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Abstract.—Polyploidy, the genome wide duplication of chromosome number, is a key feature in eukaryote evolution. Poly-
ploidy exists in diverse groups including animals, fungi, and invertebrates but is especially prevalent in plants with most, if
not all, plant species having descended from a polyploidization event. Polyploids often differ markedly from their diploid
progenitors in morphological, physiological, and life history characteristics as well as rates of adaptation. The altered char-
acteristics displayed by polyploids may contribute to their success in novel ecological habitats. Clearly, a better understand-
ing of the processes underlying changes in the number of chromosomes within genomes is a key goal in our understanding
of speciation and adaptation for a wide range of families and genera. Despite the fundamental role of chromosome number
change in eukaryotic evolution, probabilistic models describing the evolution of chromosome number along a phylogeny
have not yet been formulated. We present a series of likelihood models, each representing a different hypothesis regarding
the evolution of chromosome number along a given phylogeny. These models allow us to reconstruct ancestral chromosome
numbers and to estimate the expected number of polyploidization events and single chromosome changes (dysploidy) that
occurred along a phylogeny. We test, using simulations, the accuracy of this approach and its dependence on the number
of taxa and tree length. We then demonstrate the application of the method for the study of chromosome number evolution
in 4 plant genera: Aristolochia, Carex, Passiflora, and Helianthus. Considering the depth of the available cytological and phy-
logenetic data, formal models of chromosome number evolution are expected to advance significantly our understanding
of the importance of polyploidy and dysploidy across different taxonomic groups. [Chromosome evolution; dysploidy;
evolutionary models; genome duplication; polyploidy.]

Chromosome number is a remarkably dynamic fea-
ture of eukaryotic evolution. Chromosome numbers
have repeatedly increased by doubling (polyploidy), in-
creased by a single chromosome (ascending dysploidy
via, e.g., chromosome fission), and decreased by a single
chromosome (descending dysploidy via, e.g., chromo-
some fusion). Of these mechanisms of chromosome
number change, polyploidy has received significant
attention because the genomes of diverse eukaryotes,
including animals (Furlong and Holland 2004), fungi
(Kellis et al. 2004), and protozoa (Aury et al. 2006),
contain evidence of past genome duplications. How-
ever, polyploidy reaches its zenith in plants, where
50–100% of flowering plants are believed to have a
polyploid ancestry (Goldblatt 1980; Masterson 1994;
Cui et al. 2006; Soltis et al. 2009) and 20–40% of extant
flowering plant species thought to be recent polyploids
(Stebbins 1971). Polyploids often differ markedly from
their progenitors in morphological, physiological, or
life history characteristics (Levin 1983; Ramsey and
Schemske 2002), and these differences may contribute
to the establishment and success of a polyploid species
in novel ecological settings. It is thus hypothesized that
polyploidy may serve as an important mechanism for
ecological diversification, especially in harsh environ-
ments (reviewed in Otto 2007). Despite the fundamental
role of chromosome number change in eukaryotic evo-
lution, probabilistic models describing the evolution of
chromosome number along a phylogeny have not
yet been formulated. Considering the availability of

cytological and phylogenetic data, formal models of
chromosome number evolution could significantly ad-
vance our understanding of the importance of poly-
ploidy and dysploidy in eukaryotic evolution.

The precise inference of polyploidy from cytological
data, particularly ancient polyploidy, is often a chal-
lenging task. Polyploidy is demonstrated by the ob-
servation of multivalents for all or most chromosomes
during meiosis, or when chromosome numbers among
closely related species are entire multiplications of each
other. These methods are mainly applicable to recent
polyploids, rather than ancient ones, as genome rear-
rangements and changes in pairing behavior over time
gradually erase clear signals of genome duplication.
Genomic scans have also been used to search for evi-
dence of past polyploidization by identifying regions
of duplicated gene synteny (Vision et al. 2000; Bowers
et al. 2003; Jaillon et al. 2007) or peaks in the age dis-
tribution of duplicated genes (Lynch and Conery 2000;
Bowers et al. 2003; Blanc and Wolfe 2004; Cui et al. 2006;
Barker et al. 2008). Although these genomic approaches
are powerful, they are confined to species with wholly
sequenced genomes or transcriptomes. Traditionally,
polyploidy within a genus is estimated by evaluating its
chromosome number distribution. Typically, the lowest
haploid chromosome numbers for a genus are assumed
to represent the nonpolyploidized state, termed the
base chromosome number. Species with a chromosome
number approximately twice the base number are
considered polyploids. Different estimates vary with
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regard to the way the base number is determined and
the precise threshold employed (reviewed in Otto and
Whitton 2000). For example, Stebbins (1938) considered
a species polyploid if it has a haploid chromosome num-
ber, which is a multiple (or near multiple) of the lowest
one found in the genus. Clearly, such methods can only
infer recent polyploidization events and do not account
for changes in chromosome numbers that are not due
to polyploidy (i.e., dysploidy). More recently, chromo-
some numbers have been examined in an explicit phy-
logenetic framework. Generally, ancestral chromosome
numbers are reconstructed using the maximum parsi-
mony (MP) principle (Schultheis 2001; Baldwin et al.
2002; Mansion and Zeltner 2004; Guggisberg et al. 2006;
Hansen et al. 2006; Ohi-toma et al. 2006; Timme et al.
2007). Based on this reconstruction, a certain lineage
is inferred to be polyploid if its chromosome number
is larger by a chosen factor than the base chromosome
number.

Although MP has been widely used to infer ploidy
levels and base chromosome numbers, there are signif-
icant drawbacks with this approach. First, all types of
transitions are unrealistically assigned the same weight.
In the MP framework, it is possible to a priori specify
a weight for each transition. However, such weighting
schemes are subjective as there is no way to determine
whether one set of weights is more justified than an-
other, and it is further not clear if polyploidy should
be given the same weight as a gain or a loss of a single
chromosome. Moreover, there is no clear way to specify
these weights as there may be a number of different
routes to transition from one chromosome number to
another (e.g., does a transition from 5 to 13 chromo-
somes involve 1 or 2 polyploidizations?). Second, the
MP method ignores the possibility of multiple or back-
ward transitions, thus systematically underestimating
the number of events. Third, the method ignores any
uncertainty in the assignments of ancestral states. Thus,
unobserved data on internal nodes are treated in exactly
the same way as observed chromosome numbers in
extant species, even though ancestral state estimates
under MP are expected to have wide confidence limits
(Maddison 1995). Fourth, there are often a number of
equally parsimonious reconstructions, each of which
may suggest different evolutionary scenarios. Finally,
there is no way to objectively determine the accuracy
of the reconstruction.

All these problems can be addressed by using a proba-
bilistic approach with an explicit model for the changes
in chromosome number over time. The evolutionary
models developed here assume that such changes are
the result of a combination of polyploidy and dysploidy
events along branches of a phylogeny. The likelihood
approach allows us to determine not only the probabil-
ity of a given chromosome number at any internal node
but also to gain insight into the evolutionary process
itself. Model parameters are estimated from the data
and can be compared across different taxonomic groups.

In this paper, we present a series of likelihood models,
each representing a different hypothesis regarding the

pathways by which the evolution of chromosome num-
ber proceeds. We then use this framework to reconstruct
ancestral chromosome numbers, the base chromosome
number of the group, and to estimate the expected num-
ber of polyploidy and dysploidy transitions that have
occurred. We use simulations to assess the accuracy of
our approach and test its dependence on the number of
taxa examined and on the tree length. Using our new
models, we then re-evaluate data from 4 plant genera
for which chromosome number evolution has previ-
ously been analyzed: Aristolochia (Ohi-toma et al. 2006),
Carex (Hipp 2007), Passiflora (Hansen et al. 2006), and
Helianthus (Timme et al. 2007). Following standard con-
vention, throughout this paper, we refer to x as the base
chromosome number of a lineage, 2n as the chromo-
some number in somatic tissues, and n as the haploid
chromosome number observed in gametes.

METHODS

A Likelihood-Based Model for Chromosome Evolution

Our models of chromosome number evolution are
represented as a continuous time Markov process de-
fined by the instantaneous rate matrix Q. The first model
we consider assumes that in an infinitesimal time inter-
val 3 types of events are possible: polyploidization, a
gain of one chromosome (ascending dysploidy) or a
loss of one chromosome (descending dysploidy). These
factors are captured within the rate matrix Q, which de-
scribes the instantaneous rate of change from a genome
with an i haploid chromosomes to a genome with
j chromosomes. For i /= j, we define:

Qij =






λ j= i + 1,
δ j= i− 1,
ρ j= 2i,
0 otherwise,

(1)

where λ, δ, and ρ are the rates of gains, losses, and poly-
ploidizations, respectively. The diagonal elements are
determined by the constraint that each row in Q sums
to zero:

Qii =−
∑

i 6=j

Qij. (2)

Hereafter, the model parameters are collectively referred
to as θ.

Given the Q matrix, transition probabilities from state
i to state j along a branch of length t can be computed by
matrix exponentiation:

Pij(t) = eQt =
∞∑

m=0

(Qt)m

m!
. (3)

For each value of t, we sum the series until the addi-
tion of another term does not alter the resulting matrix.
The squaring and scaling method (Moler and Van Loan
2003) is used to increase the accuracy of the approxima-
tion in cases where ‖Qt‖ is large.
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It is emphasized that in our model, time reversibility
is not assumed, and hence, the results are conditional on
the location of the root. Furthermore, the model relies
on a given phylogenetic tree, defined by the tree topol-
ogy with its associated branch lengths. For succinctness,
we assume throughout that the tree is fixed and is part
of the data, and we do not refer to it explicitly in the
equations. Note that in our model, the rate matrix is
not normalized (i.e., the average rate of change does not
equal one). Thus, branch lengths may be in any unit pro-
portional to time, with the units of Q being inversely
proportional to this time unit. For example, if branch
lengths in the given phylogeny represent average num-
ber of nucleotide substitutions, then Q will be the rate of
events per nucleotide substitution per site. In this way,
branch lengths from amino acid or nucleotide substitu-
tion units can be transformed to chromosome number
transition units by a factor that determines the ratio be-
tween these 2 units. This factor is assumed to be uniform
across the topology.

Theoretically, the haploid number of chromosomes
within a genome can be any positive integer value.
However, to simplify likelihood calculations, we allow
a total of C states, corresponding to {1, 2, . . . ,C− 1,≥C}
chromosomes. The last state represents all chromosome
numbers equal to or greater than C. We set C to be
large enough that the probability of it being reached is
extremely small, so that the error due to truncation is
negligible. Practically, C is set to be 10 units larger than
the maximal chromosome number observed in the ana-
lyzed family. Larger values of C (such as twice as large
as the maximal chromosome number) gave identical
results.

Likelihood calculations also require the assignment of
root frequencies. A usual choice in likelihood calculation
would be to assume a stationary distribution at the root
(Yang 2006). However, for most Q matrices examined
here, the stationary distribution has all its mass at the
last state C, meaning that the process is still a transient
one from an initially small genome. Thus, we weigh
each root state, R, according to its probability of giving
rise to the extant data, D, given the model parameters, θ
(FitzJohn et al. 2009; see Discussion section). Hence, πi,
the probability that the state at the root is i, is given by
the likelihood of the data given that the root is in state i
divided by the sum of the likelihoods over all states:

πi =
P(D|R= i, θ)

∑C
j=1 P(D|R= j, θ)

, (4)

where P(D|R= i, θ) is the likelihood of the observed data
given that the root is in state i and the estimated model
parameters.

The overall likelihood of the tree is then:

L= P(D|θ) =
C∑

i=1

πiP(D|R= i, θ). (5)

Given a rooted phylogenetic tree and given the assign-
ment of chromosome numbers to extant species, the

likelihood of the data can be calculated using the prun-
ing algorithm of Felsenstein (1981). The model parame-
ters were estimated by maximum likelihood (ML) using
Brent’s optimization scheme (Press et al. 2002). To avoid
getting caught at local maxima, 10 random starting
points were used during the optimization process.

Model Variations

Demi-polyploidization.—The model presented above as-
sumes that the number of chromosomes might in-
crease or decrease by one or might double; we refer
to this model as M1 (Table 1). However, within a
polyploid population, the union of reduced and unre-
duced gametes may generate a new cytotype of higher
ploidy. For example, auto-hexaploids may be produced
from a tetraploid by the union of 2x (reduced) and 4x
(unreduced) gametes (Ramsey and Schemske 1998).
New odd-ploidy cytotypes could also be produced by
this mechanism. For example, it has been suggested that
unreduced gamete production in hexaploid Andropogon
gerardii generated a 9x cytotype (Norrmann et al. 1997).
Hexaploids may also be formed via alloploidy from
hybridization of closely related taxa of 2x and 4x cyto-
types. This process may generate intermediates of odd
ploidy (e.g., 3x), which subsequently produce new even
ploidy 6x cytotypes (Ramsey and Schemske 1998). We
refer to these phenomena as “demi”-polyploidization.
Under this scenario, the Q matrix takes the following
form:

Qij =






λ j= i + 1,
δ j= i− 1,
ρ j= 2i,
μ j= 1.5i,
0 otherwise,

(6)

where μ is the demi-polyploidization rate. The Q matrix
above is valid only for even values of i. For odd values,
we set Qij = μ/2 for the 2 possible adjacent integer val-
ues of j (j = 1.5i rounded up and down). The Q matrix
of Equation 6 leads to 2 additional models. In Model

TABLE 1. Various models for chromosome number evolution

Model Number Parameters Possible events
of pa and model assumptions

M0 2 λ, δ Gains and losses
M1 3 λ, δ, ρ Gains, losses, and polyploidy
M2 3 λ, δ, ρ Gains, losses, demi-polyploidy,

and polyploidy
Rates of polyploidy and

demi-polyploidy are equal
M3 4 λ, δ, μ, ρ Gains, losses, demi-polyploidy,

and polyploidy
M4 5 λ, δ, λl, δl, ρ Gains, losses, and polyploidy

Rates of gain and loss depend
linearly on the current
chromosome number

M5 4 λ, δ, λl, δl Gains and losses
Rates depend linearly on the

current chromosome number

aFree model parameters.
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M2, we assume that the rate of demi-polyploidization
is equal to that of polyploidization (μ is set to equal ρ),
resulting in a model with 3 free parameters: θ={λ, δ, ρ}.
In Model M3, μ is treated as an additional free parameter
(θ = {λ, δ, ρ,μ}). Finally, Models M2 and M3 allow for
a triplication of the chromosome number via a demi-
polyploidization event followed by whole genome
duplication.

Linear dependency on the current number of chromosomes.—
Here, we allow for the possibility that the rates of as-
cending and descending dysploidy depend on
the current number of chromosomes. This dependency
results in Model M4 with 5 free parameters:

Qij =






λ + λl × (i− 1) j= i + 1,
λ + δl × (i− 1) j= i− 1,
ρ j= 2i,
0 otherwise,

(7)

λl and δl are the linear components of the gain and loss
rate, respectively, whereas λ and δ are the correspond-
ing constant factors. The terms λl and δl are multiplied
by (i − 1) so that the rates of ascending and descend-
ing dysploidy are λ and δ, respectively, for species with
one chromosome (i = 1). In Models M1–M3, all para-
meters were constrained to be nonnegative for the Q
matrix to be legitimate. For the linear model, we require
λ + λl × (i− 1) ≥ 0 and δ + δl × (i− 1) ≥ 0 for 0 ≤ i ≤ C.
It is thus possible for λl to be negative, implying that
as the number of chromosomes increases the probabil-
ity of gaining an additional chromosome decreases. We
note that the possibility of demi-polyploidy can also be
integrated into the above model but because none of
the data sets tested supported this extension, we do not
refer to this option in the manuscript.

Null models.—As noted in the Introduction section, one
of our main aims in constructing models for the evo-
lution of chromosome number was to infer the role of
polyploidization in a given clade. A null model, which
does not permit polyploidization, allows statistical test-
ing of the hypothesis that the observed chromosome
number distribution resulted solely from chromosome
gains and losses. This can be modeled by assuming ρ=0
(and μ = 0). As such, Model M0 is treated as the null
model for M1–M3:

Qij =






λ j= i + 1,
δ j= i− 1,
0 otherwise,

(8)

whereas M5 is the null model for M4:

Qij =






λ + λl × (i− 1) j= i + 1,
δ + δl × (i− 1) j= i− 1,
0 otherwise.

(9)

Model Comparison

Table 1 summarizes the assumptions and free param-
eters of all models presented above. As can be seen, not
all models are nested within others (e.g., M2 cannot be
obtained from M4). Thus, we focus on using the Akaike
information criterion (AIC) (Akaike 1974) to determine
the model that best fits a particular data set. In addi-
tion to general model exploration, where we wish to test
whether there is significant evidence for polyploidiza-
tion, the likelihood ratio test (LRT) can be used to com-
pare nested models with and without the possibility of
polyploidy (i.e., M0 vs. M1 or M2; M5 vs. M4). Because
the null models represent boundary conditions (setting
ρ and μ to 0), the asymptotic distribution of the LRT
statistic, 2ΔlogL, is approximately distributed according

to χ
2
1+χ2

0
2 (Ota et al. 2000).

Inferring Ancestral States

Two methods were used to reconstruct the chromo-
some numbers at ancestral nodes. First, the joint ML
reconstruction of ancestral states was inferred using the
dynamic algorithm of Pupko et al. (2000). This method
infers the set of ancestral chromosome numbers that
maximize the likelihood of the data (the assignment of
chromosome numbers to extant taxa) given the phy-
logeny. Second, a Bayesian approach similar to that of
Koshi and Goldstein (1996) was used to obtain, for any
ancestral node V, the probability of each chromosome
number occurring at that node:

P(V = x|D, θ) =
C∑

y=1

P(V = x, F(V) = y|D, θ), (10)

where P(V=x, F(V)=y|D, θ) is the joint probability that
the chromosome number assignment at node V is x and
the assignment at the parent of node V (closer to the
root) is y, given the data and model parameters. Because
our model is irreversible, likelihood calculations depend
on the assignment at the root. See Stern et al. (2010) for a
description on how to obtain P(V = x, F(V) = y|D, θ) for
irreversible models.

Calculating the Expected Number of Events

The likelihood framework allows us to compute
the expected number of events along each branch
of the phylogeny. Here, we consider 4 types of events:
polyploidization, demi-polyploidization, ascending
dysploidy, and descending dysploidy. In general, the
expected number of transitions from state u to state
v along a certain branch can be calculated using the
following formula:

E(Nuv(AB)|D, θ) =
C∑

y=1

C∑

z=1

P(A= y,B= z|D, θ)

×E(Nuv(AB)|A= y,B= z, θ), (11)
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where AB is a branch that starts at node A and ends
at node B, and the double summation is taken over all
possible state combinations at both branch terminals.
The left term of the summation (the joint probability
of observing states at the tips of a branch given the
data) is calculated as in Equation 10. The right term
of the summation, the expected number of transitions
given the terminal states at the tips of a branch, was
calculated using simulations (see Stern et al. 2010, for
details).

To calculate the number of events of a certain type, we
sum over all relevant transitions. For example, to cal-
culate the expected number of polyploidization events
along branch AB we sum over all u,v, such that v= 2u:

E(Nuv(AB)|D, θ) =
∑

u∈{1,...,C},v=2u

E(Nuv(AB)|D, θ). (12)

The computation is similar for the expected number
of gains (v = u + 1), losses (v = u − 1), and demi-
polyploidization events (v = 1.5u). The total number of
transitions of a certain type throughout the phylogeny
is summed over all branches:

E(Nuv(tree)|D, θ)=
∑

branch∈tree

(E(Nuv(branch)|D, θ)) (13)

Assessing Accuracy via Simulations

Simulations were used to investigate the accuracy of
our method with regard to 3 attributes: 1) ancestral state
reconstruction, 2) inference of model parameters, and
3) estimation of the expected number of transitions of
a certain type. Simulated data were prepared by mod-
eling the evolutionary process given a fixed tree and a
given set of model parameters. The simulations were
performed using the embedded-discrete-time Markov
chain of the rate matrix Q (i.e., the waiting time at state
i is exponentially distributed with rate −Qii and given
that a change has occurred, the probability to jump to
state j is−Qij/Qii). In this way, we recorded, for each tree
node, the simulated (“true”) state and the evolutionary
path leading to it from its parent node (e.g., the number
of polyploidizations along that branch). The resulting
chromosome numbers at the tips of the tree were used
as the data input to our method. Model parameters, an-
cestral states, and expected number of transitions were
then inferred and compared with the simulated values.

Random trees were generated according to a birth–
death process using the Mesquite program (Maddison
W.P. and Maddison D.R. 2008) with default parameters
(speciation rate 0.3 and extinction rate 0.1). Simulation
scenarios varied with respect to the number of taxa
available (10, 20, 30, 40, 50, and 60) and the evolution-
ary distance from the root to the tips (0.05, 0.1, 0.2, 0.4,
and 0.8). All simulations were conducted under Model
M1 with parameters θ = {λ = 1, δ = 1, ρ = 1} and M2:
θ={λ=1, δ=1, ρ=1,μ=1}. For each simulated scenario,
100 independent runs were conducted. The results ob-
tained under the M1 and M2 models were qualitatively

similar, and we thus report only those obtained under
M1. To verify that our simulations are not biased be-
cause of the arbitrary way parameters and trees were
generated, simulations were also performed based on
empirical trees and parameter values. The results of
these sets of simulations largely agree with those of the
random trees (see supplementary materials available
from http://www.sysbio.oxfordjournals.org).

Implementation and Availability

The models and inference methods described here
were implemented in C++. The program and source
codes are available at http://www.zoology.ubc.ca/prog/
chromEvol.html. The obligatory inputs to the program
are a tree file in a Newick format and a file contain-
ing chromosome numbers for extant taxa in a FASTA
format. The program allows users to run all models at
once or to specify a single model. For each model, the
parameters are estimated, ancestral states are inferred
using the ML and Bayesian methods, and an estimation
of the number of events along each branch is given.

RESULTS

Assessing Accuracy Using Simulations

Accuracy of ancestral reconstruction.—Simulations were
used to investigate the accuracy of our method in re-
constructing the true ancestral chromosome numbers
as a function of the number of taxa available and with
different tree lengths, t (defined as the distance from the
root to the tips). We first focus on the ML reconstruction
of the most likely set of ancestral chromosome numbers.
Figure 1a shows the absolute difference between the
true chromosome number and the ML inferred value at
the root of the tree as a function of the number of avail-
able taxa. As expected, accuracy increases when more
taxa are available. In addition, when the evolutionary
distance between taxa is short, the reconstruction is very
accurate; in other words, when few events occur related
species tend to be in the same state and reconstructions
are easier. It is expected that for trees with larger evo-
lutionary distances accuracy will decline. Indeed, for
the longest trees examined (root to tip distance 0.8),
the average difference between the true chromosome
number at the root and the inferred one was 1.98 for 10
taxa and 0.75 for 60 taxa; these trees corresponded to an
average of 10 and 34 transitions of the 3 types allowed
(polyploidization, ascending dysploidy, or descending
dysploidy). Thus, fairly accurate reconstructions are ob-
tained for even the longest trees examined. Figure 1b
presents the accuracy of the ML reconstruction for all
ancestral nodes of the tree, including the root. Notice-
ably, the average error associated with all internal nodes
is much smaller than that of the root simply because
of the increased certainty nearer the present. In all sim-
ulations considered, the average difference between
the true and reconstructed ancestral nodes was less
than 0.85.

http://www.sysbio.oxfordjournals.org
http://www.zoology.ubc.ca/prog/chromEvol.html
http://www.zoology.ubc.ca/prog/chromEvol.html
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FIGURE 1. Accuracy of ancestral state reconstruction. Error of ML reconstruction of the chromosome number at the a) root only and b) all
ancestral nodes (error is computed as the absolute difference between the true chromosome number and the ML inferred value). The probability
of obtaining the true chromosome number at the c) root only and d) all ancestral nodes. Several different tree lengths (as measured by the
distance from root to tips) are plotted as indicated in the legend inside panel b.

Our reconstruction method allows us to estimate not
only the most likely chromosome number existing at an
ancestral node but also the probability of each possible
chromosome number at that node. Figure 1c presents
the average probability assigned to the true ancestral
chromosome number at the root. For all simulation con-
ditions, the probability of the correct root chromosome
number was significant and higher than 0.5 for all but
the longest trees with few taxa (t = 0.8, 10–30 taxa).
Again, the average accuracy for all ancestral nodes was
higher than that for the root node only. Noticeably, the
average probability of the true chromosome numbers is
higher than 0.7 for all simulations examined (Fig. 1d).
As may be expected, the standard deviation (SD) around
these average probabilities decreased with inference ac-
curacy, especially when shorter trees are simulated. For
example, whereas the SD for the root node was 0.45 for t
= 0.8 and 10 taxa, it decreased to 0.17 for t = 0.05. The SD
for all simulations is given in supplementary materials.

Accuracy of parameter estimation.—Besides reconstruct-
ing ancestral states, it is useful to examine the accuracy
of the method in estimating the model parameters.
Figure 2 presents the average and standard error for
the inferred rate of polyploidy, ρ, for various numbers
of taxa and tree lengths. As can be seen, the average
inferred rate was generally close to the simulated value.

For shorter trees (length from root to tips 0.05 or 0.1),
the variance of the estimated parameter was relatively
large. This was particularly true when few taxa were
available. For example, with 10 taxa and a tree length
of 0.05, either zero or one genome duplication events
occurred in the simulations, with an average number
of duplications of 0.2. The estimated rate of polyploidy
then either approached zero or rose above 4. In such
cases, estimating the true value of the parameter cannot
be expected, and it is more informative to test infer-
ence accuracy with regard to the number of transitions
that took place (see below). Estimating polyploidiza-
tion rate was particularly accurate when several ploidy
events have occurred. As can be seen, for longer trees (or
shorter ones with a large number of taxa), the average
inferred ρ parameter was very close to the simulated
one and had a small standard error.

Accuracy of estimating the number of events.—As detailed
in the Methods section, we can infer the expected num-
ber of each transition type along every branch of the
tree. Here, we focus on the expected number of transi-
tions across the whole phylogeny and compare this to
the total number of transitions that took place in the
simulations. As can be seen in Figure 3a, for all but the
very largest trees, the true number of duplication events
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FIGURE 2. Accuracy of the inferred polyploidization rate para-
meter ρ. The average value of ρ and the standard error are shown as
a function of the number of simulated taxa for different tree lengths:
a) 0.05, b) 0.1, c) 0.2, d) 0.4, and e) 0.8. The true parameter value in the
simulations was ρ= 1 (solid line).

can accurately be inferred. When branch lengths were
short, our method precisely inferred the true number
of duplications. For example, simulating 60 taxa with
root to tip length of 0.05, the absolute difference between
the inferred numbers of duplications and the simulated
number of duplications was less than 0.18 for all 100
simulation runs (with 0, 1, 2, 3, and 4 duplication events
occurring in 57, 29, 11, 1, and 2 runs).

Inference inaccuracies were more evident for longer
trees with few taxa. When the simulations included 10
taxa with root to tip length of 0.8, the method tended
to underestimate the true number of duplications (aver-
age difference between the inferred and the simulated

number of duplications −0.25). In such a scenario, the
tree has a few long branches leading to homoplasy due
to polyploidizations on multiple branches. This, in turn,
leads to higher inferred chromosome numbers at ances-
tral nodes and to a lower overall number of estimated
transitions. When more taxa are available, the prediction
becomes more accurate as convergent evolution events
can be more readily detected.

It is expected that the difference between the inferred
and the true number of events will increase with the
number of events that truly happened (e.g., detecting all
polyploidization events is easier when only one event
truly happened compared with 10). To account for this
bias, we also computed the relative error of prediction,
defined as

|NPP − N̂PP|
ρ
∑

b∈tree Lb
, (14)

where NPP and N̂PP are the true and estimated number
of polyploidization events, Lb is the length of branch b,
and the sum is over all branches of the tree multiplied
by the true polyploidization rate. The denominator rep-
resents the expected number of events along a given tree
and is used instead of the true number (Npp) due to the
occurrence of zero events in some simulation runs. The
relative error for the number of gains and losses was
similarly computed. Figure 3b presents the relative er-
ror of the number of polyploidizations versus the total
tree length for different numbers of simulated taxa. As
can be seen, the relative error of prediction was simi-
lar for different tree lengths and for different numbers
of taxa. Two exceptions are noticeable. First, for short
trees, the relative errors were exceptionally small. This
is because few events of any type occurred. Second, as
may be expected, the relative error was larger for trees
with only 10 taxa. In such cases, the relative error tended
to increase with the tree length. As noted above, this is
the result of homoplasy and multiple transitions taking
place on long branches. Inferring the correct number of
transitions is particularly challenging in such cases.

Figure 3c,d present the relative error when estimat-
ing the number of dysploidy transitions. In general, the
error in the estimation of the number of polyploidiza-
tion events was smaller than that of ascending or de-
scending dysploidy. This is expected as the influence
of a polyploidization event is large compared with a
change of a single chromosome and can thus be more
easily detected.

Biological Data Sets Analyzed

We exemplify the use of the probabilistic method to
re-evaluate data from 4 plant genera for which chromo-
some number evolution has previously been analyzed.
Table 2 lists the number of taxa, the total tree length,
and the range of chromosome numbers observed in each
data set. Table 3 presents the AIC score of each data set
under the 6 chromosome evolution models developed
here. The ML ancestral reconstructions under the best
fitting model are given in supplementary materials.
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FIGURE 3. Accuracy of the inferred number of transitions. a) The average absolute difference between the estimated number of polyploidiza-
tion events and the true number as a function of the number of taxa for different tree lengths as specified in the legend. b–d) The relative error
of inference, as defined in Equation 14, for the number of b) polyploidizations, c) single chromosome gains, and d) single chromosome losses is
plotted as a function of the total tree length (sum over all branches). From left to right, the 5 dots along the line correspond to root to tip length
of 0.05, 0.1, 0.2, 0.4, and 0.8. The legend inside panel b specifies different number of simulated taxa and applies also to panels c and d.

Aristolochia.—The genus Aristolochia s.l. contains more
than 400 species from warm temperate to tropical re-
gions worldwide. Ohi-Toma et al. (2006) presented a
molecular phylogeny of the genus based on nucleotide
sequences of the chloroplast rbcL and matK genes (Tree-
Base study accession S1531). The study of Ohi-toma
et al. (2006) also includes chromosome numbers for 15
and 78 species present in the rbcL and matK phyloge-
nies, respectively. Their results indicated that the genus
can be divided into 2 subtribes: Aristolochiinae and
Isotrematinae. In their study, 5 different chromosome
numbers were observed (n = 3, 6, 7, 8, and 16), which
were predominantly congruent with the phylogeny:
the Aristolochiinae clade shows chromosome numbers
of n = 3, 6, 7, or 8, whereas the Isotrematinae clade is
characterized by n= 16.

We used our models to analyze the distribution of
chromosome numbers in the genus using the rbcL and

TABLE 2. Biological data sets examined

Data set Number of taxa Total tree length Chromosome
numbers range

Aristolochia
matk 78 0.54 3–16
rbcL 15 0.11 3–16

Carex 53 16.3 26–43
Passiflora 58 0.61 6–12
Helianthus 107 0.86 17–51

matK gene trees. Despite the difference in the amount
of data present in the 2 gene trees, the results are
highly congruent. In both cases, M1 is the best sup-
ported model (Table 3). The data strongly support the
occurrence of polyploidization in this genus with large
differences in AIC scores between the models with and
without polyploidization (ΔAIC between M1 and M0 of
31.4 and 11.4 for matK and rbcL gene trees, respectively;
nonparametric bootstrap p value <0.005). In contrast,
our analysis provides no support for the occurrence
of demi-polyploidization events with the estimated
demi-polyploidization rate in Model M3 approaching
zero. Ancestral state reconstruction strongly supports
n = 8 at the root of Aristolochia s.l. with probability
of 0.98, followed by a decrease of one chromosome
along the branch leading to Aristolochiinae (probability
of 0.97 for n = 7 in both gene trees). The model pre-
dicts one polyploidization event in the genus (expected
numbers of polyploidizations across the whole matK
and rbcL gene trees were 1.01 and 1.06, respectively).
This polyploidization most certainly occurred along
the branch leading from the root to the Isotrematinae
clade (expected number of polyploidizations along this
branch was>0.97; probability for n=16 was>0.95 at the
base of the Isotrematinae clade). This polyploidization
event is also supported by the existence of 2 paralo-
gous phyA gene copies in several species belonging to
the Isotrematinae clade but a single phyA gene copy
in species of the Aristolochiinae clade (Ohi-toma et al.
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TABLE 3. AIC scores and parameter estimates for the biological data sets examineda

Data set M0 M1 M2 M3 M4 M5 Best model parameters

Aristolochia
matk 105.5 74.1 75.5 76.1 76.1 104.8 M1 : λ= 2.2, δ= 14.4, ρ= 1.9
rbcL 73.0 61.6 62.8 63.6 63.1 75.9 M1 : λ= 16, δ= 84, ρ= 10

Carex 309.6 311.6 311.6 313.6 306.6 304.6 M5 : λ= 70, δ= 52.4, λl =−0.8, δl = 1.2
Passiflora 59.3 61.3 59.7 61.0 65.1 63.1 M0 : λ= 0, δ= 23.4

M2 : λ= 1.7, δ= 0, ρ= μ= 5.0
Helianthus 1158 637 208 210 633 1162 M2 : λ= 0, δ= 0, ρ= μ= 14.5

aBold type indicates model with best AIC score.

2006). The model further predicts that across the whole
tree chromosome number more often decreases than
increases (∼1.5 expected number of single chromosome
increases vs. ∼8 decreases).

Carex section ovales.—The sedge genus Carex L. is one
of the most species rich of angiosperm genera, with
2000 species worldwide. Carex have unusually diverse
chromosome numbers with every number from n= 6 to
n = 47 represented by at least one species, with several
counts as high as n= 66 (Hipp 2007). Sedges are charac-
terized by holocentric chromosomes that lack localized
centromeres. As a consequence, chromosome fragments
that arise segregate normally and result in viable ga-
metes that may become stabilized through backcrossing
or selfing. Thus, fission and fusion events are very com-
mon in this group, whereas polyploidization is thought
to be rare (reviewed in Hipp et al. 2009).

Here, we investigated chromosome evolution in Carex
section Ovales, the most species-rich section of the genus
Carex in the New World using the phylogeny and chro-
mosome data presented in Hipp (2007). For all model
variants, the inferred polyploidization rate approaches
zero, with high rates of dysploidy transitions. Accord-
ingly, in all comparisons (M0 vs. M1, M2, or M3; M5 vs.
M4), the null hypothesis of no polyploidization cannot
be rejected. According to the AIC selection criterion, M5
is the best supported model, indicating that the rates
of gains and losses are dependent on the current chro-
mosome number. Our ancestral reconstruction predicts
that the likely ancestral chromosome number of this
section is x = 61 (with C = 63 being the largest chromo-
some number allowed), with probability of 0.98 that it
is 50 or higher. Notably, this number of chromosomes
is higher than those observed in this clade, suggesting
that, at least in this section, chromosome evolution has
proceeded from higher to lower numbers. This result is
consistent with the analysis of Hipp et al. (2007). That
study classified taxa within the ENA clade of the Ovales
section as having “low,” “medium,” or “high” chromo-
some numbers. Then, an MP-based reconstruction was
performed, and the number of the common ancestor
was inferred to have been high.

Passiflora.—The tropical genus Passiflora L. contains
more than 530 species and is widely distributed from
southern Argentina into southern United States with
an additional 20 species restricted to the Old World.
The species in the genus span a variety of life history

strategies (weedy colonizers of secondary vegetation to
the large canopy lianas of primary forests). The chro-
mosome number distribution is highly congruent with
the phylogeny. The 2 largest lineages in the genus are
Decaloba and Passiflora with typical chromosome num-
bers of n = 6 and n = 9, respectively, whereas 2 smaller
subgenera (Astrophea and Deidamioides) have a haploid
number of n = 12. The base chromosome of the genus
is controversial, being proposed at x = 6, 9, 10, or 12
(de Melo and Guerra 2003). Hansen et al. (2006; Tree-
Base study accession S1330) constructed a Bayesian
phylogeny of the genus based on molecular chloroplast
data for 61 species for which 58 have known chromo-
some numbers. They then employed a MP methodology
(giving all transition types equal weights) to reconstruct
ancestral chromosome numbers. The authors hypothe-
sized a chromosome number of x= 12 at the base of the
genus. This placement implies descending dysploidy
(from 12 to 6 and 9) with no polyploidization events in
the species analyzed.

Using the probabilistic models developed here, we re-
examined chromosome number evolution in the genus
based on the consensus Bayesian tree and chromosome
numbers as used by Hansen et al. (2006). Using the AIC
criterion, the best supported models are M0 (which al-
lows only for gains and losses of single chromosomes)
and M2 (which allows also for demi- and polyploidizati-
ons), with no power to support one over the other (Δ
AIC of 0.4 between the 2 models). Notably, chromosome
number evolution in Passiflora is highly different under
the 2 models (see supplementary materials, available
from http://www.sysbio.oxfordjournals.org/). Under
M0, the predicted base chromosome number is x = 12
with probability of 0.98. The only possible type of event
is descending dysploidy with around 14 expected single
chromosome decreases across the whole tree. In con-
trast, under M2, x = 6 is highly supported as the base
chromosome number of the genus with probability of
0.99. This is followed by approximately 4 polyploidiza-
tion events along the branches leading to the n = 12
groups and approximately 2 demi-polyploidization
events along the branches leading to the n = 9 sub-
genera and to Passiflora microstipula (n = 9), within the
subgenus Decabola. In light of the completely different
possible reconstructions, we conclude that more data,
in terms of broader sampling of chromosome numbers,
are necessary to infer with confidence the probable evo-
lutionary paths in the genus (but see Discussion section
for violation of the models assumptions).

http://www.sysbio.oxfordjournals.org
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Helianthus.—The sunflower genus, Helianthus, has
become a model organism for studying diploid and
polyploidy speciation. Thirteen species of the genus
are known to be polyploid, although it is currently
unknown which polyploid species are autopolyploids
and which are allopolyploids. Timme et al. (2007) cre-
ated a high-resolution phylogeny of Helianthus based
on the external transcribed spacer region of the nu-
clear 18S–26S ribosomal DNA region. We have used
the chromosome numbers and phylogeny reported
in Timme et al. (2007) to study chromosome number
evolution in this genus. Three haploid chromosome
numbers are present in the phylogeny: n = 17, 34, and
51. The best supported model is M2 suggesting that
both demi- and polyploidization events have occurred
in the evolution of this family with rates of chromo-
some gain and loss approaching zero (Table 3). This
model is much better supported than M1, which as-
sumes that demi-polyploidization is not possible or M0,
which does not allow for any polyploidization type
(ΔlnL = 214 and 476 between M2 vs. M1 and M2 vs.
M0, respectively). Furthermore, the difference in lnL
between Models M2 and M3 is marginal, meaning that
the rates of polyploidization and demi-polyploidization
are approximately equal in the genus. Our ancestral re-
construction places x = 17 at the root of the genus with
probability approaching 1.0. Moreover, chromosome
assignments to all ancestral nodes are either 17 or 34,
meaning that the demi-ployploidization events leading
to n = 51 occurred only along terminal branches, pos-
sibly suggesting a lower speciation rate following such
an event.

DISCUSSION

Understanding the role of polyploidy in evolution
has been a long standing interest (Stebbins 1938; Grant
1963; Levin 1983; Masterson 1994). The models pre-
sented here provide a much needed tool to elucidate the
evolution of eukaryotic chromosome numbers. In par-
ticular, the likelihood models are the first to provide an
explicit probabilistic framework for estimating rates of
chromosome number change, polyploid incidence, and
the reconstruction of ancestral chromosome numbers
and ploidy levels. A significant advance over previous
methods of estimating chromosome number evolution
is that the likelihood method allows hypothesis testing
and provides a measure of confidence in the results.
The computed probabilities for ancestral states are espe-
cially critical for estimates of base numbers, which have
often been inferred without an explicit statistical frame-
work. The simulation results showed that our models
are useful with realistic sample sizes and may readily
be applied to a large collection of cytological and phylo-
genetic data available in the literature. Combined with
other sources of data, such as genomic inferences of
paleopolyploidy, these models provide a foundation for
making broad comparisons of chromosome evolution
across eukaryotes.

Our simulation results demonstrated that a relatively
small set of taxa is sufficient for an accurate inference
of ancestral chromosome numbers and of the number
of ploidy transitions. The exception would be when
the divergence times between species are relatively
long coupled with insufficient sampling (i.e., a small
number of taxa with large branch lengths). Given the
availability of cytological data, especially for plants
(Goldblatt and Johnson 1979), obtaining a sufficiently
diverse sample is not an insurmountable obstacle. Our
statistical framework also allows for models with in-
creasing complexity to be applied when more data are
available. For example, the dependence between the
dysploidy rates and the current chromosome number
may be examined in large data sets where the additional
parameters are more accurately inferred. Similarly, the
rate of demi-polyploidization (e.g., a transition from
tetraploidy to hexaploidy) can be distinguished from the
polyploidy rate using a model with an additional free
parameter.

In most examples studied here, we assumed that each
species possesses a single cytotype. In reality, poly-
morphism may be present such that different chromo-
some numbers may be treated as different haplotypes
segregating within the population. Such intraspecific
polymorphism can be accommodated in the likelihood
approach presented here by treating the current state as
a vector of probabilities for each chromosome count.

The models developed do not include the possibil-
ity of polyploidy reversals. Although a transition from a
polyploid taxon to a diploid one (a process termed poly-
haploidy) can easily be integrated into our models by
an additional rate parameter, such a model was not pre-
sented. As reviewed by Ramsey and Schemske (2002),
polyhaploid mutants do occasionally occur, but their
chance of survival and establishment is particularly
low. Thus, polyploidization is regarded as a largely irre-
versible process leading to an increase in ploidy levels
over time (e.g., Meyers and Levin 2006 and references
within). This is especially likely to be the case among
long established polyploids, which do not necessar-
ily contain 2 complement diploid gene sets (Scannell
et al. 2006; but see Gerstein et al. 2006). Nevertheless,
our model accommodates the reduction of chromosome
number to prepolyploidization levels via several rounds
of chromosome losses.

When calculating the overall likelihood of the data
given a phylogenetic tree and parameter estimates, the
probability distribution of the states at the root needs
to be specified. In the current implementation, the root
frequencies are determined according to their probabil-
ity of giving rise to the observed data. Alternatively, the
root frequencies may be treated as additional free pa-
rameters and estimated using ML. However, this will
always result in the most likely chromosome number
having probability 1, and all the others having proba-
bility 0. Another possibility is to set the root frequencies
as the equilibrium distribution of the Markov process.
This implies that the process of chromosome evolution
has reached stationarity and that it has evolved over a
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sufficient amount of time, which is generally not valid
for chromosome count data (Meyers and Levin 2006).

In addition, the method developed here assumes
that the phylogenetic tree is known with certainty. One
could, however, account for phylogenetic uncertainty
by applying the method to a set of trees, for example,
those generated using either a Bayesian analysis or a
bootstrap approach. The set of likelihood models should
then be optimized separately for each tree. The model
that best fit a particular tree should be used to com-
pute ancestral chromosome numbers and the number
of ploidy shifts. Thus, a distribution of AIC scores for
each model would be generated as well as additional
distributions for ancestral states and the number and
location of ploidy shifts. This approach should result
in a more robust inference given phylogenetic uncer-
tainty and can assess whether the results are sensitive
to specific branches of the phylogeny that are poorly
resolved.

The models presented here assume “time-
homogeneity”; the transition matrix Q is the same across
all parts of the phylogeny. A more realistic approach
may be to consider certain branches as hot spots for
polyploidization, whereas the polyploidization rate in
other parts of the tree would be lower. Rate heterogene-
ity can be represented by a branch model (e.g., Yang
1998), where one subclade of the phylogeny displays
one certain pattern (e.g., low polyploidy rate), whereas
the second subclade another (e.g., high polyploidy rate).
Alternatively, the rate of polyploidy may switch several
times between high and low values. Such heterotachy
can be accommodated using 2 (or more) sets of rate
parameters and an additional free parameter spec-
ifying the transition rate between the 2 rate classes
(Galtier 2001). Such a model may be appropriate if, as
hypothesized by Grant (1981), chromosome number
increases due to polyploidy limit subsequent genome
doubling. Accordingly, following a polyploidization
event, a lineage may enter a state that inhibits further
polyploidization but may switch back to a state more
tolerable to polyploidization at a later stage. On the
other hand, our inability to distinguish between the
various models fitted to the Passiflora data set might
be due to violation of the time-homogeneity assump-
tion. In Passiflora, changes in chromosome number seem
to occur mostly at deeper nodes of the phylogeny with
near homeostasis of chromosome number in the 2 major
lineages of the genus (Passiflora having chromosome
numbers of n = 9 for all species and Decaloba having
chromosome numbers of n = 6 for all species but one).
Certainly, exploring rate heterogeneity is a good direc-
tion for future work.

Ideally, we would like to track evolutionary changes
not only in chromosome numbers but also in ploidy
levels using a 2 character-state model (chromosome
number and ploidy). This would allow us to differenti-
ate between 2 different kinds of demi-polyploidization
events: those leading to odd ploidy levels and those
leading to even ones. For example, a diploid species
with n = 12 chromosomes would become a triploid

(odd ploidy level) after a demi-polyploidization event,
whereas a tetraploid species with n = 12 chromosomes
would become a hexaploid (even ploidy level). Tran-
sitions leading to odd ploidy levels (e.g., from di- to
triploid) are considered to be far more transient than
transitions to even ploidy levels, reducing the rate of
successful demi-polyploidization events of this type.
The development of a 2 character-state model is another
important future direction.

In the current implementation, changes in chromo-
some number are assumed to occur gradually and in
proportion to the time available for change. Hence,
changes at or near speciation events (i.e., internal nodes)
are not assumed more likely than anywhere else along
the phylogeny. Because shifts in karyotype are often
assumed to be associated with diversification, it may
be reasonable to limit their occurrence to internal nodes
rather than to be homogenous along the branches of
the tree. In such a speciational change model (Mooers
et al. 1999), the distance between taxa is proportional
to the number of speciation events between them. A
third possibility would be to combine the gradual and
speciational change models. A fraction of chromosomal
shifts may correlate with speciation, whereas another
would be in proportion with time, representing tran-
sitions due to polyploid series segregating within a
population. This, in turn, may allow examining the in-
terplay between speciation and polyploidization within
a phylogenetic framework. Again, this is a promising
future direction.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at: http://www
.sysbio.oxfordjournals.org/.
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