ALGEBRAIC EXTENSIONS OF FINITE CORANK
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ABSTRACT

We consider here a hilbertian field £ and its Galois group 4 (k/k). For a
natural number e we prove that almost all (6) € & (k,/k)° have the following
properties. (1) The closedsubgroup (o‘) which is generated by 4, ..., ¢,1s a free
pro-finite group with e generators. (2) Let K be a proper subfield of the fixed
filld k() of o4,..., 0, in k;, which contains k. Then the group & (k, /K) cannot
be topologically generated by less then e -+ 1 elements. (3) There does not
exist a 1€ (k [k), v £ 1, of finite order such that [k, (6): k, (0, 1)} < 0.
(4) Ife = 1, there does not exist a field k & K < k,; (o) such that
1 < [k, (0): K] < 0. Here “almost all” is used in the sense of the Haar
measure of the compact group ¥ (k/k)°.

Introduction

We consider a hilbertian field k and denote by k, its separable closure and by
Y(k,/k) its Galois group. Like every compact group, %(k k) has a unique nor-
malized Haar measure p. We pick up an e-tuple (6) e 9(k,/k)® at random and ask
what properties does the closed subgroup <o) generated by (¢) have in ¥(k/k)*;
orequivalently, what properties does the fixed field k(6) of (¢) have in k,. We give
several answers to this question. First we prove that (¢} is a free pro-finite group
with e topological generators. In particular we have that (o, -, 0,
N<0441,,06,0 = 1if 1 £d < eand that 5,0, # 0j0, for 1 i, j<e i #].
Next we prove that the set S(o) of all (¢') € ¥(k /k)° such that k(o) =, k(c") has
the measure 0. Moreover we show that there are at least 2™ sets of the form S(o).
Then we come to our main problem, namely, what happens outside the group
{@); or equivalently, what kind of fields can be found between k and k(¢). Here
we adopt the convention of denoting by < the proper inclusion and by < the im-
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proper inclusion of sets, Our first result in this direction is that if k & K < k(o)
then %(k,/K) cannot be topologically generated by less than e+ 1 elements.
Second, there does not exist any 7€ 9(k/k) of finite order such that
[ky(6) : k(o,7)] < co, and third, if e = 1, there does not exist any intermediate
field k & K < kyo) such that [k(c): K] < . The conjecture is that the last
statement holds for all e. Finally we consider the centralizer and the normalizer of
(o) in Y(kk) and we find that in the case were k is a global field, (&) is its own
centralizer if e = 1, and that the centralizer is trivial if e = 2. For arbitrary
hilbertian field k we prove only that the normalizer of (¢ in %(k,/k)® is a closed
subgroup of infinite index.

Note that if (o) is not selected at random then it may happen that it does not
have the above properties. For example, for ate%(k/k) such that (z) = Z,
and for o = %, we have that [ky(o):k(7)] = 2. Thus ¢ is not picked up at
random. In fact we prove that the set of all proper powers of the elements of
G(k k) has the measure 0.

In the last two sections we obtain some immediate applications of our results
to the problem of finite extensions of a hilbertian field and to finitely generated

free pro-finite groups.

1. Fields of finite corank

A subset X of a topological group G is said to be a topological system of
generators for G if the closure of the group generated by Zis equal to G.

We say that G has the rank X, where ¥ is a cardinal number, if G has a topolo-
gical system of generators of cardinality ¥, and does not have such a system of
cardinality less than .

If K is a field, then by K we denote the separable closure of K and by 9(K,/K)
the Galois group of K, over K. This group is equipped with the usual Krulj
topology.

K is said to have the corank N if (K /K) has the rank .

If ¥ is a topological system of generators for %(K,/K) then K is the fixed field
in K of ¥ and vice versa. In this case we write K = K(Z).

We shall be mainly interested in the case where X is a finite set £ = {04, 0.}
Then K(Z) is said to be a field of finite corank. In this case we shall use the nota-
tion k(X) = k(oy,,0,) = ko), where (6) stands for the e-tuple (o, --,0).
Some of the simplest properties of fields of a finite corank are given below.
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LEMMA 1.1. A field K has corank < e if and only if for every finite Galois

extension L of K the group 9(L[K) is generated by e elements.

PROOF. Suppose that ¢y, -, 0, are topological generators for %(K/K). Then
their restrictions to L, o, IL, L0, l L generate %(L/K).

Conversely, suppose that for every such L the finite set S(L) of all e-tuples
(64, -+, 0,) € 4(L/K) which generate #(L/K), is not empty. Then the inverse limit
S = 111}1 S(L) (with respect to restrictions) is not empty. Any clement of S is a
system of e topological generators for 9(K,/K). Q.E.D.

Denote by F, the free group generated by e elements. F, has only a finite number
N,(n) of subgroups of a given index n. This number may be calculated from the

recursive relations
n—1

1 N(D) =1, N() = n(n)*"" = X [(n — DITINL)
i=1

(see Hall [6, p. 190]). We further denote by NL,(n) the number of normal sub-
groups of F, of index n. Obviously we have NL,(n) £ N (n).

Consider now an arbitrary group G generated by e elements. Then there exists
an epimorphism 6 : F, » G. The map H ~ 0~'H is an injective map of the set of
subgroups H of G of index n into the set of subgroups of F, of index n. Indeed, if
Xy, ', X, are coset representatives of G modulo H and if z,, -+, z, are elements of
F, which are mapped by 0 onto x,, -, x,, respectively, then z,, -, z, are cosets
representatives of F, modulo §~'H. If H is a normal subgroup of G then 6~ 'H is
a normal subgroup of F,.

Hence we have the following lemma.

LemMa 1.2. If a group G is generated by e elements then the number of the
subgroups (respectively, the normal subgroup) of G of index n is £ N,(n) (res-
pectively, < NL,(n)).

LemMA 1.3. If a profinite group G is topologically generated by e elements
then the number of its closed subgroups (respectively, closed normal subgroups)

of index n is £ N (n) (respectively, = NL,(n)).

PRroOOF. Let J,, -+, J,, be m distinct closed subgroups of G of index n. Then we can
find a normal closed subgroup J of G of finite index which is contained in each of the
Jy, -+, J . The quotient group G/J will be a finite group generated by e elements
and J,/J, -+, J,,/J will be m distinct subgroups of G/J of index n. By Lemma 1.2,
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m = N,(n). Similarly we prove that in G there are no more than NL_(n) closed
normal subgroups of index n. Q.E.D.

COROLLARY 1.4. Let K be a field of corank < e. Then the number of the
separable (respectively, Galois) extensions of K of degree n is < N (n) (res-
pectively, < NL(n)).

2. The free group and the free profinite group with e generators

Consider the free group F, with e generators. If we take the family of all normal
subgroups N, of F, of finite index as a basis of the open neighborhoods of 1 then
F, becomes a topological group. Its completion £, = lim F./N, is called the free
profinite group with e generators. There is a canonical?opological imbedding of
F, in F, in which every element x € F,is mapped into the system {xN,}. Thus we
shall consider F, as a topological subgroup of £,. If z, -+, z, are generators of £,
and G is any profinite group generated by e elements a;,---,a, then the map
Zy P ay, v, 2, > a, can be extended to a continuous epimorphism of £, onto G.
This property of £, also characterizes it (see, for example, Ribes [15, Sect. 7]).
A basis for the open neighborhoods of 1 in F, are all the kernels of the epimor-
phisms of #, onto finite groups which are generated by e elements (see Ribes [15,
p. 23]). It follows that every element of F, can be approximated by a sequence of
elements of F,. If A is any subset of £,, then we denote its closure by 4.

LeMvMA 2.1. The mapy:H » H is a bijective map of the family 57 of all
subgroups of F, of finite index onto the family > of all closed subgroups of F, of
finite index. For He we have (F,:H) = (£,:H). Moreover, H is a normal
subgroup of F, if and only if B is a normal subgroup of F, and in this case we
have an isomorphism F,|H =~ F |H.

Proor. (i) The map y is injective. Every H e o is a closed subgroup of F,.
Hence H = H N F,. It follows that y is injective.

(i) If x4, -+, x, is a system of representatives of F, modulo a subgroup H e #
then it is also a system of representatives of F, modulo A. Indeed, since
H=HnNF, the Xy, -+, X, are distinct modulo H. Thus, we have only to show
that each of the elements of £, lies in one of the cosets Ax » 1 < j < n. Indeed, let
z€ E,; then there exists a sequence of elements z;€ F, which converges to z. For
every i there exists a 1 < j(i) < n and an h;e H such that z; = hix ;). Since Ais
compact we can assume that h; converges to an element he H, and that
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Jj(i) = j is fixed. Hence after taking the limit we have z = hx;. This proves (ii). It
follows from (ii) that:

(iii) For H € o we have (F, : Hy=(F, : H). The first part of the lemma follows
now from (i), (iii) and Lemma 1.3, since F, has exactly N, (n) subgroups of index
n. The second part of the theorem is proved in a similar way. Q.E.D.

We note that Lemma 2.1 does not hold for closed subgroups of infinite index.
For example, for e = 1, we have F; =Z and F; = 7 =1 2,, where Z,, is the
additive group of the p-adic integers and it is known that Z does not have sub-
groups of infinite index (exept 0) while Z has closed non-trivial subgroups of
infinite index.

ProBLEM 1. Is every subgroup of £, of finite index, closed in £,?
We prove now the following characterization for the £,

LemMA 2.2. Let G be a profinite group of rank < e. Then G is topologically
isomorphic to F, if and only if G has for every n exactly N, (n) (respectively,
NL,(n)) closed (respectively, closed normal) subgroups of index n.

ProoF. The necessity of the condition follows from Lemma 2.1. We shall prove
that it is also sufficient. Indeed, let G be a profinite group of rank = e, and suppose
that for every n = 1 G has exactly N, (n) closed subgroups of index n. Then there
exists a continuous epimorphism 0 : £, » G. Let J, ;,j = 1, -, N(n) be the closed
subgroups of G of index n. Put I, ; = 0~'(J,,;),j = 1,--, N, ,. Then the I, ; are
closed subgroups of £, of index n and they are all distinct. Since £, has exactly
N(n) closed subgroups of index n, the I, ; are all of them. Let now x €& F, and
suppose that 0(x) = 1. Then 8(x) e J, ; for every n = 1 and forevery 1 < j £ N.(n).
Hence x belongs to all the I, ;. But this means that x belongs to every subgroup of
F, of finite index. Hence x = 1.

We have therefore proved that 0 is a continuous isomorphism., Since both £,
and G are compact and Hausdorff, 6 is also a homeomorphism.

One proves the statement concerning the normal subgroups in an analogous
way. Q.E.D.

As a corollary we obtain the well-known following result (see Binz, Neukirch,
Wenzel [3, p. 108]).

Lemma 2.3. If Jis a closed subgroup of F, of index n then J is topologically
isomorphic to F; where f = 1 + n(e — 1).

Proor. By Lemma 2.1, Jis the closure in £, of a subgroup J of F, of index n.
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The subgroup J is isomorphic, by a theorem of Nielsen and Schreier, to F, (see

Kurosh [9, pp. 28, 36]). Lemma 2.1 then implies that J has exactly N (m) closed

subgroups of index m for every positive integer m. Hence, by Lemma 2.2, J =~ F -
A further application is the following.

THEOREM 2.4. Let G be a profinite group of rank < e. Then G is fopologically
isomorphic to F, if and only if every finite group with e generators is a con-

tinuous homomorphic image of G.

ProoF. The necessity of the condition is clear. In order to prove its sufficiency
we put N=N(n) for a fixed positive integer nand let H,, -+, Hy be all the sub-
groups of F, of index n. Then J = H; M .- N Hy is a normal subgroup of F, of
finite index. By our assumptions there exists a closed normal subgroup J' of G
such that G/J’ & F,/J. Hence there exist N distinct subgroups, Hy,---, Hy, of G
which contain J' such that H;/J’ corresponds to HyJ, i =1,.--,n, under the
isomorphism. The H; are closed subgroups, since J is such, and they all have the
index n in G. Thus the number of the closed subgroups of G of index n is N (n).
Since this is true for every n we have, by Lemma 2.2, that G is topologically iso-
morphic to £, Q.E.D.

REMARK. Similar characterizations with analogous proofs hold for the dis-

crete free groups F.,.

3. Symmetric extensions of a hilbertian field

Hilbertian fields are the fields k& which have the following property: For every
irreducible polynomial fe k[T, -, T,, X, -, X,] and for every Zariski non-
empty open set U = S™ the set of (ay,-,a,)ek™ N U for which
flay, -, a,, Xy, X,) is irreducible in k[ X, -+, X, ] is nonempty. Such sets are
called k-hilbertian sets. It is known that if [ is a finite separable extension of a
hilbertian field k then every l-hilbertian set contains a k-hilbertian set (see Lang

[13, p. 152]). Furthermore, let fe k[T, ---, T,,X] be an irreducible polynomial
whose Galois group over the field k(Ty, -, T,,) is isomorphic to a group G. It is

wellknown that the set of all the m-tuples (ay, -+, a,,) € k™ for which f(ay, -+, a,, X)
is irreducible and separable over k with a Galois group G, contains a k-hilbertian
set (see Kuyk [10, p. 396]). If the Galois group of f over (T4, ---, T,) remains
unchanged then we can find an m-tuple (ay,,a,)ek™ such that the Galois
groups of f(ay, -+, a,, X) over k and I are isomorphic to G (since the intersection
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of two k-hilbertian sets is never empty). In this case the splitting field I’ of
f(ay, -, a,,X) over k is a Galois extension of k, with a Galois group G, and it is
linearly disjoint from/ over k.In particular we can consider the general polynomial
of degree m,

f(Ty, T X) = X"+ T, X" 1 4o + T

It is well known that for every field I the Galois group of f over Ty, Tp)is
isomorphic to the symmetric group S, (see Lang [14, p. 201]). Hence we can con-
struct by induction a sequence of Galois extensions Iy, Iy, I, -+ of k with Galois
groups 8, such that I, is linearly disjoint from I, -- I, over k for every i = 1. A
sequence of extensions with the last property is said to be linearly disjoint [8, p;

70]. We formulate this result as a lemma.

Lemma 3.1. Let k be a hilbertianfield and m a positive integer. Then we can
construct a linearly disjoint sequence {I;/k};Z, of Galois extensions such that

g(1,/k) = S, for every i.

4, The Haar measure of a Galois group

Let k be a field. Then it is well known that the Galois group G(k k) is compact
with respect to its Krull topology. There is, therefore, a unique way to define a
Haar measure p on the Borel field of subsets of #(k/k) such that u(%(k,/k)) = 1.
If 1 is a finite separable extension of k then y(¥(k,/1)) = 1/[1 : k]. We complete p
by adjoining to the Borel field all the subsets of sets having measure 0 and denote
the completion also by u. More generally, for a positive integer e we shall consider
the product space ¥(k/k)® and denote by u° or p again the appropriate completion
of the power measure. It coincides with the completion of the Haar measure of
Gk Jk)°.

The following lemma is a generalization of [8, Lemmas 1.9 and 1.10]. Its proof
is analogous.

LemMMa 4.1. Let k be a hilbertianfield and let {k/k}> be a linearly disjoint
sequence of finite Galois extensions. For each i let A, be a nonempty subset of
Y(k;/k)® and put A; = {(c)e.‘ﬂ(ks/k)e}(clk,-)e A}}. Then the sequence of sets
{A;}7%, is independent in the probabilistic sense. If

0203 [ki:k]—e = o0

i=1

u(ig Ai) = 1.

then
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If we combine Lemma 3.1 with Lemma 4.1 we obtain the following lemma.

LEMMA 4.2. Let ny, -, 7, be e elements of S, and let k be a hilbertian field.
Then for almost all (o) € Y(kyk)® there exists a continuous epimorphism of
Y(ky/k) onto S,, which maps oy, -+, 0, onto my, -++, m, respectively.

We shall use the notation A & B for two measurable subsets 4, B of #(k,/k)° to
denote that the symmetric difference of 4 and B has the measure 0. Similarly
A Z B will mean that u(4 - B) = 0.

We shall frequently use the fact that the intersection of a countable set of sets of
measure 1 is again a set of measure 1.

5. The free generators theorem

For a field k and e elements 015, 0. € Y(ky/k) we denote by {a,, -+, 6, (or also
by <e)) the closed subgroup of #(k,k) generated by ¢4,,0,. Clearly (o)
= Y(k,/ky0)). The e-tuple (o) is said to be topologically freeif () is topologic-
ally isomorphic to £,.

If I = L are two Galois extensions of k and if (6) e 9(L/k)° then we denote by
lo) = l(oy, -+, 6,) the fixed field of (o ] D)in I. It is clear that ] N L(6) = I(¢) and
hence that I and L(s) are linearly disjoint over I(s).

Our basic result can now be formulated as follows.

THEOREM 5.1.  Let k be a hilbertian Jield and let e,f be two positive integers.
Then almost all (6) e Y(ky/k)® are topologically free. Furthermore, for almost all
(0,7) € G(k,Jk)* x U(k[k) we have ky(6) - k(1) = k, and (6> N (1) = 1.

Proor. For a positive integer nlet Ny, ---,N,, h = NLn), be all the normal sub-
groups of F, of index n. Put N = Nyn-+NN,and G = F,N. Then G is a
finite group generated by e elements and it contains exactly h normal subgroups of
index n. We embed G in a symmetric group S,, and construct, by Lemma 3.1, a
linearly disjoint sequence {ki/k},2, of Galois extensions such that G(kifk) = S,
for every i. We can find now for every i an intermediate field k < k,'c k; such
that F(k,/k;) = G. We choose e generators o;y, -+, gy, for 9(k,/k/), put

T = {(0,0)eF(k/k)**’ |(o| k) = (o;) and (c|ky) = @)
and let
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By Lemma 4.1, T, has the measure 1 in (k,/k)**/ and its projection on the first e
coordinates has the measure 1 in 9(k k).

Let now (o,1) € T,. Then there exists an i such that k, < kyt) and k(o) Nk,
= ki. Hence, if we put K = k(o) - k; we have K < k(o) - k(z) and 9(K/k(s))
= G. This implies that K/k,(c) has exactly h Galois subextensions of degree n.
Since by Corollary 1.4, k(o) has no more then h Galois extensions of degree n
altogether, we obtain that all of them are contained in k,(c) - k(7).

Letnow T = (12 ,T, and put T’ for the projection of T on the first ¢ coor-
dinates. Then T and T’ have the measure 1 in @(k,/k)**/ and G(ky/k)° respectively.
If (6, 1) € Tthen k,(6) has exactly NL,(n) Galois extensions of degree n for every n
and hence, by Lemma 2.2, {6 is topologically isomorphic to F,. Furthermore,
every finite Galois extension of k(e) is contained in ky(o) - ky(t). Hence k(o) - k(x)
= k,. Obviously this means that {6} N (> = 1. Q.E.D.

REMARK. Theorem 6.1 can be considered as a generalization of a result of
J. Ax[1, p. 177] which states that for almost all ce%(0/Q), (o> ~ 7.

6. Classes of (o4,...,0,)

The Free Generators theorem implies in particular that if k is a hilbertian field
then for almost all the (¢) € 9(k,/k)° the groups (¢ are isomorphic to one another.
It may be asked whether the reason for this phenomena is that the fields k(o) are
already isomorphic to one another. In this section we shall show that this is far
from being the case and in fact for each (¢') € (ky/k)° there exists only a zero set
of (6")e¥9(k/k)® such that k(o) = , k(c'). We begin by stating the following
lemma.

LEMMA 6.1. Let k be a field and let (c), (¢") €9(k k). Then k(o) = , k(")
if and only if there exists a teY(k[k) such that k(o) = (6’1 1),

ProOF. Cleér.

If k is a field then we denote by k,, the maximal abelian extension of k.

LeMMA 6.2. Let k be a hilbertian field and let oy,--,0,¢ G(kk). Then

k(o) is an infinite extension of k.

Proor. Assume that k() is a finite extension of k. Put m = N 2)+1 and
consider the polynomial X? — X —T. Thisis an absolutely irreducible polynomial
and it is separable with respect to X. Since k is a hilbertian field we can find
ay, @, €k such that X> — X —a;, j =1,-+,m, is irreducible and separable
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over k,(6) and such that if b; is a root of X? — X — a; then the m fields
k(o)by),, k(o)(b,) are linearly disjoint over k(o) [8, p. 74]. The by,--, b,
belong to k,;. Hence the Galois group %(k,,/k.,(0)) has at least m closed subgroups
of index 2. But its rank is < e. Hence it follows from Lemma 1.3 that m £ N,(2),

which is a contradiction.

ProBLEM 2. It is known that if k is a hilbertian field then k,, is also hilbertian
(see Kuyk [11, p. 113]). Are the fields k(o) hilbertian?

THEOREM 6.3. Let k be a hilbertian field and let o, -, 0,€ %(k/k). Put
S(e) = {(6") e U(kyk)*|k(s") = k(0)}.
Then S(6) is a closed subset of 9(kJk)* of measure zero.

Proor. Let (p) belong to the closure of S(6) in ¥(ky/k)°. Then for every finite
Galois extension L of k there exists (¢') € S(6) such that (¢’ ]L) =(p ]L). For (¢')
there exists a 7 %(k/k) such that k(o) = k(ra’z"!). Hence L(c) = L(ze't™")
= L(zpt~'). We conclude that the closed set T(L) of ali v € 9(k,/k) such that

M L(e) = L(zpt™")

is not empty. It is clear thatif L,, -+, L, is a finite family of finite Galois extensions
then

T, Ly <N TW).
Jj=1

Hence by compactness we can find a v e %(k/k) for which (1) holds for every L.
For such a 7 we shall have k(o) = k,(tp ™). Hence, by Lemma 6.1, k(p) =, k(o)
and thus (p) € S(0).

We have therefore proved that S(e) is closed. In order to prove the rest of the
theorem we consider a (6')e S(¢). Hence k,(6) = k,(t6't™") = k,(c’) and
therefore (¢') € 9(k,/k (). It follows that S(6) & ¥(k,/k,(s)). But by Lemma
6.2, k,(6)/k is an infinite extension, hence u(%(k,/k,(c))) = 0 and thus S(c) is a
zero set. Q.E.D.

The condition k(o) =, ko) obviously defines an equivalence relation on the
group (k k)¢ and the S(¢) are the equivalence classes modulo this relation. In

the following section we shall find how many equivalence classes do exist in
G(klk)*.

%,




Vol. 18, 1974 EXTENSIONS OF HILBERTIAN FIELDS 289

7. The number of the classes of the (a,,+, 7,)

Let k be a hilbertian field and let S be a subset of %(k/k)® of positive measure.
Theorem 6.3 implies that there are more than N, non-equivalent e-tuples (6) in S.
Therefore, if we accept the continuum hypothesis 2 ™° = N, then there are at least
2% non-equivalent e-tuples in S. In what follows we prove this fact without

assuming the continuum hypothesis.

'THEOREM 7.1.  Let k be a hilbertian field and let S be a subset of G(k k) of
positive measure. Then there are at least 2™° non-equivalent e-tuples in S.

Proor. By the regularity of the Haar measure we can find a closed subset of S
having a positive measure. Hence we can assume, without loss of generality, that S
itself is already closed.

We construct, as in the proof of Lemma 6.2, two sequences a,, a,, as, -+ € k and
by, by, bs, -+ € ky, such that b2 — b, — a; = 0, [k(b)) 1 k] = 2 for i = 1, and such
that the sequence of fields {k(b,)};2, is linearly disjoint over k. For every i = 1
we put

A; = G(k/k)” B; = G(kjk)* — G(kk)".
These are closed sets in 9(k,/k)® and we have

1 1
MA) = 7 uB) = 1“5; .

Further we denote by C; a variable which assumes either the value 4; or the value
B;. It follows from our construction and by Lemma 4.1 that every sequence of the
form (C,, C,, C3,-++) is independent in the probabilistic sense,

ASSERTION.  There exists an i; such that for every i > i,,
uS NA)>0 and uSNB)>D0.

Indeed, if such an i, did not exist we could have found for every positive integer n
a set I of n positive integers such that for every i e I
and hence that
S £B or S < A,
Hence S S (;.; C;for a certain n-tuple {C,-I ieI}. Therefore we would have
I\,

us)su(Ne) = I wey s (1- )

\l e

ie
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This inequality would have to hold for every n, hence we would obtain that
u(S) = 0, which is a contradiction.
By applying the same assertion to S N 4; and to S N B, we can deduce

that there exists an i, > i; such that for every i = i,
WS N4, NnA4)>0 and u(S N4, NB)>0
wS NB, NnA)>0 and u(S NB;, NB)>0.

Proceeding this way we find a sequence iy < i, < i3 < -+ of positive integers such
that u(S N C;, N+ N C;) > 0 and hence S N C;; N == N0 C;, # & for every
n = 1 and for every n-tuple (C;,, -+, C;). All the sets involved are closed, hence it
follows by the compactness of %(ky/k), that S N N%2.,C;, #& for every
sequence (C;,, C;,, Ciyy o0 )

Let now (C;,, Ci,, Ciyy oo+ ) and(C; Ci,Ci,, ) be two distinct sequences and let

iy

® w
@esn N ¢, @hesn N c.
n=1 n=1

Then there exists an n such that C;, # Cj . Suppose, for example, that C;, = 4;
and that C], = B;,. Then the equation X% — X — a; = 0 has a solution in k(¢)
but none in k(o’). It follows that these fields are not isomorphic over k.

There are 2° distinct sequences of C. Hence there are at least 2% non-equiva-
lent () in S. Q.E.D.

COROLLARY 7.2. If k is a hilbertian field then there are at least 2% non-
equivalent e-tuples (o) in F(k,[k)* which are topologically free.

We apply now Theorem 7.1 to a problem in model theory. Denote by T the
theory of all the elementary statements which hold in almost all finite fields. Then
it follows from [8, 3.5] and Ax[2, Th. 9] that O(o) is a model of T for almost all
c efﬁ(Q/Q). Hence, by Theorem 7.1, there are at least 2% non-isomorphic models
for T among the O(o). Since their number can not exceed 2% jtisexactly 2%, Thus

we have proved the following theorem.

THEOREM 7.3. The theory of all elementary statements which hold in almost
all finite fields has exactly 2% non-isomorphic models which are algebraic

over Q.
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8. Elementary properties of the group %(k/k)

The Free Generators theorem implies in particular that if w(X,, ---, X,) is a non-
empty reduced word (in the sense of group theory) and k is a hilbertian field then
for almost all (¢4, -+, 0,) € 9(k/k)%, w(o,, ", 0,) # 1. We wish now to generalize
this result. In order to do it we consider the first order calculus language of the
theory of groups. A normal perinex formula is a formula of the form
0: X, 0,X, P(X;,,X.) (e £n), where each Q; is either the existential
quantifier 3 or the universal quantifier V. A negative formula is a formula which is
logically equivalent to a normal perinex formula of the above form, in which
Y(X,,- -, X,) is a disjunction of inequalities. For example

IXNVEAX[X, X, ! # Xy V [X3X, # X5 A X' XsXg # XpXs]]

is a negative formula. It is easy to prove by induction on the number of the quanti-
fiers thatif ¢(X,, --+, X,) is a negative formula in the free variables X, .-+, X,, if G’
!

is a homomorphic image of a group G, if a,, -, a, are elements of G and a{, -, a,
are their images in G’, then

GE@(ay,a)= G F ¢aj, -, a,).
(““G = ¢’ means ““¢ holds in G”’.)

THEOREM 8.1. Let k be a hilbertian field and let ¢(X,,++, X,) be a negative
formula in the free variables X,,---, X,. Suppose that there exists a positive in-
teger m such that

Sm E 3X1 aXe:qs(Xl;"',Xe);
then
g(ks/k) F ¢(01,"',09)
for almost all (64, ++,0,) e %k k)"

Proor. Let 7y, -, 7, be elements of S, such that S,, F ¢(x,, -, n,). Then, by
Lemma 4.2, there is for almost every (a4, -, 0,) € %(k/k)® an epimorphism of
%(ky/k) onto S,, which maps oy, -, g, onto m,,+, 7, respectively. Hence oy the
above remark we have that 9(k/k) F ¢(oy, -, 0,). Q.ED.

By applying Theorem 8.1 to specific negative formulas we obtain the following
corollary.

CoROLLARY 8.2. Let k be a hilbertian field.

(@) If w(Xy,-+,X,) is a nonempty reduced word then w(oy,-,0,) # 1 for
almost all (o) € G(k k)"
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(i) For almost all (c,7) € 9(k,/k)* we have that 61+# 10.
(iii) The set of all nontrivial powers of the elements of 9(k/k) is of measure

zero.
(iv) Almost no two elemenis of 9(kJk) are conjugate to each other.

PrROOF. (i) Itis known that there exists an m such that w(X,, -+, X,) = lisnot
an identity in S,, (refer to Kurosh [9, p. 42]). The corresponding negative formula
is w(Xq, 0, Xo) # 1.

(ii) This is a consequence of (i) for the special case in which w(Xy, X;)
=X, X, X7 'X3".

(iii) Let n > 1 be an integer and consider the cycle (1 +++ n)in S,. For this cycle
we have (1 -+ n)" = 1. This implies that the map x + x" of S, into itself is not
injective, hence it is also not surjective. It follows that S, contains an element x
such that S, F VY :Y" # x. Theorem 8.1 therefore implies that the set of all
n-powers in %(k/k) is a zero set. If we take the union over all n = 2 we obtain
that almost no element of %(k,/k) is a nontrivial power.

(iv) This follows from the fact that, for example, in S5, x; = (1) and x, = (1 2)
are not conjugate, thatis, S, F VY :¥Yx;Y~! # x,. We note that this result can
also be derived from Theorem 6.3.

ProBLEM 3. Let ¢(Xy,---, X,) be an arbitrary formula of the first order lan-
guage of the theory of groups with the free variables X, --+, X,,. Let k be a hilber-
tian field. Is it true that the subset

{(0) e G(kyJk)°* | F(kfk) F P01, 0.)}
of ¥(k,/k)° is measurable?

9. The Bottom theorem

Corollary 8.2 (iii) states that if k is a hilbertian field, then for almost no
o e 9(k, k) there exists a T ¥(k,/k) and an integer n > 1 such that 7" = ¢. In this
section we intend to generalize this result, first by considering e-tuples of elements
of @(k,/k) rather then the elements themselves and second by letting the o; be in
the closed subgroup generated by the 7, rather thenin the discrete group generated
by them. More precisely, we prove the following theorem.

THEOREM 9.1. Let k be a hilbertian field. Then for almost all (o) e F(k/k)*
there does not exist a (t) e 9(k k)® such that k() is properly contained in k(o).

PrOOF. We begin our proof by introducing certain maps attached to elements
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of £, and profinite groups. Let z,, -+, z, be free topological generators of £,. For
every e-tuple (v) € F,%and every profinite group G we define a map v; : G° — G®in
the following way: Let (a) € G°; then there exists a unique continuous homomor-
phism 0, : £, - G which maps z, -+, z, onto ay, -+, a, respectively. We set

UG(a) = (0‘,(1)1), "'a()a(ve))‘
AsSerTION 1. If H is a closed subgroup of G and if ay, -+, a, € H, then 6, maps
F,into H. Hence v | H® = vy.
ProOF. Clear.

ASSERTION 2. If 7 is a continuous homomorphism of G into a profinite group
G then the following diagram is commutative.
Vg
G ——— G°
el | e

)

G"e — Ge
Proor. Let (a)e G° and let (@)= n°(a). The continuous homomorphism
7+ 0,:F, » G satisfies the relation (7 - 0,)%(z) = (a). Hence n+ 60, = 0, and we
have

v5(n(a) = vg(a) = O3(v) = n(O5(v)) = n(vg(a)),
that is,

vt = n¢ v,

ASSERTION 3. The map v, is continuous.

PRrROOF. Let (@) € G° and put (b) = vg(a). Consider an open neighborhood V of
(b). V must contain a set of the form V' = {(b’)e G°|n*(b") = n°(b)}, where = is
a continuous epimorphism of G onto a finite group G. The set U = {(a’) € G*|n(a’)
= n°(a)} is an open neighborhood of (a), and Assertion 2 implies that it is mapped
by v; into V', Hence v, is indeed continuous.

For every positive integer m we set v, = vy _.

ASSERTION 4. If the maps v, are surjective for every positive integer m then the
maps vg are bijective for every profinite group G.

ProoF. Let G be a finite group. Then G may be considered as a subgroup of S,,
for some m. Since S,, is a finite set, our assumption implies that v, is injective.
Therefore, by Assertion 1, v; = v,,| G is injective and hence also surjective.
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Consider now an arbitrary profinite group G. Let (a), (a’) € G® be two distinct
elements. Then there exists a continuous epimorphism 7 of G onto a finite group
G such that n°(a) # n°(a’). It follows, by what we have proved, that vg(n*(a))
# vg(n%(a’)). Hence, by Assertion 2, vs(a) # vg(a’). This means that vg is injective.
We now prove that it is also surjective. Let (b) e G° and let = be a continuous
epimorphism of G onto a finite group G. Then there exists an (@) € G° such that
vg(@) = n°(b). Choose now an element (a) € G such that n°(a) = (). Then, by
Assertion 2, we have that n°(vg(a)) = n°(b). This argument implies that (b) is con-
tained in the closure of the set v5(G°). But this set is closed since G° is compact and
Haussdorf and v is continuous. Hence (b) € v5(G®). Thus v is surjective.

ASSERTION 5. If the maps v,, are surjective for every positive integer m, G is a
profinite group, (a)e G°® and (b) = vy(a) then {a) = {b).

ProoF. Assertion 1implies that (b) < {a).Conversely, Assertion 4 implies that
the map v, is surjective. Hence there exists an (a’) € {b)¢ such that v,y(a’) = (b)-
Thus, by Assertion 1, vg(a’) = vg(a). But vg is injective, by Assertion 4, hence
(a’) = (a). Hence (a) € <b)®, which completes the proof of our assertion.

We come now to the proof of our theorem itself.

We put @ = %(k,k) and we denote by S the set of all (6) € ¢ for which there
exists a (1) € %° such that k(t) = k(o). For every positive integer m and every
(b) e S, we denote by S(b) the set of all (6) e ¥° for which there does not exist a
continuous epimorphism of ¢ onto S,, which maps (¢) onto (b). By Lemma 4.2,
S(b) has the measure 0. Since there are only a countable number of S(b) it suffices
to show that S is contained in the union of the S(b).

Let (6) € S. Then there exists a (t) € ° such that k(1) < k(o). Let 8, be the con-
tinuous homomorphism of £, into ¢ which maps z,, -+, z, onto 1y, ***, T, respec-
tively. The homomorphism 0, maps £, onto {t}. Hence there exists a (v) € F¢ such
that 8{(v) = (o), that is, that v4(t) = (). The groups {¢) and {(t) are not equal,
hence there exists by Assertion 5, a positive integer m such that the map v, is not
surjective. For this m there exists a (b) € S,, — v,(S,). For this (b) there does not
exist a continuous epimorphism # of ¥ onto §,, which maps (6) onto (b), because

otherwise we would have had

(b) = 7%(6) = 7%(1g(x)) = vu(n°(x)) €V:(S,)

which is a contradiction. Therefore (6) € S(b). Q.E.D.
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10. Substitutions in irreducible polymomials

Consider again a (o) € 9(k,/k)° selected at random. We already know that k(e)
contains no proper subfields K containing k of corank < e. It certainly contains
fields having higher corank, However we want to show that if their index is finite
then their Galois groups are torsion free. Since elements of finite order of %(k/k)
are strongly connected with formal real fields we must develop some technique to
handle irreducible polynomials over hilbertian formal real fields. In particular we
prove that if k is a hilbertian ordered field then its hilbertian sets are dense in k"
with respect to the order topology.

We begin by proving a rather general lemma.

Lemma 10.1 (W.D.Geyer). Let F(T, X) be an irreducible polynomial in the
variables (T, X) = (T, X4, -+, X,,) over a field k, and let g(Y) be a nonconstant
polynomial with coefficients in k in the variables (Y) = (Y4,+--,Y,,). Assume
that g(Y)— c is absolutely irreducible for every cek. Then the polynomial
F(g(Y),X) is irreducible in k[ X, Y].

Proor. If T does not appear in F(T, X) then the statement is obvious. We
therefore suppose that the degree of F(T, X) in T is positive.

Let V be the k-algebraic set defined in the affine space S* *"*™ by the equations
F(T,X) =0 and g(Y)= T. This set is not empty. Moreover the polynomial
g(Y) — T does not vanish on the variety V(F). Hence by the Dimension theorem
(see Lang [12, p. 36]) we have that all k-components of V have dimension
n+m—1. Let now (t,x,y) and (¢',x’,y") be two points of V having dimension
n 4+ m — 1 over k. Then dim,(x) = dim,(x") = n. Hence, since F(T, X) is irreduc-
ible there exists a k-isomorphism 8 : k(z, x) — k(¢',x") for which 0,(t) = ¢’ and
Oo(x;) = x{, i = 1,---,n. Again, since dimy, (») = dim, ,(»') = m —1, and
g(Y)—t is irreducible over k(t,x) we can extend 0, to an isomorphism
0 :k(t,x,y) = k(t',x’,y") such that &(y;) = yj,j = 1,---, m. This means that ¥ has
only one k-component, that is, V is irreducible over k.

Consider now a generic point (¢, x, y) of V over k. Then (x, y) is a generic point
of the projection ¥’ of ¥ on the space S"*™ in the variables (X, Y). Since t = g(y)
we have that dim V' = dimV = n + m — 1. V' is therefore a k irreducible hyper-
surface in S"*™, Hence there exists an irreducible polynomial H € k[ X, Y] which
generates the ideal of all polynomials in k[ X, Y] which vanish on V’ (see Weil
[18, p. 74]). It is clear that H vanishes on the algebraic set defined by the equation
F(g(y), X) = 0; hence, by Hilbert Nullstellensatz, we have an equation of the form
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H(X, Y) = F(g(Y), Y)G(X, Y)
where rz1 and G e k[ X, Y. Since H(X, Y)isirreducible there existsanl < s < r

such that
¢y F(g(Y),X) = H(X, Y).

If s = 1 we are done. Suppose therefore that s > 1. Then (1) implies

or . 1 OH _ C
(2) bz(t,.x) = sH(x,y) éz(x,y) =0 i=1,,n

oF dg **%% 1 O0H . B . |
(3) a—T—(t,X) a—Y‘j(y) = sH(x,y) 5?—1_(,1,3;) = 0 Jo= 1, m.

But (#, x) is a generic point of the k-variety defined by the irreducible polynomial
F(T, X) in S**", Hence it follows from (2) that 0F/dT(t,x) # 0. On the other
hand since y,, -, y,, are algebraically independent over k and g(Y)is irreducible,
there exists a 1 £ j < m such that dg/0Y (y) # 0. This contradicts (3).

Q.E.D

We generalize Lemma 10.1 as follows.

LemMMmA 10.2. Let k be a field and let Fe k(T -, T) Xy, X,] be an
irreducible polynomial. Let g;e k[ Y,(,*++, Y;,,), | = 1, -+, r, be nonconstant poly-
nomials for which g,(Y,) + ¢ is absolutely irreducible for every cc k. Then the
polynomial F(g(Y),X) = F(g,(Y,), -, g(Y.),X,,-, X,) is defined and irreduc-
ible in K(Y)[ X].

Proor. (i) Assume first that Fe k[T, -, T,, X, -, X, ] is an irreducible poly-
nomial. In this case we can substitute successively T, = g/(Y,), T,_,
=g,1(Y..1), -, Ty = g,(¥;) and obtain from Lemma 10.1 in r steps that
F(g(Y), X) is irreducible in k[ ¥, X].

(ii) In the general case we can write F in the form
G(T)

FT,X) = H_(T—)FI(T’X)

where G, H ¢ k[T | are nonzero polynomials and Fy € k[T, X] is irreducible. It is
clear that G(g(Y)), H(g( Y))s 0. Hence, by (i), F(¢(Y), X) is defined and irreducible
in k(Y)[X].

In particular we can choose g(Y,) = Y + Y7 + Y%, If char(k) # 2, then
g:(Y) + cis absolutely irreducible for every c € k. Hence, as a corollary of Lemma

10.2, we have the following lemma,
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LemMmAa 103, Let k be a field with char(k) # 2 and let Fek(T,, -, T,)
[X,,:,X,] be an irreducible polynomial. Then the polynomial
3 3
F(Z Y1, X Y,Z,,Xl,.--,X,,)
i=1 j=1

is defined and irreducible in k( Y)[ X].

11. Formal real fields

LemMA 11.1. Let k be a hilbertian formal real field, and let H be a hilbertian
setin k™. Then for every 2r rational numbers a, < by,--+, a, < b, there exists a
point (zy,++,z,)€ H such that in every ordering of k we have a, < z; < b; for
i=1,-r

Proor. For convenience we prove the lemma only for the case r = 1, the proof
of the general case is analogous.

We are given irreducible polynomials F,e k(TH)[X,,--, X,], A = 1,---,1, and
two rational numbers a < b. Put ¢ = 1/(b — a). Then the polynomials
Fa+(1/(c + T),X) are also irreducible in k(T)[ X]. By Lemma 10.3 the poly-
nomials Fy(a+(1/(c + Y? + Y% + Y3)), X) are defined and irreducible in k( Y)[ X].
Therefore there exist yi, y;, ys€k, y; # 0, such that the polynomials
Fia + (1)(c + y + y3 + y3), X) are defined and irreducible in k[ X]. Put
z=a + (1f(c + y? + y5 + y3)). Then a < z < b in every orderinz of k and the
F,(z, X) are defined and irreducible in k[ X]. Q.E.D.

We use Lemma 11.1 to construct a special linearly disjoint sequence of exten-
sions of k.

LEMMA 11.2. Let k be a hilbertian formal real field and let m 2 2 be an in-

teger. Then there exists a linearly disjoint sequence {k;/k}{Z | of Galois extensions

such that for every i, 9(k;/k) = S, and k;/k has an absolutely imaginary
quadratic subextension kifk.

Proor. 1t issufficient to prove that for every finite extension L of k there exists
a Galois extension K/k which is linearly disjoint from L/k and which contains a

quadratic absolutely imaginary subextension K'/k.
Let A(T) be the discriminant of the general polynomial of degree m, f(T, X)

= X"+ T X" '+ + T, Let

m=2
f(C,X) = (XZ + 2) H (X — i) = X"+ CLXm_J + o Gy
=
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Then the ¢; are integers and A(c) < 0. Since A(T) is a polynomial with integral
coeflicients there exist rational numbers a; < by, i = 1,+--,m, such that for every
ordering of k and for every z, -+, z,, € k which satisfy a; < z; < b;in this ordering
we have A(z) < 0. (In fact it is sufficient to choose the a;and the b; in such a way
that the statement will hold for z; real, since every real closed field is elementarily
equivalent to the field of real numbers.)

By section 3 and Lemma 11.1, we can choose Zy,+*, Z,, € k such that the Galois
group of the polynomial f(z, X) is isomorphic to S, both over k and over L, and
thata; < z; < b;, i = 1,---,m, for every ordering of k. Let K be the splitting field
of f(z, X) over k. Then ¥(K/k) = S, K is lineatly disjoint from L over k and it

contains the absolutely imaginary quadratic extension k( \/Z(—z)) of k.
Q.E.D,
12. Excluding the case of elements of finite order

We need the following group theoretic lemma.

LeMMA 12.1 (J. Ritter, S. Boge). Let p be an odd prime, let ¢ be the cycle
(L2 p)in 8, and let N be the normalizer of ey in S, If nis an element of N
of order 2 then ned, if and only if p = 1(mod 4).

PROOF. By assumption there exists a 1 < i < p — 1 such that n~len = ¢,
Since ¢'(x) = x + i(mod p) for every x we have that n~ (1 + n(x)) = x + i(mod p)
for every x. Hence n(x + zi) = z + n(x) (mod p) for every x and z. Therefore, if a
satisfies ai = 1(mod p) we have that n(x + 1) = la + n(x)(mod p) for every x and
I. In particular if we put b = =(1) — n(a) we have that

¢y n(y) = ay + b(mod p)  Vy.

Conversely, it is easy to verify that if 1 <a < p — 1 and b is arbitrary then =,
which is defined by (1), belongs to N.

Let therefore 7 be of the form (1) and let s be the order of a modulo D. Then the
permutation x + ax(mod p) is the product of (p — 1)/s cycles of length s (and one
cycle of length 1, namely (p)). Its sign must be

(_ 1)(s- 1)(p— l)/s‘

Furthermore, the permutation y + y + b(mod p) is a cycle of either length por 1,
hence it is an even permutation (since p s 2). It follows that
sign(n) = (— 1)(8—1)(11-1)/8'

If 7 is of order 2 then s=2 and our lemma follows immediately from the formula
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sign(n) = (=)@~ D2 Q.E.D.

ReMARK. It follows from the proof that the order of N is p(p — 1), hence its
index in S, is (p — 2)!

THEOREM 12.2.  Let k be a hilbertian field. Then for almost every (¢) € ¥(k k),
there does not exist a 1€ 9(kyk), © # 1, of finite order such that [k(o) : ko, )]
< .

ProOF. By the Artin-Schreier theorem, we have to prove the theorem only for
the case where k is a formal real field, 2 = 1 and 7 # 1 (see Lang [14, p. 223]).
Moreover, it suffices to prove that the following statement holds for every positive
integer n.

For almost every (¢) € 9(k/k)° there does not exist a 7 € ¥(k/k) such that 1% = 1,
7 # 1 and [k(o) : k(s,7)] = n.

We choose a prime p = 1(mod 4), p = n, and consider for this p the sequence
{ki/k};2 1 which was constructed in Lemma 11.2. Forevery i we denote by p; the
element of ¥(k;/k) which corresponds to the cycle (1 2 --- p) under the isomorphism
Y(k;[k) = S,.Let S be the set of all the (6) & 9(k/k)° for which there exists an i such
that o, |ki = e = ae|ki = p,. By Lemma 4.1, this set has the measure 1. We
prove that every element in S has the desired property.

Let (6) € S and assume that there exists a =€ 9(k/k) such that t* = 1,7 # 1 and
[k(o) : k(,7)] = n. Then k(z) is a real closed field (see Lang [14, p. 274]). Let L
be smallest normal extension of k(s,t) which contains k(). Then [L :k(c,1)]
divides n! and hence [L : k(c)] divides (n — 1)! Hence p does not divide [L :k(c)].
We know that there exists an i such that o [k,- = =0, [ k; = p;. For this i we
certainly have k(¢) N k;j(p;) = k;. For if L N k; were a proper extension of k,(p;) ,
we would have that L N k; = k; and hence that p divides [L :&(c)], which is a
contradiction.

Putnow® =1 | k;. Then 7% = 1 and ky(p;) is a normal extension of k;(p;,?), that
is, T belongs to the normalizer of {p;>. By Lemma 12.1, it follows that in the
isomorphism %(k;/k) = §,, 7 corresponds to an element of 4,. The subgroup of
Y(k,/k) which corresponds to 4, fixes the field k;, since this field is the only
quadratic subextension of k;/k. Hence 7 e %(k;/k}). This means that k;,'c k(z),
which contradicts the fact that k/is an absolutely imaginary quadratic extension of
k and k(7) is a real closed field. It follows that such a t does not exist. Q.E.D.
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13. The Bottom conjecture
THEOREM 9.1 and 12.2 make the following conjecture plausible.

CONJECTURE. Let k be a hilbertian field and let e be a positive integer. Then for
almost all (o) € ¥(k,/k)® there does not exist a field k < K < k(o) such that
[k(6): K] < o0.

Stalling proved in [17] that if a finitely generated torsion-free (discrete) group G
has a free subgroup of finite index then G is free. If Stalling’s theorem is true also
for finitely generated free profinite groups then we can prove our conjecture as
follows: We denote by S the set of all (¢) € 9(k,/k)* which are topologically free
and for which there does not exist a (p) € 9(k,/k)* such that k(e) > k(p), and for
which there does not exist a 7€ %(k/k) of finite order such that [ky(q) : k (o, 7)]
< 0. By Theorems 5.1,9.1, and 12.2, S has the measure 1. Let (6) € S and suppose
that there exists a field k = K < k(o) such that [k(6):K] < co. Then there
exists a 1€ Y(k,/k) — (o). For this T we have that {6} is a proper closed subgroup
of {e,7) of finite index. By the choice of (6), (s, 1) is a finitely generated torsion-
free profinite group. Hence by our assumption <@, t) is also a free profinite group.
Again, by the choice of (6), the rank of {o,7) must be greater that e, hence it is
e+ 1. On the other hand, putting n = [ky(s) : k(s,7)] we have by Lemma 2.3
that e = rank{e)> = 1 + ne which is a contradiction.

However, since we do not have the desired generalization of Stalling’s theorem
at hand, we are able to prove the conjecture only for the case e = 1. This needs
some more preliminaries.

We refer to the notation in the beginning of the proof of Theorem 9.1. For
ve | = 7 and an element a of a profinite group G we put vg(a) = a”. Then the
function (v, a) +» a’ of 7 x Ginto G has all the properties of the power function
in the real numbers. In particular it is continuous. For v e Z, a” is the usual power
function. If v is not divisible by a certian prime p and G is a finite group then there
exists an integer i which is not divisible by p such that "= a’ for every aeG.
Indeed the intersection H of all the kernels of the continuous homomorphisms of
Z into G is an open subgroup of G, since there are only a finite number of such
maps. Hence the intersection pz N H is also open in Z . We can therefore find an
integer i such that v = i (mod pz M H). This i is certainly relatively prime to p

and it satisfies ¢’ = a' for every a€G.

Tueorem 13.1. Let k be a hilbertian field. Then for almost all o e %(k k)
there does not exist a field k = K < ko) such that [k(o):K] < .

T —
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Proor. Denote by S the set of all o € @(k k) with the following properties:

() <o) = 7.

(ii) For every prime p there exists a continuous homomorphism of ¥(kk) onto
S, which maps ¢ onto the cycle ¢ = (12 -+ D).

(iii) There does not exist an element {e%(ky/k) of finite order such that
[k(0):ky(0,0)] < .

By Theorems 5.1, 4.2, and 12.2, S has the measure 1. We show that every element
of S has the desired property.

Indeed let 6 €S and suppose that there exists a field k & K < k(o) such that
[ky(0): K] < . Choose a prime p which divides [ky(0) : K], put G= #(kJK),
and let G, be a p-Sylow group of G (see Ribes [15, p. 47]). Then G, is not con-
tained in (o). Let L be the fixed field of G, and put M = k(a)L. G(k,/M)
= G(k k(o)) N Y(kJL). Hence ¥(k/M) is a p-Sylow group of (o). Since
(o) = 7 we have that Gk JM) = ip. Obviously 1 < p™ = (G,:9(k/M))
= [M:L] < oo. Moreover G, is torsion free by (iii). It follows by a theorem of
Serre [ 16, Cor. 12] that G, is a free p-profinite group. Its rank r is clearly finite (it
is certainly < 1 + p™). Since the usual formula for the ranks holds also for pro-p-
finite groups (see Binz, Neukirch, Wenzel [3, p. 108]), we have that r = 1. This
means that G, is procyclic. Let p be a topological generator for G, Then p™is a
topological generator for %(k,/M). Since %(k/M) is the Sylow p-group of
{o) there existsa ve 7 which is not divisible by p such that

v

(1) pr = o
For this v there exists an integer i which is not divisible by p such that a’ = d' for
every a € S,. If we apply the homomorphism of ¥(k/k) onto 8, (which exists by
(iii)) to (1) and denote by b the image of p, we obtain that b*" = ¢! Hence

[ = pebiem _ -

Tt follows that p divides (p-1)! i, which is a contradiction. Therefore such

a K does not exist. Q.ED.

14. The centralizer and the normalizer
The following statement is a possible property of a field k.
(*) Every closed abelian subgroup of #(k/k) is procyclic.

It is clear that if a field k has the property (*) then every algebraic extension of k
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has this property. W. D. Geyer proved in [5, Satz 2.3 and Sect. 6] that the follow-
ing hilbertian fields have the property (*): number fields, and function fields of one
variable over finite, real, or algebraically closed fields. For these fields we prove the

following theorem.

THEOREM 14.1. Let k be hilbertian field with the property (*). Then for al-
most all o e G(k/k) the subgroup {c) is its own centralizer, and if e = 2 then
Jor almost all (6) € G(k/k)® the centralizer of {6 is trivial.

Proor. Let S be the set of all oe%(k/k) for which there does not exist a
€ @(k/k) such that k(1) < k(o). By Theorem 9.1, S has the measure 1. Let now
o€ § and suppose that an element p e ¥(k,/k) commutes with . Then <o, p) is an
abelian group and hence, by our assumption, there exists a te G(k,/k) such that
o,p> = {t». But then, by the choice of o, we have that (o) = {t>. Hence
pe<{o). It follows that (o) is its own centralizer in ¥(k,/k).

Next, for e = 2, let T be the set of all (6) e ¥(k,/k)® with the following pro-
perties:

(i) There does not exist a t € #(k,/k) such that k(1) < k(o) or k(t) < kfo,).

(i) (61> N <o) = 1.

By Theorems 9.1 and 5.1, T has the measure 1.

Let now (o) € T' and suppose that an element p € (k,/k) is in the centralizer of
o). Then, as before, pe{o;) and pe{o,>. Hence p = 1. This means that the
centralizer of <o) in ¥(k k) is trivial. Q.E.D.

We do not know if Theorem 14.1 holds also for arbitrary hilbertian fields. How-
ever, the following theorem can be proved.

THEOREM 14.2.  Let k be a hilbertian field. Then for almost all (o) e G(k Jk)®
the normalizer of {&) in Y(kyk) is a torsion-free closed subgroup of an infinite
index and hence of measure 0.

PrOOF. It is clear that the normalizer of {6 is a closed subgroup of G(k k)
for every (6) € 9(k,/k)°. In order to prove that it is almost always torsion-free and
of infinite index, we denote by S the set of all (6) € %(k,/k)® with the following pro-

perties:

(i) There does not exist any 7 e 9(k/k) of finite order such that [k(s) 1k (o,7)]

< .

T T e g Dz

T -
) T s
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(ii) For every odd prime p there exists a continuous epimorphism of ¥(k,/k)
onto S, which maps o, -+, o, onto the cycle (12 --- p).

By Theorem 12.2 and Lemma 4.2, S has the measure 1.

Let (6) € S. Then no element 7 of finite order belongs to the normalizer of {¢),
since for such an element we would have [k(o):k(s,7)] < co. Next, the index
of the normalizer of {6 in ¥(k k) must be greater of equal to the index of the
normalizer of (1 2 --+ p)in S,. But the later is equal to (p — 2)! (refer to the remark
after Lemma 12.1). Hence the index of the normalizer of {6) is = (p — 2) !. Since

this inequality holds for every odd prime p we conclude that the index is infinite.
Q.E.D.

COROLLARY 14.3. Let k be a hilbertian field. Then for almost all (6) € 9(k,[k)*
the extension k/o)/k is not normal. Furthermore, for every oce9(kJ/k) the
smallest normal extension of k which contains k(o) is k.

Proor. The first statement follows from Theorem 14.2. The second follows from
a theorem of Kuyk which asserts that no closed solvable subgroup of %(k,/k) can
be normal (see [11, p. 114]). Q.E.D.

Are the following statements about a hilbertian field k true?

ProsLEM 4. For almost all (6) e 9(k/k)° the centralizer of {¢) in ¥(kk) is
{o) if e = 1, and is trivial if ¢ > 1.

ProBrLeM 5. For almost all (6) e 9(k,/k)° the normalizer of {o) in ¥(k,/k)
is {o>.

ProBLEM 6. For all(e) € 9(k,/k)° the smallest normal extension of k which con-

tains k(o) is k.

15. Applications to extension problems over hilbertian fields

In this section we translate our results to results about field extensions. We fix
a finite Galois extension ! of a hilbertian field k and prove the existence of certain

extensions of ! with prescribed properties.

THEOREM 15.1. Let 1 > H » G 5 %(ljk) - 1 be a short exact sequence of
finite groups. Then there exists a finite separable extension k'[k which is linearly
disjoint from 1k, and there exist finite extensions I'|k' and m'[l’ such that m'[k’
is Galois and the following diagram in which the vertical arrows are isomor-

phisms is commutative.
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1 - Gm'fly - g(m'[ky - 9k - 1

Lol

1 H v 6 P sy — 1

ReMARrk. Kuyk [10, Th. 3] proved this theorem by using a certain trans-
cendental construction. We deduce it from the Free Generators theorem.

Proor. Letg,, -, g, be generators of G and put o{, -, o, for the corresponding
elements of #(l/k) by 6. Then a{, -, 0, generate %(I/k). The set of all e-tuples
(6) e 9(k,/k)* whose restriction to [ is (¢') is of positive measure. Hence, by
Theorem 5.1, we can choose among them an e-tuple (6) such that {¢) = F,. For
this (6) we have that k(o) N I=k. Hence, if we put L= ky(c)-], we obtain that
Y(L/k(0))= %(I/k). Further, we can extend the map o; +> g;, i=1, -+, ¢, to a con-
tinuous epimorphism of {6} onto G. The fixed field M of the kernel of this
epimorphism contains L and we have 9(M/k(s)) = G.

Let now a be an element which generates the field M over k(o). Then we can find
a finite extension k' of k contained in k,(¢) such that m’ = k'(a) is a Galois exten-
sion of k' which is linearly disjoint from k(). If we put I’ = L N m’ then k', I’
and m’ will satisfy all the requirements of the theorem. Q.E.D.

For the rest of this section we denote by & the set of all finite Galois extensions
of k which contain 1.

THEOREM 15.2. Let (¢') e G(I/k)* and (v') e G(I[kY. Then there exists an Le &
and an extension (6'’,t'") of (¢',1') to L such that the restriction of every element
of {6""> N (x> to 1 is the identity.

ProOF. Assume that for every L e # and for every extension (¢'/,1"") of (¢”,7")
to L there exists a p”’ € (o'’ N {z'’) such that p’’ [l # 1. We shall show that
this assumption leads to the conclusion that for every (o,1) € 9(k,/k)° "/ which
extends (¢’,t’) we have (6> N {t)# 1. Since the set of these (o, 1) has a positive
measure we shall obtain a contradiction to Theorem 5.1.

Indeed, let (o,7) be an e + f — tuple which extends (¢’,7’). For every Le.2
denote by S(L) the set of all p’’ € (6| L) N {x|L) such that p'’| 1 # 1. Then S(L)
is a nonempty finite set. If M is another field in % which contains L then the res-
triction map of #(M/k) onto %(L/k) induces a canonical map 0}’ of S(M) into S(L).

Thus {S(L), 6}'} is a projective system of nonempty finite sets. The projective
limit of such a system is not empty [4, Th. 3.6]. An element of this limit induces a

-
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peG(k/k) such that p | Le (o’]L} N (1:|L> forevery Le £ and p | I # 1. Hence
pele) Nty and p # 1.

ProBLEM 7. Let (6') € 9(1/k)¢ and (t") e 9(I/kY. Does there exist a field Le &
and an extension (¢'/,1’") of (¢’,1’) to L such that {¢'’) N {z'"> = 1?

We note that the analogous group theoretical problem has a positive solution,
that is, one can find a finite group G, an epimorphism = : G — #(l/k), and elements
(s,£) € G°** such that n(s,t) = (¢',7") and (s> N ) = 1.

THEOREM 15.3.  Let (X4, -+, X,) be a negative formula in the free variables
Xy, -, X, and suppose that there exists a positive integer m such that
SpEIX3X,0X,, -, X,,). Let (6¢"Ye9(l/k)°. Then there exists an L€ £ and
there exists (¢'")y e G(L[k)® which extends (¢') such that 9(Lk) & ¢(a{, -, o

Proor. Assuming that the theorem is false we argue as in the proof of Theorem
15.2. The main point of the argument is the following: Let 64, -+, 6, € 9(k,/k) such
that (L/k) k ~ (o |L,-+,0,|L) for every Le . Since ~ ¢(Xy, -, X,) is a
positive formula one can prove by induction on the number of the quantifiers of
¢ that 9(k/k) F ~ ¢(oy,--+,0,). This leads to a contradiction to Theorem 8.1.

Q.E.D.

In the same way one can now deduce Theorems 15.4, 15.5 and 15.6 from the

Theorems 9.1, 12.2 and 13.1 respectively.

TueoreM 15.4. Let (¢'), (v))e%(l/k)° such that I(zx') < I(¢’). Then there
exists a field LeZ and a (6¢'")e G(L/k)* which extends (¢’) such that for every
(v')eFG(L/k)® which extends (v') we have L(z"") & L(¢"").

THEOREM 15.5.  Let (6)e F(l/k)¢, ' €9(l[k), t' # 1, and let n be a positive
integer. Then there exists a field Le % and an extension (¢'') of (¢') to L such
that for every ©" € 9(LJk) which extends t', either ordt” > n or [L(¢") : L(¢”,1")]
> n.

THEOREM 15.6. Let o' € 9(l/k) and lei kq be a field such that k < k, < o).

Then there exists a field Le % and an extension ¢'’ of ¢' to L for which there
does not exist a field k = K" < L(¢'’) such thatl N K" = ko and [L(¢"") : K'"]

<n
We note that for the proof of this theorem it is important to remember that a
finite separable extension contains only a finite number of subextensions (see Lang

[14, p. 185]).
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16. Applications to finitely generated free profinite groups
As an application we deduce the following result.

THEOREM 16.1. Let z,--,z, be free topological generators for F, and let
1=<dzge Then

(i) £, is a torsion-free group.

(ii) Every abelian closed subgroup of F, is procyclic.

(iil) If 1 S d < ethen (z(, 25> NZypy, 2,0 = 1.

(iv) There do not exist x,,+,x,€ F, such that {z,,++,2;> < {Xy, s Xz

(v) There does not exist a closed subgroup J of F, which contains z, such that
1< (J:{zy)) < 0.

(vi) The closed subgroup {z,) is its own centralizer in F,.

(vii) If d = 2 then the centralizer of {zy,, 2z, in F, is trivial. In particular

F, has a trivial center.

Proor. (ii) Take any hilbertian field k having characteristic different from 0.
By Theorem 5.1 we can find a topologically free e-tuple (o5, -+, 6,) € #(k/k)°. Then
F, = (o). Since there are no elements of finite order in ¥(k/k) (see Lang [14, p.
223]), £, is a torsion free group.

(ii)~(vii) Consider the set S of all (6) € g(é | Q)¢ with the following properties:

(a) (o) = F.,.

) If 1 £d < ethen {0y, ,6,) N {0444, 0,) = 1.

(c) There does not exist a (1) e @(é /Q)* such that Q('c) < O(o).

(d) There does not exist a fleld k € K O(o,) such that [QN(al) :K] < .

(e) The closed subgroup {g,) is its own centralizer in g(é /0).

(f) If d = 2 then the centralizer of (o4, :-,0,) in g(é/Q) is trivial.

By Theorems 5.1, 9.1, 13.1, and 14.1, S has the measure 1. It follows that it is
not empty. The existence of an e-tuple (6) € S implies automatically the statements
(iii)-(vii). The statement (ii) follows from the fact that @ has the property (¥) of
Section 14. Q.E.D.
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