd be the distinct K-embeddings of M into K̃. If p = char(K) > 0, let q = pj

be the inseparable degree of M/K. If char(K) = 0, put q = 1. Then D =
∑d

i=1 qσiP is

a positive divisor of F/K and vP (D) > 0.

Since K is PAC, F/K has for each positive integer m distinct prime divisors

Q1, . . . , Qm of degree 1 with Qi ̸= P , i = 1, . . . ,m. Taking m sufficiently large, there

exists by Riemann-Roch an element f ∈ F× such that

(1a) div(f) +Q1 + · · ·+Qm ≥ D, and

(1b) div∞(f) = Q1 + · · ·+Qm.

By (1a), vP (f) > 0. By (1b), [F : K(f)] = deg(div∞(f)) = m, so by (1b) again,

div∞(f) totally splits in F . In particular, F/K(f) is a finite separable extension. Let

21



F̂ be the Galois closure of F/K(f). Then, by Lemma 6.2, div∞(f) totally splits in F̂ .

In particular, F̂ has a K-valuation with residue field K. Thus, by [FrJ08, p. 42, Lemma

2.6.9], F̂ is regular over K.

Remark 6.4: Comparison of proofs. We say that a field K is stable if each finitely

generated regular extension F of K has a separating transcendence base t such that

the Galois closure F̂ of F/K(t) is regular over K. The stability property of PAC fields

is proved in [FrJ76]. The essential case in the proof is that where F is a function field

of one variable over K. In that case [FrJ76, Thm. 2.3] constructs for each large prime

number l a separating transcendental element t for F/K such that the pole divisor of t

over K̃(t) decomposes as P1 + · · ·+ Pl−2 + 2Pl−1, where P1, . . . , Pl−2, Pl−1 are distinct

prime divisors of FK̃/K̃. This leads to the conclusion that the Galois closure F̂ of

F/K(t) satisfies Gal(F̂ /K(t)) ∼= Sl, from which the regularity of F̂ /K easily follows

[FrJ76, Lemma 2.1].

On the other hand, the proof of Lemma 6.3, due to Kollár, generates a separating

transcendental element f of F/K for each prime divisor P of F/K of degree 1 such that

P is a zero of f and the pole divisor of f over K(t) totally splits in F and is of arbitrary

large degree, not necessarily prime. This implies that each of the pole divisors of f in

F̂ /K is of degree 1, so F̂ /K is regular. However, that proof gives no clue for the Galois

group Gal(F̂ /K(f)).

The next lemma is a standard result of algebraic geometry (see [Lan58, p. 152,

Cor.] or [Har77, p. 43, Prop. 6.8]).

Lemma 6.5: Let f : C → C ′ be a rational map of absolutely irreducible curves defined

over a field K with C ′ projective and C normal. Then, f is a morphism.

Proof: We have to prove that f is defined at each point q of C. Replacing C, if

necessary by an affine open neighborhood of q, we may assume that C is affine. Let

x be a generic point of C and y = (y0:y1: · · · :yn) a homogeneous generic point of C ′

such that f(x) = y. Assume without loss that y0, y1, . . . , yn belong to the function

field F of C ′ over K. Since C is a normal curve, OC,q is a discrete valuation ring.

Denote the corresponding valuation of F/K by vq. Now let u be an element of F with
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vq(u) = min(vq(y0), vq(y1), . . . , vq(yn)). Then each of the elements u−1yi, i = 0, . . . , n,

belongs to OC,q and at least one of them is a unit. Hence, f is defined at q and its

value is ((u−1y0)(q):(u
−1y1)(q): · · · :(u−1yn)(q)).

Theorem 6.6 (Density theorem): Let K be a PAC field, v a valuation of K̃, and V

an absolutely irreducible variety defined over K. Then, V (K) is v-dense in V (K̃).

Proof: We break up the proof into several parts.

Part A: We prove that C(K) is v-dense in C(K̃) for each absolutely irreducible pro-

jective normal curve C which is defined over K. Let p ∈ C(K̃) and let U be a v-open

neighborhood of p in C(K̃). Denote the function field of C over K by F . Then F

is an algebraic function field of one variable over K which is regular over K [FrJ08,

p. 175, Cor. 10.2.2(a)]. Let P be a prime divisor of FK̃/K̃ whose center at CK̃ is p.

Lemma 6.3 gives an f ∈ F such that F/K(f) is a finite separable extension and the

Galois closure F̂ of F/K(f) is a regular extension of K. It follows that we may identify

G = Gal(F̂ K̃/K̃(f)) with Gal(F̂ /K(f)) via the restriction map. Moreover,

(2) vP (f) > 0 and div∞(f) totally splits in F̂ .

We consider f also as a rational map from C into P1
K . By Lemma 6.5, f is a

morphism. Since C is projective, f is proper [GoW10, p. 386, Cor. 13.41]. By (2), f

is not constant, hence each of the fibers of f is finite (Otherwise there exists a point

a ∈ P1
K such that f−1(a) is infinite. Since the fiber is closed and C is an irreducible

curve, f−1(a) = C, hence f(C) = a, in contrast to the former conclusion.) i.e. f is

quasi-finite. It follows that f : C → P1
K is a finite morphism [GoW10, p. 358, Cor. 89].

The corresponding function field extension is F/K(f).

Now let π: D → C be the projective normalization of C in F̂ [Lan58, p. 143,

Thm. 5], in particular, D is normal and π is finite [Liu06, p. 121, Prop. 1.25]. Then

φ = f ◦ π is a finite morphism of D onto P1
K . It follows that φ: D → P1

K is the

normalization of P1
K in F̂ [Liu06, p. 120, Def. 1.24].

We may interpret (2) as

(3) f(p) = (1:0) and |φ−1((0:1))| = [F̂ : K(f)].

In particular, φ is unramified over (0:1). Since the local ring OP1
K ,(0:1) is a discrete
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valuation ring, it is a Dedekind domain. Therefore, each of the local rings of D lying

over OP1
K ,(0:1) is flat over OP1

K ,(0:1) [Liu06, p. 11, Corollary 2.14]. It follows that φ is

étale over (0:1), hence smooth over (0:1).

Since π: D → C is finite, so is π̃: D̃ → C̃ [GoW10, p. 325, Prop. 12.11(2)].

Hence, the map π̃: D(K̃) → C(K̃) is surjective [GoW10, p. 339, Prop. 12.43(2)] and v-

continuous. Let q be a point inD(K̃) lying over p. By (3), φ̃(q) = (1:0) and V = π̃−1(U)

is an open neighborhood of q in D(K̃). By Lemma 5.3, there exists q′ ∈ V ∩ D(K).

Then, p′ = π(q′) ∈ U ∩ C(K). Thus, C(K) is v-dense in C(K̃).

Part B: We prove that C(K) is v-dense in C(K̃) for each absolutely irreducible curve

C which is defined over K. Again, let p ∈ C(K̃) and let U be a v-open neighborhood

of p in C(K̃). Let Csimp be the Zariski-open subset of C consisting of all simple points.

Then Csimp(K̃) is v-open and v-dense in C(K̃) [GeJ75, Lemma 2.2], in particular,

U0 = Csimp(K̃) ∩ U is nonempty and v-open. Replacing U by U0 and C by Csimp, we

may assume that C is smooth. Similarly, replacing C by a nonempty Zariski-open affine

subset, we may assume that C ⊆ An
K for some positive integer n.

Let C∗ be the Zariski-closure of C in Pn
K . In particular, we may view C as a

Zariski-open subset of C∗. Let π: D → C∗ be the projective normalization of C∗ [Lan58,

p. 143, Thm. 5]. Since C is normal, the restriction of π to π−1(C) is an isomorphism.

Since π−1(C) is Zariski-open in D, π̃−1(U) is a nonempty v-open subset of D(K̃). By

Part A, π̃−1(U)∩D(K) ≠ ∅. Hence, by [GeJ75, Lemma 2.2], π̃−1(U)∩ π̃−1(C(K)) ̸= ∅.

It follows that U ∩ C(K) ̸= ∅, as desired.

Part C: The general case. Again, let U be a nonempty v-open subset of V . By

[GeJ75, Lemma 2.4], V (Ks) is v-dense in V (K̃). Hence, we may assume that U ∩V (Ks)

contains a point p. Let C be an absolutely irreducible subcurve of V defined over K

with p ∈ C(Ks) [JaR98, Lemma 10.1]. Then, U ∩C(K̃) is a v-open neighborhood of p

in C(K̃). By Part B, U ∩ C(K) ̸= ∅. Consequently, U ∩ V (K) ̸= ∅, as desired.

7. Embedding Lemma

The essential step in the proof of Abraham Robinson’s result about the model com-
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pleteness of the theory of algebraically closed valued fields is the embedding lemma 7.3

that we prove below. Our presentation follows that of Alexander Prestel in [Pre86,

pp. 236–241]. In this section and the following ones we allow valuations of fields to be

trivial.

Lemma 7.1: Let K be an algebraically closed field, E a field extension of K, and v

a valuation of E. We denote the valuation ring of v by Ov and use a bar to denote

reduction modulo v.

(a) K̄ is algebraically closed, v(K×) is a divisible group, and division in v(K×) by each

n ∈ N is unique. Moreover, if K is an algebraic closure of a subfield K0, then v(K
×)

is the divisible closure of v(K×
0 ).

(b) The ordered group Γ = v(K×) is dense in itself. That is, for all α, β ∈ Γ with α < β

there exists γ ∈ Γ such that α < γ < β. Moreover, if v is non-trivial, then for each

α ∈ Γ there exist δ, δ′ ∈ Γ such that δ < α < δ′.

(c) Let x be an element of E such that x̄ is transcendental over K̄. Then for all

a0, . . . , an ∈ K we have v(
∑n

i=0 aix
i) = min(v(a0), . . . , v(an)).

(d) Let x be an element of E× such that v(x) /∈ v(K×). Then the order of v(x) in

v(E×) is infinite and v(K(x)×) = v(K×)⊕ Zv(x).

Proof of (a): Consider a polynomial f̄(X) = Xn + ān−1X
n−1 + · · · + ā0, with n ≥ 1

and a0, . . . , an−1 ∈ Ov ∩ K. Since K is algebraically closed, there exists x ∈ K with

f(x) = 0. If v(x) < 0, then v(x−1) > 0 and 1 + an−1x
−1 + · · · + a0x

−n = 0. Taking

residues on both sides, we get the contradiction 1 = 0. Thus, v(x) ≥ 0 and f̄(x̄) = 0,

as desired.

Now let a ∈ K× and let n a positive integer. Then a1/n ∈ K× and v(a) =

nv(a1/n). Hence, v(K×) is divisible. Since v(K×) is an ordered group, division by n

is unique. Finally, e = (v(K0(a)
×) : v(K×

0 )) < ∞. Hence, ev(a) = v(a0) for some

a0 ∈ K0.

Proof of (b): Using (a), we may take γ = α+β
2 to prove the first claim in (b). If v is

non-trivial, there exists a positive ε ∈ Γ. Then α− ε < α < α+ ε, as desired.

Proof of (c): We choose a 0 ≤ j ≤ n with v(aj) = min(v(a0), . . . , v(an)) and let bi =
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aia
−1
j , i = 1, . . . , n. Then b̄j = 1 and b̄i ∈ K̄ for i = 0, . . . , n. Since x̄ is transcendental

over K̄, we have
∑n

i=0 b̄ix̄
i ̸= 0, so v(

∑n
i=0 bix

i) = 0. Therefore, v(
∑n

i=0 aix
i) =

v(aj) + v(
∑n

i=0 bix
i) = min(v(a0), . . . , v(an)), as claimed.

Proof of (d): First note that the order of v(x) is not only infinite but even infinite

modulo v(K×). Indeed, if there exist n ∈ N and a ∈ K× such that nv(x) = v(a), then

v(x) = v(a1/n) ∈ v(K×), in contrast to the assumption on x.

Next consider an element
∑n

i=0 aix
i in K[x]. If 0 ≤ i < j ≤ n, then v(aix

i) ̸=

v(ajx
j). Otherwise, (j − i)v(x) = v(aia

−1
j ) ∈ v(K), in contrast to the preceding para-

graph. It follows that

v
( n∑
i=0

aix
i) = min(v(a0), v(a1) + v(x), . . . , v(an) + nv(x)) ∈ v(K×) + Zv(x).

By the preceding paragraph, the sum on the right hand side is direct.

An embedding of a valued field (E, v) into a valued field (F,w) is a pair (φ,φ′),

where φ: E → F is an embedding of fields, φ′: v(E×) → w(F×) is an embedding of

ordered groups, and w(φ(e)) = φ′(v(e)) for each e ∈ E×. In the sequel we sometimes

abuse our language and write φ also for φ′ and also for the pair (φ,φ′). If K is a

common subfield of E and F , φ is the identity on K, and φ′ is the identity on v(K×),

we say that φ is a K-embedding.

Lemma 7.2: Let φ0: E0 → F0 be an isomorphism of fields. Let (E, v) and (F,w) be

valued fields such that E is an algebraic extension of E0 and F is a field extension of

F0 which is algebraically closed. Let φ′
0: v(E

×
0 ) → w(F×

0 ) be an isomorphism of valued

groups. Suppose w(φ0(e)) = φ′
0(v(e)) for each e ∈ E×

0 . Then it is possible to extend

φ0 to an embedding φ: E → F and to extend φ′
0 to an embedding φ′: v(E×) → w(F×)

of ordered groups such that w(φ(e)) = φ′(v(e)) for each e ∈ E×.

Proof: We choose an algebraic closure Ẽ0 of E0 that contains E and an algebraic closure

F̃0 of F0 in F . Then we extend φ0 to an isomorphism φ̃: Ẽ0 → F̃0. By Chevalley’s

theorem, v extends to a valuation ṽ of Ẽ0. Let γ̃ ∈ v(Ẽ0

×
) (resp. δ̃ ∈ w(F̃0

×
)). Then,

there exists n ∈ N and there exists a unique γ0 ∈ v(E×
0 ) (resp. δ0 ∈ w(F×

0 )) such that
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γ0 = nγ̃ (resp. δ0 = nδ̃) (Lemma 7.1(a)). Hence, φ′
0 uniquely extends to an isomorphism

φ̃′: ṽ(Ẽ0

×
) → w(F̃0

×
). Then, w̃ = w|

F̃0
and φ̃′◦ṽ◦φ̃−1 are valuations of F̃0 that coincide

on F0. Hence, there exists σ ∈ Aut(F̃0/F0) such that w̃ ◦σ = φ̃′ ◦ ṽ ◦ φ̃−1 [Efr06, p. 131,

Thm. 14.3.2], so w̃ = φ̃′ ◦ ṽ ◦ (σ ◦ φ̃)−1. Then, φ = σ ◦ φ̃|E is an embedding of E into

F that extends φ0 and φ′ = φ̃′|E× is an embedding of v(E×) into w(F×) that extends

φ′
0 such that w(φ(e)) = φ′(v(e)) for each e ∈ E×.

Recall that a structure A of a language L with a domain A is ℵ1-saturated if it

satisfies the following condition: Let φ1, φ2, φ3, . . . be formulas of L in the free variables

X1, X2, X3, . . . with parameters in A. Suppose for each n there exist a1, a2, a3, . . . ∈ A

such that φ1(a), . . . , φn(a) hold in A. Then there exist x1, x2, x3, . . . ∈ A such that each

φn(x) holds in A [FrJ08, p. 143].

Lemma 7.3 (Embedding lemma): LetK be a countable algebraically closed field, (E, v)

a valued field such that E is a function field of one variable over K, and (F,w) an ℵ1-

saturated algebraically closed non-trivial valued field such that K ⊆ F and v|K = w|K .

Then there exists a K-embedding φ: (E, v) → (F,w).

Proof: Let O = Ov ∩ K = Ow ∩ K and use a bar to denote reduction with respect

to both v and w. In particular, K̄, Ē, F̄ are the residue fields of K,E,F , respectively,

K̄ ⊆ Ē, F̄ , and both K̄ and F̄ are algebraically closed (Lemma 7.1(a)).

If x ∈ E is transcendental over K, then by assumption, E is algebraic over E0 =

K(x). Hence, in order to prove the lemma, it suffices by Lemma 7.2 to prove the

following claim.

Claim: There exist x ∈ E and y ∈ F transcendental over K, and there exists a K-

isomorphism

φ: (K(x), v(K(x)×)) → (K(y), w(K(y)×))

such that φ(x) = y and w(φ(e)) = φ′(v(e)) for each e ∈ K(x)×.

The proof of the Claim splits into three cases.

Case 1: K̄ ̸= Ē. We choose x ∈ Ov such that x̄ /∈ K̄. Then x /∈ K, so x is transcen-

dental over K.
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Since K̄ is algebraically closed, K̄ is infinite. Hence, for all a1, . . . , an ∈ O there

exists y ∈ O such that ȳ ̸= āi, so w(y − ai) = v(y − ai) = 0 for i = 1, . . . , n. Since O is

countable and (F,w) is ℵ1-saturated, there exists y ∈ Ow such that w(y−a) = 0 for each

a ∈ O. This means that ȳ /∈ K̄. As in the preceding paragraph, y is transcendental over

K. Therefore, there is a unique K-isomorphism φ: K(x) → K(y) such that φ(x) = y.

Moreover, since both x̄ and ȳ are transcendental over K̄, Lemma 7.1(c) implies that

w(
∑n

i=0 aiy
i) = v(

∑n
i=0 aix

i) for all a0, . . . , an ∈ K. Thus, w(φ(e)) = v(e) = φ′(v(e)),

where φ′ = idv(K(x)×), for all e ∈ K(x)×, as desired.

Case 2: v(E×) ̸= v(K×). We choose x ∈ E× such that

(1) v(x) /∈ v(K×).

We consider a1, . . . , an ∈ K and assume without loss that

(2) v(a1) ≤ · · · ≤ v(am) < v(x) < v(am+1) ≤ · · · ≤ v(an)

for some m between 0 and n. By convention, if m = 0, then relation (2) becomes

v(x) < v(a1) ≤ · · · ≤ v(an) and if m = n, then relation (2) simplifies to v(a1) ≤

· · · ≤ v(an) < v(x). By assumption, w(ai) = v(ai) for i = 1, . . . , n. If m = 0, then

Lemma 7.1(b) gives y ∈ F such that w(y) < w(a1). If m = n, then Lemma 7.1(b)

gives y ∈ F such that w(an) < w(y). Otherwise, Lemma 7.1(b) gives y ∈ F such that

w(am) < w(y) < w(am+1). Note that the first two cases use the assumption that w is

non-trivial.

Since K is countable and (F,w) is ℵ1-saturated, there exists y ∈ F such that

(3) for all a ∈ K, v(x) < v(a) implies that w(y) < w(a), and v(x) > v(a) implies that

w(y) > w(a).

In particular,

(4) y /∈ K and w(y) /∈ w(K×).

Since K is algebraically closed, both x and y are transcendental over K. Let

φ: K(x) → K(y) be the unique K-isomorphism with φ(x) = y. By (1) (resp. (4)) and

Lemma 7.1(d), the order of v(x) (resp. w(y)) modulo v(K×) is infinite and

(5) v(K(x)×) = v(K×)⊕ Zv(x) (resp. w(K(y)×) = v(K×)⊕ Zw(y)).
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Hence, there is an isomorphism φ′: v(K(x)×) → v(K(y)×) of ordered groups (by (3))

which is the identity map on v(K×) such that φ′(v(x)) = w(y). It follows from (3) that

φ′(v(x− a)) = w(y − a) for each a ∈ K. Hence,

φ′(v(a0

m∏
i=1

(x− ai))) = w(a0

m∏
i=1

(y − ai))

for all a0, a1, . . . , am ∈ K with a0 ̸= 0. Since K is algebraically closed, this implies that

w(φ(e)) = φ′(v(e)) for each e ∈ K(x)×, as claimed.

Case 3: Ē = K̄ and v(E×) = v(K×). We choose x ∈ E, transcendental over K and

prove:

(6) For all a1, . . . , an ∈ K there exists y ∈ K such that w(y−ai) = v(x−ai), i = 1, . . . , n.

Indeed, by assumption there exists for each 1 ≤ i ≤ n an element bi ∈ K× such

that v(x − ai) = v(bi). We choose 1 ≤ j ≤ n such that v(bj) = max(v(b1), . . . , v(bn)).

Then, v((x − aj)b
−1
j ) = 0, so by assumption, there exists c ∈ K with c̄ = (x− aj)b

−1
j .

Hence,

v
(x− (aj + cbj)

bj

)
= v

(x− aj
bj

− c
)
> 0.

Set y = aj + cbj . Then, v(x− y) > v(bj) ≥ v(bi) = v(x− ai), hence

w(y − ai) = v(y − ai) = v((x− ai)− (x− y)) = v(x− ai), i = 1, . . . , n,

as claimed.

Since K is countable and (F,w) is ℵ1-saturated, there exists y ∈ F such that

(7) w(y − a) = v(x− a) for all a ∈ K.

Since x /∈ K, (7) implies that y /∈ K. Since K is algebraically closed, y is transcendental

over K. Let φ: K(x) → K(y) be the unique K-isomorphism with φ(x) = y. Again,

since K is algebraically closed, each non-constant u ∈ K[x] can be written as u =

c0
∏m

i=1(x− ci) with c0, c1, . . . , cm ∈ K and c0 ̸= 0, so φ(u) = c0
∏m

i=1(y− ci). It follows

from (7) that w(φ(u)) = v(u). Hence, the latter relation holds for each u ∈ K(x)×, as

desired.
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8. Algebraically Closed Valued Fields

The goal of this section is to prove Abraham Robinson’s model completeness theorem

for the theory of algebraically closed valued fields and also the stronger result about

the elimination of quantifiers in that theory. For both goals we have to fix the first

order language with which we want to speak about the algebraically closed fields. If

we restrict ourselves only to the model completeness, it suffices to extend the language

L(ring) of rings [FrJ08, p. 135, Example 7.3.1] with a unary predicate symbol O whose

interpretation in a valued field (K, v) is the valuation ring Ov.

We start with the language of rings L(ring) with the constant symbols 0, 1, the

binary function symbol + (for addition), the binary function symbol · (for multiplica-

tion), and the unary function symbol − (for taking the negative)∗. The axioms for fields

in that language are:

(∀X)(∀Y )(∀Z)[(X + Y ) + Z = X + (Y + Z)];(1)

(∀X)(∀Y )[X + Y = Y +X];

(∀X)[X + 0 = X];

(∀X)[X + (−X) = 0];

(∀X)(∀Y )(∀Z)[(XY )Z = X(Y Z)];

(∀X)(∀Y )[XY = Y X];

(∀X)[1 ·X = X];

(∀X)[X ̸= 0 → (∃Y )[XY = 1]];

1 ̸= 0; and

(∀X)(∀Y )(∀Z)[X(Y + Z) = XY +XZ].

Note that a substructure R of a field K in the language L(ring) is a subset of K

that contains 0, 1 and is closed under addition, negation, and multiplication. Thus, R

is an integral domain. If K = Quot(R) is a valued field, then the main axiom for valued

* Note that the symbol − does not appear among the function symbols of L(ring) in [FrJ08,
p. 135, Example 7.3.1]. We have been forced here to include this symbol in L(ring) in
order to be able to prove Lemma 8.1(a).
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fields, “for all nonzero x we have x ∈ O or x−1 ∈ O”, does not make sense over R. This

forces us to replace the monadic symbol O by the division relation associated with

each valued field.

For each valued field (K, v) we define a binary relation |v on K by

(2) a|vb⇐⇒ v(a) ≤ v(b).

It satisfies the following axioms (where we omit the index v):

(3a) 1|0.

(3b) (∀X)[X|X].

(3c) (∀X)(∀Y )(∀Z)[X|Y ∧ Y |Z → X|Z].

(3d) (∀X)(∀Y )[X|Y ∨ Y |X].

(3e) (∀X)(∀Y )(∀Z)[X|Y → XZ|Y Z].

(3f) (∀X)(∀Y )(∀Z)[X|Y ∧X|Z → X|(Y + Z)].

We call | a division relation on K.

Conversely, if | is a division relation on K, then O = {a ∈ K | 1|a} is a valuation

ring of K. Indeed, by (3a) and (3b), 0, 1 ∈ O. By (3d), we have 1|−1 or −1|1. By (3e),

the latter case implies 1| − 1. Hence, in any case −1 ∈ O. If a, b ∈ O, then 1|a and 1|b,

so a+ b ∈ O, by (3f). By (3e), a|ab, so by (3c), 1|ab, which implies ab ∈ O. Finally, if

a ∈ K×, then 1|a or a|1 (by (3d)). In the latter case 1|a−1 (by (3e)), so in each case

either a ∈ O or a−1 ∈ O. Thus, O defines a valuation of K (which may be trivial) whose

division relation is |. It follows that the correspondence between valuations and division

relations on K is bijective. We denote the division relation on K that corresponds to a

valuation v of K by |v. The advantage of the division relation is that it allows to treat

valuation rings as first order structures.

The language of valued fields will therefore be the extension of L(ring) by the

division symbol |. We denote the extended language by Lval(ring). Let Tval be the

theory of Lval(ring) that consists of the axioms (1) of fields and the axioms (3) for |.

Lemma 8.1: Let (E, v) and (F,w) be valued fields. Let φ0: (R, |v,0) → (S, |w,0) be an

isomorphism of substructures of (E, |v) and (F, |w), respectively. Let K = Quot(R) and

L = Quot(S). Then
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(a) φ0 extends to an isomorphism φ: (K, v|K) → (L,w|L) of valued fields.

(b) If E and F are algebraically closed, then φ extends to an isomorphism

φ̃: (K̃, v|K̃) → (L̃, w|L̃).

Proof: As usual, φ0 extends to an isomorphism φ: K → L of the quotient fields.

If x, y ∈ K satisfy x|vy, then there exists b ∈ R, b ̸= 0, such that bx, by ∈ R, and

then bx|vby. Hence, φ(bx)|wφ(by), so φ(b)φ(x)|wφ(b)φ(y). Since φ(b) ̸= 0, we have

φ(x)|wφ(y). It follows that φ: (K, v|K) → (L,w|L) is an isomorphism of valued fields,

which proves (a).

In order to prove (b), we use the valuations rather than the division relations. Let

ψ: K̃ → L̃ be an isomorphism of fields that extends φ. Then, there exists σ ∈ Aut(L̃/L)

such that σ ◦ ψ: (K̃, v|K̃) → (L̃, w|L̃) extends φ: (K, v|K) → (L,w|L) [Efr06, p. 131,

Thm. 14.3.21]. Thus, φ̃ = σ ◦ ψ is the desired isomorphism.

Whenever we speak about a “formula φ(X1, . . . , Xn)” we mean that the free vari-

ables of that formula belong to the set {X1, . . . , Xn}.

Definition 8.2: Let T be a theory in a first order language L.

(a) We say that T is model complete if whenever a model A of T is a substructure

of another model B of T , the model A is an elementary substructure of B.

(b) We say that T has the amalgamation property if whenever two models B, C of T

contain a common L-substructure A, there exists a model D of T and embeddings

f : B → D and g: C → D that coincide on A.

(c) We say that T admits elimination of quantifiers if for every formula φ(X1, . . . , Xn)

of the language L there exists a quantifier free formula ψ(X1, . . . , Xn) such that for

every model A of T with a domain A and for all a1, . . . , an ∈ A, the truth of φ(a)

in A is equivalent to the truth of ψ(a) in A.

We cite two theorems about the concepts just defined.

Proposition 8.3: Let T be a theory in a first order language L.

(a) T admits elimination of quantifiers if and only if T is model complete and has the

amalgamation property [Pre86, p. 193, Satz 3.22].
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(b) T admits elimination of quantifiers if for every two models B, C of T with domains

B,C respectively, for every finitely generated common substructure A with domain

A, and for every quantifier free formula η(X) with parameters in A, the existence

of b ∈ B such that η(b) holds in B implies the existence of c ∈ C such that η(c)

holds in C [Pre86, p. 187, Satz 3.20].

A valued field (K, v) is non-trivial if and only if there exists a ∈ K such that

v(a) > 0, equivalently if

(4) there exists x ∈ K such that ¬(1|x).

Theorem 8.4 (Abraham Robinson): The theory of algebraically closed non-trivial val-

ued fields in the language Lval(ring) admits elimination of quantifiers, hence it is model

complete and has the amalgamation property.

Proof: By Proposition 8.3, it suffices to consider algebraically closed non-trivial valued

fields (E, v) and (F,w), a common finitely generated substructure (K, |) of (E, |v) and

(F, |w), a quantifier free formula η(X) with parameters inK such that there exists x ∈ E

with E |= η(x), and to prove that there exists y ∈ F such that F |= η(y). In particular,

K is a countable integral domain. By Lemma 8.1, we may replace K with the algebraic

closure of Quot(K). We therefore assume that K is an algebraically closed field and use

henceforth valuations rather than division relations.

Now recall that if (F ∗, w∗) = (F,w)N/D is a nonprincipal ultrapower of (F,w),

then (F ∗, w∗) is ℵ1-saturated [FrJ08, p. 143, Lemma 7.7.4] and is an elementary exten-

sion of (F,w) [FrJ08, p. 144, Prop. 7.7.5]. Replacing (F,w) by (F ∗, w∗), if necessary,

we may assume that (F,w) is ℵ1-saturated.

Let η and x be as in the first paragraph of the proof. By the embedding lemma

7.3, there exists a K-embedding φ: (K(x), v|K(x)) → (F,w) of valued fields. Set y =

φ(x). Since η(X) is quantifier free, η(x) holds in (K(x), v|K(x)). Hence, η(y) holds in

(K(y), w|K(y)) and therefore also in (F,w), as desired.

9. Existential Closedness of PAC Fields

Using the density theorem 6.6, we prove that every PAC valued field (K, v) is existen-
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tially closed in each regular valued field extension (F, v) such that F is also PAC.

Theorem 9.1: Let (F, v)/(K, v) be an extension of non-trivial valued fields such thatK

is PAC and F/K is regular. Then (K, v) is existentially closed in (F, v) in the language

Lval(ring).

Proof: We break up the proof into two parts.

Part A: Simplified form for existential formulas. Let X = (X1, . . . , Xm) and Y =

(Y1, . . . , Yn) be tuples of variables and let f(X,Y) and g(X,Y) be polynomials with

coefficients in K. We may replace the formula f(X,Y)|g(X,Y) by the equivalent

formula v(g(X,Y)) ≥ v(f(X,Y)) and the formula f(X,Y) - g(X,Y) by the equivalent

formula v(f(X,Y)) > v(g(X,Y)). Thus, every existential formula φ(X1, . . . , Xm) in

Lval(ring) with parameters inK is equivalent (in the theory of valued fields) to a formula

of the form

(∃Y1) · · · (∃Yn)
∨
i∈I

∧
j∈J

[
fij(X,Y) = 0 ∧ f ′ij(X,Y) ̸= 0(1)

∧ v(gij(X,Y)) ≥ v(g′ij(X,Y))

∧ v(hij(X,Y)) > v(h′ij(X,Y))
]

where I and J are finite sets, and fij , f
′
ij , gij , g

′
ij , hij , h

′
ij are polynomials with coefficients

in K for all (i, j) ∈ I × J . We have to prove that

(2) if there exists x ∈ Fm such that φ(x) holds in (F, v), then there exists a ∈ Km such

that φ(a) holds in (K, v).

First note that the disjunction symbol commutes with the existential quantifiers.

Moreover, if (2) holds for one of the disjuncts of φ, it also holds for φ. Thus, it suffices

to consider φ of the form

(∃Y1) · · · (∃Yn)
∧
j∈J

[
fj(X,Y) = 0 ∧ f ′j(X,Y) ̸= 0(3)

∧ v(gj(X,Y)) ≥ v(g′j(X,Y))

∧ v(hj(X,Y)) > v(h′j(X,Y))
]
,

where fj , f
′
j , gj , g

′
j , hj , h

′
j ∈ K[X,Y] for all j ∈ J .
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The formula f ′j(X,Y) ̸= 0 is equivalent to (∃Zj1)[Zj1f
′
j(X,Y) − 1 = 0]. The

formula v(gj(X,Y)) ≥ v(g′j(X,Y)) is equivalent to

[gj(X,Y) = 0 ∧ g′j(X,Y) = 0]

∨
[
g′j(X,Y) ̸= 0 ∧ (∃Zj2)[gj(X,Y) = Zj2g

′
j(X,Y) ∧ v(Zj2) ≥ 0]

]
.

Finally, the formula v(hj(X,Y)) > v(h′j(X,Y)) is equivalent to

[hj(X,Y) = 0 ∧ h′j(X,Y) ̸= 0]

∨
[
hj(X,Y) ̸= 0 ∧ (∃Zj3)[hj(X,Y) = Zj3h

′
j(X,Y) ∧ v(Zj3) > 0]

]
.

Since Zj1, Zj2, Zj3 do not occur among the coordinates of Y, we may pull over the

quantifiers ∃Zj1, ∃Zj2, and ∃Zj3 to the left of (3). Then we rename each Zjk as Yr

for some r > n and finally enlarge n and repeat the first two simplification steps to

conclude that φ has the form

(∃Y1) · · · (∃Yn)
∧
j∈J

[fj(X,Y) = 0 ∧ v(Y1) ≻1 0 ∧ · · · ∧ v(Yn) ≻n 0],

where for i = 1, . . . , n the relation ≻i is either ≥, or >, or the trivial relation 0 = 0.

Part B: Existential closedness. Let x ∈ Fm be such that φ(x) holds in (F, v). Then

there exists y ∈ Fn such that

∧
j∈J

[fj(x,y) = 0 ∧ v(y1) ≻1 0 ∧ · · · ∧ v(yn) ≻n 0].

Since F/K is a regular extension, so is K(x,y)/K. Thus, (x,y) is a generic point

of an affine absolutely irreducible variety W defined in Am+n over K [FrJ08, p. 175,

Cor. 10.2.2]. Now we extend v to a valuation v of F̃ and again denote the restriction of

v to K̃ by v. By Theorem 8.4, the first order theory of algebraically closed non-trivial

valued field is model complete. In particular, (K̃, v) is an elementary substructure of

(F̃ , v). Therefore, there exists (ã, b̃) ∈ W (K̃) such that v(b̃i) ≻i 0 for each i. Since

W (K) is v-dense in W (K̃) (Theorem 6.6), we conclude that there exists (a,b) ∈W (K)

such that v(bi) ≻i 0 for each i. Consequently, φ(a) holds in (K, v).

35



10. Model Companion

Model companions and model completions of first order theories generalize the relation

that the theory of algebraically closed fields has relative to the theory of all fields. In this

section we prove the existence of a model companion for the theory of non-trivial valued

fields in a language that allows only extensions L/K of fields such thatK is algebraically

closed in L. In the next section we add more predicates to the language that force the

field extensions we consider to be regular. This results in a model completion of the

corresponding theory.

Definition 10.1: Let T and T̃ be theories in a first order language L. We say that T̃ is

a model companion of T if the following holds:

(1a) Each model of T̃ is a model of T .

(1b) Each model of T can be embedded into a model of T̃ .

(1c) T̃ is model complete (Definition 8.2(a)).

We say that T̃ is a model completion of T if in addition

(1d) T has the amalgamation property (Definition 8.2(b)).

Remark 10.2: By (1a) and (1b) of Definition 10.1, (1d) is equivalent to the statement

(1d’) T̃ has the amalgamation property.

In this case T̃ admits, by Proposition 8.3(a), elimination of quantifiers.

Example 10.3:

(a) The theory of algebraically closed fields is the model completion of the theory

of fields in L(ring) (essentially [FrJ08, p. 168, Cor. 9.3.2]).

(b) The theory RCF of real closed fields is the model companion of the theory

OF of ordered fields in the language L(ring, <), where < is the ordering symbol [Pre86,

Kor. 4.8]. By [VdD78, p. 40], RCF is even the model completion of OF.

(c) The theory ACFval of algebraically closed non-trivial valued fields is the model

completion of the theory Fval of valued fields in the language Lval(ring). This follows

from Chevalley’s extension theorem of valuations and from Theorem 8.4 of Abraham

Robinson [Pre86, p. 241, Kor. 4.18].
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Example 10.4: We augment the language L(ring) to a language LR(ring) by an n-ary

relation symbol Rn for each positive integer n. Let TR be the theory of fields together

with the axioms

(2) Rn(X1, . . . , Xn) ↔ (∃Z)[Zn +X1Z
n−1 + · · ·+Xn = 0].

For each field K and every n we interpret Rn in K in the unique way such that (2)

holds. Then consider K also as a model of TR. If an L(ring)-structure L is a field, then

an LR(ring)-substructure K of the LR(ring)-structure L is an integral domain contained

in L such that every equation Xn+an−1X
n−1+ · · ·+a0 = 0 with coefficients in K that

has a root in L has a root in K. In particular, if K is a field, then K is algebraically

closed in L.

By [FrJ08, p. 663, Thm. 27.2.3], TR has a model companion T̃R. A field K is a

model of T̃R if and only if K is 1-imperfect (i.e. char(K) = 0 or char(K) = p > 0 and

[K : Kp] = p), ω-free (i.e. every finite embedding problem over K is solvable), and PAC.

However, TR has no model completion, because TR does not have the amalgamation

property [FrJ08, p. 664, Example 27.2.4].

Let Tval be the theory of Lval(ring) that consists of the usual axioms of fields (1)

of Section 8 and the axioms (3) of Section 8 for |.

Adding the division symbol to the language LR(ring), we get a first order language

LR,val(ring) for valued fields such that a valued field (F, |) is a substructure of another

valued field (F ′, |′) if and only if F is an algebraically closed subfield of F ′ and the

restriction of |′ to F is |. Let TR,val be the theory in LR,val(ring) that consists of TR

and the axioms (3) of Section 8.

Remark 10.5: Every valued field (K, v) has an extension (K ′, v′), where K ′/K is reg-

ular and v′ is a non-trivial valuation of K ′.

Indeed, if v is non-trivial, let K ′ = K and v′ = v. Otherwise, choose an inde-

terminate t, let K ′ = K(t) and v′ any of the valuations of K ′/K (e.g. the one with

v′(t) = −1).

Theorem 10.6: The theory TR,val of valued fields has a model companion T̃R,val in the

37



language LR,val(ring). A non-trivial valued field (K, v) is a model of T̃R,val if and only

if K is 1-imperfect, ω-free, and PAC.

Proof: Let T̃R,val be the theory T̃R of Example 10.4 together with the axioms (3) and

(4) of Section 8 for non-trivial valued fields.

If (K, v) is a model of T̃R,val, then K is a model of T̃R. By Example 10.4, K is

1-imperfect, ω-free, and PAC. Conversely, if a field K is 1-imperfect, ω-free, and PAC,

then by Example 10.4, K is a model of T̃R. Hence, if v is a non-trivial valuation of K,

then (K, v) is a model of T̃R,val.

If (K, v) is a valued field, we extend it to another model (K ′, v′) withK ′/K regular

and v′ non-trivial (Remark 10.5). By Example 10.4 and by Definition 10.1(1b), there

exists a field extension L of K ′ which is 1-imperfect, ω-free and PAC such that K ′ is

algebraically closed in L. Then, K is algebraically closed in L. By Chevalley, v′ extends

to a valuation w of L [Lan58, p. 8, Thm. 1]. In particular w is non-trivial. Hence,

(L,w) is a model of T̃R,val that extends (K, v) in the language LR,val(ring). Thus, T̃R,val

satisfies Condition (1a) and (1b) of Definition 10.1.

Claim: If (K, v) ⊆ (L,w) is an extension of models of T̃R,val, then the field L is

a regular extension of K. Indeed, by Example 10.4, K is algebraically closed in L.

Moreover, by the second paragraph of the proof, K is 1-imperfect. Hence, by [FrJ08,

p. 47, Lemma 2.7.5], L/K is a regular extension.

Next observe that if (K, v) and (L,w) are models of T̃R,val and (K, v) ⊆ (L,w),

then K is PAC, and L/K is a regular extension (by the Claim). Moreover, both v and w

are non-trivial valuations. Hence, by Theorem 9.1, (K, v) is existentially closed in (L,w)

in the language Lval(ring). Since each of the axioms Rn is equivalent to an existential

formula of Lval(ring) (Example 10.4), (K, v) is existentially closed in (L,w) in the

language LR,val(ring). By Abraham Robinson, T̃R,val is model complete [FrJ08, p. 659,

Lemma 27.1.11], that is it satisfies Condition (1c) of Definition 10.1. Consequently,

T̃R,val is a model companion of TR,val.
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11. The Non-Amalgamation Property of TR,val

Example 27.2.4 of [FrJ08] constructs fields K and L of positive characteristic p that are

algebraically closed in no common field extension. However, K and L are isomorphic,

so that example does not prove that the theory TR does not have the amalgamation

property, as the paragraph before that example claims.

In this section we correct that example by constructing three fields E,K,L of

characteristic p such that E is algebraically closed in both K and L but K and L are

algebraically closed in no common field extension. This implies that none of the theories

TR and TR,val has the amalgamation property.

Our construction uses the notions of differentials of fields. For each field L of

characteristic p we consider the vector space Der(L,L) over Fp of all derivations of L

into L and the map dL: L → Hom(Der(L,L), L) defined by (dLa)(D) = Da for each

a ∈ L. It satisfies the relations

(1) p · dLa = 0, dL(a+ b) = dLa+ dLb, and dL(ab) = adLb+ bdLa

for all a, b ∈ L. Each dLa with a ∈ L is called a differential of L. Repeated application

of (1) leads for a0, a1, . . . , an ∈ L to the following formula:

(2) dL(a
p
0a

i1
1 · · · ainn ) =

n∑
j=1

ap0a
i1
1 · · · aij−1

j−1 · ija
ij−1
j · aij+1

j+1 · · · ainn · dLaj .

Lemma 11.1: Let L be a field extension of Fp and let a ∈ L. Then dLa = 0 if and only

if a ∈ Lp.

Proof: If a = ap0 for some a0 ∈ Lp, then dLa = pap−1
0 · dLa0 = 0. Conversely, assume

that a /∈ Lp. Then a can be completed to a p-basis of L [FrJ08, p. 45, Lemma 2.7.1].

By [Lan58, Thm. 1] or [Gey13, Prop. (d) of Section 1.18], the trivial derivative of Lp

extends to a derivative D ∈ Der(L,L) such that Da = 1. Hence, (dLa)(D) = Da ̸= 0,

so dLa ̸= 0.

Lemma 11.2: Let E be a field extension of Fp with [E : Ep] = pn, where n ≥ 2 is an

integer, let a1, . . . , an be a p-basis for E over Ep, and let x be an indeterminate. For
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i = 2, . . . , n let

(3) yi = a
1/p
i−1x+ a

1/p
i

and let L = E(x, y2, . . . , yn). Then E is algebraically closed in L. Moreover, for

i = 2, . . . , n we have

(4) [E(x, y2, . . . , yi) : E(x)] = pi−1.

Proof: We break the proof into three parts.

Part A: Proof of (4). By assumption, [E(a
1/p
i ) : E] = p for i = 1, . . . , n and the fields

E(a
1/p
1 ), . . . , E(a

1/p
n ) are linearly disjoint over E. Hence, E′ = E(a

1/p
1 , . . . , a

1/p
n ) satisfies

[E′ : E] = pn, so [E′(x) : E(x)] = pn. By (3), yi ∈ E′(x) for i = 2, . . . , n, so L ⊆ E′(x).

Moreover, by (3), ypi ∈ E(x), so [E(x, y2, . . . , yi+1) : E(x, y2, . . . , yi)] ≤ p for i =

2, . . . , n−1 and [E(x, y2) : E(x)] ≤ p. Finally, by (3), L(a
1/p
1 ) = E(x, y2, . . . , yn, a

1/p
1 ) =

E′(x) and [E′(x) : L] ≤ p. It follows that (4) holds for i = 2, . . . , n and also

(5) [E′(x) : L] = p.

Part B: For each e ∈ E with dEe ̸= 0 we have dLe ̸= 0. Otherwise, there exists e ∈ E

such that

(6) dEe ̸= 0 but dLe = 0.

We denote the set of all n-tuples j = (j1, . . . , jn) with 0 ≤ j1, . . . , jn ≤ p− 1 by J . By

our assumption on a1, . . . , an, there exist ej ∈ E, j ∈ J , such that

(7) e =
∑
j∈J

epj a
j1
1 a

j2
2 · · · ajnn .

Taking differentials of both sides of (7) and using formula (2), we get ε1, . . . , εn ∈ E

such that

(8) dEe =
n∑

i=1

εidEai and 0 = dLe =
n∑

i=1

εidLai.
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Next we raise (3) to the pth power and get

(9) an = ypn − an−1x
p, an−1 = ypn−1 − an−2x

p, . . . , a2 = yp2 − a1x
p.

Applying dL on the latter equalities, we get

(10) dLan = −xpdLan−1, dLan−1 = −xpdLan−2, . . . , dLa2 = −xpdLa1.

Now we successively substitute dLan, dLan−1, . . . , dLa2 from (10) in the right equality

of (8) to get a relation

(11) 0 = (
n∑

i=1

±εix(i−1)p)dLa1.

If dLa1 = 0, then by Lemma 11.1, a1 ∈ Lp. Hence, by (9), a2, . . . , an ∈ Lp. It follows

that L = E′(x), in contrast to (5). It follows from this contradiction that dLa1 is a

nonzero element of L. Hence, by (11),
∑n

i=1 ±εix(i−1)p = 0. Therefore, ε1, . . . , εn = 0,

so by (8), dEe = 0, in contrast to (6).

Part C: E is algebraically closed in L. Let u be an element of L which is algebraic

over E. Then u belongs to E′(x) and is algebraic over E′. Hence, u ∈ E′. Since

(E′)p ⊆ E, we have u0 = up ∈ E ∩ Lp. Therefore, dLu0 = 0. By Part B, dEu0 = 0.

Hence, by Lemma 11.1, u0 ∈ Ep. Consequently, u ∈ E, as claimed.

Proposition 11.3: None of the theories TR and TR,val have the amalgamation prop-

erty.

Proof: We choose a field E of positive characteristic p such that [E : Ep] = p3 and

let a, b, c be p-basis for E over Ep. For example, we may take a, b, c as algebraically

independent elements over Fp and set E = Fp(a, b, c) [FrJ08, p. 45, proof of Lemma

2.7.2]. Then, let x be a transcendental element over E, set y = a1/px + b1/p and

z = b1/px + c1/p, and let K = E(x, y) and L = E(x, y, z). By Lemma 11.2, E is

algebraically closed in both K and L.

We assume there exist a field M and embeddings φ: K →M and ψ: L→M that

coincide on E such that K ′ = φ(K) and L′ = ψ(L) are algebraically closed in M . We
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may assume without loss that K ′ = K and φ is the identity map. Then φ(E) = E, so

E is algebraically closed in M .

Raising y and z to the pth power we get

(12) yp = axp + b and zp = bxp + c.

Hence, x′ = ψ(x), y′ = ψ(y), and z′ = ψ(z) satisfy

(13) (y′)p = a(x′)p + b and (z′)p = b(x′)p + c.

If x′ ̸= x, then by (12) and (13),
(

y′−y
x′−x

)p

= a. Hence, a1/p ∈ M ∩ Ẽ = E, which is a

contradiction.

If x′ = x, then y′ = y and z′ = z. Hence, L′ = L, so L ⊆ M . However, by

Lemma 11.2, L is a proper algebraic extension of K, so K is not algebraically closed in

M , which is again a contradiction.

We conclude that an M as above does not exist, so TR does not have the amalga-

mation property.

Now we choose a valuation vE of E and extend vE , by Chevalley, to valuations

vK and vL of K and L, respectively. Then (E, vE) is a TR,val-submodel of (K, vK) and

of (L, vL). But (K, vK) and (L, vL) can not be embedded into a common TR,val-model

(M, vM ) over (E, vE), because K will then be algebraically closed in M , in contrast to

the construction of K above. Thus, TR,val does not have the amalgamation property.

In the next section we rectify the deficiency of TR,val expressed in Proposition 11.3

by adding more relation symbols to the language LR,val. The new relations will ensure

that if a model of the new language is contained in another model, then the underlying

field of the latter model will be a regular extension of the underlying field of the former

model.

12. Elimination of Quantifiers

Let (K, v) and (L,w) be valued fields and consider them as structures for the language

LR,val(ring) (Example 10.4). If (K, v) is a substructure for (L,w), then by that example,
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K is algebraically closed in L. However, L is not necessarily a regular extension of K.

We rectify this deficiency of LR,val(ring) by adding more relations to the language and

prove that the theory of the non-trivial valued fields in the new language has a model

completion admitting elimination of quantifiers.

Example 12.1: As in [FrJ08, p. 664, Sec. 27.3] we augment the language LR(ring)

(Example 10.4) to a language LR,Q(ring) by adding n-ary relation symbols Qp,n, one for

each prime number p and each positive integer n. Let TR,Q be the theory of LR,Q(ring)

consisting of TR (Example 10.4) together with the axioms

(1) Qp,n(X1, . . . , Xn) ↔ p = 0 ∧ (∃Ui)i∈I

(∑
i∈I

Up
i X

i1
1 · · ·Xin

n = 0 ∧
∨
i∈I

Ui ̸= 0
)
,

one for each pair (p, n), where I is the set of all n-tuples (i1, . . . , in) of integers between

0 and p− 1. Given a field K, we may uniquely regard K as a model of TR,Q. Indeed, if

char(K) = p > 0, we define Qp,n as the set of all n-tuples of elements of K satisfying the

right hand side of (1), i.e. all n-tuples of p-dependent elements of K. In this case Qp′,n

is the empty relation for each prime number p′ ̸= p. Therefore, if K ⊆ L is an extension

of fields considered as models of TR,Q, if p = char(K) > 0, and if x1, . . . , xn ∈ K are

p-independent in K, then ¬Qp,n(x1, . . . , xn) is true in K, hence in L, and therefore

x1, . . . , xn are p-independent in L. It follows that L/K is a separable extension [FrJ08,

p. 38, Lemma 2.6.1]. Considering L/K as an LR(ring)-extension, we find that K is

algebraically closed in L (Example 10.4). Therefore, L/K is a regular extension [FrJ08,

p. 39, Lemma 2.6.4].

Conversely, every regular extension L/K of fields is an extension of structures for

the language LR,Q(ring).

Definition 12.2: We say that a field K is ω-imperfect if either char(K) = 0 or

char(K) = p > 0 and [K1/p : K] = ∞. In the latter case, if L is a separable field

extension of K, then L is linearly disjoint from K1/p over K, hence [L1/p : L] = ∞, so

L is also ω-imperfect.

Note that if char(K) = p > 0, K is a model of TR,Q, and x1, . . . , xn are elements

of K such that ¬Qp,n(x1, . . . , xn) holds in K, then, by (1), [K(x
1/p
1 , . . . , x

1/p
n ) : K] = pn.
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Hence, if each of the sentences

(2) (∃X1) · · · (∃Xn)¬Qp,n(X1, . . . , Xn)

holds in K, then K is ω-imperfect.

The following result is [FrJ08, p. 665, Thm. 27.3.1].

Proposition 12.3: The theory TR,Q has a model completion T̃R,Q whose models are

the ω-imperfect ω-free PAC fields.

The axioms of T̃R,Q differ from the axioms of T̃R by the sentences (2) that replace

the axioms for 1-imperfectness.

Adding the division symbol to the language LR,Q(ring), we get a first order lan-

guage LR,Q,val(ring) for valued fields. Then we augment the theory TR,Q to a theory

TR,Q,val in the language LR,Q,val(ring) by adding the axioms (3) of Section 8 to TR,Q.

We also augment T̃R,Q to a theory T̃R,Q,val of the language LR,Q,val(ring) by adding

the axioms (3) and (4) of Section 8 to T̃R,Q. In particular, each of the models (K, v) of

T̃R,Q,val is a non-trivial valued field.

Lemma 12.4: The theory TR,Q,val has the amalgamation property.

Proof: Let (L1, v1) and (L2, v2) be two models of TR,Q,val that contain a common

substructure for TR,Q,val. By Lemma 8.1(a), we may assume that this model is a

common valued subfield (K, v). In particular, L1 and L2 are regular extensions of

K. Replacing (L2, v2) by an isomorphic valued field extension (L′
2, v

′
2) of (K, v), we

may assume, in addition, that L1 and L2 are algebraically independent over K. Hence,

L1 and L2 are linearly disjoint over K [FrJ08, p. 41, Lemma 2.6.7]. In particular, the

compositum L = L1L2 is a regular extension of K [FrJ08, p. 41, Cor. 2.6.8(b)]. By

[FrJ08, p. 35, Lemma 2.5.5], L has a valuation w that extends both v1 and v2. Thus,

(L,w) is a model of TR,Q,val that extends both (L1, v1) and (L2, v2), as desired.

We are now in a position to prove an analog of both Theorem 10.6 and Proposition

12.3.
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Theorem 12.5: The theory TR,Q,val has a model completion T̃R,Q,val whose models

are the non-trivial valued fields (F,w) such that F is an ω-imperfect, ω-free PAC field.

Moreover, T̃R,Q,val admits elimination of quantifiers.

Proof: If (K, v) is a model of T̃R,Q,val, then K is a model of T̃R,Q. By Proposition

12.3, K is ω-imperfect, ω-free, and PAC. Conversely, if a field K is ω-imperfect, ω-free,

and PAC, then by Proposition 12.3, K is a model of T̃R,Q. Hence, if v is a non-trivial

valuation of K, then (K, v) is a model of T̃R,Q,val.

If (K, v) is a model of TR,Q,val, we replace it by a regular valued field extension, if

necessary, to assume that v is non-trivial (Remark 10.5). By Proposition 12.3, K has a

regular field extension L which is ω-imperfect, ω-free and PAC. Note that the regularity

of L/K is forced by the language TR,Q,val, as noted in Example 12.1. By Chevalley, v

extends to a valuation w of L [Lan58, p. 8, Thm. 1], so (L,w) is a model of T̃R,Q,val

that extends (K, v) in the language LR,Q,val(ring). Thus, T̃R,Q,val satisfies Conditions

(1a) and (1b) of Definition 10.1.

Next observe that if (E, v) and (F,w) are models of T̃R,Q,val and (E, v) ⊆ (F,w),

then E is PAC and F/E is a regular extension. Moreover, both v and w are non-

trivial valuations. Hence, by Theorem 9.1, (E, v) is existentially closed in (F,w) in the

language Lval(ring). Since each of the axioms Rn and Qp,n is equivalent to an existential

formula of Lval(ring) (Example 10.4 and Example 12.1), (E, v) is existentially closed

in (F,w) in the language LR,Q,val(ring). Thus, T̃R,Q,val is model complete, that is it

satisfies Condition (1c) of Definition 10.1. Consequently, T̃R,Q,val is a model companion

of TR,Q,val. By Lemma 12.4, T̃R,Q,val is a model completion of TR,Q,val. By Remark

10.2, T̃R,Q,val admits elimination of quantifiers.
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