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1 Introduction

Uncertainty has received substantial attention recently. For example, the Federal Open

Market Committee minutes repeatedly emphasize uncertainty as a key factor in the 2001

and 2007-2009 recessions. This paper seeks to evaluate the role of uncertainty for business

cycles in two parts. In the first part, we develop new empirical measures of uncertainty using

detailed Census microdata from 1972 to 2011, and we highlight three main results. First,

the dispersion of plant-level innovations to their total factor productivity (TFP) is strongly

countercyclical, rising steeply in recessions. For example, Figure 1 shows the dispersion of

TFP shocks for a balanced panel of plants during the two years before the recent recession

(2005 to 2006) and two years during the recession (2008 to 2009). Figure 1 shows that

plant-level TFP shocks increased in variance by 76% during the recession. Similarly, Figure

2 shows that the dispersion of output growth for these same establishments increased even

more, rising by a striking 152% during the recession. Thus, as Figures 1-2 suggest, recessions

appear to be characterized by a negative first-moment and a positive second-moment shock

to the establishment-level driving processes.

Our second empirical finding is that uncertainty is also strongly countercyclical at the

industry level. That is, within SIC 4-digit industries the yearly growth rate of output

is negatively correlated with the dispersion of TFP shocks to establishments within the

industry. Hence, both at the industry and at the aggregate level, periods of low growth

rates of output are also characterized by increased cross-sectional dispersion of TFP shocks.

Our third empirical finding is that for plants owned by publicly traded Compustat

parent firms, the size of their plant-level TFP shocks is positively correlated with their

parents daily stock returns. Hence, daily stock returns volatility, a popular high-frequency

financial measure of uncertainty which also rises in recessions, is tightly linked to the size

of yearly plant TFP shocks.

Given this empirical evidence that uncertainty appears to rise sharply in recessions, in

the second part of the paper we build a dynamic stochastic general equilibrium (DSGE)

model. Various features of the model are specified to conform as closely as possible to the

standard frictionless real business cycle (RBC) model as this greatly simplifies comparison

with existing work. We deviate from this benchmark in three ways. First, uncertainty

is time-varying, so the model includes shocks to both the level of technology (the first

moment) and its variance (the second moment) at both the microeconomic and macroe-

conomic levels. Second, there are heterogeneous firms that are subject to idiosyncratic

shocks. Third, the model contains non-convex adjustment costs in both capital and labor.

The non-convexities together with time variation in uncertainty imply that firms become

more cautious in investing and hiring when uncertainty increases.

1



The model is numerically solved and estimated using macro and plant level data via a

simulated method of moments (SMM) approach. Our SMM parameter estimates suggest

that micro and macro uncertainty increase by around threefold during recessions.

Simulations of the model allow us to study its response to an uncertainty shock. In-

creased uncertainty makes it optimal for firms to wait, leading to significant falls in hiring,

investment and output. In our model, overall, uncertainty shocks generate a drop in GDP

of around 2.5%. Moreover, the increased uncertainty reduces productivity growth. This

reduction occurs because uncertainty reduces the degree of reallocation in the economy

since productive plants pause expanding and unproductive plants pause contracting. The

importance of reallocation for aggregate productivity growth matches empirical evidence in

the U.S. See, for example, Foster, Haltiwanger, and Krizan (2000, 2006), who report that

reallocation broadly defined accounts for around 50% of manufacturing and 80% of retail

productivity growth in the US.

We then build on our theoretical model to investigate the e↵ects of uncertainty on policy

e↵ectiveness. We use a simple illustrative example to show how time-varying uncertainty

initially dampens the e↵ect of an expansionary policy. The key to this policy ine↵ectiveness

is that a rise in uncertainty makes firms very cautious in responding to any stimulus.

Our work is related to several strands in the literature. First, we add to the extensive

literature building on the RBC framework that studies the role of TFP shocks in causing

business cycles. In this literature, recessions are generally caused by large negative technol-

ogy shocks (e.g. King and Rebelo, 1999). The reliance on negative technology shocks has

proven to be controversial, as it suggests that recessions are times of technological regress.

As discussed above, our work provides a rationale for at least some portion of variation in

measured productivity. Countercyclical increases in uncertainty lead to a freeze in economic

activity, substantially lowering productivity growth during recessions.

Second, the paper relates to the literature on investment under uncertainty. A rapidly

growing body of work has shown that uncertainty can directly influence firm-level investment

and employment in the presence of adjustment costs. Recently, the literature has started

to focus on stochastic volatility and its impacts on the economy.1 Finally, the paper also

builds upon a recent literature that studies the role of microeconomic rigidities in general

1For a focus on the firm level, see Bernanke (1983), Romer (1990), Bertola and Caballero (1994), Dixit and
Pindyck (1994), Abel and Eberly (1996), Hassler (1996), and Caballero and Engel (1999). For a macro fo-
cus, see Bloom (2009)’s partial equilibrium model with stochastic volatility, Fernandez-Villaverde, Guerron-
Quintana, Rubio-Ramirez, and Uribe (2011)’s paper on uncertainty and real exchange rates, Kehrig (2011)’s
paper on countercyclical productivity dispersion, Christiano, Motto, and Rostagno (2014)’s, Arellano, Bai,
and Kehoe (2012)’s and Gilchrist, Sim, and Zakrajsek (2011)’s papers on uncertainty shocks in models with
financial constraints, Basu and Bundick (2016)’s paper on uncertainty shocks in a new-Keynesian model,
Fernandez-Villaverde, Guerron-Quintana, Kuester, and Rubio-Ramirez (2014)’s paper on fiscal policy un-
certainty, and Bachmann and Bayer (2013,2014)’s papers on micro level uncertainty with capital adjustment
costs.
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equilibrium macro models.2

The remainder of this paper is organized as follows. Section 2 discusses the empirical

behavior of uncertainty over the business cycle. In Section 3 we formally present the DSGE

model, define the recursive equilibrium, and present our nonlinear solution algorithm. We

discuss the estimation of parameters governing the uncertainty process in Section 4, while

in Section 5 we study the impact of uncertainty shocks on the aggregate economy. Section 6

studies the implications for government policy in the presence of time-varying uncertainty.

Section 7 concludes. Online appendixes include details on the data (A), model solution (B),

estimation (C), and a benchmark representative agent model (D).

2 Measuring Uncertainty over the Business Cycle

Before presenting our empirical results, it is useful to briefly discuss what we mean by

time-varying uncertainty in the context of our model.

We assume that a firm, indexed by j, produces output in period t according to the

following production function

yj,t = Atzj,tf(kj,t, nj,t), (1)

where kt,j and nt,j denote idiosyncratic capital and labor employed by the firm. Each firm’s

productivity is a product of two separate processes: an aggregate component, At, and an

idiosyncratic component, zj,t.

We assume that the aggregate and idiosyncratic components of business conditions

follow autoregressive processes:

log(At) = ⇢
A log(At�1) + �

A

t�1✏t (2)

log(zj,t) = ⇢
Z log(zj,t�1) + �

Z

t�1✏j,t. (3)

We allow the variance of innovations, �At and �Zt , to move over time according to two-state

Markov chains, generating periods of low and high macro and micro uncertainty.

There are two assumptions embedded in this formulation. First, the volatility in the

idiosyncratic component, zj,t, implies that productivity dispersion across firms is time-

varying, while volatility in the aggregate component, At, implies that all firms are a↵ected

by more volatile shocks. Second, given the timing assumption in (2) � (3), firms learn in

advance that the distribution of shocks from which they will draw in the next period is

changing. This timing assumption captures the notion of uncertainty that firms face about

2See for example, Hopenhayn and Rogerson (1993), Thomas (2002), Veracierto (2002), Khan and Thomas
(2008, 2013), Bachmann, Caballero, and Engel (2013), House (2014), or Winberry (2016).
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future business conditions.

These two shocks are driven by di↵erent statistics. Volatility in zj,t implies that cross-

sectional dispersion-based measures of firm performance (output, sales, stock market re-

turns, etc.) are time-varying, while volatility in At induces higher variability in aggregate

variables like GDP growth and the S&P500 index. Next we turn to our cross-sectional and

macroeconomic uncertainty measures, detailing how both appear to rise in recessions.

2.1 Microeconomic Uncertainty over the Business Cycle

In this section we present a set of results showing that shocks at the establishment-level,

firm-level and industry-level all increase in variance during recessions. In our model in

Section 3 we focus on units of production, ignoring multi-establishment firms or industry-

level shocks to reduce computational burden. Nevertheless, we present data at these three

di↵erent levels to demonstrate the generality of the increase in idiosyncratic shocks during

recessions.

Our first set of measures comes from the Census panel of manufacturing establishments.

In summary, with extensive details in Appendix A, this dataset contains detailed output

and inputs data on over 50,000 establishments from 1972 to 2011. We focus on the sub-

set of 15,673 establishments with 25+ years of data to ensure that compositional changes

do not bias our results, generating a sample of almost half a million establishment-year

observations.

To measure uncertainty we first calculate establishment-level TFP (bzj,t) using the stan-

dard approach from Foster, Haltiwanger, and Krizan (2000). We then define TFP shocks

(ej,t) as the residual from the following first-order autoregressive equation for establishment-

level log TFP:

log (bzj,t) = ⇢ log (bzj,t�1) + µj + �t + ej,t, (4)

where µj is an establishment-level fixed e↵ect (to control for permanent establishment-level

di↵erences) and �t is a year fixed e↵ect (to control for cyclical shocks). Since this residual

also contains plant-level demand shocks that are not controlled for by 4-digit price deflators

(see Foster, Haltiwanger and Syverson (2008)) our revenue-based measure will combine both

TFP and demand shocks.

Finally, we define microeconomic uncertainty, �
bZ
t�1, as the cross-sectional dispersion of

ej,t calculated on a yearly basis. In Figure 3 we depict the interquartile range (IQR) of this

TFP shock within each year. As Figure 3 shows, the series exhibits a clearly countercyclical

behavior. This is particularly striking for the recent Great Recession of 2007-2009, which

displays the highest value of TFP dispersion since the series begins in 1972.
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Table 1 more systematically evaluates the relationship between the dispersion of TFP

shocks and recessions. In column (1) we regress the cross-sectional standard-deviation (S.D.)

of establishment TFP shocks on an indicator for the number of quarters in a recession during

that year. So, for example, this variable has a value of 0.25 in 2007 as the recession started

in quarter IV, and values of 1 and 0.5 in 2008 and 2009, respectively, as the recession

continued until quarter II in 2009. We find a coe�cient of 0.064 which is highly significant

(a t-statistic of 6.9). Given that the mean of the S.D. of establishment TFP shocks is 0.503,

a year in recession is associated with a 13% increase in the dispersion of TFP shocks. In

the bottom panel we report that this S.D. of establishment TFP shocks also has a highly

significant correlation with GDP growth of -0.45.

Our finding here of countercyclical dispersion of micro-level outcomes mirrors a range of

other recent papers such as Bachmann and Bayer (2014) in German data, Kehrig (2015) in a

similar sample of U.S. Census data, or Jurado, Ludvigson and Ng (2014), Vavra (2014), and

Berger and Vavra (2015) for di↵erent samples of US firms. A number of these papers build

alternative theories or interpretations of such patterns in the microdata qualitatively distinct

from our own, but the core empirical regularity of countercyclical micro-level dispersion is

remarkably robust.

In columns (2) and (3) we examine the coe�cient of skewness and kurtosis of TFP

shocks over the cycle and interestingly find no significant correlations.3 This suggests that

recessions can be characterized at the microeconomic level as a negative first-moment shock

plus a positive second moment shock. In column (4) we use an outlier-robust measure of

cross-sectional dispersion, which is the IQR range of TFP shocks, and again find this rises

significantly in recessions. The point estimate on recession of 0.061 implies an increase of

over 15% in the IQR of TFP shocks in a recession year.4 In column (5) as another robust-

ness test we use plant-level output growth, rather than TFP shocks, and find a significant

rise in recessions. We also run a range of other experiments on di↵erent indicators, mea-

sures of TFP, and samples and always find that dispersion rises significantly in recessions.5

3This lack of significant correlation was robust in a number of experiments we ran. For example, if we drop
the time trend and Census survey year controls the result in column (1) on the standard deviation remains
highly significant at 0.062 (0.020), while the results in columns (2) and (3) on skewness and kurtosis remain
insignificant at -0.250 (0.243) and -0.771 (2.755). We also experimented with changing the establishment
selection rules (keeping those with 2+ or 38+ years rather than 25+ years) and again found the results
robust, as shown in Appendix Table A1. Interestingly, Guvenen, Ozkan and Song (2014) find an increase is
left-skewness for personal income growth during recessions, which may be absent in plant data because large
negative draws lead plants to exit. Because the drop in the left-tail is the key driver of recessions in our
model (the “bad news principle” highlighted by Bernanke (1983)), this distinction is relatively unimportant.

4While 15% is a large increase in dispersion it still greatly understates the increase in uncertainty in reces-
sion, because a large share of the dispersion of TFP is associated with measurement error. We formally
address that in our SMM estimation framework. See Section 4.2 for estimates of the underlying increase in
uncertainty in recession and Appendix C for details.

5For example, IQR of employment growth rates has a point estimate (standard error) of 0.051 (0.012), the
IQR of TFP shocks measured using an industry-by-industry forecasting equation version of (4) has a point
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For example, Figure A1 plots the correlation of plant TFP rankings between consecutive

years. This shows that during recessions these rankings churn much more, as increased mi-

croeconomic variance leads plants to change their position within their industry-level TFP

rankings more rapidly.

In column (6) we use a di↵erent dataset which is the sample of all Compustat firms with

25+ years of data. This has the downside of being a much smaller selected sample containing

only 2,465 publicly quoted firms, but spanning all sectors of the economy, and providing

quarterly sales observations going back to 1962. We find that the quarterly dispersion of

sales growth in this Compustat sample is also significantly higher in recessions.

One important caveat when using the variance of productivity ‘shocks’ to measure uncer-

tainty is that the residual ej,t is a productivity shock only in the sense that it is unforecasted

by the regression equation (4), rather than unforecasted by the establishment. We address

this concern in two ways. First, in column (7) we examine the cross-sectional spread of

stock returns, which reflects the volatility of news about firm performance, and again find

this is countercyclical, echoing the prior results in Campbell et al. (2001). In fact, as we

discuss below in Table 3, we also find that establishment-level shocks to TFP are signifi-

cantly correlated to their parent’s stock returns, so that at least part of these establishment

TFP shocks are new information to the market. Furthermore, to remove the forecastable

component of stock returns we repeated the specification in column (7) first removing the

quarter by firm mean of firm returns. This controls for any quarterly factors - like size,

market/book value, R&D intensity and leverage - that may influence expected stock returns

(e.g. Bekaert et al. (2012)), although of course the influence of common factors which may

vary at a higher frequency within the quarter may remain. The coe�cient (standard error)

on recession in these regressions is .019 (0.003), similar to the results obtained in column

(7).

Second, we extend the TFP forecast regressions (4) to include additional observables

that are likely to be informative about future TFP changes. Adding these in the regression

accounts for at least some of the superior information that the establishment might have

over the econometrician, helping us in backing out true shocks to TFP from the perspective

of the establishments. Figure 4 reports the IQR of the TFP shocks for the baseline forecast

regression, as well as for three other dispersion measures, where we sequentially add more

variables to the forecasting regressions that are used for recover TFP shocks. First we add

two extra lags in levels and polynomials of TFP, next we also include lags and polynomials

estimate (standard error) of 0.064 (0.019), using 2+ year samples for the S.D. of TFP shocks we find a point
estimate (standard error) of 0.046 (0.014), using a balanced panel of 38+ year establishments we find a
point estimate (standard error) of 0.075 (0.015), and using the IQR of TFP shocks measured after removing
state-year means, and then applying (4) has a point estimate (standard error) of 0.061 (0.018). Finally,
using the IQR of TFP shocks measured after removing firm-year means, and then applying (4) has a point
estimate (standard error) of 0.028 (0.011).
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of investment, and finally polynomials and lagged in multiple inputs including employment,

energy and materials expenditure. As is clear from the figure, even when including forward

looking establishment choices for investment and employment, the overall cyclical patterns

of uncertainty are almost unchanged.

Finally, in column (8) we examine another measure of uncertainty, which is the cross-

sectional spread of industry-level output growth rates, finding again that this is strongly

countercyclical.

Hence, in summary plant-level (columns 1 � 5), firm-level (columns 6 � 7), and in-

dustry-level (column 8) measures of volatility and uncertainty all appear to be strongly

countercyclical, suggesting that microeconomic uncertainty rises in recessions.

2.2 Industry Business Cycles and Uncertainty

In Table 2 we report another set of results which disaggregate down to the industry level,

finding a very similar result that uncertainty is significantly higher during periods of slower

growth. To do this we exploit the size of our Census dataset to examine the dispersion

of productivity shocks within each SIC 4-digit industry year cell. The size of the Census

dataset means that it has a mean (median) of 27.1 (17) establishments per SIC 4-digit

industry-year cell, which enables us to examine the link between within-industry dispersion

of establishment TFP shocks and industry growth.

Table 2 displays a series of industry panel regressions in which our dependent variable is

the IQR of TFP shocks for all establishments in each industry(i)-year(t) cell. The regression

specification that we run is:

IQRi,t = ai + bt + ��yi,t.

The explanatory variable in column (1) (�yi,t) is the median growth rate of output between

t and t + 1 in the industry-year cell, with a full set of industry (ai) and year (bt) fixed

e↵ects also included. Column (1) of Table 2 shows that the within-industry dispersion

of TFP shocks is significantly higher when that industry is growing more slowly. Since

the regression has a full set of year and industry dummies, this is independent of the

macroeconomic cycle. So at both the aggregate and industry-level slowdowns in growth are

associated with increases in the cross-sectional dispersion of shocks.

This result raises the question of why the within-industry dispersion of shocks is higher

during industry slowdowns. In order to explore whether it is the case that industry slow-

downs impact some types of establishments di↵erently, we proceed as follows. In columns

(2) to (9) we run a series of regressions checking whether the increase in within-industry dis-

persion is larger given some particular characteristics of the industry. These are regressions
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of the form

IQRi,t = ai + bt + ��yi,t + ��yi,t ⇤ xi,

where xi are industry characteristics (see Appendix A for details). Specifically, in column

(2) we interact industry growth with the median growth rate in that industry over the full

period. The rationale is that perhaps faster growing industries are more countercyclical

in their dispersion? We find no relationship, suggesting long-run industry growth rates

are not linked to the increase in dispersion of establishment shocks they see in recessions.

Similarly, in column (3) we interact industry growth with the dispersion of industry growth

rates. Perhaps industries with a wide spread of growth rates across establishments are

more countercyclical in their dispersion? Again, we find no relationship. The rest of the

table reports similar results for the median and dispersion of plant size within each industry

(measured by the number of employees, columns (4) and (5)), the median and dispersion of

capital/labor ratios (columns (6) and (7)), and TFP and geographical dispersion interactions

(columns (8) and (9)). In all of these we find insignificant coe�cients on the interaction of

industry growth with industry characteristics.

Thus, to summarize, it appears that: first, the within-industry dispersion of establish-

ment TFP shocks rises sharply when the industry growth rates slow down; and second,

perhaps surprisingly, this relationship appears to be broadly robust across all industries.

An obvious question regarding the relationship between uncertainty and the business

cycle is the direction of causality. Identifying the direction of causation is important in

highlighting the extent to which countercyclical macro and industry uncertainty is a shock

driving cycles versus an endogenous mechanism amplifying cycles. A recent literature has

suggested a number of mechanisms for uncertainty to increase endogenously in recessions.

See, for example, the papers on information collection by Van Nieuwerburgh and Veld-

kamp (2006) Fagelbaum, Schaal and Tascherau-Dumouchel (2013) or Chamley and Gale

(1994), on experimentation in Bachmann and Moscarini (2011), on forecasting by Orlik

and Veldkamp (2015), on policy uncertainty by Lubos and Veronesi (2013), and on search

by Petrosky-Nadeau and Wasmer (2013). Our view is that recessions appear to be initi-

ated by a combination of negative first- and positive second-moment shocks, with ongoing

amplification and propagation from uncertainty movements. So the direction of causality

likely goes in both directions, and while we model the causal impact of uncertainty in this

paper, more work on the reverse (amplification) direction would also be helpful.

2.3 Are Establishment-Level TFP Shocks a Good Proxy for Uncertainty?

The evidence we have provided for countercyclical aggregate and industry-level uncertainty

relies heavily on using the dispersion of establishment-level TFP shocks as a measure of
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uncertainty. To check this, Table 3 compares our establishment TFP shock measure of

uncertainty with other measures of uncertainty, primarily the volatility of daily and monthly

firm-stock returns, which have been used commonly in the prior uncertainty literature.6

Importantly, we note that goal of this section is to demonstrate the correlation between

the di↵erent measures of uncertainty. Thus, this section does not imply any direction of

causation.

In column (1) we regress the mean absolute size of the TFP shock in the plants of publicly

traded firms against their parent firm’s within-year volatility of daily stock-returns (plus a

full set of firm and year fixed e↵ects). The positive and highly significant coe�cient reveals

that when plants of publicly quoted firms have large (positive or negative) TFP shocks in

any given year, their parent firms are likely to have significantly more volatile daily stock

returns over the course of that year. This is reassuring for both our TFP shock measure of

uncertainty and stock market volatility measures of uncertainty, as while neither measure

is ideal, the fact that they are strongly correlated suggests that they are both proxies for an

underlying measure of firm-level uncertainty. In column (2) we use monthly returns rather

than daily returns and find similar results, while in column (3) following Leahy and Whited

(1996) we leverage adjust the stock returns and again find similar results.7

In column (4) we compare instead the within-year standard deviation of firm quarterly

sales growth against the absolute size of their establishment TFP shocks. We find again a

strikingly significant positive coe�cient, showing that firms with a wider dispersion of TFP

shocks across their plants tend to have more volatile sales growth within the year. Finally,

in column (5) we generate an industry-level measure of output volatility within the year by

taking the standard deviation of monthly production growth, and we find that this measure

is also correlated with the average absolute size of establishment-level TFP shocks within

the industry in that year.

So in summary, establishment-level TFP shocks are larger when the parent firms have

more volatile stock returns and sales growth within the year, and the overall industry has

more volatile monthly output growth within the year. This suggests these indicators are all

picking up some type of common movement in uncertainty.

6See, for example, Leahy and Whited (1996), Schwert (1989), Bloom, Bond, and Van Reenen (2007) and
Panousi and Papanikolaou (2012).

7As we did in column (7) of Table 1, to remove the forecastable component of stock returns we repeat columns
1 and 3 first removing the quarter by firm mean of firm returns. After doing this the coe�cient (standard
error) is very similar 0.324 (0.093) for column (1) and 0.387 (0.120) for column (3), mainly because the
forecastable component of stock-returns explains a very small of total stock-returns.
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2.4 Macroeconomic Measures of Uncertainty

The results discussed so far focus on establishing the countercyclicality of idiosyncratic (es-

tablishment, firm, and industry) uncertainty. With respect to macroeconomic uncertainty,

existing work has documented that this measure is also countercyclical, including for exam-

ple Schwert (1989), Campbell, Lettau, Malkiel, and Xu (2001), Engle and Rangel (2008),

Jurado, Ludvigsson and Ng (2014), Stock and Watson (2012), or the survey in Bloom

(2014).

Rather than repeat this evidence here we simply include one additional empirical mea-

sure of aggregate uncertainty, which is the conditional heteroskedasticity of aggregate pro-

ductivity At. This is estimated using a GARCH(1, 1) estimator on the Basu, Fernald,

and Kimball (2006) data on quarterly TFP growth from 1972Q1 to 2010Q4. We find that

conditional heteroskedasticity of TFP growth is strongly countercyclical, rising by 25%

during recessions which is highly significant (a t-statistic of 6.1), with this series plotted in

Appendix Figure A2.

3 The General Equilibrium Model

We proceed by analyzing the quantitative impact of variation in uncertainty within a DSGE

model. Specifically, we consider an economy with heterogeneous firms that use capital and

labor to produce a final good. Firms that adjust their capital stock and employment incur

adjustment costs. As is standard in the RBC literature, firms are subject to an exogenous

process for productivity. We assume that the productivity process has an aggregate and

an idiosyncratic component. In addition to the standard first-moment shocks considered

in the literature, we allow the second moment of the innovations to productivity to vary

over time. That is, shocks to productivity can be fairly small in normal times, but become

potentially large when uncertainty is high.

3.1 Firms

3.1.1 Technology

The economy is populated by a large number of heterogeneous firms that employ capital

and labor to produce a single final good. We assume that each firm operates a dimin-

ishing returns to scale production function with capital and labor as the variable inputs.

Specifically, a firm indexed by j produces output according to

yj,t = Atzj,tk
↵

j,tn
⌫

j,t , ↵+ ⌫ < 1. (5)
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Each firm’s productivity is a product of two separate processes: aggregate productivity,

At, and an idiosyncratic component, zj,t. Both the macro- and firm-level components of

productivity follow autoregressive processes as noted in equations (2) and (3). We allow

the variance of innovations to the productivity processes, �At and �
Z
t , to vary over time

according to a two-state Markov chain.

3.1.2 Adjustment Costs

There is a wide literature that estimates labor and capital adjustment costs (e.g. Nickell

(1986), Caballero and Engel (1999), Ramey and Shapiro (2001), Hall (2004), Cooper and

Haltiwanger (2006), and Merz and Yashiv (2007)). In what follows we incorporate all types

of adjustment costs that have been estimated to be statistically significant at the 5% level in

Bloom (2009). As is well known in the literature, it is the presence of non-convex adjustment

costs that leads to a real options (wait-and-see e↵ect) of uncertainty shocks.

Capital law of motion A firm’s capital stock evolves according to the standard law of

motion

kj,t+1 = (1� �k)kj,t + ij,t, (6)

where �k is the rate of capital depreciation and ij,t denotes investment.

Capital adjustment costs are denoted by ACk and they equal (i) the sum of a fixed

disruption cost FK for any investment/disinvestment and (ii) a partial irreversibility resale

loss for disinvestment (i.e. the resale of capital occurs at a price that is only a share (1�S)

of its purchase price). Formally,

AC
k = I(|i| > 0)y(z,A, k, n)FK + S|i|I(i < 0) (7)

Hours law of motion The law of motion for hours worked is governed by

nj,t = (1� �n)nj,t�1 + sj,t. (8)

were sj,t denotes the net flows into hours worked and �n denotes the exogenous destruction

rate of hours worked (due to factors such as retirement, illness, or exogenous quits, etc...).

Labor adjustment costs are denoted by ACn in total and they equal (i) the sum of a

fixed disruption cost FL and (ii) a linear hiring/firing cost, which is expressed as a fraction

of the aggregate wage (Hw). Formally,

AC
n = I(|s| > 0)y(z,A, k, n)FL + |s|Hw (9)

Note that these adjustment costs in labor imply that nj,t�1 is a state variable for the firm.
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3.1.3 The Firm’s Value Function

We denote by V (k, n�1, z;A,�A,�Z , µ) the value function of a firm. The seven state vari-

ables are given by (1) a firm’s capital stock, k, (2) a firm’s hours stock from the previ-

ous period, n�1, (3) the firm’s idiosyncratic productivity, z, (4) aggregate productivity,

A, (5) the current value of macro uncertainty, �A, (6) the current value of micro uncer-

tainty uncertainty, �Z , and, (7) the joint distribution of idiosyncratic productivity and

firm-level capital stocks and hours worked in the last period, µ, which is defined for the

space S = R+ ⇥R+ ⇥R+.

Denoting by the primes the value of next period variables, the dynamic problem of the

firm consists of choosing investment and hours to maximize

V (k, n�1, z;A,�
A
,�

Z
, µ) = (10)

max
i,n

8
><

>:

y � w(A,�A,�Z , µ)n� i

�AC
k(k, n�1, z, k

0A
,�

Z
, µ)�AC

n(k, n�1, z, n;A,�A,�Z , µ)

+E
⇥
m
�
A,�

A
,�

Z
, µ;A0

,�
A0
,�

Z0
, µ

0�
V (k0, n, z0;A0

,�
A0
,�

Z0
, µ

0)
⇤

9
>=

>;

given a law of motion for the joint distribution of idiosyncratic productivity, capital, and

hours,

µ
0 = �(A,�A,�Z , µ), (11)

and the stochastic discount factor, m, which we discuss below in Section 3.4. w(A,�A,�Z , µ)

denotes the wage rate in the economy. K(k, n�1, z;A,�A,�Z , µ) and

N
d(k, n�1, z;A,�A,�Z , µ) denote the policy rules associated with the firm’s choice of capital

for the next period and current demand for hours worked.

3.2 Households

The economy is populated by a large number of identical households that we normalize to

a measure one. Households choose paths of consumption, labor supply, and investment in

firm shares to maximize lifetime utility. We use the measure  to denote the one-period

purchased shares in firms. The dynamic problem of the household is given by

W (A,�A,�Z , µ) = max
{C,N, 0}

�
U(C,N) + �E

⇥
W (A0

,�
A0
,�

Z0
, µ

0)
⇤ 

, (12)
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subject to the law of motion for µ and a sequential budget constraint

C +

Z
q(k0, n, z;A,�A,�Z , µ)d 0(k0, n, z) (13)

 w(A,�A,�Z , µ)N +

Z
⇢(k, n�1, z;A,�

A
,�

Z
, µ)dµ(k, n�1, z).

Households receive labor income as well as the sum of dividends and the resale value

of their investments priced at ⇢(k, n�1, z;A,�A,�Z , µ). With these resources the house-

hold consumes and buys new shares at a price q(k0, n, z;A,�A,�Z , µ) per share of the

di↵erent firms in the economy. We denote by C( , A,�A,�Z , µ), N s( , A,�A,�Z , µ), and

 0(k0, n, z;A,�A,�Z , µ) the policy rules determining current consumption, time worked,

and quantities of shares purchased in firms that begin the next period with a capital stock

k
0 and who currently employ n hours with idiosyncratic productivity z.

3.3 Recursive Competitive Equilibrium

A recursive competitive equilibrium in this economy is defined by a set of quantity functions
�
C,N

s
, 0

,K,N
d
 
, pricing functions {w, q, ⇢,m}, and lifetime utility and value functions

{W,V }. V and
�
K,N

d
 

are the value and policy functions solving (10) while W and

{C,N s
, 0} are the value and policy functions solving (12). There is market clearing in

asset markets

µ
0(k0, n, z0) =

Z
 
0(k0, n, z)f(z0|z)dz,

the goods market

C( , A,�A,�Z , µ)

=

Z "
Azk

↵
N

d(k, n�1, z;A,�A,�Z , µ)⌫ �
�
K(k, n�1, z;A,�A,�Z , µ)� (1� �k)k

�

�AC
k(k,K(k, n�1, z;A,�A,�Z , µ))�AC

n(n�1, N(k, n�1, z;A,�A,�Z , µ))

#

dµ (k, n�1, z) ,

and the labor market

N
s( , A,�A,�Z , µ) =

Z
N

d(k, n�1, z;A,�
A
,�

Z
, µ)dµ (k, n�1, z) .

Finally, the evolution of the joint distribution of z, k and n�1 is consistent. That is,

�(A,�A,�Z , µ) is generated by K(k, n�1, z;A,�A,�Z , µ), Nd(k, n�1, z;A,�A,�Z , µ), and

the exogenous stochastic evolution ofA, z,�Z and �A, along with the appropriate integration

of firms’ optimal choices of capital and hours worked given current state variables.
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3.4 Sketch of the Numerical Solution

We briefly describe the solution algorithm, which heavily relies on the approach in Khan

and Thomas (2008) and Bachmann, Caballero and Engel (2013). Fuller details are laid out

in Appendix B, and the full code is available online.

The model can be simplified substantially if we combine the firm and household problems

into a single dynamic optimization problem. From the household problem we get

w = �UN (C,N)

UC(C,N)
(14)

m = �
UC(C 0

, N
0)

UC(C,N)
, (15)

where equation (14) is the standard optimality condition for labor supply and equation

(15) is the standard expression for the stochastic discount factor. We assume that the

momentary utility function for the household is separable across consumption and hours

worked,

U(Ct, Nt) =
C

1�⌘
t

1� ⌘
� ✓

N
�

t

�
, (16)

implying that the wage rate is given by

wt = ✓N
��1
t

C
⌘

t
. (17)

We define the intertemporal price of consumption goods as p(A,�Z ,�A, µ) ⌘ UC(C,N).

This then allows us to redefine the firm’s problem in terms of marginal utility, denoting the

new value function as Ṽ ⌘ pV . The firm problem can then be expressed as

Ṽ (k, n�1, z;A,�
A
,�

Z
, µ) =

max
{i,n}

(
p(A,�A,�Z , µ)

�
y � w(A,�A,�Z , µ)n� i�AC

k �AC
n
�

+ �E
h
Ṽ (k0, n, z0;A0

,�
A

0
,�

Z0
, µ

0)
i

)
. (18)

To solve this problem we employ nonlinear techniques that build upon Krusell and Smith

(1998). Detailed discussion of the algorithm is provided in Appendix B where we implement

a range of alternative implementations of our Krusell-Smith type algorithm. Importantly,

as we discuss in Appendix B the main results remain robust across the di↵erent alternatives

we consider.
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4 Parameter Values

In this section, we describe the quantitative specification of our model. To maintain com-

parability with the RBC literature, we perform a standard calibration when possible (see

Section 4.1 and Table 4). However, the parameters that govern the uncertainty process

can neither be calibrated to match first moments in the U.S. data, nor have they been

previously estimated in the literature. As such, we adopt a simulated method of moments

(SMM) estimation procedure to choose these values in Section 4.2. In Section 5.2.3, we

explore the sensitivity of the results to di↵erent parameter values.

4.1 Calibration

Frequency and Preferences We set the time period to equal a quarter. The household’s

discount rate, �, is set to match an annual interest rate of 5%. ⌘ is set equal to one

which implies that the momentary utility function features an elasticity of intertemporal

substitution of one (i.e. log preferences in consumption). Following Khan and Thomas

(2008) and Bachmann, Caballero and Engel (2013) we assume that � = 1. This assumption

implies that we do not need to forecast the wage rate in addition to the forecast of p in

our Krusell-Smith algorithm, since the household’s labor optimality condition with � = 1

implies that the wage is a function of p alone. We set the parameter ✓ such that households

spend about a third of their time working in the non-stochastic steady state.

Production Function, Depreciation, and Adjustment Costs We set �k to match a

10% annual capital depreciation rate. Based on Shimer (2005) we set the annual exogenous

quit rate to 35%. We set the exponents on capital and labor in the firm’s production

function to be ↵ = 0.25 and ⌫ = 0.5, consistent with a capital cost share of 1/3 of total

input costs.

As previously discussed, the existing literature provides a wide range of estimates for

capital and labor adjustment costs. We use adjustment cost parameters from Bloom (2009).

The resale loss of capital amounts to 34%. The fixed cost of adjusting hours is set to 2.1%

of annual sales, and the hiring and firing costs equal 1.8% of annual wages.

Aggregate and Idiosyncratic TFP Processes Productivity, both at the aggregate

and the idiosyncratic level, is determined by AR(1) processes as specified in equations (2)

and (3). The serial autocorrelation parameters ⇢A and ⇢
Z are set to 0.95, similar to the

quarterly value used by Khan and Thomas (2008).
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4.2 Estimation

The Uncertainty Process We assume that the stochastic volatility processes, �At and

�
Z
t , follow a two-point Markov chain:

�
A

t 2
�
�
A

L ,�
A

H

 
where Pr(�At+1 = �

A

j |�At = �
A

k
) = ⇡

�A

k,j
(19)

�
Z

t 2
�
�
Z

L ,�
Z

H

 
where Pr(�Zt+1 = �

Z

j |�Zt = �
Z

k
) = ⇡

�Z

k,j
. (20)

Since we cannot directly observe the stochastic process of uncertainty in the data we proceed

with SMM estimation. We formally discuss in Appendix C the estimation procedure and

all relevant details.

Since the empirical results in Section 2 suggested that microeconomic and macroeco-

nomic uncertainty commove through the business cycle, we assume that a single process

determines the economy’s uncertainty regime. That is, our assumption of a single un-

certainty process implies that whenever microeconomic uncertainty is low (or high) so is

macroeconomic uncertainty. This assumption reduces the number of parameters governing

the uncertainty process to the following six: �A
L
, �

A

H
, �

Z

L
, �

Z

H
, ⇡

�

L,H
and ⇡�

H,L
.

As the uncertainty process has a direct impact on observable cross-sectional and ag-

gregate time series moments, it is natural that the SMM estimator minimizes the sum of

squared percentage deviations of the following eight model and U.S. data moments: At the

microeconomic level, we target the (i) mean, (ii) standard deviation, (iii) skewness, and

(iv) autocorrelation of the time series of the cross-sectional interquartile range of estab-

lishment TFP shocks computed from our annual Census sample covering 1972-2010. At

the macro level, we target the same four moments based on the time series of estimated

heteroskedasticity using a GARCH(1,1) model for the annualized quarterly growth rate of

the U.S. Solow residual, covering 1972Q1-2010Q4. We display the estimated uncertainty

process parameters in Table 5 and the targeted moments in Table 6.

Based on this estimation procedure we find that periods of high uncertainty occur with

a quarterly probability of 2.6%. The period of heightened uncertainty is estimated to be

persistent with a quarterly probability of 94% of staying in the high uncertainty state.

Aggregate volatility is 0.67% with low uncertainty and increases by approximately 60%

when an uncertainty shock arrives. Idiosyncratic volatility is estimated to equal 5.1% and

increases by approximately 310% in the heightened uncertainty state. Table 5 reports

the point estimates and standard errors of from the SMM estimation procedure. As the

table shows, most of these parameters are estimated precisely. However, in Section 5.2.3

we discuss the robustness of our numerical results to modification of each of these six

parameters.

It is useful at this point to explain the large estimated increase in underlying fundamental
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microeconomic uncertainty �Zt on impact of an uncertainty shock in light of the apparently

more muted fluctuations of our microeconomic uncertainty proxy in Figure 3. Although

closely related and informative for one another, the two series are distinct. Crucially, as

we discuss in detail in our estimation Appendix C, the process of constructing our cross-

sectional data proxy for microeconomic uncertainty involves time aggregation from quarterly

to annual frequency, an unavoidable temporal mismatch of the measurement of inputs and

outputs within the year, as well as measurement error of productivity in the underlying

Census of Manufactures sample. In Appendix C we demonstrate within the model that

each of these measurement steps leads to a reduction in the variability of the uncertainty

proxy relative to its mean level, with the temporal mismatch between input and output

measurement, as well as measurement error itself, accounting for the bulk of the shift.

The large increase in microeconomic uncertainty �
Z
t which we estimate upon impact of

an uncertainty shock is critical for matching the behavior of measured productivity shock

dispersion in the data. As Table 6 demonstrates, the estimated model captures the overall

time series properties of measured uncertainty in our data quite closely.

5 Quantitative Analysis

In what follows we explore the quantitative implications of our model. We begin by dis-

cussing the unconditional second moments generated by the model. We then continue by

specifically studying the e↵ects of an uncertainty shock.

5.1 Business Cycle Statistics

Table 7 illustrates that the model generates second-moment statistics that resemble their

empirical counterparts in U.S. data. We simulate the model over 5000 quarters using the

histogram or nonstochastic simulation approach following Young (2010). We then compute

the standard set of business cycle statistics, after discarding an initial 500 quarters. As in

the data, investment and hours commove with output. Output and consumption commove,

although not as much as in the data. Investment is more volatile than output, while

consumption is less volatile. Given the high assumed Frisch elasticity of labor supply, the

model also generates a realistic volatility of hours relative to output. See Rogerson 1988,

Hansen 1985, or Benhabib, et al. 1991 for discussion of underlying mechanisms which can

generate more elastic labor supply in this class of models. Overall, we conclude that the

business cycle implications of our model are consistent with the common findings in the

literature.
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5.2 The E↵ects of an Uncertainty Shock

As has been known since at least Scarf (1959), non-convex adjustment costs lead to Ss

investment and hiring policy rules. Firms do not hire and invest until productivity reaches

an upper threshold (the S in Ss) or fire and disinvest until productivity hits a lower threshold

(the s in Ss). This is shown for labor in Figure 5, which plots the distribution of firms by

their productivity/labor, Az

n�1
, ratios after the micro and macro shocks have been drawn but

before firms have adjusted. On the right is the firm-level hiring threshold (right solid line)

and on the left the firing threshold (left solid line), in the case of low uncertainty. Firms to

the right of the hiring line will hire, firms to the left of the firing line will fire, and those in

the middle will be inactive for the period.

An increase in uncertainty increases the returns to inaction, shown by the increased

hiring threshold (right dotted line) and reduced firing threshold (left dotted line). When

uncertainty is high firms become more cautious as labor adjustment costs make it expensive

to make a hiring or firing mistake. Hence, the hiring and firing thresholds move out,

increasing the range of inaction. This leads to a fall in net hiring, since the mass of firms

is right-shifted due to labor attrition. A similar phenomenon occurs with capital, whereby

increases in uncertainty reduce the amount of net investment.

5.2.1 Modeling a Pure Uncertainty Shock

To analyze the aggregate impact of uncertainty we independently simulate 2500 economies,

each of 100-quarter length. The first 50 periods are simulated unconditionally, so all ex-

ogenous processes evolve normally. Then for each economy after 50 quarters we insert an

uncertainty shock by imposing a high uncertainty state. From the shock period onwards

each economy evolves normally. To calculate the impulse response function to an uncer-

tainty shock for any macro variable, we first compute the average of the aggregate variable

in each period t across simulated economies. The e↵ect of an uncertainty shock is then

simply given by the percentage deviation of the average in period t from its value in the

pre-shock period.

Figure 6 depicts the impact of an uncertainty shock on output. For graphical purposes

period “0” in the figure corresponds to the pre-shock period in the above discussion, i.e.

quarter 50. Figure 6 displays a drop in output of just over 2.5% within one quarter. This

significant fall is one of the key results of the paper as it shows that uncertainty shocks can

be a quantitatively important contributor to business cycles within a general equilibrium

framework. A quick recovery follows the initial decline, and output returns back to normal

levels within one year. We note that output then declines again moderately from quarters

6 onwards. We defer the discussion for the intuition behind this result until Section 5.2.4.
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These dynamics in output arise from the dynamics in three channels: labor, capital, and

the misallocation of factors of production. These are depicted in Figure 7. First, in the

top-left panel we plot the time path of hours worked. When uncertainty increases most

firms pause hiring, and hours worked begin to drop because workers are continuing to attrit

from firms without being replaced. In the model this rate of exogenous attrition is assumed

to be constant over the cycle. This is consistent with Shimer (2005) and Hall (2005), which

show that around three quarters of the movements in the volatility of unemployment are

due to job-finding rates and not to the cyclicality of the destruction rate. Similarly, in the

top-right panel we plot the time path of investment, which drops rapidly due to the increase

in uncertainty. Since investment falls but capital continues to depreciate, there is also a

drop in the capital stock.

Misallocation of factor inputs - using the terminology of Hsieh and Klenow (2009) - in-

creases in the economy in response to an uncertainty shock. In normal times, unproductive

firms contract and productive firms expand, helping to maintain high levels of aggregate

productivity. But when uncertainty is high, firms reduce expansion and contraction, shut-

ting o↵ much of this productivity-enhancing reallocation. In the bottom-left panel, we plot

the path of the dispersion of the marginal product of labor after an uncertainty shock. More

precisely, the bottom-left panel plots the impulse response of the cross-sectional standard

deviation of log
�
y

n

�
. In the wake of an uncertainty shock, labor misallocation endogenously

worsens, improving only slowly. In the longer run, labor, investment, misallocation, and

output all start to recover to their steady state as the uncertainty shock is temporary. As

uncertainty falls back, firms start to hire and invest again to address their pent-up demand

for labor and capital. In Figure B3 in the appendix we depict alternative measures of mis-

allocation. As Figure B3 shows, all of these alternative measures point to the same result

of increased misallocation following an uncertainty shock.

In the lower-right panel of Figure 7 we plot the time profile of consumption. When the

uncertainty shock occurs, consumption jumps up in the first quarter before subsequently

falling back below the mean of the ergodic distribution for several quarters. The logic behind

this initial increase in consumption is as follows. In the impact period of the uncertainty

shock, i.e., period 1 in Figure 7, the households understand that the degree of misallocation

has increased in the economy as the bottom-left panel demonstrates. Increased misallocation

acts as a negative first-moment shock to aggregate productivity and thus lowers the expected

return on savings, making immediate consumption more attractive and thus leading to

its first-period increase. Furthermore, this jump in consumption is feasible since in the

impact period of the uncertainty shock the freeze in both investment and hiring reduces

the resources spent on capital and adjustment costs, thus freeing up resources. After this

initial jump, starting in period 2 in Figure 7 the capital stock is now below its ergodic
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distribution, where we note that in the impact period of the uncertainty shock the pre-shock

aggregate capital level was fixed. This fact, together with hours worked being below their

ergodic distribution and the degree of misallocation being above its ergodic distribution,

limits the overall resources in the economy and thus limits consumption. In addition, the

economy begins its recovery in period 2 in Figure 7, which is manifested in investment and

hiring beginning to increase relative to the values exhibited during the impact period of the

uncertainty shock. This recovery requires resources to be spent on capital and adjustment

costs, further reducing the available resources for consumption. Interestingly, we note that

Khan and Thomas (2013) find in their model of credit constraints that while output, labor,

and investment fall in response to a credit tightening shock, in fact consumption, as in our

model, also initially rises due to similar general equilibrium e↵ects.

Clearly, this rise in consumption at the start of recessions is an unattractive feature of a

pure uncertainty shock model of business cycles. Several options exist, however, to try and

address this. One is to allow consumers to save in other technologies besides capital, for

example, in foreign assets. This is the approach Fernandez-Villaverde, Guerron-Quintana,

Rubio-Ramirez, and Uribe (2011) take in modelling risk shocks in small open economies.

In an open economy model a domestic uncertainty shock induces agents to increase their

savings abroad (capital flight). In our closed model this is not possible, but extending the

model to allow a foreign sector would make this feasible although computationally more

intensive. Another option would be to use utility functions such as those in Greenwood,

Hercowitz, and Hu↵man (1998). Due to the complementarity between consumption and

hours in such preference structures, they should reduce the overshoot in consumption. We do

not explore these options for the following two reasons. Having another investment vehicle

such as foreign bond would add an additional state variable to the problem, and switching

the preference structure would require us to forecast wages separately from marginal utility.

Both changes would increase the computational burden considerably. Another option would

be to model precautionary behavior from households in the wake of an uncertainty shock,

as Basu and Bundick (2016) do in a New Keynesian environment with demand-determined

output. Such behavior would allow for natural investment, consumption, and output co-

movement, but expanding the aggregate structure of the model to account for nominal

rigidities is beyond the scope of the current paper.

5.2.2 First-Moment and Second-Moment Shocks

Our quantitative results so far reveal that uncertainty shocks can contribute importantly

to recessions, but there are at least two unattractive implications of modeling an uncer-

tainty shock in isolation. First, the empirical evidence in Section 2 suggests that recessions

are periods of both first- and second-moment shocks, at least to the extent that average
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outcomes decrease and variances of innovations to establishment-level TFP increase during

recessions. And second, in our model uncertainty shocks are associated with an increase in

consumption on impact and a reduction in disinvestment and firing (see Figures 5 and 7).

Thus, to generate an empirically more realistic simulation we consider the combination

of an uncertainty shock and a �2% exogenous first moment shock. See Appendix B for a

discussion of the specific numerical experiment considered here.

As Figure 8 suggests, this additional shock magnifies the drop in output, investment,

and hours. The addition of the first-moment shock also leads to a fall in consumption on

impact. Given the business cycle comovement we observe empirically, we conclude that

simultaneous first- and second-moment shocks in the model can generate dynamics that

resemble recent US recessions.

5.2.3 Robustness

In this section we discuss the robustness of our finding to di↵erent parameterizations. We

first consider the robustness of our results with respect to the estimated parameters gov-

erning the uncertainty process. Since the estimated values in Section 4.2 pointed to (i) a

significant jump in both micro and macro uncertainty, (ii) a significant persistence of the

uncertainty process, and (iii) a moderately high frequency of high uncertainty, we consider

experiments where we reduce the values of each of these parameters. For consistency unless

otherwise noted every robustness experiment considers a reduction of 25% in the parameter

value. Thus, within this set we consider (i) a reduction of the macro volatility jump,
�
A

H

�
A

L

,

from 1.6 to 1.2, (ii) a reduction of the micro volatility jump,
�
z

H

�
z

L

, from 4.13 to 3.10, (iii)

a reduction in the likelihood of transition from low uncertainty to high uncertainty, ⇡�
L,H

,

from 0.026 to 0.02, (iv) a reduction in the uncertainty persistence, ⇡�
H,H

, from 0.94 to 0.71.

Finally we also consider two additional experiments where (i) we lower the micro volatility

baseline value, �z
L
, from 0.051 to 0.038 and (ii) where we lower macro volatility baseline

value, �A
L
, from 0.0067 to 0.0050. Figure 9 plots the e↵ects of each of these variations on out-

put, investment, labor, and consumption. As Figure 9 suggests the results are overall robust

to these changes, preserving the dynamics reported in Figures 6-8. The one exception is the

reduction in the persistence of the uncertainty shock to 0.7 from the estimated value of 0.94.

At lower levels of persistence the impact is short-lived. This highlights how the dynamics of

impact of uncertainty shocks are sensitive to the persistence of the underlying shock and is

another motivation for our SMM estimation of the parameters of the uncertainty process.

We note that the estimated value of 0.94 for the autocorrelation of uncertainty may seem

high. However, this potentially accounts for the endogenous amplification of uncertainty

from slower growth proposed by a range of other papers.

In addition to systematically plotting robustness checks to changes in the value of each
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of our six estimated uncertainty process parameters, Figure 9 also plots the results from one

additional experiment in which we reduce the value of all capital and labor adjustment cost

parameters by 25% simultaneously. The e↵ect of an uncertainty shock changes little relative

to our baseline, a result which reflects the fact, well known within the wide literature on

investment and adjustment costs, that the size of inaction regions are concave functions

of adjustment costs. For example, see the analytical results in Dixit (1995) and Abel and

Eberly (1996) showing that the size of the inaction region for investment in their models

expands to the third or fourth order in adjustment costs around zero.

5.2.4 Decomposing the Impact of Uncertainty

The next set of robustness results studies how the e↵ects of uncertainty shocks di↵er across

general equilibrium (GE) and partial equilibrium (PE) frameworks. To address this question

we plot in Figure 10 the impact of an uncertainty shock in three di↵erent economies. The

black line (⇥ symbols) depicts again the e↵ects of an uncertainty shock in our GE model

economy, the red line (+ symbols) depicts the same response but with PE only (all prices and

wages are held constant and the consumer side of the economy ignored), while the blue line

(o symbols) depicts the e↵ects of an uncertainty shock in a PE economy with no adjustment

costs at all. Note that in the bottom-right panel in the PE economies consumption is not

defined because there is no notion of an aggregate household. We therefore impose a zero

response path for consumption in those cases.

When there are no adjustment costs of any type in a PE economy, output actually

increases following an uncertainty shock. The reason for this result is related to the Oi

(1961), Hartman (1972), and Abel (1983) e↵ect, whereby a higher variance of productivity

increases investment, hiring, and output because the optimal capital and labor choices are

convex in productivity.

By contrast, the addition of adjustment costs to the PE setup dramatically changes

the e↵ect of an uncertainty shock. Now, on impact there is a fall in aggregate output.

The reason is that the increase in uncertainty moves firms’ labor and capital Ss bands

out, temporarily pausing hiring and investment. If all firms pause hiring and investment,

aggregate labor and capital drop due to labor attrition and capital depreciation. But this

pause is short-lived, as once uncertainty drops back firms start to hire and invest again.

So in the medium-run the Oi-Hartman-Abel e↵ect dominates and output rises above its

long-run trend.

While these forces are also present in the baseline GE adjustment cost economy, the

curvature in the utility function, i.e. the endogenous movement in the interest rate, moder-

ates the rebound and overshoot. The overshoot in the PE economy requires big movements

in investment and labor, which are feasible since consumption is not taken into account in
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the PE framework. However, in the GE framework, the curvature in utility slows down

the rebound of the GE economy, generating a smoother and more persistent output cycle.

Intriguingly, in the first period, however, GE has very little impact on output relative to

the PE economy with adjustment cost. This is because the Ss bands have moved so far

out that there is a reduced density of firms near the hiring or investment thresholds to

respond to prices. Hence, the short-run robustness of the impact of uncertainty shocks to

GE suggested by Bloom (2009) seems to be present, while the medium-run sensitivity to

GE highlighted by Thomas (2002) and Khan and Thomas (2003, 2008) is also present.

We are now in position to discuss the reason for the sluggish behavior of output in the

medium-term after an uncertainty shock in Figure 6. First, on impact in periods 1-2 the

“real options” e↵ect due to the uncertainty shock dominates, leading to a hiring/investment

freeze, misallocation, and thus to a significant drop in output. Later on in periods 3-5, the

economy exhibits a “rebound” as the high micro volatility is realized and some firms draw

significantly higher productivity shocks than before. Firms start to readjust and the Oi-

Hartman-Abel e↵ect leads to a recovery. During the third stage starting in periods 6-8

output declines again.

Two factors play a role in the second fall in output. First, the level of misallocation

remains high, which acts as a drag on output and is a large contributor to the slowdown of

the recovery. The bottom left panel of Figure 7 reveals that the cross-sectional dispersion

of the marginal product of labor - a measure of labor misallocation - remains almost 10%

higher in period 6 and declines only slowly as firms begin to adjust their inputs again in

the wake of an uncertainty shock. Underlying misalignment of inputs and productivity

at the micro level prevents e↵ective use of the capital and labor stock of the aggregate

economy, and meaningful input adjustment costs prevent such misallocation from resolving

itself quickly over this period.

The second factor contributing to the second more gradual decline in output is a declin-

ing path for investment starting around period 6. By this stage, the real options e↵ect has

subsided in large part, and the economy has a low but growing consumption path. This

result is a declining path of interest rates over which it is optimal to have a declining invest-

ment path. These investment dynamics of the economy in the third stage of the response

to an uncertainty shock resemble those that show up in a basic neoclassical growth model

as in Brock and Mirman (1972). Figure D1 in Appendix D plots the response of such an

economy to a capital destruction shock. As the figure shows, consumption converges from

below at a declining rate, and investment declines over the path.
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5.2.5 Laws of Motion Robustness

Our final set of robustness checks studies the impact of variations in the labor and capital

depreciation rates. In these experiments we vary one by one the capital depreciation rate

and the labor depreciation rate by one quarter each. The results are depicted in Figure 11.

As the figure suggests, unsurprisingly reduction of the labor depreciation rate attenuates the

fall in hours and thus in output but preserves the overall dynamics found in the benchmark

calibration. Changes in the capital depreciation rate do not change the fall on impact, which

is driven by the behavior in labor. Later on, a lower capital depreciation rate accentuates

the recovery from an uncertainty shock as it induces a strong rebound in investment leading

to an increase in capital and thus in labor and output. However we note that the more

empirically relevant exercise is to increase the capital depreciation rate since investment is

increasingly shifting towards intangible areas, which have much higher depreciation rates.

For example, the BEA’s migration of R&D from the satellite accounts to the fixed assets

tables is based on depreciation rates of around 20% or higher (Li 2012). Thus, while

the reduction in annual depreciation does reduce the impact of an uncertainty shock, the

empirically relevant depreciation rates in the economy is likely much higher.

6 Policy in the Presence of Uncertainty

In this section, we analyze the e↵ects of stimulative policies in the presence of uncertainty

shocks. It is important to emphasize that any such policy is not optimal within the context

of our model, as the competitive equilibrium is Pareto optimal. Rather, we see our policy

experiments as a means of documenting and quantifying the e↵ects of such policies in times

of heightened uncertainty. It is also worth noting that this ignores the direct impact of

policy on uncertainty as studied by papers such as Baker, Bloom, and Davis (2016), Baker

and Bloom (2011), and Hassan, et al. (2017).

The policy experiment we consider is a policy that attempts to temporarily stimulate

hiring by reducing the e↵ective wage paid by firms. More specifically, the policy consists

of an unanticipated 1% wage bill subsidy paid for one quarter and financed through a

lump-sum tax on households. We simulate this policy impulse once during an uncertainty

shock and also in an economy that is not hit by an uncertainty shock. By comparing the

marginal e↵ect in those two cases, we attempt to identify the e↵ect of uncertainty on policy

e↵ectiveness.

Figure 12 depicts this experiment as it shows the net impact of the policy. That is, we

first solve for the e↵ects of the policy on output when it does not coincide with an uncertainty

shock. Subtracting from this the behavior of output when there is no uncertainty shock

and no subsidy yields the net impact of the policy in the absence of an uncertainty shock.
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We then solve for the policy’s e↵ect when it does coincide with an uncertainty shock.

Similarly, subtracting from this latter experiment the behavior of output when there is an

uncertainty shock and no subsidy, the behavior depicted in Figure 6, yields the net impact

of the policy in the presence of an uncertainty shock. As Figure 12 shows, the presence

of uncertainty reduces the e↵ects of the wage policy by over two thirds on impact. The

reason is that as soon as uncertainty rises, the Ss thresholds jump out, so many firms

are far away from their hiring and investment thresholds, making them less responsive to

any policy stimulus. Our result here echo findings from the lumpy investment literature

on the procyclicality of the investment response to productivity shocks (e.g. Bachmann,

Caballero, and Engel 2013). In particular, we show that uncertainty or second-moment

shocks in addition to first-moment shocks can also generate movement in the responsiveness

of the economy to shocks. Interestingly, in the context of a New Keynesian economy with a

distinct structure and policy experiment Vavra (2014) also finds that second-moment shocks

reduce the responsiveness of the economy to policy.

Overall, our results highlight how uncertainty shocks lead to time-varying policy ef-

fectiveness. At the instant an uncertainty shock hits, policy is not as e↵ective relative to

normal times. Hence, uncertainty shocks not only impact the economy directly but also

indirectly change the response of the economy to any potential reactive stabilization policy.

7 Conclusions

Uncertainty has received substantial attention as a potential factor in business cycles. The

first part of this paper uses Census microdata to show that measured uncertainty is indeed

strongly countercyclical. This is true both at the aggregate and the industry-level: slower

industry growth is associated with higher industry uncertainty.

The second part of the paper then builds a DSGE model with heterogeneous firms,

time-varying uncertainty, and adjustment costs to quantify the impact of second-moment

shocks. We find that uncertainty shocks typically lead to drops of about 2.5% in GDP, with

a sharp drop, quick recovery, then continued sluggishness in output. This suggests that

uncertainty could play an important role in driving business cycles, either as an impulse

or amplification mechanism. We also find that because uncertainty makes firms cautious,

the response of the economy to stimulative policy substantially declines. Finally, both our

empirical and simulation results suggest recessions are best modelled as a combination of a

negative first-moment and a positive second-moment shock.
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Table 1: Uncertainty is Higher During Recessions 
` (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent 
Variable: 

S.D. of 
log(TFP) shock 

Skewness of 
log(TFP) shock 

Kurtosis of 
log(TFP) shock 

IQR of log(TFP) 
shock 

IQR of 
output growth 

IQR of 
sales growth 

IQR of 
stock returns 

IQR of industrial 
prod. Growth 

Sample: Plants 
(manufact.) 

Plants 
(manufact.) 

Plants 
(manufact.) 

Plants 
(manufact.) 

Plants 
(manufact.) 

Public firms 
(all sectors) 

Public firms 
(all sectors) 

Industries 
(manufact.) 

                  
Recession 0.064*** -0.248 -1.334 0.061*** 0.077*** 0.032*** 0.025*** 0.044*** 

 
(0.009) (0.191) (1.994) (0.019) (0.019) (0.007) (0.003) (0.004) 

                  
Mean of Dep. Var.: 0.503 -1.525 20.293 0.395 0.196 0.186 0.104 0.101 
Cor. GDP growth -0.450*** 0.143 0.044 -0.444*** -0.566*** -0.275*** -0.297*** -0.335*** 
Frequency Annual Annual Annual Annual Annual Quarterly Monthly Monthly 
Years 1972-2011 1972-2011 1972-2011 1972-2011 1972-2011 1962:1-2010:3 1960-2010 1972-2010 
Observations 39 39 39 39 39 191 609 455 
Underlying sample 461,232 461,232 461,232 461,232 461,232 320,306 931,143 70,487 

Notes: Each column reports a time-series OLS regression point estimate (and standard error below in parentheses) of a measure of uncertainty on a recession indicator. The 
recession indicator is the share of quarters in that year in a recession in columns (1) to (5), whether that quarter was in a recession in column (6), and whether the month was in 
recession in columns (7) and (8). Recessions are defined using the NBER data. In the bottom panel we report the mean of the dependent variable and its correlation with real GDP 
growth. In columns (1) to (5) the sample is the population of manufacturing establishments with 25 years or more of observations in the ASM or CM survey between 1972 and 
2009, which contains data on 15,673 establishments across 39 years of data (one more year than the 38 years of regression data since we need lagged TFP to generate a TFP shock 
measure). We include plants with 25+ years to reduce concerns over changing samples. In column (1) the dependent variable is the cross-sectional standard deviation (S.D.) of the 
establishment-level ‘shock’ to Total Factor Productivity (TFP). This ‘shock’ is calculated as the residual from the regression of log(TFP) at year t+1 on its lagged value (year t), a 
full set of year dummies and establishment fixed effects. In column (2) we use the cross-sectional coefficient of skewness of the TFP ‘shock’, in column (3) the cross-sectional 
coefficient of kurtosis and in column (4) the cross-sectional interquartile range of this TFP ‘shock’ as an outlier robust measure. In column (5) the dependent variable is the 
interquartile range of plants’ sales growth. In column (6) the dependent variable is the interquartile range of firms’ sales growth by quarter for all public firms with 25 years (100 
quarters) or more in Compustat between 1962 and 2010. In column (7) the dependent variable is the within firm-quarter interquartile range of firms’ monthly stock returns for all 
public firms with 25 years (300 months) or more in CRSP between 1960 and 2010. Finally, in column (8) the dependent variable is the interquartile range of industrial production 
growth by month for manufacturing industries from the Federal Reserve Board’s monthly industrial production database. All regressions include a time trend and for columns (1) to 
(5) Census year dummies (for Census year and for 3 lags). Robust standard errors are applied in all columns to control for any potential serial correlation. *** denotes 1% 
significance, ** 5% significance and * 10% significance. Results are also robust to using Newey-West corrections for the standard errors. Data available on-line at 
http://www.stanford.edu/~nbloom/RUBC.zip.  

  



Table 2: Uncertainty is Also Robustly Higher at the Industry Level during Industry ‘Recessions’ 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
Dependent Variable: IQR of establishment TFP shocks within each industry-year cell 
Specification: Baseline Median 

industry 
output 
growth 

IQR of 
industry 
output 
growth 

Median 
industry 

establishment 
size 

IQR of 
industry 

establishment 
size 

Median 
industry 

capital/labor 
ratio 

IQR of 
industry 

capital/labor 
ratio 

IQR of 
industry 

TFP spread 

Industry 
geographic 

spread 

                    
Industry Output Growth -0.132*** -0.142*** -0.176*** -0.119*** -0.116*** -0.111*** -0.111*** -0.191*** -0.133*** 
  (0.021) (0.021) (0.047) (0.024) (0.022) (0.034) (0.030) (0.041) (0.028) 
                    
Interaction of industry output 
growth with the variable in 
specification  row 
  

  0.822 0.882 -0.032 -0.033 -0.197 -0.265 0.123 0.007 
  (0.630) (0.996) (0.038) (0.026) (0.292) (0.330) (0.084) (0.122) 

                  
Years 1972-2009 1972-2009 1972-2009 1972-2009 1972-2009 1972-2009 1972-2009 1972-2009 1972-2009 
Observations 16,451 16,451 16,451 16,451 16,451 16,451 16,451 16,451 16,451 
Underlying sample 446,051 446,051 446,051 446,051 446,051 446,051 446,051 446,051 446,051 

Notes: Each column reports the results from an industry-by-year OLS panel regression, including a full set of industry and year fixed effects. The dependent variable in every 
column is the interquartile range (IQR) of establishment-level TFP ‘shocks’ within each SIC 4-digit industry-year cell. The regression sample is the 16,451 industry-year cells of 
the population of manufacturing establishments with 25 years or more of observations in the ASM or CM survey between 1972 and 2009 (which contains 446,051 underlying 
establishment years of data). These industry-year cells are weighted in the regression by the number of establishment observations within that cell, with the mean and median 
number of establishments per industry-year cell 27.1 and 17 respectively. The TFP ‘shock’ is calculated as the residual from the regression of log(TFP) at year t+1 on its lagged 
value (year t), a full set of year dummies and establishment fixed effects. In column (1) the explanatory variable is the median of the establishment-level output growth in that 
industry-year. In columns (2) to (9) a second variable is also included which is an interaction of that explanatory variable with an industry-level characteristic. In columns (2) and 
(3) this is the median and IQR of industry-level output growth, in columns (4) and (5) this is the median and IQR of industry-level establishment size in employees, in columns (6) 
and (7) this is the median and IQR of industry-level capital/labor ratios, in column (8) this is the IQR of industry-level TFP levels (note the mean is zero by construction), while 
finally in column in (9) this interaction is the dispersion of industry-level concentration measured using the Ellison-Glaeser dispersion index. Standard errors clustered by industry 
are reported in brackets below every point estimate. *** denotes 1% significance, ** 5% significance and * 10% significance. 
 
  



Table 3: Cross-Sectional Establishment Uncertainty Measures are Correlated with Firm and Industry Time Series Uncertainty Measures 
 (1) (2) (3) (4) (5) 
Dependent variable Mean of establishment absolute (TFP shocks) within firm year Mean of establishment absolute (TFP 

shocks) within industry year 

Sample Establishments (in manufacturing) with a parent firm in Compustat Manufacturing industries 

Regression panel dimension Firm by Year Industry by Year 
S.D. of parent daily stock returns within year 0.317***     

(0.091)     
S.D. of parent monthly stock returns within year  0.275***    

 (0.083)    
S.D. of parent daily stock returns within year, 
leverage adjusted 

  0.381***   
  (0.118)   

S.D. of parent quarterly sales growth within year    0.134***  
   (0.029)  

S.D of monthly industrial production within year     0.330*** 
    (0.060) 

Fixed effects and clustering Firm Firm Firm Firm Industry 
Firms/Industries 1,838 1,838 1,838 1,838 466 
Observations 25,302 25,302 25,302 25,302 16,406 
Underlying observations 172,074 172,074 172,074 172,074 446,051 

Notes: The dependent variable is the mean of the absolute size of the TFP shock at the firm-year level (columns (1) to (4)) and industry-year level (column (5)). This TFP shock is 
calculated as the residual from the regression of log(TFP) at year t+1 on its lagged value (year t), a full set of year dummies and establishment fixed effects, with the absolute size 
generating by turning all negative values positive. The regression sample in columns (1) to (4) are the 25,302 firm-year cells of the population of manufacturing establishments 
with 25 years or more of observations in the ASM or CM survey between 1972 and 2009 which are owned by Compustat (publicly listed) firms. This covers 172,074 underlying 
establishment years of data. The regression sample in column (5) is the 16,406 industry-year cells of the population of manufacturing establishments with 25 years or more of 
observations in the ASM or CM survey between 1972 and 2009. The explanatory variables in columns (1) to (3) are the annual standard deviation of the parent firm’s stock 
returns, which are calculated using the 260 daily values in columns (1) and (3) and the 12 monthly values in column (2). For comparability of monthly and daily values, the 
coefficients and S.E for the daily returns columns (1) and (3) are divided by sqrt(21). The daily stock returns in column (2) are normalized by the (equity/(debt+equity)) ratio to 
control for leverage effects. In column (4) the explanatory variable is the standard deviation of the parent firm’s quarterly sales growth. Finally, in column (5) the explanatory 
variable is the standard deviation of the industry’s monthly industrial production data from the Federal Reserve Board. All columns have a full set of year fixed effects with 
columns (1) to (4) also having firm fixed effects while column (5) has industry fixed effects. Standard errors clustered by firm/industry are reported in brackets below every point 
estimate. *** denotes 1% significance, ** 5% significance and * 10% significance. 



Table 4: Calibrated Model Parameters 
                

Preferences and Technology 
    β .951/4 Annual discount factor of 95% 

   η 1 Unit elasticity of intertemporal substitution (Khan and Thomas 2008) 
θ 2 Leisure preference, households spend 1/3 of time working 

 χ 1 Infinite Frisch elasticity of labor supply (Khan and Thomas 2008) 
α 0.25 CRS production, isoelastic demand with 33% markup 

 ν 0.5 CRS labor share of 2/3, capital share of 1/3 
  ρA 0.95 Quarterly persistence of aggregate productivity (Khan and Thomas 2008) 

ρZ 0.95 Quarterly persistence of idiosyncratic productivity (Khan and Thomas 2008) 
Adjustment Costs           
δk 2.6% Annual depreciation of capital stock of 10% 

  δn 8.8% Annual labor destruction rate of 35% (Shimer 2005) 
 FK 0 Fixed cost of changing capital stock (Bloom 2009) 
 S 33.9% Resale loss of capital in % (Bloom 2009) 

  FL 2.1% Fixed cost of changing hours in % of annual sales (Bloom 2009) 
H 1.8% Per worker hiring/firing cost in % of annual wage bill (Bloom 2009) 
   
Notes: The model parameters relating to preferences, technology, and adjustment costs are calibrated as referenced above.  

 
 
 
 
  
 
 



Table 5: Estimated Uncertainty Parameters 

 
         

Quantity 
 

Estimate 
 

Standard Error  

     
 

σA
L

 

 
0.67 

 
(0.098) Quarterly standard deviation of macro productivity shocks, % 

σA
H/ σA

L 
 

1.6 
 

(0.015) Macro volatility increase in high uncertainty state 
σZ

L 
 

5.1 
 

(0.807) Quarterly standard deviation of micro productivity shocks, % 
σZ

H/ σZ
L  4.1  (0.043) Micro volatility increase in high uncertainty state 

πσL,H  2.6  (0.485) Quarterly transition probability from low to high uncertainty,% 
πσH,H  94.3  (16.38) Quarterly probability of remaining in high uncertainty, % 
      
Notes: The uncertainty process parameters are structurally estimated through a SMM procedure (see the main text and 
Online Appendix C). The estimation process targets the time series moments of the cross-sectional interquartile range 
of the establishment-level shock to estimated productivity in the Census of Manufactures and Annual Survey of 
Manufactures manufacturing sample, along with the time series moments of estimated heteroskedasticity of the US 
aggregate Solow residual based on a GARCH(1,1) model. Both sets of target moments from the data are computed 
from 1972-2010. 
 
 
 
 
 
Table 6: Uncertainty Process Moments 

 
 

            

  
Data 

 
  Model 

 Macro Moments 
   

  
  Mean 

 
3.36 

 
  3.58 

 Standard Deviation 
 

0.76 
 

  0.59 
 Skewness 

 
0.83 

 
  1.18 

 Serial Correlation 
 

0.88 
 

  0.83 
 

    
  

  Micro Moments 
   

  
  Mean 

 
39.28 

 
  38.44 

 Standard Deviation 
 

4.89 
 

  4.55 
 Skewness 

 
1.16 

 
  0.81 

 Serial Correlation   0.75     0.65   
       
Notes: The micro data moments are calculated from the US Census of Manufactures and Annual Survey of 
Manufactures sample using annual data from 1972-2010.  Micro data moments are computed from the cross-
sectional interquartile range of the estimated shock to establishment-level productivity, in percentages. The model 
micro moments are computed in the same fashion as the data moments, after correcting for measurement error in the 
data establishment-level regressions and aggregating to annual frequency. The macro data moments refer to the 
estimated heteroskedasticity from 1972-2010 implied by a GARCH(1,1) model of the annualized quarterly change 
in the aggregate US Solow residual, with quarterly data downloaded from John Fernald's website. The model macro 
moments are computed from an analogous GARCH(1,1) estimation on simulated aggregate data. All model results 
are based on a simulation of 1000 firms for 5000 quarters, discarding the first 500 periods. 
 
 
 
 
 
 
 
 
 
 



Table 7: Business Cycle Statistics 
  

 
 
 
 

 
            

  
Data 

 
  Model 

 
  

σ(x) 
 

  σ(x) 
 

 
σ(x) σ(y) ρ(x,y) σ(x) σ(y) ρ(x,y) 

Output 1.6 1.0 1.0 2.0 1.0 1.0 
Investment 7.0 4.5 0.9 11.9 6.0 0.9 
Consumption 1.3 0.8 0.9 0.9 0.4 0.5 
Hours 2.0 1.3 0.9 2.4 1.2 0.8 
Notes: The first panel contains business cycle statistics for quarterly US data covering 1972Q1-2010Q4.  All 
business cycle data is current as of July 14, 2014. Output is real gross domestic product (FRED GDPC1), investment 
is real gross private domestic investment (GPDIC1), consumption is real personal consumption expenditures 
(PCECC96), and hours is total nonfarm business sector hours (HOANBS). The second panel contains business cycle 
statistics from unconditional simulation of the estimated model, computed from a 5000-quarter simulation with the 
first 500 periods discarded. All series are HP-filtered with smoothing parameter 1600, in logs expressed as 
percentages.



Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures using a balanced panel of 15,752 establishments active in 
2005-06 and 2008-09. TFP Shocks are defined as residuals from a plant-level log(TFP) AR(1) regression that also includes plant and year fixed effects. 
Moments of the distribution for non-recession (recession) years are: mean 0 (-0.166), variance 0.198 (0.349), coefficient of skewness -1.060 (-1.340) and 
kurtosis 15.01 (11.96). The year 2007 is omitted because according to the NBER the recession began in 12/2007, so 2007 is not a clean “before” or “during” 
recession year. 
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Figure 1: The variance of establishment-level TFP shocks 
increased by 76% in the Great Recession 
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Figure 2: The variance of establishment-level sales growth 
rates increased by 152% in the Great Recession 

Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures using a balanced panel of 15,752 establishments active in 
2005-06 and 2008-09. Moments of the distribution for non-recession (recession) years are: mean 0.026 (-0.191), variance 0.052 (0.131), coefficient of 
skewness 0.164 (-0.330) and kurtosis 13.07 (7.66). The year 2007 is omitted because according to the NBER the recession began in 12/2007, so 2007 is not a 
clean “before” or “during” recession year. 
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Figure 3: TFP ‘shocks’ are more dispersed in recessions 
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Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures establishments, using establishments with 25+ years to address 
sample selection. Grey shaded columns are the share of quarters in recession within a year. 



Figure 4: Robustness test: different measures of TFP ‘shocks’ 
are all more dispersed in recessions 

Notes: Constructed from the Census of Manufactures and the Annual Survey of Manufactures establishments, using establishments with 25+ years to address 
sample selection. Grey shaded columns are share of quarters in recession within a year. The four lines are: Baseline: Interquartile Range of plant TFP 
‘shocks’ (as in Figure 3). Add polynomials in TFP: includes the first, second and third lags of log TFP, and their 5 degree polynomials in the AR regression which 
is used to recover TFP shocks. Add investment: includes all the controls from the previous specification plus the first, second and third lags of investment rate, 
and their 5 degree polynomials. Add emp, sales and materials: includes all the controls from the previous specification plus the second and third lags of log 
employment, log sales, and log materials, as well as their 5 degree polynomials. 
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Figure 5: The impact of an increase in uncertainty on the 
hiring and firing thresholds 

Notes: The figure plots the simulated cross-sectional marginal distribution of micro-level labor inputs after productivity shock realizations and before labor 
adjustment. The distribution plots a representative period with average aggregate productivity and low uncertainty levels. The vertical hiring and firing 
thresholds are computed based on firm policy functions with average micro-level productivity realizations, taking as given the aggregate state of the economy 
with low uncertainty (solid lines) and a high uncertainty counterfactual (dotted lines). 
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Figure 6: The effects of an uncertainty shock 

Notes: Based on independent simulations of 2500 economies of 100-quarter length. We impose an uncertainty shock in the quarter labelled 1, allowing normal 
evolution of the economy afterwards. We plot the percent deviation of cross-economy average output from its value in quarter 0. 
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Figure 7: Labor and investment drop and rebound, 
misallocation rises, and consumption overshoots then falls 
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Notes: Based on independent simulations of 2500 economies of 100-quarter length. We impose an uncertainty shock in the quarter labelled 1, allowing normal 
evolution of the economy afterwards. Clockwise from the top left, we plot the percent deviations of cross-economy average labor, investment, consumption, and 
the dispersion of the marginal product of labor from their values in quarter 0. 
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Figure 8: Adding a -2% first-moment shock increases the 
output fall and eliminates a consumption overshoot 
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Uncertainty Shock 
and -2% TFP Shock 

Notes: Based on independent simulations of 2500 economies of 100-quarter length. For the baseline (x symbols) we impose an uncertainty shock in the 
quarter labelled 1. For the uncertainty and TFP shock (► symbols), we also impose an aggregate productivity shock with average equal to -2%, allowing 
normal evolution of the economy afterwards. Clockwise from the top left, we plot the percent deviations of cross-economy average output, labor, consumption, 
and investment from their values in quarter 0. 
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Figure 9: The impact of an uncertainty shock is robust to a 
wide range of alternative calibrations 
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Notes: Based on independent simulations of 2500 economies of 100-quarter length. For all simulations we impose an uncertainty shock in the quarter 
labelled 1, allowing normal evolution of the economy afterwards. Baseline (x symbols) is the estimated baseline path. Other paths plot responses assuming a 
reduction in low-uncertainty micro volatility (σZ

L, o symbols), the high-uncertainty increase in micro volatility (σZ
H/ σZ

L, diamonds), low-uncertainty macro 
volatility (σA

L, + symbols), the high-uncertainty increase in macro volatility (σA
H/ σA

L, * symbols), the frequency of an uncertainty shock (πσL,H, stars), the 
persistence of an uncertainty shock (πσH,H , ► symbols), and all adjustment costs for labor and capital (▲ symbols). Clockwise from the top left, we plot the 
percent deviations of cross-economy average output, labor, consumption, and investment from their values in quarter 0. 
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Figure 10: The impact of an uncertainty shock combines Oi-
Hartman-Abel, real options & consumption smoothing effects 
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GE, adjustment costs 

PE, no adjustment costs 

PE, adjustment costs 

Notes: Based on independent simulations of 2500 economies of 100-quarter length. For all simulations we impose an uncertainty shock in the quarter labelled 
1, allowing normal evolution of the economy afterwards. GE, adjustment costs (x symbols) is the baseline, and the PE responses are partial equilibrium paths 
with adjustment costs (+ symbols) and without adjustment costs (o symbols). Clockwise from the top left, we plot the percent deviations of cross-economy 
average output, labor, consumption, and investment from their values in quarter 0. Note that PE economies have no consumption concept, with deviations 
therefore set to 0. 
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Figure 11: The impact of an uncertainty shock is reduced by 
lower rates of capital depreciation or labor attrition 

Baseline 
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Notes: Based on independent simulations of 2500 economies of 100-quarter length. For all simulations we impose an uncertainty shock in the quarter labelled 
1, allowing normal evolution of the economy afterwards. Baseline (x symbols) is the estimated baseline path. The two other paths plot responses assuming a 
25% reduction in the capital depreciation rate (o symbols) and labor depreciation rate (+ symbols). Clockwise from the top left, we plot the percent deviations of 
cross-economy average output, labor, consumption, and investment from their values in quarter 0. 
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Figure 12: Policy is less effective in the aftermath of an 
uncertainty shock 
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Subsidy during 
normal times 

Notes: Based on independent simulations of 2500 economies of 100-quarter length. For a wage subsidy in normal times (black bar, left), we provide an 
unanticipated 1% wage bill subsidy to all firms in quarter 1, allowing the economy to evolve normally thereafter. We also simulate an economy with no wage 
subsidy in quarter 1. The bar height is the percentage difference between the cross-economy average subsidy and no subsidy output paths in quarter 1. For the 
wage subsidy with an uncertainty shock (red bar, right), we repeat the experiment but simultaneously impose an uncertainty shock in quarter 1. 

Subsidy during an 
uncertainty shock 

Stimulative effect declines 
by over two thirds 


