6. אינטגרלים קוויים

הגדרה: שדה משמר זה טוררי
\[\nabla U(x,y) = F(x,y) \]
ewhere \(U(x,y) \) הוא שדה וקטור. ריצף החומרים \(D \) ואם כבלי פוטנציאל סקלרית ריצפים \(U(x,y) \) לכל \(F(x,y) \).

המשיים 1: אינטגרל שאינו תלוי במסלול

\[\int_{AB} Pdx + Qdy \]

ההגדרה: \(F \) השדה משמר פוטנציאלי של \(U \) ש硗

המשיים 2: אם השדה \(F \) משמר אזי

\[\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \]

המכסה: \(F \) שדה משמר אם ורק אם

\[\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x} = \frac{\partial U}{\partial x} = P = \frac{\partial U}{\partial y} = Q \]

המהדר: הינו שדה משמר קיים פונקציה פוטנציאלי \(U \).

המשיים 3: \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \)

המשיים: \(F \) שדה משמר אם ורק אם

\[\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \]
\[F(x, y) = P(x, y)i + Q(x, y)j \]

If the vector field \(F \) is defined and continuous in the domain \(D \), then
\[\oint_{L} F \cdot dr = 0 \]

for all closed paths \(L \) in the domain \(D \).

Example 8:
Consider the path integral
\[\int_{C} \left(x^2 e^y + x \ln(y+1) \right) dx + \left(\frac{1}{3} x^2 y e^y + \frac{x^2}{2(y+1)} \right) dy \]

where \(C \) is the path from \((0,0) \) to \((1,1) \) and back to \((0,0) \).

We have
\[\frac{\partial P}{\partial y} = x^2 y e^y + \frac{x}{y+1} = \frac{\partial Q}{\partial x} \]

Solution:
\[I_1 = \int_{0}^{1} x^5 dx = \frac{1}{6} \]
\[I_2 = \int_{0}^{1} \left(\frac{1}{3} x e^y + \frac{1}{2(y+1)} \right) dy = \left[\frac{1}{6} e^y + \frac{1}{2} \ln(y+1) \right]_{0}^{1} = \frac{e}{6} + \frac{1}{2} \ln 2 - \frac{1}{6} \]

Therefore,
\[I = I_1 + I_2 = \frac{e}{6} + \frac{1}{2} \ln 2 \]
דוגמה 9: "אינטגרל" "מעט" משמר

\[\int_{e}^{\infty} \left(\frac{e^{y}}{x^2} + 2xy + y \right) dx + \left(x^2 - \frac{e^{y}}{x} - 1 \right) dy \]

(1,0) \text{ - } \text{לato C1}

הינת הקטן העמודה \(x = e^y \)

פתרון:

\[\frac{\partial P}{\partial y} = \frac{e^{y}}{x^2} + 2x + 1 \]
\[\frac{\partial Q}{\partial x} = \frac{e^{y}}{x^2} + 2x \]

נבדוק אם השדה משמר: \(\text{ולכן, \(\int_{e}^{\infty} \left(\frac{e^{y}}{x^2} + 2xy + y \right) dx + \left(x^2 - \frac{e^{y}}{x} - 1 + x \right) dy - xdy \)} \]

נתון את הת르נייל \(\text{וכך נקבל את האינטגרל המשמר שדה משמר.} \)

עידור 2: השתיים \(\text{ברראים ברז'רנול הדרפרגניאלי שłuל נבר ב感謝 מסלול המocumented משני קים שישם} \)

(1,0) \(\text{השתתגר את C2 ואת המתחבר את C1} \)

\[\int_{1}^{e} \frac{1}{x} = -1 \]

לכל \(\text{ולכן}, \(dy = 0 \quad y = 0 \quad (e,0) \text{ - } (1,0) \)

לכל \(\text{ולכן}, \(dx = 0 \quad x = e \quad (e,1) \text{ - } (e,0) \)

\[\int_{e}^{1} (e^2 - \frac{e^{y}}{e} - 1 + e) dy = e^2 - \frac{e^{y}}{e} - y + ey \]

נתון את \(\text{האינטגרלים ונקבל} \)

\[e^2 : \text{השיטה הסופית היא} \int_{x=e^t}^{1} e^y dy = e - 1 \]

דוגמה 10: "השיטות האינטגרלי" לוסף את \(\text{האינטגרלים} \)

\(I = \int_{L} (2x + 3y) dx + (3x - 2y) dy \)

 рассматירה \(\text{שהפונקציה \(P \) \(Q \) \(U \) \(g \) \(V \) \(h \) \(f \) \(k \) \(m \) \(n \) \(o \) \(p \) \(q \) \(r \) \(s \) \(t \) \(u \) \(v \) \(w \) \(x \) \(y \) \(z \) \)}

езультטים פונקציה הפונקציות: \(\text{שהפונקציה \(P \) \(Q \) \(U \) \(g \) \(V \) \(h \) \(f \) \(k \) \(m \) \(n \) \(o \) \(p \) \(q \) \(r \) \(s \) \(t \) \(u \) \(v \) \(w \) \(x \) \(y \) \(z \) \)}

\(\frac{P}{Q} = 2x + 3y \quad Q(x,y) = 3x - 2y \)

ויינו: \(\frac{\partial P}{\partial y} = 3 \quad \text{ולכן, \(\frac{\partial Q}{\partial x} \)} \)

הפונקציה \(\text{מקימי \(U(x,y) \)} \)

\[\int_{L} P(x,y) dx = \int_{L} (2x + 3y) dx = \frac{2x^2}{2} + 3yx + g(y) \]

معنى של \(\text{מקימי \(U(x,y) \)} \)

\[\frac{\partial U}{\partial y} = Q(x,y) = 3x - 2y = 3x + g'(y) \]

 khăn \(\text{מקימי \(U(x,y) \)} \)

\[U(x,y) = x^2 + 3yx - y^2 + c \]

וזא: \(I = U(1,3) - U(0,0) = 1 + 9 - 9 = 1 \)
נראה שבכל מסלול אחר התוצאה תהיה זהה. למשל נקח את העקום:

\[y = f(x) = x^2 + 2x \]
\[L = \{(t, t^2 + 2t) \mid 0 \leq t \leq 1\} \]

\[x'(t) = 1, \quad y'(t) = 2t + 3 \implies x(t) = t, \quad y(t) = t^2 + 2t \]

אז

\[I = \int_L (2x + 3y)dx + (3x - 2y)dy = \int_0^1 (2t + 3(t^2 + 2t))dt + (3t - 2(t^2 + 2t))(2t + 2)dt = \]
\[= \int_0^1 (2t + 3t^2 + 6t)dt + (-4t^3 - 6t^2 - 2t)dt \]
\[= \int_0^1 (-4t^3 - 3t^2 + 6t)dt = \left[-\frac{4t^4}{4} - \frac{3t^3}{3} + \frac{6t^2}{2} \right]_0^1 = 1 \]

משפט גרין

נראת את ההקשר בין אינטגרל קווי במישור לאינטגרל כפלי. יהי תחום פורק \(D \) ש chatte עקום פתוח הולך למקוטעין \(L \) עם כיוון חיובי. יהי \(P \) ו- \(Q \) אינטגרלים מ- \(D \),_DOCUMENT_2\, ו- \(\frac{\partial Q}{\partial x} \) ייצוג \(P \) ו- \(\frac{\partial P}{\partial y} \) ייצוג \(Q \) כך ש:

\[\oint_L Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy \]

דוגמה 11: חשב את:

\[\iint_D \left(xy^2 + e^{\sin x} + y \right) dx + yx^2 dy \]

(2) משטת התלות הבנייתית היא \(I = -\iint_D dxdy \) המסופת נרמי \(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2xy - (2xy + 1) = -1 \)

חישוב המשטח המסוופי:\ \(\Gamma \) תחום כ handleError: \(D \) תחום כ handleError: \(\gamma \) חゾי החובית.
שלב ראשון: התחום \(D \) הוא המתחם הנמצא בין הקווים \(x = a, y = b, y = y_1(x), y = y_2(x) \).

שלב שני: אם נבצע פעולה דומה עבור תחום חצי מלבן מהסוג שני נקבל:

\[
\oint_{L} Pdx + Qdy = \int_{L} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy
\]

הערה: \(\oint \) הוא השדה \(F \) בocus המקיים את טורי משפט גרין או יראני A פעלול את התחום לכל ההתחומים.
דוגמاة 12

א. אם תנאי המשטף יאינן מתוקיים הפונקציות הפועלות המשמשות נוגבל תלוצרות לא נוגעים לביניהם הנחיה הבאה.

$$ L: x^2 + y^2 = R^2 \quad F = \frac{-y}{x^2 + y^2} + i \frac{x}{x^2 + y^2} $$

המיניסטים \(P \) ו- \(Q \) איים לפרש את מתמטות הסדר (גאומטריה המתקדמת) ולהבין את האינטגרל בפיזור מישר:

$$ 0 \leq t \leq 2\pi \quad x = R \cos t \quad y = R \sin t $$

עניב הגרף של הפונקציה עד

$$ \int P(x, y)dx + Q(x, y)dy = \int_0^{2\pi} \left(\frac{R \sin t R \sin t}{R^2 (\cos^2 t + \sin^2 t)} + \frac{R \cos t R \cos t}{R^2 (\cos^2 t + \sin^2 t)} \right) dt = \int_0^{2\pi} dt = 2\pi $$

אם נסתה להשמית המשטח וריב פונקציה זו נקבל:

$$ Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy = 0 $$

ב. אם זוהי הקודמות של המשפט ולהתוסך התווחים:

$$ L : (x - 5)^2 + (y - 3)^2 = 1 \quad F = \frac{-y}{x^2 + y^2} + i \frac{x}{x^2 + y^2} $$

אנו הפונקציות \(P \) ו- \(Q \) ריצוף מתמטות ההסוס על יدى כי היא משמשת את האינטגרל של המுונק חסום.

$$ \int_0^{2\pi} \left(\frac{R \sin t R \sin t}{R^2 (\cos^2 t + \sin^2 t)} + \frac{R \cos t R \cos t}{R^2 (\cos^2 t + \sin^2 t)} \right) dt = \int_0^{2\pi} dt = 2\pi $$

כ. נוכל לשנות את התוסכים באומרgementdots כי סומן את האינטגרלים חסמי התווחים:

$$ D \quad L $$

נסומן \(L \) את התווחים של şש שמח פונקציה \(F \) הג. \(D \) את התווחים של şש פונקציה \(F \) הג. \(D \)

ואם נוכל להשיטם במשペット יריי כי ל秊ש את האינטגרלים:

$$ D - D $$

אם נבחד את התווחים

"
\[\oint_{C} \left(Q + P \right) dy = \int_{L} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx + \int_{D} \left(\frac{y^2 - x^2}{\left(x^2 + y^2 \right)^2} - \frac{y^2 - x^2}{\left(x^2 + y^2 \right)^2} \right) dxdy = 0 \]

כמובן:

\[\oint_{C} \left(Q + P \right) dy = \int_{C} \left(P dx + Q dy \right) - \oint_{C_{1}} P dx + Q dy = 0 \]

את האינטגרל 결חה ישירות באמצעות השיטה הפרמטרית:

\[x(t) = \cos t, \quad y(t) = \sin t, \quad 0 \leq t \leq 2\pi \]

\[\int_{C_{1}} P dx + Q dy = \frac{2\pi}{a^2} \left(\frac{a \cos t}{a^2} - a \sin t \right) + \left(\frac{a \cos t}{a^2} \right) dt = \frac{2\pi}{a^2} \left(\frac{a^2 \cos t}{a^2} - a \sin t \right) + \left[\frac{a \cos t}{a^2} \right]_{0}^{2\pi} = 2\pi \]

דוגמה 14

נתון שדה כוח וקטורי

\[F(x, y) = (x^2 + y^2)i + (x - 2y + 1)j \]

B(1,-1) A(0,0) la�ודדה על ידי הפרבולות

\[x = y^2 \]

לאורף הפרבולה

\[W = \oint_{L} P dx + Q dy = \int_{L} \left(x^2 + y^2 \right) dx + \left(x - 2y + 1 \right) dy = \]

\[y = t \quad dy = dt \quad x = t^2 \quad dx = 2tdt \quad (x(t), y(t)) = (t^2, t) \quad -1 \leq t \leq 0 \]

\[= \int_{0}^{1} \left(t^2 + t^2 \right) 2tdt + \int_{0}^{-1} \left(t^2 - 2t + 1 \right) dt = \left[\frac{2t^6}{6} + \frac{2t^4}{4} \right]_{0}^{1} + \left[t^3 - \frac{2t^2}{2} + t \right]_{0}^{-1} = \frac{1}{3} + \frac{1}{2} - \frac{1}{3} - 1 - 1 = -1.5 \]

ב. השטחmos במשטח גרין כדי לחשב את העבודה המתבצעת בתנועת החלקינまって לאורך מסלול הסגור

\[y = -x^2 - 1 \quad x = y^2 \]

נוד כי המומר חצי המשולש חצי הפרבולה על ידי הפרבולה

\[y = -x^2 - 1 \quad x = y^2 \]

\[W = \oint_{L} \left(x^2 + y^2 \right) dx + \left(x - 2y + 1 \right) dy = \oint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy = \int_{D} (1 - 2y) dxdy = \frac{1}{3} \int_{x}^{e} (1 - 2y) dydx = \frac{19}{30} \]

מבחן 31.1.2011 מועד א' שאלה 5ב.

חשב את

\[\int_{L} \left(2x - 1 \right) y^3 e^x dx + 3x^2 y^2 e^x dy \]

משתר载体

\[L = \left\{ x(t) = 1 + \sin^2 (2\pi t^2), \quad y(t) = t, \quad 1 \leq t \leq 3 \right\} \]

A. הווה הקטע L. ב. הווה המשולש \((x - 9)^2 + (y - 7)^2 = 9\) דוגניขาועך.

פתרון:

\[Q(x, y) = 3x^2 y^2 e^x \quad P(x, y) = (2x - 1)y^3 e^x \]

A. הפונקציות ה意义上的 מספריות ועומדים על משטח רציף רימוג של כל \(x \neq 0 \).
\[Q_x = 3 \cdot 2xy^2 e^{-\frac{1}{x}} + 3x^2 y^2 e^{-\frac{1}{x}} \left(-\frac{1}{x^2} \right) = 6xy^2 e^{-\frac{1}{x}} - 3y^2 e^{-\frac{1}{x}} = (6xy^2 - 3y^2)e^{-\frac{1}{x}} \]

\[P_y = (2x - 1)y^3 e^{-\frac{1}{x}} = 3(2x - 1)y^3 e^{-\frac{1}{x}} = (6xy^2 - 3y^2)e^{-\frac{1}{x}} \]

For all \(x \neq 0 \)

Choose a domain \(D \) that is the positive half-plane \((x, y) \geq 0\). The field \(F = (Q, P) \) is defined in \(D \) with partial derivatives continuous. Therefore, for all points in \(D \)

\[F \text{ is conservative on } D. \]

We check that the path \(L \) is contained in the domain \(D \).

For example, choose a straight line between the points \(A(1,1) \) and \(B(1,3) \).

\[\int_L (2x - 1)y^3 e^{-\frac{1}{x}} dx + 3x^2 y^2 e^{-\frac{1}{x}} dy = \int_3 3t^2 edt = d[3^3 - 1] = 26e \]

\[U(x, y) = \text{the result of the potential} \]

\[U_y = Q(x, y) = 3x^2 y^2 e^{-\frac{1}{x}} \]

\[U(x, y) = \int_y Q dx = \frac{1}{3} 3x^2 y^3 e^{-\frac{1}{x}} + g(x) = x^2 y^3 e^{-\frac{1}{x}} + g(x) \]

\[U_x = 2xy^3 e^{-\frac{1}{x}} - x^2 y^2 e^{-\frac{1}{x}} \frac{1}{x^2} + g'(x) = (2x - 1)y^3 e^{-\frac{1}{x}} + g'(x) = P(x, y) = (2x - 1)y^3 e^{-\frac{1}{x}} \]

\[g'(x) = 0 \Rightarrow g(x) = c : \text{for all} \]

\[U(x, y) = x^2 y^4 e^{-\frac{1}{x}} + C \]

\[U(1,3) - U(1,1) = 27e - e = 26e \]

Therefore, \(\rho = (9,7) \) is a Hopf flow of the field \(E \) at \((0,0)\).
דוגמה

נתון השדה הוקטורי

\[\mathbf{F}(x, y) = \left(\frac{4x - y}{4x^2 + y^2}, \frac{x + 4y}{4x^2 + y^2} \right) \]

משוב את \(L \)

\[\oint_L \mathbf{F} \cdot d\mathbf{r} \]

I. \((x - 3)^2 + (y - 2)^2 = 1 \)

II. \((x - 1)^2 + (y - 2)^2 = 100 \)

פתרון

I. קיימת נקודת סינגולריות ב \((0,0)\) שיאינה בתחום החסום על \(L \) ואחרים בתחוםزاد השדה משמר: \(P = \frac{4x - y}{4(x^2 + y^2)}, Q = \frac{x + 4y}{4(x^2 + y^2)} \)

\[P_x = -\frac{(x^2 + y^2) - 2y(4x - y)}{4(x^2 + y^2)^2} = -\frac{x^2 + y^2 - 8yx}{4(x^2 + y^2)^2} \]
\[Q_y = \frac{(x^2 + y^2) - 2x(x + 4y)}{4(x^2 + y^2)^2} = -\frac{x^2 + y^2 - 8yx}{4(x^2 + y^2)^2} \]

\[\oint_L \mathbf{F} \cdot d\mathbf{r} = 0 \]

ככל מקום: כנראה. למטרות נ_iters וכנל נởi השדה משמר: \(\frac{4x - y}{4(x^2 + y^2)} = \frac{x + 4y}{4(x^2 + y^2)} \)

II. כיון שהשדה משמר \(C \): \(x^2 + y^2 = 1 \) - \(C \)

אשר טמון בה - \(L \)

\[\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \]

ככל מקום: משמר

\[x = \cos t, \quad y = \sin t \]

\[\oint_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \left\{ \frac{4 \cos t - \sin t}{4(\cos^2 t + \sin^2 t)} - \frac{\cos t + 4 \sin t}{4(\cos^2 t + \sin^2 t)} (\cos t) \right\} dt \]

\[\frac{1}{4} \int_0^{2\pi} \left\{ (-4 \cos t \sin t + \sin^2 t + \cos^2 t + 4 \sin t \cos t) dt \right\} = \frac{1}{4} \cdot 2\pi = \frac{\pi}{2} \]