
A Online Appendix: Census Uncertainty Data

We use data from the Census of Manufactures (CM) and the Annual Survey of Manufactures (ASM)
from the U.S. Census Bureau to construct an establishment-level panel. Using the Compustat-
SSEL bridge (CPST-SSEL) we merge the establishment-level data with Compustat and CRSP high
frequency firm-level financial and sales data which allows us to correlate firm and industry-level
cross-sectional dispersion from Census data with stock returns volatility measures. For industry-
level deflators, and to calculate production function elasticities, we use industry-level data from the
NBER-CES productivity database, the Federal Reserve Board (prices and depreciation), the BLS
(multifactor productivity) and the BEA (fixed assets tables). In this appendix we describe each of
our data sources, the way we construct our samples, and the way each variable is constructed. In
constructing the TFP variables we closely follow Syverson (2004).

A.1 Data Sources

A.1.1 Establishment Level

The establishment-level analysis uses the CM and the ASM data. The CM is conducted every 5
years (for years ending 2 and 7) since 1967 (another CM was conducted at 1963). It covers all
establishments with one or more paid employees in the manufacturing sector (SIC 20-39 or NAICS
31-33) which amounts to 300,000 to 400,000 establishments per survey. Since the CM is conducted
at the establishment-level, a firm which operates more than one establishment files a separate report
for each establishment. As a unique establishment-level ID we use the LBDNUM variable which
allows us to match establishments over time within the CM and between the CM and the ASM. We
use the FIRMID variable to match establishments to the Compustat-SSEL bridge which allows us
to match to Compustat and CRSP firm’s data using the Compustat CUSIP identifier.

For annual frequency we add the ASM files to the CM files constructing a panel of establishments
from 1972 to 2011 (using the LBDNUM identifier).8 Starting 1973, the ASM is conducted every
year in which a CM is not conducted. The ASM covers all establishments which were recorded in
the CM above a certain size and a sample of the smaller establishments. The ASM includes 50,000
to 75,000 observations per year. Both the CM and the ASM provide detailed data on sales, value
added, labor inputs, labor cost, cost of materials, capital expenditures, inventories and more. We
give more details on the variables we use in the variables construction subsection below.

A.1.2 Firm Level

We use Compustat and CRSP to calculate volatility of sales and returns at the firm level.9 The
Compustat-SSEL bridge is used to match Census establishment data to Compustat and CRSP firm’s
data using the Compustat CUSIP identifier. The bridge includes a mapping (m:m) between FIRMID
(which can be found in the CM and ASM) and CUSIP8 (which can be found in Compustat and
CRSP). The bridge covers the years 1976 to 2005. To extend the bridge to the entire sample of our
analysis (1972-2010), we assigned each FIRMID after 2001 to the last observed CUSIP8 and before
1976 to the first observed CUSIP810.

From the CRSP data set we obtain daily and monthly returns at the firm level (RET). From
Compustat we obtain firm-level quarterly sales (SALEQ) as well as data on equity (SEQQ) and debt
(DLTTQ and DLCQ) which is used to construct the leverage ratio (in book values).

A.1.3 Industry Level

We use multiple sources of industry-level data for variables which do not exist at the establishment
or firm level including price indices, cost shares, depreciation rates, market to book ratio of capital,

8The 2010 and 2011 ASM data became available only at late stages of the project. To avoid repeating
extensive census disclosure analysis, in Tables 2 and 3 we use data only up to 2009. The 2011 data became
available only recently, therefore the SMM estimation uses data only up to 2010.

9The access to CRSP and Compustat data sets is through WRDS: https://wrds-
web.wharton.upenn.edu/wrds/.

10We do this assignment for 2002-2005, since the bridge has many missing matches for these years.
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import-export data and industrial production.
The NBER-CES Manufacturing Industry Database is the main source for industry-level price

indices for total value of shipments (PISHIP), and capital expenditures (PIINV).11 It is also the
main source for industry-level total cost of inputs for labor (PAY). The total cost variable is used
in the construction of industry cost shares. We match the NBER data to the establishment data
using 4-digit SIC87 codes for the years 1972-1996 and 6-digit NAICS codes starting 1997.12 We
complete our set of price indices using FRB capital investment deflators, with separate deflators for
equipment and structures, kindly provided to us by Randy Becker.

The BLS multifactor productivity database is used for constructing data on industry-level cost
of capital and capital depreciation.13 In particular data from the tables “Capital Detail Data by
Measure for Major Sectors” is used. From these tables we obtain data on depreciation rates (table
9a: EQDE, STDE), capital income (table 3a: EQKY STKY), productive capital (table 4a: EQPK,
STPK), and an index of the ratio of capital input to productive stock (table 6b: EQKC, STKC). All
measures are obtained separately for equipment and for structures (there are the EQ and ST prefix
respectively). We use these measures to recover the cost of capital in production at the industry
level. We match the BLS data to the establishment data using 2-digit SIC87 codes for the years
1972-1996 and 3 digit NAICS codes starting 1997.

We use the BEA fixed assets tables to transform establishment-level capital book value to market
value. For historical cost we use tables 3.3E and 3.3S for equipment and for structures respectively.14

For current cost we use tables 3.1E and 3.1S.
The industrial production index constructed by the Board of Governors of the Federal Reserve

System (FRB) is used to construct annual industry-level volatility measures.15 The data is at
a monthly frequency and is provided at NAICS 3-digit to 6-digit level. We match the data to
establishment-level data using the most detailed NAICS value available in the FRB data. Since
ASM and CM records do not contain NAICS codes prior to 1997, we obtain for each establishment
in our sample a modal NAICS code which will be non-missing in the case that the establishment
appears for at least one year after 1996. For establishments who do not appear in our sample after
1996 we use an empirical SIC87-NAICS concordance. This concordance matches to each SIC87 code
its modal NAICS code using establishments which appear in years prior to 1997 and after 1997.

A.2 Sample Selection

We have five main establishment samples which are used in our analysis of the manufacturing
sector. The largest sample includes all establishments which appear in the CM or ASM for at
least two consecutive years (implicitly implying that we must have at least one year from the ASM,
therefore ASM sampling applies). In addition we exclude establishments which are not used in
Census tabulation (TABBED=N), establishments with missing or nonpositive data on total value
of shipments (TVS) and establishments with missing values for LBDNUM, value added (VA), labor
inputs or investment. We also require each establishment to have at least one record of capital stock
(at any year). This sample consists of 211,939 establishments and 1,365,759 establishment-year
observations.

The second sample, which is our baseline sample, keeps establishments which appear for at
least 25 years between 1972 and 2009. This sample consists of 15,673 establishments and 453,704
establishment-year observations.16

The third sample we use is based on the baseline sample limited to establishments for which
firms have CRSP and Compustat records, with nonmissing values for stock returns, sales, equity
and debt. The sample includes 10,498 establishments with 172,074 establishment-year observations.

11See: http://www.nber.org/data/nbprod2005.html for the public version. We thank Wayne Gray for sharing
his version of the dataset that is updated to 2009.

12The NBER-CES data are available only through 2009. 2010 industry-level data are therefore projected using
an AR(4) regression for all external datasets.

13See http://www.bls.gov/mfp/mprdload.htm.
14See http://www.bea.gov/national/FA2004/SelectTable.asp.
15See http://www.federalreserve.gov/releases/G17/Current/default.htm.
16As the 2010 ASM data became available only very recently, whenever 2010 data is used we keep the sample
of establishments unchanged. For example, we choose establishments that were active for 25 years between
1972 and 2009, but use data for these establishments also from 2010.
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The fourth sample uses a balanced panel of establishments which were active for all years be-
tween 1972 and 2009. This sample consists of 3,449 establishments and 127,182 establishment-year
observations.

Our last sample (used in Figures 1 and 2), is based on the first sample, but includes only
establishments that were active in 2005, 2006, 2008 and 2009.

When calculating annual dispersion measures using CRSP and Compustat (see Table 1), we use
the same sampling criteria as in the baseline ASM-CM sample, keeping only firms which appear for
at least 25 years.

A.3 Variable Construction

A.3.1 Value Added

We use the Census value added measure which is defined for establishment j at year t as
vj,t = Qj,t �Mj,t � Ej,t,

where Qj,t is nominal output, Mj,t is cost of materials and Ej,t is cost of energy and fuels. Nominal
output is calculated as the sum of total value of shipments and the change in inventory from previous
year (both finished inventory and work in progress inventory).

In most of the analysis we use real value added. In this case, we deflate value added by the
4-digit industry price of shipment (PISHIP) given in the NBER-CES data set.

A.3.2 Labor Input

The CM and ASM report for each establishment the total employment (TE), the number of hours
worked by production workers (PH), the total salaries for the establishment (SW) and the total
salaries for production workers (WW). The surveys do not report the total hours for non-production
workers. In addition, one might suspect that the e↵ective unit of labor input is not the same for
production and non-production workers. We calculate the following measure of labor inputs

nj,t =
SWj,t

WWj,t

PHj,t.

A.3.3 Capital Input

There are two issues to consider when constructing the capital measure. First, capital expenditures
rather than capital stock are reported in most survey years, and when capital stock is reported
it is sensitive to di↵erences in accounting methods over the years. Second, the reported capital
in the surveys is book value. We deal with the latter by first converting book to market value
of capital stocks using BEA fixed asset tables which include both current and historical cost of
equipment and structures stocks by industry-year. We address the first issue using the perpetual
inventory method, calculating establishment-level series of capital stocks using the plant’s initial
level of capital stock, the establishment-level investment data and industry-level depreciation rates.
To apply the perpetual inventory method we first deflate the initial capital stock (in market value)
as well as the investment series using FRB capital investment deflators. We than apply the formula
Kt = (1� �t)Kt�1 + It.

17 This procedure is done separately for structures and for equipment.
However, starting in 1997, the CM does not separately report capital stocks for equipment and
structures. For plants which existed in 1992, we can use the investment data to back out capital
stocks for equipment and structures separately after 1992. For plants born after 1992, we assign the
share of capital stock to equipment and structures to match the share of investment in equipment
and structures.

A.3.4 TFP and TFP Shocks

For establishment j in industry i at year t we define value added based total factor productivity
(TFP) bzj,i,t as

17The stock is reported for the end of period, therefore we use last period’s stock with this period’s depreciation
and investment.
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log (bzj,i,t) = log(vj,i,t)� ↵
S

i,t log(k
S

j,i,t)� ↵
E

i,t log(k
E

j,i,t)� ↵
N

i,t log(nj,i,t),

where vj,i,t denotes value added (output less materials and energy inputs), kS
j,i,t

represents the

capital stock of structures, kE
j,i,t

represents the capital stock of equipment and nj,i,t the total hours
worked as described above.

↵
S

i,t
, ↵

E

i,t
, and ↵

N

i,t
are the cost shares for structures, equipment, and labor. These cost shares

are recovered at 4-digit industry level by year, as is standard in the establishment productivity
estimation literature (see, for example, the survey in Foster, Haltiwanger and Krizan, 2000). We
generate the cost shares such that they sum to one. Define cx

i,t
as total cost of input x for industry

i at year t. Then for input x

↵
x

i,t =
c
x

i,tP
x2X c

x

i,t

, x = {S,E,N} .

We use industry-level data to back out cx
i,t
. The total cost of labor inputs c

N

i
is taken from

the NBER-CES Manufacturing Industry Database (PAY). The cost of capital (for equipment and
structures) is set to be capital income at the industry level. The BLS productivity dataset includes
data on capital income at the 2-digit industry level. To obtain capital income at 4-digit industry
level we apply the ratio of capital income to capital input calculated using BLS data to the 4-digit
NBER-CES capital data.

Given the cost shares, we can recover log (bzj,i,t). We then define TFP shocks (ej,t) as the
residual from the following first-order autoregressive equation for establishment-level log TFP:

log (bzj,i,t) = ⇢ log (bzj,i,t�1) + µi + �t + ej,i,t, (21)
where µi are plant fixed e↵ects and �t are year dummies.

A.3.5 Microeconomic Uncertainty Dispersion-Based Measures

Our main micro uncertainty measures are based on establishment-level TFP shocks (ej,t) and on
establishment-level growth in employment and in sales. For variable x we define establishment i’s
growth rate for year t as �xi,t = (xi,t+1 � xi,t)/(0.5⇥ xi,t+1 + 0.5⇥ xi,t).

Aggregate Level: In Table 1, to measure uncertainty at the aggregate level, we use the interquar-
tile range (IQR) and the standard deviation of both TFP shocks and sales and employment growth
by year. We consider additional measures for TFP shocks that allow for more flexibility in the AR
regression (21) used to back out the shocks. In particular we report the dispersion of TFP shocks,
which were calculated by running (21) at the 3-digit industry level (industry by industry), e↵ectively
allowing for ⇢ and for �t to vary by industry.

We use three additional aggregate uncertainty measures which are not based on Census data.
We use CRSP to calculate the firms’ cross-sectional dispersion of monthly stock returns at a monthly
frequency, and Compustat to calculate the cross-sectional dispersion of sales’ growth at a quarterly
frequency, where sales growth is defined as (xi,t+4 � xi,t)/(0.5⇥ xi,t+4 + 0.5⇥ xi,t). We use the
industrial production index constructed by the FRB to calculate the cross-sectional dispersion of
industry production growth (xi,t+12 � xi,t)/(0.5⇥ xi,t+12 + 0.5⇥ xi,t) at the monthly level.

Firm Level: To measure uncertainty at the firm level, we use the weighted mean of the absolute
value of TFP shocks and sales growth, where we use establishments’ total value of shipments as
weights. As an example, the uncertainty measure for firm f at year t using TFP shocks is calculated
as P

j2f TV Sj,t ⇤ |ej,t|P
j2f TV Sj,t

,

and it is calculated similarly for growth measures.
Industry Level: At the industry level we use both IQR (Table 2 and Table 3) and weighted mean

of absolute values as uncertainty measures.
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A.3.6 Micro Volatility Measures

Using CRSP, Compustat, and FRB data, we construct firm-level and industry-level annual volatility
measures.

Firm Level: At the firm level we construct volatility measures using firms’ stock returns. We
use standard deviation of daily and monthly returns over a year to generate the stock volatility of
a firm. For the monthly returns we limit our samples to firms with data on at least 6 months of
returns in a given calendar year. For monthly returns we winsorize records with daily returns which
are higher or lower than 25%. As an alternative measure we follow Leahy and Whited (1996) and
Bloom, Bond, and Van Reenen (2007) in implementing a leverage-adjusted volatility measure which
eliminates the e↵ect of gearing on the variability of stock returns. To generate this measure we
multiply the standard deviation of returns for firm f at year t by the ratio of equity to (equity +
debt), with equity measured using the book value of shares (SSEQ) and debt measured using the
book value of debt (DLTTQ + DLCQ). To match the timing of the TFP shock in the regressions
(calculated between t and t+1, see (21)), we average over the standard deviation of returns at year
t and the standard deviation at year t+ 1.

For volatility of sales we use the standard deviation over a year of a firm’s annual growth
calculated at a quarterly rate (xi,t+4 � xi,t)/(0.5⇥ xi,t+4 + 0.5⇥ xi,t).

Industry Level: For industry level measures of volatility we use the standard deviation over a year
of an industry’s annual growth calculated at a monthly rate (xi,t+12�xi,t)/(0.5⇥xi,t+12+0.5⇥xi,t)
using the industrial production index constructed by the FRB.

A.3.7 Industry Characteristics

In Table 2 we use measures for industry business conditions and for industry characteristics. To
proxy for industry business conditions we use either the mean or the median plant’s real sales growth
rates within industry year. Industry characteristics are constant over time and are either level or
dispersion measures. For levels we use medians, implying that a typical measure would look like

Medianj2i

 
1

T

TX

t=1

xjt

!
,

where xjt is some characteristic of plant j at year t (e.g. plant total employment). The industry-
level measure is calculated as the median over all plants in industry i of the within plant mean over
time of xjt. The dispersion measures are similar but use the IQR instead of medians:

IQRj2i

 
1

T

TX

t=1

xjt

!
.

One exception is the measure of industry geographic dispersion, which is calculated as the Ellison-
Glaeser dispersion index at the county level.
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B Online Appendix: Model Solution and Simulation

In this computational appendix we first lay out the broad solution algorithm for the model,
which follows the generalized Krusell and Smith (1998) approach as laid out by Khan and
Thomas (2008). We also provide information on the practical numerical choices made in the
implementation of that solution method. Then, we discuss the calculation of the approx-
imate impulse response or e↵ects of an uncertainty shock in this economy, together with
the various other experiments analyzed in the main text. We conclude with a discussion of
the accuracy of the forecast rule used to predict the evolution of the approximate aggregate
state in the economy as well as other related solution techniques for this class of models.

As we discuss below (see the section titled ”Alternative Forecasting or Market-Clearing
Assumptions”) we consider two alternatives to the basic forecasting rule discussed below.
For each of these method we resolve the GE model until convergence of the forecasting
rule is achieved. Importantly, as we discuss below the main results are robust across the
di↵erent solution methods.

B.1 Solution Algorithm

The marginal-utility transformed Bellman equation describing the firm problem in the main
text is reproduced below and results in a convenient problem with constant discounting at
rate � but a transformation of period dividends by a marginal utility price p:

Ṽ (k, n�1, z;A,�
A
,�

Z
, µ) =

max
{i,n}

(
p(A,�A

,�
Z
, µ)

�
y � w(A,�A

,�
Z
, µ)n� i�AC

k �AC
n
�

+ �E
h
Ṽ (k0, n, z0;A0

,�
A

0
,�

Z0
, µ

0)
i

)
.

We can see that the aggregate state of the economy is (A,�A
,�

Z
, µ) and as outlined in the

main text household optimization implies the relationships
p(A,�A

,�
Z
, µ) = C(A,�A

,�
Z
, µ)�⌘

w(A,�A
,�

Z
, µ) = ✓N(A,�A

,�
Z
, µ)��1

C(A,�A
,�

Z
, µ)⌘.

The calibration we choose, with log consumption utility (⌘ = 1) and an infinite Frisch
elasticity of substitution (� = 1), implies that the equilibrium relationships are given by

p(A,�A
,�

Z
, µ) = C(A,�A

,�
Z
, µ)�1

w(A,�A
,�

Z
, µ) = ✓C(A,�A

,�
Z
, µ) =

✓

p(A,�A,�Z , µ)
.

With these choices wages w are a function of the marginal utility price p, so the evolution
of the aggregate equilibrium of the economy is fully characterized by the following two
mappings:

p = �p(A,�
A
,�

Z
, µ)

µ
0 = �µ(A,�

A
,�

Z
, µ).

There are three related but distinct computational challenges involved in the characteri-
zation of the mappings �p and �µ. First, the cross-sectional distribution µ is generally
intractable as a state variable. Second, the number of aggregate state variables (excluding
the cross-sectional distribution µ) is large, since not only aggregate productivity A but also
the levels of macro �

A and micro �
Z uncertainty are included. Third, the equilibrium price

mapping �p must be computed or approximated in some fashion.
We address each of these challenges in the following fashion. As noted in the main text,

we assume that a single two-state Markov process S 2 {0, 1} for uncertainty governs the
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evolution of micro and macro volatility across two discrete levels each, so that
S = 0 ! �

A = �
A

L ,�
Z = �

Z

L

S = 1 ! �
A = �

A

H ,�
Z = �

Z

H ,

where the transition matrix for S is governed by

⇧S =


1� ⇡

�

L,H
⇡
�

L,H

1� ⇡
�

H,H
⇡
�

H,H

�
.

We then also approximate the intractable cross-sectional distribution µ in the aggregate
state space with the current aggregate capital level K =

R
k(z, k, n�1)dµ as well as the

lagged uncertainty state S�1. The approximate aggregate state vector is now given by
(A,S, S�1,K), which addresses the first and second computational challenges outlined
above.

We are now in a position to define tractable approximations to the equilibrium mappings
�p and �µ using the following log-linear rules �̂p and �̂K :

�̂p : log(p̂) = ↵p(A,S, S�1) + �p(A,S, S�1) log(K)

�̂K : log(K̂ 0) = ↵K(A,S, S�1) + �K(A,S, S�1) log(K).

The approximations of the aggregate state space and the explicit forms chosen for the
equilibrium mappings laid out above are assumptions which can and must be tested for
internal accuracy. Below, we will calculate and discuss a range of accuracy statistics com-
monly used in the literature on heterogeneous agents models with aggregate uncertainty.
Although this specification with lagged uncertainty S�1 governing coe�cients in the forecast
rule serves as our baseline, we also consider below two extensions to even larger forecast rule
systems below, with additional endogenous aggregate state variables or a longer series of
lagged uncertainty realizations included within the forecast rule. None of these extensions
changes the impact of an uncertainty shock on economic output much at all relative to our
baseline, uniformly causing a recession of around 2.5%.

However, we can now lay out the approximated firm Bellman equation as ˆ̃
V , where

ˆ̃
V (k, n�1, z;A,S, S�1,K) =

max
{i,n}

8
<

:
p̂(A,S, S�1,K)

⇣
y � ✓

p̂(A,S,S�1,K)n� i�AC
k �AC

n

⌘

+�E
h
ˆ̃
V (k0, n, z0;A0

, S
0
, S, K̂

0)
i

9
=

; .

Given this approximated equilibrium concept, we can now lay out the solution algo-

rithm. First, initialize the equilibrium mappings or forecast rules �̂(1)
p and �̂(1)

K
by guessing

initial coe�cients
⇣
↵
(1)
p (A,S, S�1),�

(1)
p (A,S, S�1)

⌘
and

⇣
↵
(1)
K

(A,S, S�1),�
(1)
K

(A,S, S�1)
⌘
.

Then, perform the following steps in iteration q = 1, 2, ... of the algorithm:
Step 1 - Firm Problem Solution

Solve the idiosyncratic firm problem laid out in the Bellman equation for ˆ̃
V above, condi-

tional upon �̂(q)
p and �̂(q)

K
, resulting in an approximated firm value function ˆ̃

V
(q).

Step 2 - Unconditional Simulation of the Model

Based upon the approximated firm value ˆ̃
V

(q), simulate the economy unconditionally for T

periods, without imposing adherence to the assumed equilibrium price mapping �̂(q)
p .

Step 3 - Equilibrium Mapping Update
Based upon the simulated data from the model computed in Step 2, update the forecast map-

pings to obtain �̂(q+1)
p and �̂(q+1)

K
.

Step 4 - Test for Convergence

If the approximate mappings have converged, i.e. if the di↵erence between �̂(q+1)
p and �̂(q+1)

K

is smaller than some tolerance "� according to some predetermined criterion, exit the algo-
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rithm. If the mappings have not converged, return to Step 1 for the q + 1-th iteration.
The practical numerical implementation of each of the Steps 1-4 laid out above requires

some explanation in more detail. We discuss each step in turn now, noting that a pack
containing all of the code for this paper can be found on Nicholas Bloom’s website.
Firm Problem Solution
We discretize the state space of the idiosyncratic firm problem. For the endogenous id-
iosyncratic variables k and n, we choose log-linear grids of size nk = 91 and nn = 37
closed with respect to depreciation. For the exogenous productivity processes z and A, we
discretize each process following a straightforward generalization of Tauchen (1986) to the
case of time-varying volatility, resulting in processes with nz = nA = 5 discrete productivity

points. Given the discretization of the firm problem, we compute ˆ̃
V

(q) using Howard policy
acceleration with 200 value function update steps within each policy loop until the policy
functions converge to within some prescribed tolerance. This routine is described in, for
example, Judd (1998). Here, the discrete nature of the firm problem allows for exact con-
vergence of firm policies. Throughout the problem, continuation values are computed using

linear interpolation in the forecast value of aggregate capital K̂ implied by the mapping �̂(q)
K

.
Unconditional Simulation of the Model & Convexified Market Clearing
We simulate the model using a fixed set of T = 5000 periods of exogenous aggregate
productivity and uncertainty realizations (At, St), t = 1, ..., T which follow the discrete
Markov chain structures discussed above and are drawn once and for all outside the solution
algorithm’s outer loop (Steps 1-4).

Within the solution loop, we follow the nonstochastic or histogram-based approach
to tracking the cross-sectional distribution proposed by Young (2010). This simulation
approach avoids the Monte Carlo sampling error associated with the simulation of individual
firms and is faster in practice. In particular, we track a histogram µ̂t of weights on individual
points (k, n�1, z) in the firm-level discretized state space from period to period. Let the
policy functions in period t be given by nt(k, n�1, z) and k

0
t(k, n�1, z) and the transition

matrix over idiosyncratic productivity in period t be given by ⇧Z(z, z0;St). If we consider
discretized triplets (k, n�1, z)i, i = 1, ..., nknnnz then we have that µt+1 is determined by

µt+1
�
(k0, n, z0)j

�
=

X

(k,n,z)i

µt ((k, n, z)i)⇧
Z(zi, z

0
j ;St)I

�
k
0
j = k

0
t ((k, n, z)i) , nj = nt ((k, n, z)i)

�
.

The calculation of the individual firm policy functions k
0
t and nt in period t must be con-

sistent with market-clearing as well as individual firm optimization, however, in the sense
that the simulated consumption level Ct and hence market-clearing marginal utility price
pt = 1

Ct
must be generated by the approximate cross-sectional distribution µt as well as

the firm policy rules. To guarantee that this occurs, in each period we must iterate over a

market clearing price p, using the continuation value ˆ̃
V

(q) but discarding the forecast price

level p̂(q)
t

. For any guess p̃, we re-optimize the right hand side of the firm Bellman equation
given p̃, i.e. we compute firm policy functions k0t and nt to solve

max
k0,n

8
<

:
p̃

⇣
y � ✓

p̃
n� i�AC

k �AC
n

⌘

+ �E
h
ˆ̃
V

(q)(k0, n, z0;A0
, S

0
, S, K̂

(q)0)
i

9
=

; .

Market clearing occurs when the consumption level implied by the price, C(p̃) is equal to the
reciprocal of that price, 1

p̃
. However, as mentioned above we employ a discretization method

to the solution of individual firm problems. Although the discretization method is both fast
and robust, the resulting excess demand function e(p̃) may contain discontinuities associated
with some positive mass of firms discretely shifting capital or investment policies in response
to a small price shift. Any such discontinuities in the resulting excess demand function would
remove our ability to guarantee arbitrarily precise market clearing. We directly address
this issue in a manner which implies internally consistent aggregate dynamics, through
“convexification” of firm policies and hence the underlying excess demand function. For
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each period in our simulation of the model, we employ the following process to guarantee
market clearing.

Step 1 - Precompute certain values over a price grid
Utilize a pre-determined grid of marginal utility price candidates of size Np {p̃i}

Np

i=1. For
each individual candidate price level, recompute firm policy functions as discussed above,
to obtain values C(p̃i) and K

0(p̃i) defined as

C(p̃i) =
X

(k,n�1,z)i

µt ((k, n�1, z)i) (y � k
0 + (1� �k)k �AC

k �AC
n)

K
0(p̃i) =

X

(k,n�1,z)i

µt ((k, n�1, z)i) k
0

We also label the value of the cross-sectional distribution over values of firm capital, labor,
and idiosyncratic productivity in the next period that would prevail given the firm policies
implied by the candidate value p̃i today as µ0(p̃i).
Step 2 - Construct the implied convexified excess demand function

Given the set of candidate price and implied consumption values {p̃i, C(p̃i)}
Np

i=1, linearly
interpolate the consumption function to obtain the continuous piecewise linear approxi-
mating consumption function C̃(p̃) for aggregate consumption, which is defined for any
candidate input price p̃ including those outside the initial grid. Then, define the convexified
excess demand function

e(p̃) =
1

p̃
� C̃(p̃),

which is both defined for arbitrary positive candidate input prices p̃. This convexified excess
demand function is also continuous over its entire domain because both of the functions
1
p̃
and C̃(p̃) are continuous. In practice, the excess demand function computed in this

manner is also strictly decreasing. Intuitively, the process of linear interpolation of implied
consumption values over a pre-determined grid to compute excess demand “convexifies” the
market clearing process.
Step 3 - Clear markets with arbitrary accuracy

Given a continuous, strictly decreasing excess demand function, we use a robust hybrid
bisection/inverse quadratic interpolation algorithm in p̃ in each period to solve the clearing
equation

ẽ(p̃) = 0

to any desired arbitrary accuracy "p.
Step 4 - Update the firm distribution and aggregate transitions

With a market clearing price p
⇤ in hand for the current period t, we have now cleared

an approximation to the excess demand function. However, we must then update the
underlying firm distribution and aggregate transitions in a manner which is consistent with
the construction of the approximated excess demand function. In particular, we do so by
first computing the underlying linear-interpolation weights in the approximation C̃(p̃) at
the point p⇤. In other words, we compute the value

!(p⇤) =
p
⇤ � p̃i⇤�1

p̃i⇤ � p̃i⇤�1
,

where [p̃i⇤�1, p̃i⇤ ] is the nearest bracketing interval for p
⇤ on the grid {p̃i}

Np

i=1. Note that
!(p⇤) defined in this manner lies in the interval [0, 1], and also note by the definition of
linear interpolation that C̃(p⇤) = (1� !(p⇤))C(p̃i⇤�1) + !(p⇤)C(p̃i⇤).

For each endpoint of the interval p̃i⇤�1 and p̃i⇤, we already have in hand values of
capital next period K

0(p̃i⇤�1) and K
0(p̃i⇤) as well as distributions next period µ

0(p̃i⇤�1) and
µ
0(p̃i⇤) which would prevail at the candidate prices. We simply update the cross-sectional
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distribution µt+1 and aggregate capital Kt+1 for the next period as
Kt+1 = (1� !(p⇤))K 0(p̃i⇤�1) + !(p⇤)K 0(p̃i⇤)
µt+1 = (1� !(p⇤))µ0(p̃i⇤�1) + !(p⇤)µ0(p̃i⇤).

In practice, when applying this market clearing algorithm, we use a clearing error toler-
ance of "p = 0.0001, therefore requiring that the maximum percentage clearing error cannot
rise above 0.01% in any period. We also utilize a grid of size Np = 25, after ensuring that a
grid of this size delivers results which do not change meaningfully at higher grid densities.
The resulting path of aggregate consumption and implied clearing errors - all of course
within the required percentage band of less than 0.01% - are plotted over a representative
portion of the unconditional simulation of our model in Figure B1.

One final computational choice deserves mention here. The simulation step, and in
particular the determination of the market-clearing price pt in each period, is the most
time-consuming portion of the solution algorithm, especially since firm policies and aggre-
gate variables must be pre-computed along a grid of Np candidate price values. We have
found that substantial speed gains can be obtained, with little change in the resulting sim-
ulated aggregate series, if the re-optimization of firm policies conditional upon a price for
p̃ in period t is only computed for states above a certain weight "dist = 0.0001 in the his-
togram µt. Thereafter, only those firm-level states (k, n�1, z)i with weight above "dist are
used in the calculation of the market clearing price pt and the evolution of aggregates in
the economy from t to t+ 1.
Equilibrium Mapping Update
At this point in the solution algorithm in iteration q we have obtained a series of prices and
capital stocks (pt,Kt), t = 1, ...., T together with exogenous aggregate series (At, St, St�1).
Recall that we set T = 5000. These simulated series are conditioned upon the equilibrium

mappings �̂(q)
p and �̂(q)

k
. To update the equilibrium mappings, which are simply lists of coef-

ficient pairs
⇣
↵
(q)
p ((A,S, S�1)i)) ,�

(q)
p ((A,S, S�1)i))

⌘
for each discrete triplet (A,S, S�1)i,

we first discard the Terg = 500 initial periods in the simulation to remove the influence
of initial conditions. For each set of values (A,S, S�1)i), we collect the subset of periods
t 2 {Terg + 1, ..., T} with those particular exogenous aggregate states. We then update the
mapping coe�cients via the following OLS regressions on that subset of simulated data:

log(pt) = ↵p((A,S, S�1)i) + �p((A,S, S�1)i) log(Kt)
log(Kt+1) = ↵K((A,S, S�1)i) + �K((A,S, S�1)i) log(Kt).

After collecting the estimated coe�cients we obtain updated mappings �̂(q+1)
p and �̂(q+1)

K
.

Test for Convergence
At this point within the solution algorithm, there are several potential criteria which could in
principle be used to determine final convergence of the equilibrium mappings and therefore
the model solution. One option is to declare convergence if the maximum absolute di↵erence
between any two corresponding coe�cients is less than some tolerance "mapping.

However, we have found that there are substantial speed gains, with little di↵erence in
the resulting simulated series, if instead convergence is defined based upon the accuracy
of the forecast system itself. In particular, a commonly accepted practice in the literature
is to define the internal accuracy of a forecast mapping based upon the maximum Den
Haan (2010) statistics. These statistics for both capital K and price p, which we label
DH

max

k
and DH

max
p , respectively, are the maximum absolute log di↵erence across the full

model simulation of the simulated series (pt, Kt) and their dynamically forecasted counter-
parts (pDH

t , KDH
t ). “Dynamic forecasts” are simply the result of repeated application of

the equilibrium mappings �̂p and �̂K using previously predicted values as explanatory or
right-hand-side variables in the forward substitution. Such an approach allows for the accu-
mulation of prediction error within the system to a more stringent degree than would result
from a one-period or “static” evaluation of prediction errors. We conclude that the forecast
mapping has converged, and therefore that the model has been solved, when the change
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in the model’s accuracy statistics is less than a prescribed tolerance "mapping = 0.01%, i.e.
when

max{|DH
max,(q+1)
p �DH

max,(q)
p |, |DH

max,(q+1)
K

�DH
max,(q)
K

|} < "mapping.

B.2 Conditional Response Calculations

In this subsection we describe the calculation of the response of the economy to an uncer-
tainty shock, an uncertainty shock coincident with an aggregate productivity shock, and a
policy or wage subsidy experiment.
The E↵ects of an Uncertainty Shock
Armed with the solution to the model following the algorithm outlined above, we compute
the conditional response of the economy to an uncertainty shock by simulating N = 2500
independent economies of length TIRF = 100. We designate Tshock = 50 as the shock period.
In each economy i, we simulate the model as normal for periods t = 1, ..., Tshock�1 starting
from some initial conditions and following the procedure for within-period market clearing
outlined above. In period Tshock, we impose high uncertainty for economy i, i.e. SiTshock

= 1.
Thereafter, each economy i evolves normally for periods t = Tshock + 1, ..., TIRF .

Given any aggregate series of interest X, with simulated value Xit in economy i, period
t, we define the period t response of the economy to an uncertainty shock in period Tshock,
X̂t as

X̂t = 100 log

✓
X̄t

X̄Tshock�1

◆
,

where X̄t is the cross-economy average level in period t: 1
N

P
i
Xit. The notation X̂t for the

percentage deviations of a series from its pre-shock level will be used throughout this sub-
section in the context of various experiments and shocks. Also, note that for the purposes of
labelling the figures in the main text, we normalize Tshock = 1. The initial conditions we use
to start each simulation include a low uncertainty state, the median aggregate productivity
state, and the cross-sectional distribution from a representative period in the unconditional
simulation of the model.
The E↵ects of an Uncertainty Shock and First-Moment Shock

To simulate the e↵ect of an uncertainty shock coincident with a first-moment shock to
exogenous aggregate productivity A, we follow the same basic procedure as above, simu-
lating independent economies i = 1, ..., N for quarters t = 1, ..., TIRF , where N = 2500
and TIRF = 100. For each economy the aggregates evolve normally until a shock period
Tshock = 50. In the shock period, we impose a high uncertainty state for all economies, i.e.
we set SiTshock

= 1 for all i. However, we also wish to impose a negative aggregate produc-
tivity shock in period Tshock equal to -2% on average. To operationalize this, we choose a
threshold probability ⇠̄ and then draw independent uniform random variables ⇠i ⇠ U(0, 1)
for each economy i. With probability ⇠̄, i.e. if ⇠i  ⇠̄, we set the discretized aggregate
productivity state AiTshock

equal to the lowest grid point value. With probability 1 � ⇠̄,
i.e. if ⇠i > ⇠̄, we allow the aggregate productivity process to evolve normally for economy
i in period Tshock. For all economies, post-shock periods t = Tshock + 1, ...., TIRF evolve
normally. By iterating on the value of ⇠̄, we choose a probability of a first-moment shock
which guarantees that, on average, a -2% shock obtains:

ÂTshock
= 100 log(

ĀTshock

ĀTshock�1
) = �2.

Note that the plotted series of shock responses X̂t for individual aggregate series of interest
X are defined exactly as in the baseline uncertainty shock case above, again normalizing
the shock period to Tshock = 1 for plotting purposes.
The E↵ects of a Wage Subsidy Policy Experiment

The e↵ect of a wage subsidy policy experiment require the simulation of three additional
experiments, each with the same structure of i = 1, ..., N independent economies with
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quarters t = 1, ...., TIRF where N = 2500 and TIRF = 100. All shocks and policies are
imposed in period Tshock = 50, with normal evolution until that period.

The first additional experiment we run is a wage subsidy with no uncertainty shock. In
this case in period Tshock we impose an unanticipated wage bill subsidy so that the wage
rate faced by firms is equal to (100� 1)% of the equilibrium wage rate w. This subsidy is
financed with lump-sum taxes on the representative household. Afterwards each economy
evolves normally, and we denote the resulting percentage deviations from the pre-shock
period of this post-subsidy path by X̂

subsidy,normal

t
.

The second additional experiment we run is a wage subsidy concurrent with an uncer-
tainty shock. In this case, in period Tshock we impose the same unanticipated wage bill
subsidy but also a high uncertainty state STshock

= 1. Afterwards each economy evolves

normally, and we denote the resulting post-subsidy path of this simulation by X̂
subsidy,unc

t
.

The third additional experiment we run is a simulation of “normal times,” where no wage
subsidy and no uncertainty shock is imposed in period Tshock. We denote the resulting path
of this economy as X̂normal

t .
If we denote the baseline response of the economy to an uncertainty shock as X̂

unc,
then we can now define the two objects reported in the main text. The e↵ective of a wage
subsidy in normal times is simply

X̂
subsidy,normal

t
� X̂

normal

t ,

while the e↵ect of a wage subsidy with an uncertainty shock is
X̂

subsidy,unc

t
� X̂

unc

t .

An Alternative Approach to Computing the E↵ect of Uncertainty
In nonlinear models there is not a universally defined notion of a conditional response

or impulse response. As an alternative to our baseline method of computing the impact of
uncertainty on the economy described above, we also have checked and report in Figure B4
the results from an alternative procedure constructed for nonlinear models based on Koop,
et al. (1996). That procedure works as follows. Draw i = 1, ..., N sets of exogenous random
draws for the uncertainty and aggregate productivity processes, each of which include t =
1, ..., TIRF periods. Then, for each set of draws or economies i, simulate two versions, a
shock and no shock economy. In the shock economy, simulate all macro aggregatesXshock

it
for

each period t = 1, ..., Tshock � 1 as normal. Then, in period Tshock impose high uncertainty.
For all periods t = Tshock+1, ..., TIRF , simulate the economy as normal. Then, for version
no shock, simulate all macro aggregates Xnoshock

it
unconditionally without any restrictions.

The only di↵erence in the exogenous shocks in the shock and noshock economies is the
imposition of the single high uncertainty state in period Tshock. The resulting e↵ect of an
uncertainty shock on the aggregate X is given by the cross-economy average percentage
di↵erence between the shock and no shock versions:

X̂
Koop

t
=

1

N

NX

i=1

log
⇣
X

shock

it /X
noshock

it

⌘
.

By construction, this response is equal to zero before Tshock. The figures plotted in the
text normalize Tshock to 1 for labelling and report 100X̂Koop

t
. Note that N , TIRF , and

Tshock are identical to our baseline version. Figure B4 reports the response of output, labor,
investment, and consumption to an uncertainty shock, computed in both the baseline and
the alternative fashion described here, labeled “simulation di↵erencing” in the figure. The
response of the economy to an uncertainty shock is distinct but does not vary qualitatively
across the two alternative notions of impulse responses.
A Denser Grid to Solve the Model

In our baseline solution to the model we, use nz = nA = 5 discrete productivity points
for both micro productivity z and macro productivity A. To explore the impact of the
grid density on our conclusions about the impact of uncertainty on the macroeconomy, we
also solved the model with a denser grid of nz = nA = 9 grids points for each productivity
process. The move expands the size the numerical grid by a factor of 81/25 = 3.24. This
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of course entails additional costs in the solution of the firm problem, but the unconditional
simulation of the model had to be extended from T = 5, 000 quarters to T = 15, 000 quarters
in order to ensure that the forecast rule for each configuration of aggregate productivity
and uncertainty states had enough density to be accurately estimated. Figure B5 reports
the resulting response of the economy to an uncertainty shock, computed using our baseline
impulse response simulation method. The response of the economy to an uncertainty shock
is distinct but does not vary qualitatively with the larger grid. Ideally the response could
be computed with an even denser grid, although current computational limits render such
an approach infeasible.

B.3 Internal Accuracy of the Approximate Equilibrium Mappings

In this subsection we first report basic accuracy statistics emphasized by the literature on
heterogeneous agents business cycle models for evaluation of the approximate equilibrium
mappings or forecast rules �̂K and �̂p. We also introduce and examine the results implied by
alternative forecasting systems with more complexity than our baseline approach. Finally,
we conclude with a brief discussion of alternative solution algorithms to Krusell Smith which
have been proposed in the literature on heterogeneous agents business cycle models.
Static Accuracy Statistics

Recall that the prediction rules for current-period market-clearing prices �̂p and next
period’s aggregate capital state take the following form:

log(p̂t) = ↵p (At, St, St�1) + �p (At, St, St�1) log(Kt)

log(K̂t+1) = ↵K (At, St, St�1) + �K (At, St, St�1) log(Kt).

Using the standard terminology of time series forecasting, we refer to the predicted price and
capital levels p̂t and K̂t+1 as “static” or one-period ahead forecasts, since their calculation
exploits information from the current period t, namely Kt and the state (At, St, St�1).
For each discretized triplet (A,S, S�1) of exogenous aggregate states, Table B1 reports the
accuracy of these static forecasts for our baseline model based on two common metrics: the
R

2 of each prediction regression and the percentage root mean squared error (RMSE) of the
predictions. As the table shows, by these metrics the prediction rules are generally quite
accurate with R

2 near 1 and RMSEs never rising above approximately 0.5%.
Alternative Forecasting or Market-Clearing Assumptions

The dynamics of consumption C, and hence the dynamics of the market-clearing marginal
utility price p = 1

C
, crucially influence the behavior of investment in our general equilibrium

economy. A high price today relative to the future signals that investment is costly, and
vice-versa, resulting in smoother investment paths relative to a partial equilibrium struc-
ture. Given the importance of the price p for determining investment dynamics, we now
compare the behavior of output, together with realized and forecast prices, for four di↵erent
economies that encompass di↵erent forecast rules or market-clearing assumptions for the
aggregate price level p. Dynamic forecast accuracy statistics for each approach are reported
in Table B2, and Figure B2 plots the response of output, consumption, and the implied
forecast errors for each strategy after an uncertainty shock.
1) Baseline Economy
This economy serves as the baseline for calculations of the uncertainty impulse responses
presented in the main text. The forecast rule with lagged uncertainty included and the
market clearing algorithm based on convexified excess demand are as described above.
2) Extra Uncertainty Lags Economy
This economy uses an identical market clearing algorithm as the baseline. However, the
forecast levels of price and future capital are based on the generalized log-linear forecast
rules

log(p̂t) = ↵p (At, St, St�1, ..., St�k) + �p (At, St, St�1, ..., St�k) log(Kt)

log(K̂t+1) = ↵K (At, St, St�1, ..., St�k) + �K (At, St, St�1, ..., St�k) log(Kt).
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In other words, the forecast rule coe�cients are allowed to depend upon a larger set of
conditional variables with extra lags of uncertainty beyond St�1. In the results reported in
Table B2 and Figure B2, the extra uncertainty lags results are computed with k = 3, i.e.
with a total of 4 values or one year of uncertainty realizations St, ...,St�3 conditioned into
the forecast rule. Because this procedure results in a smaller subsample for the regression
update of each forecast rule, we also expand the size of the unconditional simulation of
the model to 20,000 quarters rather than the 5,000 quarters used for the baseline model,
continuing to discard the first 500 quarters to cleanse the simulation of the impact of initial
conditions.
3) Extra Forecast Moment Economy
This economy adds an additional endogenous moment, Mt to the forecast rules for marginal
utility. The addition requires expansion of the baseline forecast rule system to include an
additional explanatory variable on the right hand side as well as another equation, taking
the resulting form

log(p̂t) = ↵p (At, St, St�1) + �p (At, St, St�1) log(Kt) + �p (At, St, St�1)Mt

log(K̂t+1) = ↵K (At, St, St�1) + �K (At, St, St�1) log(Kt) + �K (At, St, St�1)Mt

M̂t+1 = ↵M (At, St, St�1) + �M (At, St, St�1) log(Kt) + �M (At, St, St�1)Mt

After the forecast system itself is expanded in the manner above, all value functions in the
solution of the model must take another aggregate input Mt, but the computational strat-
egy and market clearing approach based on convexified aggregate demand remain otherwise
identical. We considered a number of candidate values for inclusion as the extra additional
endogenous moment, including the second moments of idiosyncratic capital and labor in-
puts across firms. Our chosen moment, the predetermined beginning of period t/end of
period t � 1 cross-sectional covariance Mt = Cov(log kt�1, log zt�1), performs well among
our candidates because it proxies for allocative e�ciency in the economy as a measure of
the alignment of idiosyncratic profitability and capital inputs across firms. After an un-
certainty shock Mt declines steadily, rising after uncertainty subsides. Within our forecast
structure, the extra covariance moment Mt thus serves as a continuous proxy for “time
since an uncertainty shock,” a useful piece of information given the rich dynamics of our
economy. Because of the size of the expanded forecast rule in this case, we use an expanded
unconditional simulation of 20,000 quarter length rather than the 5,000 quarters used to
update the more parsimonious baseline forecast system.
4) Nonconvexified Clearing
As a comparison for economies 1)-3), this fourth alternative is based on approximate market
clearing choosing prices in each period to come as close as possible to clearing the noncon-
vexified or raw excess demand function. As noted above, potential discontinuities due to
discrete firm choices embedded in this excess demand function imply that markets may not
be cleared to arbitrary accuracy, although the computational burden is substantially lower.
Although the clearing algorithm is distinct, this economy uses a forecast system identical
to the baseline economy.

How do each of these alternative computational strategies compare in practice? First,
we evaluate their conditional patterns and accuracy after an uncertainty shock. The left
panel of Figure B2 plots the response of output in each economy to an uncertainty shock,
the middle panel plots the response of consumption, and the right panel plots the response
of forecast errors, (the di↵erence between the paths for realized prices pt and forecast prices
p̂t). Crucially, each economy considered here delivers an immediate drop in output of
around 2.5% in the wake of an uncertainty shock, followed by a quick recovery. Each of
the economies relying upon arbitrarily accurate market clearing, i.e. the baseline economy
(x symbols) the extra uncertainty lags economy (* symbols), and the economy with an
extra forecast rule moment (diamonds), recovers more strongly than the economy relying
on nonconvexified market clearing (o symbols). In every economy, the combination of
rising consumption levels and hence high interest rates from period 2 onwards - plotted
in the middle panel - with continued misallocation of inputs depresses investment after an
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initial recovery. The result is a second decline in output as discussed in the main text, a
shared conclusion across these computational strategies. The right panel plots the path
of forecast errors for prices after an uncertainty shock across methods, and the methods
providing the most accurate conditional paths of prices after the shock are the models with
extra lags of uncertainty or an extra moment in the forecast rule. These computational
structures essentially eliminate any mismatch between forecast and realized prices in the
wake of an uncertainty shock, and the left panel of the figure reveals that the basic pattern
of output after an uncertainty shock in the more parsimonious baseline economy matches
the computationally costly extensions quite well.
Dynamic Accuracy Statistics

As Den Haan (2010) notes, one-period ahead or “static” metrics like the R2 of the
forecast regressions reported in Table B1 are not very stringent tests of the accuracy of a
forecasting system in a Krusell-Smith approach. Instead, he recommends using “dynamic”
forecasts and evaluating these for accuracy. The procedure for producing dynamic fore-
casts such as these is to use s-period ahead forecasts as an input into s+1-period ahead
forecasts, iterating forwards to any desired horizon conditioning only on the realized val-
ues of exogenous aggregate series. Forecast errors can accumulate over time in a manner
which is obscured by the one-period ahead accuracy metrics. In this section, we discuss
the performance of our model using the dynamic forecast accuracy metrics implied by Den
Haan.

In our model general equilibrium impacts a firm’s input problem only through the value
of the marginal utility price p. Di↵erent from Krusell and Smith (1998)’s economy with
a representative firm, the forecasted value of aggregate capital K does not independently
influence prices in the economy outside of its influence on the forecast for p. So to fully
characterize the accuracy of a forecast rule in our model, it su�ces to examine the accuracy
of the implied forecasts for the marginal utility or price p. Therefore, Table B2 provides a
comprehensive set of Den Haan accuracy statistics for p at various horizons. Each block of
rows in Table B2 reports the mean and maximum errors in the dynamic forecasts in each
of our four computational versions of the model: our baseline, an economy with extra lags
in the forecast rule, an economy with an extra moment in the forecast rule, and a version
of our baseline with nonconvexified market clearing. Each column reports the errors at a
di↵erent set of horizons, starting at 3 years (12 periods ahead given the quarterly periodicity
of the model) and moving to 12 years (48 model periods or quarters).

For concrete interpretation, note that the number at the far left of the top row, 0.63,
indicates that the average price forecasting error of firms in this model at a horizon of 12
quarters or 3 years is 0.63%. The magnitude of error is di�cult to interpret on its own.
However, by our reading, this level of accuracy is in fact comparable to dynamic forecast
errors from other exercises solving firm-level investment models with similarly rich aggregate
state spaces. See, for example, the computational appendix to Khan and Thomas (2013),
reporting dynamic forecast errors of around 0.8% in a model with both productivity and
financial shocks. By contrast, note that papers which report somewhat smaller dynamic
forecast errors, such as Terry (2015) at around 0.1% for a version of the baseline Khan and
Thomas (2008) model, only do so for models with a single aggregate shock and univariate
optimization problems at the firm level.

Comparing across methods and horizons in Table B2, we see that the forecasting system
with an extra lag of uncertainty performs almost uniformly better than the baseline fore-
casting system, although not by a large margin. This improvement is unsurprising given the
elimination of meaningful swings in the price forecasting error in this economy after an un-
certainty shock documented in Figure B2. Interestingly, the economy with an extra moment
in the forecast rule performs comparably or worse than the baseline economy, depending
on the exact metric used. The direct implication is that additional forecast uncertainty
from the accumulated forecast errors in the prediction rule for the extra covariance moment
itself degrade the forecasting e↵ectiveness of the expanded system. Also, note that although
the economy with nonconvexified clearing appears to perform best at various horizons, it
is not strictly comparable to the other methods. The use of a less accurate clearing algo-
rithm implies that this model’s price series is less volatile than the price series for the other
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computational strategies purely for numerical reasons.
Taken as a whole, we feel that the good performance of the baseline model using the

accuracy metrics in Table B2 is strong enough to justify its continued use, especially in light
of the almost constant immediate impact of uncertainty on output revealed by Figure B2
across each alternative forecasting strategy and its smaller computational burden.
Alternatives to Krusell Smith

We conclude with a discussion of some of the alternative solution methods proposed in
the literature for heterogeneous agents business cycle models. Our analysis uses the Khan
and Thomas (2008) extension of Krusell and Smith (1998). More precisely, we rely upon
an approximation of the full cross-sectional distribution µ by the first moment K as well as
log-linear forecast rules for predicting equilibrium prices p and the evolution of aggregate
capital K. The repeated simulation and forecast rule update steps required by this solution
algorithm are quite computationally intensive. In principle, use of an alternative technique
such as the method of parameterized distributions (Algan, Allais, and Den Haan 2008,
2010) or the explicit aggregation method (Den Haan and Rendahl 2010) might be more
computationally convenient and/or yield gains in terms of the internal accuracy of the
approximate equilibrium mappings.

However, the results in Terry (2015) suggest that these alternative algorithms in the
context of the closely related Khan and Thomas (2008) model do not yield substantial ac-
curacy improvements over the extended Krusell and Smith (1998) approach. By contrast,
that paper reports that both the method of parametrized distributions and the explicit
aggregation method yield virtually unchanged quantitative implications for the business
cycle in the context of the benchmark lumpy capital adjustment model, but that the in-
ternal accuracy of the equilibrium mappings for each method are slightly degraded relative
to the Krusell and Smith (1998) algorithm. Furthermore, although both alternative meth-
ods yield a substantial reduction in model solution time relative to the Krusell and Smith
approach, unconditional simulation time for the model remains costly in the case of the
explicit aggregation method and in fact increases for the method of parametrized distribu-
tions. Simulation time is particularly critical for our computational approach, because the
structural estimation strategy we use relies upon calculation of simulated moments captur-
ing the behavior of micro and macro uncertainty. Therefore, an increase in model solution
speed without an increase in simulation speed would yield only a small gain in practice.

The results in Terry (2015) are of course specific to the context of the Khan and Thomas
(2008) model rather than our baseline model. However, our model environment is quite
similar to the Khan and Thomas (2008) structure, di↵ering primarily through the inclusion
of second-moment or uncertainty shocks. Based on this similarity, we conclude that our
reliance upon the adapted Krusell and Smith (1998) approach is a reasonable choice in the
context of our heterogeneous firms model. Terry (2015) also considers the performance of a
conceptually distinct solution technique, the projection plus perturbation method proposed
by Reiter (2009). That first-order perturbation approach would not capture the impact of
variations over time in aggregate uncertainty in our model, since it relies upon a linearization
of the model’s equilibrium around a nonstochastic steady state.
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C Online Appendix: Simulated of Moments Estimation

In this section we lay out the SMM approach used for the structural estimation of the
uncertainty process in the baseline model. We begin by defining the estimator and noting
its well known asymptotic properties. We then discuss in more detail the practical choices
made in the implementation of the estimation procedure, both empirically and in the model.

Overview of the Estimator
Our dataset X consists of microeconomic and macroeconomic proxies for uncertainty

computed from data covering 1972� 2010. In each year t, an observation consists of

Xt = (IQRt+1,�t+1,1,�t+1,2,�t+1,3,�t+1,4).

Above, the variable IQRt is the year t cross-sectional interquartile range of TFP shocks
constructed from the establishment-level data in the Census of Manufactures and the An-
nual Survey of Manufacturers and plotted on the left hand scale in Figure 3 in the main
text. The variable �t,j is the quarterly estimated GARCH(1,1) heteroskedasticity of the
series dTFP from John Fernald’s website, i.e. the annualized change in the aggregate quar-
terly Solow residual, in year t and quarter j in US data. The macroeconomic series of
estimated conditional heteroskedasticity is plotted in Figure A2. Stacking the quarterly
observations for the macroeconomic uncertainty proxy �t,j together with the annual mi-
croeconomic uncertainty proxy IQRt in the same year within the vector Xt allows us to
account for the frequency di↵erence in the data underlying moment calculation.

Our estimator is based on the r⇥1 = 8⇥1 moment vector including the mean, standard
deviation, skewness, and serial correlation of the micro and macro components of Xt. The

parameter vector ✓ is the q⇥1 = 6⇥1 vector (�A

L
,
�
A

H

�
A

L

,�
Z

L
,
�
Z

H

�
Z

L

,⇡
�

L,H
,⇡

�

H,H
)0. Note that since

r > q, this is overidentified SMM.
We minimize the scalar objective defined from the moments gS(✓) delivered by a model

simulation with length ST , where T is the length of our simulated dataset in years. Let the
vector g(X) be the set of moments computed from the data. Then our estimator ✓̂ is equal
to

✓̂ = argmin
✓

(gS(✓)� g(X))0W (gS(✓)� g(X)) , (22)

whereW = diag(1/g(X))2, an r⇥r symmetric matrix. Therefore, in practice to estimate
the model we minimize the sum squared percentage deviations of the model and data
moments.

Subject to regularity conditions, we have that by standard SMM arguments laid out in,
for example, Lee and Ingram (1991), our SMM estimator is consistent, i.e. ✓̂ !p ✓, where

✓ is the population parameter vector. Furthermore, ✓̂ is asymptotically normal withp
T

⇣
✓̂ � ✓

⌘
!d N(0,⌦).

The q ⇥ q asymptotic covariance matrix ⌦ also follows standard SMM formulas and is
given by

⌦ =

✓
1 +

1

S

◆�
A

0
WA

��1
A

0
W⌃WA

�
A

0
WA

��10
(23)

where ⌃ is the r⇥ r asymptotic covariance matrix of the moment vector g(X) and A is
the r ⇥ q Jacobian of the moments with respect to the parameter vector ✓.

Practical Empirical Implementation
Our estimate of the covariance matrix of the moments ⌃̂ allows for arbitrary stationary

serial correlation across years in the underlying seriesXt using the block bootstrap procedure
with random block length due to Politis and Romano (1994). This procedure also allows
for an arbitrary stationary covariance structure across microeconomic and macroeconomic
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moments across years and within years in our sample of data. We compute 50, 000 bootstrap
replications and choose a mean block length of 4 / T

1/3 years following the discussion in
Politis and Romano (1994).

We compute model moments based on a simulation of 5000 quarters, discarding the
initial 500 quarters. Given our conversion to annual frequency and the length of our sample,
the simulation multiple parameter S in the asymptotic standard errors is given by S =
1124/38 ⇡ 29.58. The resulting inflation in standard errors due to simulation variability is
1 + 1

S
⇡ 1.03.

To minimize the SMM objective function and compute ✓̂ we use particle swarm opti-
mization, which is a robust global stochastic optimization routine. We also numerically
di↵erentiate the model moment function gS(✓) at the estimated parameters ✓̂ to obtain Â

by averaging over forward-di↵erence approximations starting from the estimated parame-
ters ✓̂ with step sizes 0.4, 0.5, and 0.6%. With ⌃̂ and Â in hand, the estimated asymptotic
covariance matrix for ✓̂ is given by

⌦̂ =

✓
1 +

1

S

◆⇣
Â

0
WÂ

⌘�1
Â

0
W ⌃̂WÂ

⇣
Â

0
WÂ

⌘�10

. (24)

Note that there are multiple ways in which the moment covariance matrix ⌃̂ could in
principle be estimated, so in unreported results we have also considered the calculation
of an estimate of ⌃ based on a long simulation of 250 replication economies within the
model itself. We then recalculated our moment vector for each economy and used this set
of data to compute an alternative estimate ⌃̂. The resulting moment covariance matrix
is similar to the estimate we describe above, never changing inference of the underlying
structural parameters meaningfully. However, the alternative approach typically increases
the precision of our parameter estimates, so for conservatism we chose to rely on the results
from our empirical stationary bootstrap procedure.

Measurement Error in the Data
In this subsection we show how we use OLS and IV estimates of the AR coe�cients in the

TFP forecast regressions to calculate the share of measurement error in log(TFP) in our Census
micro data sample. The resulting estimate is a useful input into our procedure for computing model
equivalents of data moments described in the next subsection. Suppose that (4) is observed with
error (omitting the j subscripts)

log (ẑ⇤
t
) = log (ẑt) + et.

If the measurement (et) error is i.i.d, estimating (4) using log
�
ẑ
⇤
t�2

�
to instrument for log

�
ẑ
⇤
t�1

�

we would obtain a consistent estimate for ⇢ (Call this estimate ⇢IV 1). The OLS estimate for (4) is
inconsistent but the bias is a function of the measurement error in TFP:

⇢OLS =
1

⇢IV 1

✓
1 +

�
2
e

var(log (ẑt))

◆

We therefore use ⇢OLS together with ⇢IV 1 to obtain an estimate for
q

�2
e

var(log(ẑt))
, which is the

share of measurement error in total standard deviation of TFP. The results for ⇢OLS and ⇢IV 1 are
reported in columns (1) and (2) of Table A2 respectively. These estimates yield a measurement error
share of 37.4%.

Suppose now that there is some serial correlation in measurement error - which is quite likely
given that ASM respondents are shown prior years values when filling in the current year - so that
cov(et, et�1) = �t,t�1. As before, define ⇢IV 1 to be the estimate for ⇢ from an IV regression where
log
�
ẑ
⇤
t�2

�
is used to instrument for log

�
ẑ
⇤
t�1

�
. Define ⇢IV 2 to be the estimate for ⇢ from an IV

regression where log
�
ẑ
⇤
t�3

�
is used to instrument for log

�
ẑ
⇤
t�1

�
. Then we can combine the estimates

for ⇢OLS with ⇢IV 1 and ⇢IV 2 to obtain estimates for measurement error share as well as for �t,t�1.
For this specification, our estimates imply measurement error share are of 45.4%.
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Practical Model Implementation
The SMM estimation routine requires repeatedly computing the vector of model mo-

ments gS(✓) given di↵erent values of the parameter vector ✓. The macroeconomic moments
are straightforward to compute, once we have solved the model in general equilibrium follow-
ing the solution algorithm outlined above. We unconditionally simulate the model for 5000
quarters and discarding the first 500 periods, using the computationally e�cient version
of our model with lagged uncertainty in the forecast rule and clearing the non-convexified
excess demand function. We form a quarterly aggregate TFP series equal in quarter s to

TFPs = log(Ys)�
1

3
log(Ks)�

2

3
log(Ns),

where Ys, Ks, and Ns are the aggregate output, capital, and labor inputs in the economy.
The one-third/two-third weighting of capital and labor is consistent with standard values in
the macroeconomic literature, and the use of s rather than t is to avoid notational confusion
with the annual-frequency microeconomic dispersion series computed below. We compute
the annualized change in dTFPs = 400(TFPs � TFPs�1), estimating the conditional het-
eroskedasticity for dTFP in each quarter using a GARCH(1,1) model. The mean, standard
deviation, skewness, and serial correlation of the resulting series �̂s form the macroeconomic
block of the model moments gS(✓).

The microeconomic moments are based on the cross-sectional dispersion of innovation
in regressions of micro-level TFP on lagged values. To run equivalent regressions in the
model requires the simulation of a panel of individual firms. We simulate 1000 individual
firms for the same 5000 period overall simulation of the model, again discarding the first 500
quarters of data. We must convert the quarterly simulated firm data to annual frequency
accounting for the data timing in the underlying Census data sample. We compute firm j’s
capital stock in year t kjt as the firm’s fourth-quarter capital stock. The labor input njt is
the first-quarter value. Annual output yjt is cumulated over the year. The micro-level TFP
measure is a Solow residual given by

log(ẑjt) = log(yjt)�
1

3
log(kjt)�

2

3
log(njt).

In the subsection above we laid out evidence, concordant with Collard-Wexler (2011), that
measurement accounts for around half of the observed TFP variation in our Census sample.
To account for this type of measurement error, we first compute the unconditional standard
deviation �ẑ of the measured TFP values log(ẑjt) above. Then we draw a set of independent
measurement error shocks ⇠jt ⇠ N(0,�ẑ) and compute measurement-error adjusted tfp
values ẑ⇤

jt
given by

log(ẑ⇤jt) = log(ẑjt) + ⇠jt.

We then run the following panel regression of measured simulated tfp on lagged measured
tfp and firm and year fixed e↵ects

log(ẑ⇤jt) = µj + �t + ⇢ log(ẑ⇤jt�1) + "jt.

The cross-sectional interquartile range ˆIQRt of the residual innovations to micro-level
TFP, "̂jt+1, forms the micro-level uncertainty proxy for year t in our simulated data. The
microeconomic block of the model moments gS(✓) is simply given by the mean, standard
deviation, skewness, and serial correlation of the series ˆIQRt.
Underlying Uncertainty in the Model versus the Uncertainty Proxy
The micro uncertainty proxy used for model estimation, IQRt, di↵ers from the underlying
volatility of micro productivity shocks �Z

t in the model, in multiple important ways. These
di↵erences are crucial to keep in mind when comparing the moderate empirical variability of
the uncertainty proxy in Figure 3 with the high estimated variation in underlying volatility
upon impact of an uncertainty shock.

First, IQRt is measured at annual frequency rather than the quarterly frequency of
�
Z
t . Second, as in the Census data sample itself, the uncertainty proxy IQRt is based

on establishment-level Solow residuals computed using temporally mismatched data drawn
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from di↵erent quarters in the year (labor, capital) or summed throughout the year (out-
put).18 Third, the series IQRt reflects substantial, and empirically plausible, measurement
error in the micro data.

Figure C1 plots several decomposed series which unpack the contribution of each of
these steps. In the left hand panel, we show a representative 120-quarter period drawn
from the unconditional simulation of the model, plotting four series at quarterly frequency.

The series labelled “Quarterly” is the interquartile range of the underlying micro pro-
ductivity shocks in the model in a given quarter. This reflects the underlying fundamental
uncertainty concept in the model.

The second series, labelled “Annual,” is the interquartile range of a normal distribution
with standard deviation equal to the standard deviation of the sum of the quarterly pro-
ductivity shocks within a year. This uncertainty series is constant within the four quarters
of a year.

The third series, labelled “Mismatch,” is the interquartile range of measured TFP in-
novations computed from an annual panel regression on the Solow residuals log(ẑjt) from
above. This uncertainty series therefore reflects the contribution of mismatch to measured
dispersion, but not the contribution of measurement error, and it does not vary within the
year.

Finally, the series labeled “Measurement Error” is simply equal to the annual model
uncertainty proxy IQRt defined above. It is the interquartile range of measured TFP
innovation computed from an annual panel regression on the mis-measured Solow residuals
log(ẑ⇤

jt
) and also does not vary within a year.

As is evident from the left hand side of Figure C1, each annual uncertainty measure
naturally has a higher level than the quarterly concept. Furthermore, the Mismatch and
Measurement Error series fluctuate slightly even if underlying uncertainty does not change,
because quarterly productivity shocks throughout a given year lead to input and output
responses within firms that are measured at di↵erent times and do not wash out in the
Solow residual productivity measurement. Finally, the accounting for measurement error
of course leads to a higher measured level of dispersion in TFP shocks.

The right hand side of Figure C1 sheds light on the variability of each uncertainty
concept relative to its mean level. The first four bar heights are equal to the coe�cient
of variation of each series from the left hand side, computed over the full unconditional
simulation of the model. The fifth bar height reflects the coe�cient of variation of our
micro uncertainty proxy from the data, i.e. the interquartile range of TFP shocks in the
Census of Manufactures sample plotted in Figure 3. Reflecting the large estimated increase
in uncertainty upon impact of an uncertainty shock, the quarterly series has a high coe�cient
of variation of around 75%. The annualization process does little to change this pattern.
However, the temporal mismatch of TFP measurement within the year leads to a large
reduction in the coe�cient of variation to about 28%. Measurement error leads to a higher
mean level of the uncertainty proxy and therefore a low coe�cient of variation of around
the 12% seen in the data.

Evidently, large estimated underlying uncertainty jumps of around 310% upon impact
of an uncertainty shock feed into the more muted variability of our uncertainty proxy
because of the temporal mismatch of inputs and outputs as well as the large contribution
of measurement error.

18Note that the use of a constant returns to scale specification of costs shares within the productivity measure-
ment, while underlying productivity in the model feeds into a decreasing returns to scale production function,
is also a form of misspecification that contributes to di↵erences between fundamental and underlying shock
dispersion. We have found that this distinction makes little di↵erence in practice for the cross-sectional
dispersion of measured TFP shocks in the model. Furthermore, the symmetric constant returns treatment
of the model and data moments in this respect is appropriate from an econometric standpoint.
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D Online Appendix: A Representative Firm Model

In this section we lay out the structure of a simple and purely illustrative representative
agent and firm model, an adaptation of Brock and Mirman (1972), which we use in the main
text to investigate the declining investment path in the medium term after an uncertainty
shock. We also lay out a purely illustrative calibration of this model and compute the e↵ect
of a capital destruction shock in this framework.

D.1 Model Details
Output is produced using a single capital input Kt with one-period time to build in in-
vestment. Production is subject to stochastic productivity shocks At. A representative
household has preferences over consumption in terms of final output. The equilibrium of
this neoclassical economy can be derived as a solution to the following planner problem:

max
{It}t

E
1X

t=0

⇢
t log(Ct)

Ct + It = AtK
↵

t

Kt+1 = It + (1� �)Kt

log(At+1) = ⇢A log(At) + �A"t+1

Model Calibration and Solution
We choose illustrative parameters for our model, which we solve numerically at an

annual frequency. The capital depreciation rate is � = 0.09, the curvature of the aggregate
technology is ↵ = 1/3, the subjective discount rate is ⇢ = 0.95, the autocorrelation of
aggregate productivity in logs is 0.9, and the standard deviation of aggregate productivity
shocks is �A = 0.025. We solve the model using discretization of the aggregate capital state
with nK = 350 grid points, Howard policy iteration, and a discretization of the aggregate
productivity process At following Tauchen (1986) with nA = 25 grid points.

A Capital Destruction Shock Experiment
We compute the e↵ects of an unanticipated capital destruction shock in this economy.

In broad terms, this experiment is meant to correspond to the medium-term aftermath of an
uncertainty shock, after uncertainty levels have subsided to a large degree but the economy
is left with a smaller capital stock which must be rebuilt through investment.

To implement this experiment, we simulate 75000 independent economies of 100-year
length. Note that the drastically reduced computational burden in this simple model allows
for a much larger number of independent simulations than in our full heterogeneous agents
structure with uncertainty shocks in the main text. In period 25 in each economy, we
impose an exogenous and unanticipated movement to a capital grid point K

⇤, afterwards
allowing each economy to evolve normally. We choose the capital grid point K⇤, lower than
the mean of the capital stock in the ergodic distribution of the model, to ensure that on
average this shock results in an approximately -10% reduction in aggregate capital relative
to its pre-shock mean.

The Figure D1 in this appendix normalizes the shock period to 1 for plotting purposes
and shows, for each indicated variable X, the percentage deviation of the cross-economy
mean of X from it’s pre-shock level, i.e.

X̂t = 100 log(X̄t/X̄0).
Here we have that X̄t =

1
75000

P
i
Xit is the cross-economy mean of the aggregate X across

all economies i = 1, ..., 75000 in period t.
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Appendix Table A1 
` (1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 

Dependent Variable: S.D. of 
log(TFP) 

shock 

Skewness of 
log(TFP) 

shock 

Kurtosis of 
log(TFP) 

shock 

IQR of 
log(TFP) 

shock 

IQR of 
output 
growth 

 S.D. of 
log(TFP) 

shock 

Skewness of 
log(TFP) 

shock 

Kurtosis of 
log(TFP) 

shock 

IQR of 
log(TFP) 

shock 

IQR of 
output 
growth 

Sample: Establishments (manufacturing) in the sample 2 years or more  Establishments (manufacturing) in the sample 38 years 
                  
Recession 0.046*** -0.257* 0.696 0.039*** 0.078***  0.075*** -0.233 -2.542 0.067*** 0.078*** 

 
(0.014) (0.154) (1.242) (0.015) (0.019)  (0.015) (0.309) (3.340) (0.021) (0.020) 

                  
Mean of Dep. Variable: 0.494 -1.454 18.406 0.384 0.226  0.500 -1.541 22.188 0.392 0.185 
Corr. with GDP growth -0.366** 0.091 0.029 -0.380** -0.504***  -0.461*** 0.174 -0.013 -0.419*** -0.553*** 
Frequency Annual Annual Annual Annual Annual  Annual Annual Annual Annual Annual 
Years 1972-2011 1972-2011 1972-2011 1972-2011 1972-2011  1972-2011 1972-2011 1972-2011 1972-2011 1972-2011 
Observations 39 39 39 39 39  39 39 39 39 39 
Underlying sample 1,390,212 1,390,212 1,390,212 1,390,212 1,390,212  130,201 130,201 130,201 130,201 130,201 
Notes: Each column reports a time-series OLS regression point estimate (and standard error below in parentheses) of a measure of uncertainty on a recession indicator. The 
recession indicator is the share of quarters in that year in a recession. Recessions are defined using the NBER data. In the bottom panel we report the mean of the dependent 
variable and its correlation with real GDP growth. In columns (1) to (5) the sample is the population of manufacturing establishments with 2 years or more of observations in the 
ASM or CM survey between 1972 and 2009, which contains data on 211,939 establishments across 39 years of data (one more year than the 38 years of regression data since we 
need lagged TFP to generate a TFP shock measure). In columns (6) to (10) the sample is the population of manufacturing establishments that appear in the 38 years (1972-2009) of 
the ASM or CM survey, which contains data on 3,449 establishments. In columns (1) and (6) the dependent variable is the cross-sectional standard deviation (S.D.) of the 
establishment-level ‘shock’ to Total Factor Productivity (TFP). This ‘shock’ is calculated as the residual from the regression of log(TFP) at year t+1 on its lagged value (year t), a 
full set of year dummies and establishment fixed effects. In columns (2) and (7) we use the cross-sectional skewness of the TFP ‘shock’, in columns (3) and (8) the cross-sectional 
kurtosis and in columns (4) and (9) the cross-sectional interquartile range of this TFP ‘shock’ as an outlier robust measure. In columns (5) and (10) the dependent variable is the 
interquartile range of plants’ sales growth. All regressions include a time trend and Census year dummies (for Census year and for 3 lags). Robust standard errors are applied in all 
columns to control for any potential serial correlation. *** denotes 1% significance, ** 5% significance and * 10% significance. Data available online at 
http://www.stanford.edu/~nbloom/RUBC.zip 



 
Table A2: Estimates of AR coefficient for TFP Forecast Regressions for Calculation of M.E. Variance 

 (1) (2) (3) 
Dependent variable: log(TFPt+1)    
 OLS IV IV 
    
log(TFPt) 0.795*** 0.906*** 0.932*** 
 (0.002) (0.002) (0.002) 
    
Observations 413,401 413,401 413,401 
    
Instrument N/A log(TFPt-1) log(TFPt-2) 

Notes: The dependent variable is log(TFP) at the establishment level at year t+1. The right hand variable is log(TFP) at t. The regression 
sample are manufacturing establishments with 25 years or more of observations in the ASM or CM survey between 1972 and 2009, 
which also have non-missing log(TFP) value for t-1 and t-2. All columns have a full set of establishment and year fixed effects. In 
column (1) we use OLS regression. In column (2) we instrument for log(TFPt) with log(TFPt-1), and in column (3) we instrument with 
log(TFPt-2). Standard errors are reported in brackets below every point estimate. *** denotes 1% significance, ** 5% significance and * 
10% significance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table B1: Internal Accuracy Statistics for the Approximate Equilibrium Mappings in the Baseline Model 
     

Aggregate 
State 

Position 
Capital log(Kt+1) Price log(pt) 

(A,S,S-1) RMSE (%) R2 RMSE (%) R2 
     
     

(1,0,0) 0.38 0.99 0.63 0.95 
     (1,0,1) 0.20 1.00 0.09 1.00 
     (1,1,0) 0.73 0.98 0.29 0.99 
     (1,1,1) 0.49 0.99 0.29 0.98 
     (2,0,0) 0.51 0.99 0.58 0.96 
     (2,0,1) 0.42 0.99 0.08 1.00 
     (2,1,0) 0.34 1.00 0.23 0.99 
     (2,1,1) 0.41 0.99 0.30 0.98 
     (3,0,0) 0.42 0.99 0.50 0.97 
     (3,0,1) 0.43 0.99 0.08 1.00 
     (3,1,0) 0.52 0.99 0.23 0.99 
     (3,1,1) 0.55 0.98 0.32 0.97 
     (4,0,0) 0.40 0.99 0.45 0.98 
     (4,0,1) 0.56 0.94 0.08 1.00 
     (4,1,0) 0.36 0.99 0.22 0.99 
     (4,1,1) 0.39 0.98 0.31 0.96 
     (5,0,0) 0.44 0.99 0.51 0.97 
     (5,0,1) 0.26 1.00 0.07 1.00 
     (5,1,0) 0.44 0.99 0.09 1.00 
     (5,1,1) 0.32 0.99 0.27 0.97 

Notes: Approximate equilibrium forecast mappings for market-clearing prices are log(pt) = αp(At,St,St-1) + βp(At,St,St-1)log(Kt) and for 
next period’s capital are log(Kt+1) = αK(At,St,St-1) + βp(At,St,St-1)log(Kt). The accuracy statistics above are computed from an 
unconditional simulation of 5000 quarters of the baseline model, discarding an initial 500 quarters. Each row in the table above 
displays the performance of the equilibrium mapping conditional upon a subsample of the data characterized by a given triplet of 
discretized grid points for aggregate productivity At, uncertainty St, and lagged uncertainty St-1. RMSE represents the root mean 
squared error of the indicated rule’s static or one-period ahead forecasts, and the R2 measure is the standard R2 measure computed 
from the log-linear regression on the appropriate subsample of simulated data. 
 
 
 
 
 
 
 
 
 
 
 



 
Table B2: Marginal Utility Price Forecasting Accuracy, Alternative Computational Strategies 

 

Den Haan Statistics (%) Stat.\Horizon 
 

3 Years 
 

4 Years 
 

5 Years 
 

12 Years 

          
Baseline: Lagged Unc., 
Convexified Clearing 

Mean 
 

0.63 
 

0.75 
 

0.84 
 

1.25 

Max   1.29   1.54   1.76   2.80 

Extra Lags of Uncertainty 
Convexifed Clearing 

Mean   0.64   0.75   0.84   1.16 

Max   1.27   1.51   1.72   2.56 

Extra Forecast Moment 
Convexifed Clearing 

Mean   0.61   0.73   0.83   1.23 

Max   1.53   1.87   2.15   3.27 

One Lag of Uncertainty 
Nonconvexified Clearing 

Mean   0.43   0.49   0.53   0.68 

Max   0.97   1.13   1.25   1.79 
Notes: The table above reports the Den Haan (2010) accuracy statistics ``Den Haan Statistics’’ for the forecasting system for market-
clearing marginal utility prices p. Den Haan statistics are based on forward iteration of the forecasting system for marginal utility out 
to a pre-specified horizon conditioning only on exogenous processes, substituting s-period ahead forecasts as inputs for s+1-period 
ahead forecasts and so on. “Mean” and “Max” refer to the mean and maximum of the approximate percentage errors 100 | log (pt) – 
log(pt

DH)| resulting from these iterative forecasts. The table reports averages of these error statistics using 2,000 forecast start dates in 
an unconditional simulation of the model. The statistics are calculated for each of four alternative model solution strategies, denoted in 
the first column. 
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Figure A1: Recessions increase turbulence. Plant rankings 
in the TFP distribution churn more in recessions 
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Notes: Constructed from the Census of Manufacturers and the Annual Survey of Manufacturing establishments, using establishments with 25+ years to 
address sample selection. Grey shaded columns are share of quarters in recession within a year. Plants’ rank in the TFP distribution is their decile within the 
industry and year TFP ranking. 



Figure A2: Macro volatility calculated from a GARCH(1,1) 
model estimated from aggregate TFP growth 
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Notes: The conditional heteroskedasticity series above is estimated using a GARCH(1,1) model for the annualized percent change in the aggregate Solow 
residual in US quarterly data from 1972-2010, as available on John Fernald’s website (series dTFP). The recession bars refer to standard dates from the NBER 
Business Cycle Dating Committee’s website. 
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Figure B1: Convexified excess demand leads to market 
clearing with essentially arbitrary accuracy 
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Notes: The figure above plots two series from an unconditional simulation of the model for 5000 quarters, after discarding an initial 500 quarters. The top panel 
plots the market clearing level of consumption Ct relying on convexification of the excess demand function to clear goods markets. The bottom panel plots the 
percentage clearing error, i.e. the percentage difference between implied consumption Ct and the reciprocal of the marginal utility price pt governing firm 
investment choices, along with the numerical clearing bounds in dotted lines. Over the unconditional simulation of the model, the maximum clearing error is 
0.0099%, and the mean error is 0.00032%. 
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Figure B2: The size of uncertainty’s effect varies little with 
alternative forecasting and market clearing algorithms 
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Notes: Based on independent simulations of 2500 economies of 100-quarter length. We impose an uncertainty shock in the quarter labelled 1. The baseline 
economy (x symbols) uses a forecast rule for market clearing prices p, i.e. marginal utility, including lagged uncertainty as a state variable, and market clearing 
consumption is obtained by clearing a convexified excess demand function. The extra lags, convexified economy (* symbols) includes three lags of uncertainty 
as state variables and clears markets with a convexified excess demand function. The extra moment, convexified economy (diamonds) adds the cross-
sectional covariance of capital and productivity to the forecast rule and clears markets with a convexified excess demand function. The one lag, nonconvexified 
economy (o symbols) includes lagged uncertainty as a state variable and clears markets with a nonconvexified excess demand function. From the left, we plot 
the percent deviations of cross-economy average output, consumption, and the price forecasting error (marginal utility price p – forecast price p) from quarter 0. 
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Figure B3: Alternative measures of misallocation comove 
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Notes: Based on independent simulations of 2500 economies of 100-quarter length. We impose an uncertainty shock in the quarter labelled 1, allowing normal 
evolution of the economy afterwards. In each panel, we plot the average deviation of an alternative proxy for allocative efficiency from its pre-shock value, in the 
raw units associated with that series in quarter 0. The top row plots the correlation of productivity and inputs: corr (log k, log z) and corr(log n, log z ). The 
middle row plots the dispersion of the marginal product of inputs: the standard deviations of ( log y / k ) and (log y / n ). The bottom row plots the covariance of 
productivity and inputs: cov (log k, log z) and cov(log n, log z ). 
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Figure B4: The impact of uncertainty is robust to alternative 
methods of computing impulse responses 
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Notes: For the baseline economy (x symbols), we simulate 2500 independent economies of 100-period length. We impose an uncertainty shock in about 
quarter 50, labeled 1 above. Clockwise from the top left, we plot the percent deviations of cross-economy average output, labor, consumption, and investment 
from their values in quarter 0. For the simulation differencing case (► symbols), we simulate 2500 pairs of independent economies. The exogenous shocks to 
all series are identical within a pair. However, we impose an uncertainty shock in one of the two economies within a pair, allowing all other series and outcomes 
to evolve normally afterwards. In each panel, the figure plots the average across economy pairs of the percent deviation of the indicated series in the shocked 
economy versus the no shock economy. The parameters are identical across the two impulse responses plotted above, equal to the baseline estimates. 
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Figure B5: The impact of uncertainty is robust to using a 
denser grid for productivity shocks 
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Notes: Based on independent simulations 100-quarter length. For each path, we impose an uncertainty shock in quarter 1. For the baseline economy (x 
symbols), we use a grid with 5 points for macro productivity A and micro productivity z. For the denser grid economy (► symbols), we use a grid with 9 points 
for macro productivity A and micro productivity z. The parameterizations are identical in each case and reflect the baseline estimates. Clockwise from the top 
left, we plot the percent deviations of cross-economy average output, labor, consumption, and investment from their values in quarter 0. 
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Figure C1: Input observation timing mismatch & measurement 
error explain lower variation in the model uncertainty proxy 
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Notes: The IQR series in the left hand panel were drawn from a representative 120-quarter period in the unconditional simulation of the model. “Quarterly” is 
the underlying quarterly cross-sectional IQR of micro productivity shocks. “Annual” is the IQR of shocks with variance equal to the variance of the sum of the 
quarterly shocks throughout a given year. “Mismatch” is the IQR of simulated TFP shocks in that year, with TFP computed as in the data using a Solow 
Residual approach, first-quarter labor, fourth-quarter capital, and the sum of yearly output. “Measurement Error” is the baseline IQR of simulated TFP shocks 
accounting for measurement error. The bars in the right hand panel are equal to the coefficient of variation of each indicated IQR series from the left hand side, 
computed over the entire unconditional simulation of the model, along with the coefficient of variation of the annual uncertainty IQR proxy computed from our 
Census of Manufactures and Annual Survey of Manufactures data from 1972-2010. 
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Figure D1: The impact of a capital destruction shock in the 
Brock-Mirman model 
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Notes: Based on independent simulations of 75000 economies of 100-year length in the simplified and illustrative representative agent Brock-Mirman model as 
described in Appendix E. In the year labelled 1 in each economy, we impose a capital destruction shock leading to about a 10% loss of capital on average, 
allowing the economy to evolve normally thereafter. Clockwise from the top left, we plot the percent deviations of cross-economy average output, capital, 
consumption, and investment from their values in year 0. 


