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Abstract—Recent years have seen a constant rise in the availability of trait data, including morphological features, ecological
preferences, and life history characteristics. These phenotypic data provide means to associate genomic regions with
phenotypic attributes, thus allowing the identification of phenotypic traits associated with the rate of genome and sequence
evolution. However, inference methodologies that analyze sequence and phenotypic data in a unified statistical framework
are still scarce. Here, we present TraitRateProp, a probabilistic method that allows testing whether the rate of sequence
evolution is associated with a binary phenotypic character trait. The method further allows the detection of specific
sequence sites whose evolutionary rate is most noticeably affected following the character transition, suggesting a shift in
functional /structural constraints. TraitRateProp is first evaluated in simulations and then applied to study the evolutionary
process of plastid plant genomes upon a transition to a heterotrophic lifestyle. To this end, we analyze 20 plastid genes across
85 orchid species, spanning different lifestyles and representing different genera in this large family of flowering plants.
Our results indicate higher evolutionary rates following repeated transitions to a heterotrophic lifestyle in all but four of the

loci analyzed. [Evolutionary models; evolutionary rate; genotype—phenotype; orchids; plastome; rate shift.]

Numerous studies have been devoted to identify
phenotypic traits that are associated with the rate of
genome and sequences evolution. Classic examples
for such studies include reports on the correlation
between the rate of nucleotide substitution and various
factors such as body mass (as reviewed in Martin and
Palumbi 1993), body size and temperature (Gillooly
et al. 2005), metabolic rate (Martin 1995), and generation
time (Li et al. 1996; Lehtonen and Lanfear 2014). More
recently, it was proposed that in vertebrates, lineages
with a preformation mechanism of primordial germ cell
specification exhibit an accelerated rate of evolution as
compared to lineages with an epigenesis mechanism
(Evans et al. 2014), whereas in flowering plants rates of
molecular evolution were inferred to be lower in woody
compared to herbaceous taxa (Smith and Donoghue
2008).

In recent years, alongside the genomic revolution,
there is a constant rise in the accumulation of character
trait data, representing a range of phenotypes, including
morphological and genomic features, ecological
preferences, and life history characteristics. Databases,
such as the Coleoptera Karyotype Database (Blackmon
and Demuth 2015), Encyclopedia of Life — TraitBank
(Parr et al. 2014), the Tree-of-Sex (Tree of Sex Consortium
2014), and the Chromosome Counts Database (Rice
et al. 2015) catalog and document character traits for a
wide variety of species. This abundance of phenotypic
data provides means to associate alterations in genomic
processes with phenotypic attributes of the organisms
whose sequences are being analyzed.

However, to date, inference methods that consider
sequence data as well as phenotypic data in a joint
statistical framework are scarce. Notable exceptions
include CoEvol (Lartillot and Poujol 2011), TraitRate

(Mayrose and Otto 2011), and a method developed by
O’Connor and Mundy (2009, 2013) (hereafter referred to
as “OM”). Whereas CoEvol analyzes the correlation of
sequence data and continuous trait data, TraitRate and
OM focus on detecting associations between a discrete
phenotypic state and the rate of evolution.

Specific implementation details put aside, one of
the key requirements of a joint phenotype-genotype
modeling framework (see “Materials and Methods”
section, Fig. 1) is that the evolution of the phenotypic
trait is consistent between sequence positions, assuming
the same pattern of character state changes applies to
all sequence positions. The OM method follows the
coevolutionary model of Pagel (1994) by presenting a
single Markov process where each state is a pair of
sequence and trait characters (Fig. 2a). Yet, the OM
model does not impose consistency of the phenotypic
trait evolution among sites, that is, the ancestral
probabilities of the phenotypic states in different
sequence positions are not constrained to be the same.
Figure 2b demonstrates this with an example where
the marginal probability of phenotypic state “0” in an
ancestral node of a phylogeny is not necessarily equal
between two positions.

Alternatively, TraitRate combines models of sequence
evolution and of phenotypic trait evolution into one
likelihood framework by first reconstructing possible
evolutionary histories of the phenotypic trait along
the phylogeny (Mayrose and Otto 2011). Each such
history is consistent with the observed phenotypic state
values of the extant species. The method then assumes
distinct processes of sequence evolution depending on
the phenotypic state according to the reconstructed
character history. Mayrose and Otto (2011) applied
their method to demonstrate that in the crustacean
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FIGURE 1. A joint phenotype—genotype likelihood framework. An example input for a joint likelihood model. For the sake of simplicity, only

two possible character histories, 11 and hy, are accounted for, replacing the integral in the general likelihood function (see main text) with a sum.

genus Daphnia, habitat shifts from freshwater to
saline environments are associated with an elevated
substitution rate, probably due to the mutagenic effect
of high salt concentration.

Notably, the original TraitRate model assumed that all
sequence sites in the examined locus are influenced by
the analyzed trait. However, it is quite often the case that
not all positions in a given sequence are under the same
selective regime (Yang 1994; Pupko and Galtier 2002;
Guindon et al. 2004; Rodrigue et al. 2010; Kosakovsky
Pond et al. 2011). Specifically, we expect positions that
code for functionally important regions such as a protein
binding domain or those within an active site to evolve
under a stronger purifying selective pressure compared
to positions that are not directly involved in the primary
function of the protein. Similarly, we expect that the
character trait effect is heterogenous across the sequence;
phenotypes like those associated with domestication,
mating system, or pathogenicity may cause shifts in
the mutational and/or selective forces in specific sites
within particular loci. This distinction between classes
of positions motivated us to develop TraitRateProp, a
methodology that allows the detection of cases in which

the evolutionary rate of a certain proportion of sites
within the analyzed genomic region depends on the
phenotypic state.

The extremely versatile orchid family includes an
outstanding variety of lifeforms and lifestyles (e.g.,
Chase 2001; Givnish et al. 2015). Without exception,
all orchids rely on a mycorrhizal association during
germination to develop photosynthetic seedlings. While
most orchids then grow autotrophically, some lineages
pursue a heterotrophic lifestyle, obtaining nutrients
through their mycorrhiza from another plant (e.g.,
McCormick et al. 2004, 2012). Earlier analyses focused on
asmall subset of nonphotosynthetic taxa or on sister taxa
comparisons of arbitrarily selected nonphotosynthetic
and photosynthetic species. These studies suggested
that a heterotrophic lifestyle triggers convergent gene
losses and occasionally rate accelerations in plastid
genomes (plastomes), including in genes that are not
primarily involved in photosynthesis (e.g., dePamphilis
1995; Logacheva et al. 2011; Bromham et al. 2013; Wicke
2013; Schelkunov et al. 2015; Cusimano and Wicke
2016). Here, we applied TraitRateProp to analyze 20
commonly retained plastid genes across 85 orchid
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FIGURE 2.

The OM model. The rate matrix Qp of the OM model (a) and an example for inconsistent character history reconstruction for two

different sequence positions (b). The marginal likelihood of character ‘0" at the ancestral node, as depicted by the equation at the bottom of the

figure, is dependent on the observed nucleotides at each position.

species, representing 48 genera in this large family
of flowering plants. This allowed us to study the
evolutionary patterns exhibited by plants that transition
from a photoautotrophic to a heterotrophic lifestyle in a
broader phylogenetic context, within a unified statistical
framework.

MATERIALS AND METHODS

The TraitRateProp Method

Input.—TraitRateProp requires as input sequence data
(Dg) in the form of a multiple sequence alignment (MSA),
a rooted ultrametric species tree with specified branch
lengths (T), and the character data (D¢) describing the
trait states of the extant species, coded as either “0” or
“1.” We note that T is assumed to be known prior to the
analysis of Dg and is not reconstructed from the data.
Further, the branch lengths of T are informative up to
a multiplicative factor, as they intend to measure the
relative time of divergence.

Phenotypic trait evolution—We assume a two-state
Markov model, M¢, to describe the evolution of the
phenotypic trait along the tree. Specifically, this process
is defined by the rate matrix Qc:

chu[_nl i ]

T —TO

where 1 =1—m is a parameter governing the rate of
change from state “0” to “1” and p is a factor designated
to adapt the branch lengths of the phylogenetic tree to
the expected number of character changes per unit time.

Sequence evolution.—Any of the widely used models of
sequence evolution can be used to describe the process
of sequence evolution (Mg) along the phylogenetic tree.
In all analyses described here, the HKY +I" model
was used (Uzzell and Corbin 1971; Wakeley 1993).
The sequence rate matrix Qg is controlled by the «
parameter describing the ratio between transitions and
transversions and the nucleotide frequencies. The model
implements among-site rate variation using a discretized
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gamma distribution (with four rate categories), of mean
1 and shape parameter o (as in Yang 1994).

Connecting the trait and sequence evolutionary processes.—
The model assumes that a proportion (1—p) of sites
evolves independently of the phenotypic character, and
a proportion p of “phenotype-dependent positions”
evolves so that their substitution rate varies depending
on whether the phenotypic trait is in state “0” or
“1.” Specifically, a parameter r; is assumed when the
character state is “1,” and a parameter ryp when the
character state is “0.” Thus, for a phenotype-dependent
position, the sequence rate matrix, Qg, is multiplied by
either r; or ry, according to the character state. Let r
denote the ratio between rq and ry. If r>1,a “0” — “1”
transition in the character trait leads to an accelerated
sequence evolution by the factor r relative to the rate in
the “0” state.

Let H denote the history of character state transitions
along the tree. For each branch 7 of length b;, the fraction
of time spent in state “1,” f;;, and the fraction of time
spent in state “0,” fi, can be extracted from H. In
addition, we denote the fraction of time across the entire
tree that was spent in state “1” as f1, and the fraction of
time in state “0” as fy. These fractions can be computed
as follows:

_ Zjbifio 2 ibifin
I Th b

where the sum is over all branches in the phylogeny.
Using the above notations, the average rate matrix along
a branch i for a phenotype-dependent position is:

Qs, =10 x Qs xfio+7r1 x Qs x fi1.

The average rate of phenotype-dependent positions
across the entire tree is rgx Qg xfo+7r1 xQsxf1. We
require that this average rate matrix is equal to Qg, which
is the rate matrix of sequence positions whose evolution
is not associated with phenotypic changes. Thus, we
impose:

fo h=1-fo=

Qs=rox Qs xfo+7r1 xQs xf1

As Qg is invertible, we obtain:
1) XfO—H’l Xf1 =1

In other words, the acceleration and deceleration of rates
due to phenotypic change has no impact on the total
number of changes along the tree. Rather, in phenotype-
dependent positions, when r>1, most of sequence
substitutions will occur in those parts of the tree that
evolved under the state “1.”

Replacing r1 by r x rg in the equation above, we obtain:

1 r

fotrxfi’ fo+rxfi

These equations allow us to express Qg, in terms of 7, Qg,

in/ﬁl/fO/ andfl'

More details regarding the average rate matrix Q.
and the specific implementation details are provided
as Supplementary Material available on Dryad at
http:/ /dx.doi.org/10.5061 /dryad.d4;55.2.

Likelihood computation.—The likelihood of the model
is the joint probability of Dg and D¢ given the free
parameters 6. This expression can be termed as the
probability to observe D¢ times the probability to
observe Dg conditioned on having observed D¢. Under
these settings, likelihood computations based on the
sequence data require the knowledge of the character
state in each part of T, that is, the complete reconstructed
history of character changes. This history is generally
unknown and thus, the marginal probability of Dg given
D¢ and 6 can be obtained by integrating over all possible
character histories /. Finally, the assumption of sequence
site independence is often integrated into the likelihood
function. The likelihood expression for a simple case is
presented schematically in Figure 1.

Specifically, the likelihood of the model L=P(Dsg,
Dcl|T,r,p,Mc,Mg) can be presented as the following
product: L=P(Dc|T,Mc)P(Dg|T,r,p,D-,Mc,Ms). In
this equation, parameters that do not affect the
probability of the character data, D¢, are omitted
from the expression for the conditional probability
of Dc. While the computation of Lc=P(Dc|T,Mc)
is straightforward, the computation of Lg=P(Ds|T,7,
p.Dc,Mc,Mg) is challenging due to the dependence
on the evolutionary history of the phenotype, which
is unknown and resides implicitly in D¢ and the two
states Markov process Mc. Thus, we first present Lg as
an integration over all possible character histories :

Lg =P(D5|T,7’,p,Dc,Mc,Ms)

:/P(DslT,r,p,DC,MC,Ms,h)
h
P(h|T,1’,p,DC,Mc,M5)dh

When omitting parameters that do not affect the
probability of Dg from the above equation we obtain:

LS =/P(D5|T,T,p,Ms,h)P(l’l|T,Dc,Mc)dh
h
Under the assumption of independence between sites,
the probability of Dg can be expressed as a product of

probabilities over all sequence sites k, where D’é is the
sequence data in position k:

Ls :f ]_[P(D’§|T,r,p,Ms,h) P(hT, D¢, Mc)dh
h k
Here we follow the same importance sampling approach

to estimate the integral over character histories as
proposed by Mayrose and Otto (2011), by replacing the


http://dx.doi.org/10.5061/dryad.d4j55.2

2017

LEVY KARIN ET AL.—SEQUENCE-PHENOTYPE INTEGRATED MODEL 5

integral with an average over N stochastic mappings,
each with a probability of 1/N:

N
R L
=

Finally, we denote P (Dlé IT,r,p,Ms, hi) as ng’i and obtain:

Lo~ LS
SNNZH S

i=1 k

The likelihood based on position k, L];’i, is computed
using a mixture model of the likelihoods over two
scenarios: either the position evolved independently of

the character state, in which case, the likelihood is L’g ),

or the position belongs to the phenotype-dependent
positions category, in which case the likelihood is

ki (D).
Ls'(D): G
LS =L§ (D)p+LE(D) (1-p)
where p is a parameter that specifies the probability of a
position to belong to the phenotype-dependent category.

L’é([) is computed using the standard pruning

algorithm (Felsenstein 1981). L];”(D) is computed in a
similar manner, however, when computing transition
probabilities along each branch, we explicitly account
for the character changes by using Qs, as defined above.
For more details regarding the average rate matrix Qs,
and our implementation, see Supplementary Material
available on Dryad.

Based on the likelihood model presented above,
maximum likelihood estimates for all free parameters
of the model are sought using a heuristic optimization
scheme (Brent 1973). To avoid local maxima, the search
starts from multiple starting points (in this study, 30
starting points).

Inference of position category—The Bayes factor (BF) for
position k is denoted By and is the ratio of likelihood
scores for each of the categories (phenotype-dependent
and phenotype-independent), based on the sequence
position data:

_ (D)
L

The empirical Bayes posterior for position k is denoted
[Ty and is computed as follows:

k
I, = : LS(Dixp
Lg (D) xp+Lg(D) x (1—p)

The empirical Bayes posterior reflects the extent to which
position k is likely to belong to the phenotype-dependent
category. The computation of [T is approximated by
plugging in the inferred maximum likelihood estimates
for each of the free parameters as well as using a set of
N stochastic mappings, as described above. We denote

By

this approximation as I7j (a similar approach adopted
by Nielsen and Yang 1998). Furthermore, we note that
in case the proportion parameter p is estimated to be 0
or 1 the category prediction is the same for all sequence
positions.

Simulated Data Sets

Different performance aspects of the TraitRateProp
model were evaluated on simulated data sets. In
each such simulation, we provided our simulator with
parameters of the sequence model, Mg; the character
model, M¢; the ultrametric tree, T (see details below); the
rate parameter, r; the proportion parameter, p; and the
number of the sequence positions to simulate, L. The Mg
parameters are the transition/transversion k parameter
(set to be 2 in all simulations) and the rate heterogeneity
across sites parameter, o (set to be 1 in all simulations).
The Mc parameters included w7 (set to be 0.5 in all
simulations) and p (set to be 10 in all simulations). Based
on this basic scheme, different simulation scenarios with
various combinations of the number of species, p, and r
were examined.

Course of simulation.—According to the provided M
model parameters, a history of trait changes, h,
was simulated along the input ultrametric tree T.
Given h, sequences were simulated according to
the sequence model along T, with two classes of
positions: phenotype-dependent (proportion p of the
positions) and phenotype-independent (proportion 1—
p of positions). We examined the performance of the
method on trees with 16, 32, 64, or 128 species. To this
end, 100 ultrametric trees for each number of taxa were
generated using Mesquite (Maddison and Maddison
2015), following a birth—death process with the default
birth rate of 0.3 and death rate of 0.1. The tree height
of each of these trees was then adjusted to be 0.2. Each
of these trees was given as the input tree T in the
simulations.

Models Comparison

Two methods for model comparison were examined.
The first is based on the likelihood ratio test (LRT), in
which the test statistic D=2 (LLgjt — LLyy;) is compared

with the critical value C, according to x% distribution
for 0.95 statistical confidence. All cases in which D>C
were counted as cases in which the alternative model
was preferred over the null model. As an alternative
method, parametric bootstrapping (see details in the
section below) is utilized. We note that the resolution of
the empirical P values computed based on a parametric
bootstrap is restricted by the number of bootstrap
replicates. This limited resolution poses a challenge to
correct for multiple hypotheses when several loci are
analyzed. Under such conditions, one can compare the
empirical P values based on the parametric bootstrap

procedure to those approximated by the 2 distribution.
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If the discrepancy between the two sets is not substantial,
the multiple hypotheses correction can be applied to the

x2 derived P values.

Two-stage parametric bootstrap.—In our simulation study;,
we detected slight deviations in the false positive
rate based on the standard LRT (see “Results”
section). Furthermore, for the orchid data set, we were
interested in comparing three models (see details below),
which necessitate correcting for multiple dependent
comparisons also when a single locus is analyzed.
These reasons prompted us to analyze the orchid
data sets using a parametric bootstrap approach.
Given a computed Dyea =2(LL,j —LLpy) test statistic,
parametric bootstrapping can be used to assess the
probability to observe a D value greater than or equal to
Dyea1 under null conditions. This provides an empirical
P value for the D¢, result while controlling the false
positive rate. To this end, B simulations based on the null
model and its estimated parameters are generated and
the D value for each of these B simulations is computed.
Next, D;¢,1 is compared with the distribution of D values
under null conditions to obtain an empirical P value.

In the case of the orchid data sets, we employed
this approach twice; first to select between the null
model (p=0, r=1; no association between sequence
and character evolution) and two alternative models:
TraitRate model (TR) (p=1, r=free; all sequence
positions are in association with character changes)
and TraitRateProp model (TRP) (p=free, r={free; any
proportion of sequence positions could be associated
with character changes). In cases where the null model
was rejected both when compared with the TR as well
as with the TRP model, a subsequent analysis was
performed to allow the selection between the TR and
TRP models. This second stage analysis consisted of
comparing the difference in the fit of the TRP and TR
models to the observed data to the difference in the fit
of these models to data simulated under the TR model
condjitions.

The required simulations in either stage of the
parametric bootstrap procedure were performed using
the INDELible sequence simulator (Fletcher and Yang
2009), with the HKY (Hasegawa et al. 1985) model of
substitution and a and kparameters as estimated from
the data by the null model. In both stages, the sequences
were simulated while the real character data were kept
constant. The full procedure details are given below.

Procedure details
Models compared:

1. Null: p=0, r=1. Its model parameters are denoted
Onull-

2. TR: p=1, r=free. Its model parameters are
denoted OTR.

3. TRP: p=free, r=free. Its model parameters are
denoted OTRp.

For each gene, we denote its observed data:
* ps: sequence dat;
e pc: character data; and
¢ T:ultrametric species tree.
Stage I
Test hypotheses:
* Hy Tr: Null model is correct (compared to TR).
* Hy trp: Null model is correct (compared to TRP).
Parametric bootstrap procedure:

1. Infer 6,11, OTR, OTRP based on the observed data.
Obtain the maximum log-likelihood (LL) scores of
each of the models and compute the following test
statistics:

* DR =2(LLtR —LLpqn)
* Drrp=2(LLtrp —LLpun)

2. Simulate B=100 sequence data instances based
on T and 6,y Provide each simulated sequence

data, Dg together with D¢ and T for inference and
obtain:

bo_ b b
* Dp=2 (LLTR - LLnull)

b _ b b
* Drgp=2 (LLTRP - LLnull)

3. Determine a cutoff C such that the total ratio of
rejections of Hy tr and Hy_Trp is kept at 5%.

4. Reject Hy TR if Dfr >C, Reject Hy_TRP if Dtrp > C.

5. If both null hypotheses were rejected continue to
stage II.

Stage II
Test hypothesis:

* Hy trp: TR model is correct (compared to TRP).
Parametric bootstrap procedure:

1. Based on the already inferred 6y, OTr, OTRp and
LL scores of each of the models, compute the
following test statistic:

* Strp=DtrP—D1R

2. Simulate Y=100 sequence data instances based
on T and 6tRr. Provide each simulated sequence

data, Dg together with D¢ and T for inference and
obtain:

Yy Y y
* Strp =D1rp —D1r

3. Determine a cutoff C such that the ratio of
rejections of Hy 1Rrp is kept at 5%.

4. Reject Hy Trp if STrRP > C.
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Comparison to the OM Method

We obtained the code for the OM method (O’Connor
and Mundy 2009), two sequence data sets analyzed
in their paper, the primate species topology, and the
character states for each of the analyzed primate species
from the authors. The sequence data sets were those
of the SEMG2 gene (16 primate species and an MSA of
4245 positions) and of the ZAN gene (16 primate species
and an MSA of 555 positions). To analyze these data
sets by TraitRateProp, we used MrBayes (Ronquist et al.
2012) with a birth—death relaxed clock model to compute
an ultrametric tree based on each of these data sets
while imposing the topological constraints as defined
in the species topology provided by O’Connor and
Mundy (2009). These trees together with the sequence
and character data sets were then provided as input to
TraitRateProp (The MSAs of the two genes, the primate
species tree, the primate character states, the MrBayes
configuration file, and the resulting ultrametric trees are
available as Supplementary Material on Dryad).

Orchidaceae Data Analysis

Sequence data.—We extracted the 20 most commonly
present coding regions of all published plastid genomes
of Orchidaceae available in the NBCI Genomes database.
These data were complemented with the plastid gene
data sets of Givnish et al. (2015), yielding a final
data set of 20 plastid genes over 85 Orchidaceae
species. These data included ten additional recently
sequenced species of the widely distributed Neottieae
tribe (Supplementary Table S1 available on Dryad),
which itself comprises a great variety of heterotrophic
lifestyles from autotrophic to completely heterotrophic
orchids. Where necessary, intron/exon boundaries of
rpll6, rpl2, rpsi2, rpslé, and clpP were corrected
manually using verified coding sequences of these genes
from Nicotiana tabacum (GenBank Accession: Z00044.2),
Arabidopsis thaliana (NC_000932.1), and Triticum aestivum
(KJ592713.1). The taxon sampling and accession numbers
for the plastid sequences are provided in Supplementary
Table S1 available on Dryad.

Species tree reconstruction.—Codon MSAs for each of the
20 plastome genes were computed using a Perl script,
by first aligning the translated protein sequences using
MAFFT v7182 (with parameters: —localpair —maxiterate
1000) and then back-translating this MSA to nucleotide-
based alignment (Katoh et al. 2009; Katoh and Standley
2013). Each of these MSAs contained sequences for at
least 75 out of the 85 species. We next applied MrBayes
(Ronquist et al. 2012) using a birth—death relaxed clock
model to obtain a set of ultrametric species trees, of
which the tree with the highest likelihood score was
selected. The input to MrBayes was a concatenation
of gene MSAs. Each gene was defined as a partition.
The nucleotide substitution model for each partition
was identified using jModelTest (Darriba et al. 2012),
according to the Akaike information criterion score. A

few topological constraints based on Givnish etal. (2015).
were set; fixing the root at Mapania palustris, then setting
Apostasia wallichii as a sister taxon to all other 83 species,
fixing Pogonia ophioglossoides and Vanilla planifolia as a
monophyletic group, and Phragmipedium longifolium,
Cypripedium  japonicum,  Cypripedium  formosanum,
Paphiopedilum niveum, and Paphiopedilum armeniacum as
another monophyletic group. Finally, we set the Vanilla
monophyletic group as a sister clade to all other 81
species. The MSA files, the MrBayes configuration file
as well as the resulting ultrametric tree are provided as
Supplementary Material available on Dryad.

Phenotypic trait character states—The phenotypic trait
character state of heterotrophism was determined
with respect to each of the 85 orchidaceae species.
Heterotrophic species were coded as character state
“1,” whereas autotrophic species were coded as “0.”
The character states were determined according to the
presence or absence of chlorophyll indicating a fully
heterotrophic lifestyle, as well as physiological studies
of the carbon flow between an adult heterotrophic
(chlorophyllous) orchid and its host. The trait states
and the decision criteria are provided in Supplementary
Table S1 available on Dryad.

Code Implementation and Availability

The TraitRateProp software, the C++ source code,
and a short manual are provided at http://www.tau.
ac.il/~itaymay/cp/TraitRateProp. The input to the
program is an ultrametric species tree in Newick format
and the sequence and character data in Fasta format. The
program outputs the maximum likelihood estimates of
the parameters for the null and alternative models as
well as the computed BF for each sequence position.

RESULTS

Inferring Associations Between Evolutionary Rates and
Phenotypes with the TraitRateProp Model

In this work, we present the TraitRateProp model,
which allows studying possible associations between
a binary phenotypic trait and the rate of sequence
evolution. This method extends a previous work by
Mayrose and Otto (2011), which aimed at detecting
whole genes (proteins) whose evolutionary rate
correlates with the state of a binary phenotypic trait.
In that model it is assumed that in cases where such a
correlation exists, all sequence positions correlate with
the state of the phenotypic trait. Here, we relax this
assumption by allowing the evolutionary rate of only a
proportion of positions in the analyzed genomic region
to depend on the phenotypic state. TraitRateProp allows
for: (i) testing whether the evolutionary rate of the input
sequence data is correlated with the given trait data;
(ii) in case a correlation is detected, the method infers
the positions most likely associated with the trait data.
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TraitRateProp is based on the maximum likelihood
paradigm (see “Materials and Methods” section), and
provides two maximum likelihood estimates regarding
the coevolution of sequence and trait data: the relative
rate parameter, r, describing the ratio between the
sequence evolutionary rates under states “1” and “0,”
the parameter, p, which is the proportion of sequence
positions whose evolutionary rate is associated with
the phenotypic state. Moreover, TraitRateProp ranks
sequence sites according to their likelihood of being
at the trait-dependent category. The full details of the
model, the likelihood estimation procedures, and the
associated statistical tests are detailed in the “Materials
and Methods” section. We examined the performance
of TraitRateProp in simulations and we used it to
detect plastid genes in Orchidaceae whose rate varies
depending on the lifestyle of adult plants.

Number of Stochastic Mappings and Likelihood
Computation Mode

Inference with TraitRateProp relies on an
approximated likelihood computation using a set
of stochastic mappings drawn based on the character
model (see “Materials and Methods” section and
Supplementary Materials and Methods available on
Dryad for full details). The number of stochastic
mappings, N, is a parameter that tunes the accuracy
of this approximation. In an exhaustive computation
mode, each such stochastic mapping is used to evaluate
the likelihood score based on the sequence data, which
is computationally demanding. Next, these likelihood
scores are averaged to obtain the total likelihood score
of the joined model. Notably, this exhaustive scheme
entails a large number of likelihood computations,
which becomes prohibitively long for a large value of
N. As a heuristic alternative to the exhaustive approach,
the stochastic mappings in the set are first summarized
by taking the average time each branch spent in each
character state. Then the likelihood score of the sequence
model is computed only once, based on the average
stochastic mapping. While offering a speed-up factor
of up to N in running times, the LL score computed
based on the average stochastic mapping may not
be an adequate approximation of the average of the
LL scores computed based on each single stochastic
mapping in the set. Thus, we first studied the impact of
N and computation mode (exhaustive/heuristic) on the
accuracy and stability of the likelihood computation.
We then studied their impact on the accuracy of a
complete inference procedure, in terms of power
and parameter estimation. Our results indicate that
the heuristic mode with N=10,000 provides similar
accuracy to the exhaustive mode with N =200 while
reducing running times by an average factor of over
60 (full details concerning these investigations are
given in Supplementary Material and figures therein
available on Dryad). We thus chose to continue with
the heuristic mode with N=10,000 from now on, as

it provides sufficient accuracy alongside considerable
improvements in running times.

Performance in Simulations

We studied the performance of TraitRateProp using
simulations to evaluate its false positive rate (the
tendency of the method to detect correlation when no
such correlation exists), power (i.e., its ability to detect
correlation between phenotypic evolution and sequence
evolution when such a correlation exists), and accuracy
of parameter estimation.

False positive rate and power analysis—We analyzed
the false positive rate by setting the proportion
parameter to zero, thus simulating sequences without
any dependence on the character trait. We first estimated
the false positive rate when the null (and correct) model
is rejected according to the LRT test statistic, D, as

approximated using the x?2 distribution (see “Materials
and Methods” section). We found slight deviations of the
false positive rates from the expected 5% (3%, 2%, 10%,
and 9% for 16, 32, 64, and 128 species, respectively). This

suggested that the ¥ approximation is not accurate in
this case, which prompted us to determine alternative
cutoffs to which the test statistic D should be compared,
such that the false positive rate in the null scenarios is
fixed to be 5%. To this end, we set the cutoff in each of the
null scenarios with 16, 32, 64, and 128 species by taking
the D value of the 95th percentile in the simulated null
data set. The cutoffs determined this way were 4.38, 5.2,
7.8, and 6.9 for 16, 32, 64, and 128 species, respectively

(compared with 5.99 using the ¥? approximation). These
cutoffs were subsequently used for power analysis. Of

note, the deviations in the x? cutoffs reported here are
specific to the examined simulated data sets and could
differ when real data are analyzed. We thus used a
parametric bootstrap procedure to analyze the orchid
data set as detailed below.

We analyzed the power of TraitRateProp when
simulating sequences of 1000 base pairs in length and
the rate parameter r fixed to 3. This value of r is within
the distribution of r values inferred from real data sets
(see below). In these simulations, we varied the number
of species analyzed and the proportion of positions
whose rate is in association with the phenotypic trait.
When the number of species analyzed was 64 or higher,
and the proportion of sites affected by the phenotypic
state was 50% or higher, the method correctly detected
the existence of the association between sequences and
phenotypic evolution in all cases (Fig. 3). As expected,
when data are limited, the power decreases. For example,
with a moderate number of species (32), the power is still
greater than 90% when the proportion parameter is 0.5
or higher. However, when the number of species is only
16, or the proportion is 0.25, the power is substantially
lower (Fig. 3). These results suggest that TraitRateProp
is expected to perform well when trait and sequence
data are available for at least a few dozen species.
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FIGURE 3. Power assessment. Results based on simulated data sets with varied proportion parameter values and number of species. For

the power analysis, a cutoff for rejecting the null model for each number of species was determined by fixing the false positive rate in the null
scenario (p=0) for that number of species at 5%. The height of the bars reflects the percentage of simulated data sets in which the null model
was rejected and the whiskers show the standard error based on a binomial distribution.

In cases where the total number of positions affected
by the phenotype is small, additional species should be
included in the analysis.

Accuracy of parameter estimation.—Similar to the results
of the power analysis, we found that the accuracy
of inferring the model parameters increases with the
number of species in the data set and with the
proportion of positions whose rate is associated with
the phenotypic trait (Fig. 4). In addition, we found a
negative correlation between the inferred r and P values
(e.g., Spearman coefficient of correlation p=—0.66, P <

10719 for the 32 species, and p=0.5 data set. Similar
results were observed for other data sets, data not
shown). This suggests a tradeoff between the inference
of the relative rate and the proportion parameters,
where overestimation of one of them can cause an
underestimation of the other, and vice versa. We studied
this tradeoff in more detail by examining the likelihood
surface as a function of p and r. We found a rather
flat likelihood surface for r and p combinations whose
product is close to the product of the real parameter

values, p=0.5 and r=3 (Fig. 5). However, parameter
combinations in which r > 1 received a higher likelihood
score than parameter combinations in which r <1 (all 46
top scoring points out of 100 points examined had r > 1).
This result suggests that, despite the inference tradeoff
between the relative rate and proportion parameters,
the method can correctly detect the direction of the
phenotypic state effect.

Comparison to OM

We first used TraitRateProp to analyze the publicly
available data of O’Connor and Mundy (2009).
In agreement with their findings, we detected an
association between a phenotype of a multimale—
multifemale mating system and the rate of evolution
in semenogelin II (D=26.7, empirical P <0.01, r=4, p=
0.42), but no such association was detected in sperm
ligand zonadhesin (D =1.6, empirical P =0.24). We next
compared the performance of TraitRateProp with that of
OM on all simulated data sets described in the previous
section, where we varied the number of species analyzed
as well as the proportion of positions whose rate is
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FIGURE 5.
rate and proportion parameters. The figure depicts a single simulation
instance in which p=0.5, r=3, and the number of species was 32.

LL surface over a grid of 100 combinations of the relative

in association with the phenotypic trait. The maximal
power measured for the OM method was on a data
set of 64 species where 25% of the positions were in
association with the phenotypic state; on this data set,
the OM method had a power of 6% (in comparison,

TraitRateProp had a power of 98% on this data set). In
their original paper, the power of the OM method was
reported for data sets in which the sequence-evolution
rate ratio between phenotypic state “0” and “1” was
either 10 or 1000 (O’Connor and Mundy 2009). We,
therefore, analyzed additional simulated data sets where
the relative rate parameter, #, was set to be either 10 or
1000 and the proportion parameter, p, was set to be 0.5.
Under these scenarios, the OM method had a higher
power compared to its performance on simulations with
r=23, reaching 8.2% and 14% on the 64 and 128 species
data sets for r values of 10 and 1000, respectively. In
comparison, the power of TraitRateProp was 100%, on
both these data sets.

Predicting Sites Whose Rate Is Associated with the
Phenotypic State

Under the TraitRateProp model, each sequence
position is either associated or not with the examined
phenotypic state. Based on the maximum likelihood
estimates of the model parameters, the likelihood of each
sequence position can be estimated twice; once ascribing
the position to the phenotype-dependent category
and once ascribing it to the phenotype-independent
category. The ratio between these likelihood scores is an
approximation of the BF per position and can be used
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number of species. Simulations were conducted with p=0.5 and r=3.

to classify positions into these two categories. To test the
classification accuracy of TraitRateProp, we focused on
simulated data sets with a proportion parameter of 0.5.
We used the estimated BF scores to compute the area
under the ROC curve (AUC-ROC) (Fawcett 2006). As
expected, we found the classification accuracy to increase
with the number of analyzed species; starting with a
moderate median AUC-ROC value of 0.57 for 16 species
and reaching a median AUC-ROC value of 0.72 in data
sets with 128 species (Fig. 6).

We hypothesized that the slowly evolving positions
are less informative and thus should be more challenging
to classify: a position that was simulated assuming it is
character-dependent but is completely invariant holds
no information for classification. Thus, we examined the
effect of filtering out slowly evolving positions, prior to
categorizing positions. To this end, we applied rate4site

(Mayrose et al. 2004) to infer the evolutionary rate of each
position in the simulated MSA. The rate4site scores were
used to exclude 10%, 20%, or 30% of the slowest positions
from the analysis. We found that excluding slowly
evolving positions resulted in a slight, yet statistically
significant increase in the ability of TraitRateProp to
classify the remaining sites, reaching average AUC-ROC
values of 0.59 and 0.75 for 16 and 128 species, respectively,
when 30% of the slowest positions are filtered prior
to classification (Fig. 7). In addition, we examined the
effect of filtering the fastest evolving positions as these
positions have the potential to become saturated and
less informative. In our simulation scheme, filtering such
positions reduced the evolutionary signal, causing a
reduction in the classification accuracy (Supplementary
Fig. S1 available on Dryad), suggesting that in the
evolutionary scenarios examined in our simulation
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Prediction of association with the phenotypic trait per position with position filtration. Average AUC values across simulations

for each number of species. The AUC values were computed after 0%, 10%, 20%, or 30% of the slowest positions as detected by rate4site were
removed. The P values indicate a paired Mann-Whitney test (Wilcoxon test) between each filtered set and the nonfiltered one. Simulations were

conducted with p=0.5 and r=3.

scheme, these fast evolving have more phylogenetic
signals than noise.

Notably, the AUC-ROC value measures the
discriminative power across the whole range of
BFs while most often the primary interest is in the
correct classification of sites with the strongest signal
(highest BF values), thus focusing on the region with
the lowest false positive rate. We thus examined the
classification accuracy of TraitRateProp by considering
positions whose BF is above a certain cutoff (10, 8, 5, and
2). We found that higher BF cutoffs yield more accurate
predictions (higher true positive rate). Notably, in the
smaller data sets of 16 and 32 species, less than 0.1%
of positions receive a high BF value, indicating a weak
discriminative signal in these cases (Table 1).

Association Between the Rate of Orchid Plastid
Housekeeping Genes and Heterotrophic Lifestyle

We used TraitRateProp to investigate associations
between a heterotrophic lifestyle in adult developmental
stages and the rate of evolution in 20 plastid genes in
the Orchidaceae plant family. Seventeen of these genes

encode for subunits relevant for protein biosynthesis
and three function in other, photosynthesis-unrelated
pathways (clpP, matK, and ycf2). To this end, we
reconstructed the MSA for each gene using MAFFT
(Katoh et al. 2009) and then used MrBayes (Ronquist
et al. 2012) to obtain an ultrametric species tree based
on the concatenation of all 20 MSAs (see “Materials
and Methods” section for full details). The resulting
ultrametric tree (Fig. 8) as well as the character state
for each orchid species (autotrophic or heterotrophic)
were then provided as input to TraitRateProp together
with each of the MSAs. Using TraitRateProp we fitted
three models; the first model is the null model in
which the proportion parameter is fixed to 0, imposing
that the sequence evolution is in no association to the
character evolution. In the second model, denoted “TR,”
we fixed the proportion parameter to 1, imposing the
rate of all sequence positions to be associated with
the character evolution. In the last model, denoted
“TRP,” the proportion parameter is free to vary, allowing
any number of positions to be in association with
character changes. For each gene, we selected between
these models using a two-stage parametric bootstrap
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TaBLE 1.  Classification of positions by BF cutoffs
Percent true positives in positions above cutoff

Number of 16 32 64 128
species/BF
cutoff
10 100 (n=2) 85.4 (n=41) 90.6 (1=351) 93.7 (n=2149)
8 83.3 (n=6) 87.6 (n=389) 89.8 (n=557) 93.1 (n=2869)
5 79.7 (n=64) 82.6 (n=344) 86.1 (n=1451) 89.7 (n=5220)
2 69.6 (n=2011) 73 (n=4675) 75.3 (n=9671) 78 (n=17,934)

Note: For each number of species, a total of 100,000 positions were examined.
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TaBLE2.  Orchid plastid genes analysis results
Gene Selected model, p selected model r selected model Pvalue TR, BS P value TRP, P value TRP,
two-stage BS stage I BS stage I BS stage I
clpP TR 1 2.51 <0.01 <0.01 0.41
infA TR 1 3.71 <0.01 <0.01 04
matK TR 1 0.79 0.03 <0.01 0.09
rpl14 TR 1 2.67 <0.01 <0.01 0.92
rpll6 TR 1 312 <0.01 <0.01 1
rpl2 TRP 0.891 10 <0.01 <0.01 <0.01
rpl20 TR 1 2.08 <0.01 <0.01 0.97
rpl22 Null NA NA 0.5 0.53 NA
rpl23 TR 1 2.6 <0.01 <0.01 1
rpl32 Null NA NA 013 0.17 NA
rpl33 TRP 0.3 3.22 0.01 0.01 0.04
rpl36 TR 1 2.71 <0.01 <0.01 0.57
rpsll TR 1 2.66 <0.01 <0.01 0.23
rps12 TR 1 4.44 <0.01 <0.01 0.98
rpsl4 TR 1 3.44 <0.01 <0.01 0.09
rpsl5 TR 1 1.64 <0.01 <0.01 0.09
rps16 Null NA NA 013 0.08 NA
rps18 TR 1 3.52 <0.01 <0.01 0.19
rps19 TR 1 5.44 <0.01 <0.01 0.13
ycf2 TRP 0.63 3.2 <0.01 <0.01 <0.01
NA, not applicable.

approach (see “Materials and Methods” section). For
17 out of the 20 analyzed genes, we could reject the
null model, preferring either the TR or TRP model.
Notably, in all genes except for matK, the inferred trait-
rate association pointed in the same direction, showing
an inferred relative rate parameter greater than 1.0,
that is, indicating a higher evolutionary rate associated
with a heterotrophic lifestyle (Table 2). Furthermore, for
three genes, rpl2, rpl33, and ycf2, the TRP model was
preferred over the TR model, indicating that in these
genes only some of the sequence sites are associated with
the phenotypic trait.

DISCUSSION

In this study, we presented TraitRateProp, a likelihood
framework for the joint analysis of trait and sequence
data that enables the detection of specific sites exhibiting
a rate shift upon repeated character trait transitions.
Using a simulation study, we showed that the power
and parameter estimation accuracy of TraitRateProp
increase with the number of species being analyzed and
with the proportion of sequence positions in association
with changes in the character state. This comes as no
surprise as both these factors contribute to the strength
of the association signal. Based on our simulation study,
we conclude that TraitRateProp is most suitable for
analyzing data sets composed of a few dozen species
or more. It may also be suitable for the analysis of
smaller data sets if there is a good reason to expect a
large proportion of sequence positions to be associated
with the character trait. We then studied the ability of
TraitRateProp to classify sequence positions as either
trait-dependent or trait-independent, according to their

estimated BF. Examining all sequence sites, classification
accuracy is rather limited; particularly for data sets with
a small number of species. However, when focusing on
positions with the most discriminative power (i.e., those
with high BF values), we found high true positive rates
(>80% for positions with BF >5; Table 1).

We next used TraitRateProp to analyze 20 plastid
housekeeping genes across 85 species from the
Orchidaceae plant family. For 16 genes, we detected that
the transition to a heterotrophic lifestyle is correlated
with a higher rate of molecular evolution. Out of the 20
genes analyzed in this study, three genes—#ps16, rpi22,
and rpl32—were not detected to be associated with a
heterotrophic lifestyle. Of these, rpl22 and rpl32 were
previously shown to be essential plastid genes, which are
required even under heterotrophic conditions in model
plants (Fleischmann et al. 2011), which might explain
why no difference in rates between the autotrophic and
heterotrophic lifestyles was detected.

Recently, Maddison and FitzJohn (2015) discussed
possible pitfalls in detecting phylogenetic associations.
Their main concerns relate to determining causality
and possible caveats stemming from the distribution
of the characters along the phylogeny (i.e., few
evolutionary events giving rise to numerous modern
taxa). Particularly, because the statistical support for
correlated evolution is drawn from the total amount
of time being in each state, regardless of the number
of independent trait transitions, phylogenetic methods
for the detection of coevolution are susceptible to
infer significant association even when a single trait
transition has occurred. These concerns are of relevance
to TraitRateProp, as much as they are to the methods
discussed by Maddison and FitzJohn (2015). First, it is
important to note that any detected association does not
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imply causality. Second, we recommend examining the
distribution of the character states along the tree, prior
to the analysis with TraitRateProp to reveal potentially
problematic scenarios, such as the “Darwin’s scenario”
and the “Unreplicated burst,” as discussed by Maddison
and FitzJohn (2015). Specifically, the orchid phylogeny
analyzed in this article does not display such patterns
(Figure 8).

Here we concentrated on modeling shifts in the rate
of sequence evolution upon character transition while
assuming that other aspects of the substitution process
are unaffected. However, additional trait effects on
the evolutionary process can be incorporated within
the TraitRate framework. For example, Halpern and
Bruno (1998) proposed a model that accounts for a
varied selective pressure across sites by incorporating
site-specific substitution matrices in which a mutation
fixation factor is integrated. However, their model
assumes that at a given position the selection pressure
is constant across all parts of the phylogeny. Using the
TraitRateProp framework, this model can be extended
to associate two rate matrices with each site, alternating
their usage according to the character state. Similarly,
aspects concerning codon bias (Palidwor et al. 2010)
and varying stationary base frequencies (as discussed,
e.g., in Gojobori 1983) can be integrated in an analogous
manner.

The current TraitRateProp model assigns a single
rate parameter to each character state (rg and r7).
However, even if the association between evolutionary
rates and the analyzed trait is factual, it is rather unlikely
that a single rate typifies a certain character state.
Alternatively, the modeling of the effect the trait has
on the evolutionary rate can be refined by considering
a prior distribution of rate values dictated by each
character state. To this end, defining two separate
gamma distributions, one for each state is a possible
way to generate a distribution of rate values under
each state while avoiding over-parametrization. To this
end, two alternative implementations are possible. First,
we can assume two distinct gamma distributions, each
governed by a single parameter, o (i.e., forcing the shape
and scale parameters of the gamma distribution to be
equal such that the expectation is 1.0). This could imply
a change in the selective pattern across sequence sites.
For example, character state 0 could be characterized
by a gamma distribution with a low a value (high
heterogeneity among sites), whereas character state 1
with a high a value (low heterogeneity among sites).
Notably, since the expectations of both distributions are
equal to 1.0, this implementation implies that the overall
rate of substitution is similar for the two character states.
Alternatively, two distinct gamma distributions, without
imposing that the shape and scale parameters be equal,
additionally allow for a shift in the overall rate of change.

Currently, TraitRateProp focuses on phenotypic traits
with two states. It is often the case that more than
two categories exist for a certain phenotype. Extending
TraitRateProp to handle such data could broaden the
spectrum of analyses possible with TraitRateProp. In

this regard, we note that TraitRateProp is not limited to
phenotypic attributes but can also be used to detect rate
shifts that are associated with genomic attributes. For
example, using genomic scans we can identify shifts in
the rate of sequence evolution of a particular gene that
are associated with the presence or absence of a certain
gene family.

Finally, branch-site codon models (Yang and Nielsen
2002; Zhang et al. 2005) allow the detection of
changes in selective pressure along a particular set
of branches. By explicitly distinguishing between
synonymous and nonsynonymous substitutions, the
occurrence of positive, diversifying, selection along a
specific set of branches can be detected. Although the
use of branch-site methods is often inspired by lineage-
speci?c attributes, the categorization of branches prior to
analysis requires knowledge that is not always available
(Lu and Guindon 2014), and ignores uncertainties
concerning the different possible pathways by which
the character state proceeds. It is, therefore, interesting
to harness the advantages of codon models into the
trait-rate framework, by a separate examination of the
association of either synonymous or nonsynonymous
substitutions with the phenotypic trait. This would
allow distinguishing between the release of functional
constraints and adaptive evolution while accounting for
the phenotypic trait evolution.
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