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Summary

� Chromosome number is a central feature of eukaryote genomes. Deciphering patterns of

chromosome-number change along a phylogeny is central to the inference of whole genome

duplications and ancestral chromosome numbers. CHROMEVOL is a probabilistic inference tool

that allows the evaluation of several models of chromosome-number evolution and their fit to

the data. However, fitting a model does not necessarily mean that the model describes the

empirical data adequately. This vulnerability may lead to incorrect conclusions when model

assumptions are not met by real data.
� Here, we present a model adequacy test for likelihood models of chromosome-number evo-

lution. The procedure allows us to determine whether the model can generate data with simi-

lar characteristics as those found in the observed ones.
� We demonstrate that using inadequate models can lead to inflated errors in several infer-

ence tasks. Applying the developed method to 200 angiosperm genera, we find that in many

of these, the best-fitting model provides poor fit to the data. The inadequacy rate increases in

large clades or in those in which hybridizations are present.
� The developed model adequacy test can help researchers to identify phylogenies whose

underlying evolutionary patterns deviate substantially from current modelling assumptions

and should guide future methods development.

Introduction

Chromosome number is widely recognized as a key feature of
eukaryote genomes. Its popularity in cyto-taxonomical and evo-
lutionary studies has been attributed to its ability to provide a
concise description of the karyotype, the ease by which it can be
recorded, and its stable phenotype across repeated measurements.
Processes that lead to changes in chromosome numbers have
direct consequences on central evolutionary developments related
to reproductive isolation and speciation, thus providing impor-
tant information for species determination and phylogenetic rela-
tionships (Guerra, 2008; Weiss-Schneeweiss & Schneeweiss,
2013). Although chromosome numbers generally exhibit strong
phylogenetic signal (e.g. Vershinina & Lukhtanov, 2017; Carta
et al., 2018), they also are highly dynamic. This variability has
been particularly well acknowledged in plants, with counts rang-
ing from n = 2 to n = 720 (Khandelwal, 1990; Ruffini
Castiglione & Cremonini, 2012), and records showing
intraspecific variation in 23% of angiosperm species (Rice et al.,
2015). Understanding the underlying processes that gave rise to
these changes allows inference of major genomic events that have
occurred in the history of a clade of interest and the processes that
have shaped its diversification.

Of the various mechanisms underlying chromosome-num-
ber change, polyploidy, or whole genome duplication (WGD)
has received significant attention because of the profound
impacts such an event has on the organism. Polyploids often
differ markedly from their progenitors in morphological,
physiological or life-history characteristics, which may con-
tribute to their establishment in novel ecological settings
(Stebbins, 1971; Levin, 1983; Ramsey & Schemske, 2002;
Soltis et al., 2007; Leitch & Leitch, 2008; Ramsey & Ram-
sey, 2014; Spoelhof et al., 2017; Rice et al., 2019). Poly-
ploidy is thus recognized as one of the major processes that
has driven and shaped the evolution of higher organisms. A
more subtle change in chromosome number is dysploidy,
leading to step-wise changes in the number of chromosomes,
but typically this does not immediately alter the genomic
content. Dysploidy occurs via several types of genome rear-
rangements, leading to ascending or descending dysploidy
through chromosome fission or fusion (Weiss-Schneeweiss &
Schneeweiss, 2013). Deciphering the pattern of chromosome-
number change within a clade allows inference of the number
and type of transitions that have occurred along branches of a
phylogeny, estimation of ancestral chromosome numbers and
categorization of extant species as diploids or polyploids.
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In the last decade, several tools that infer changes in chromo-
some numbers along a phylogeny were developed (Mayrose et al.,
2010; Hallinan & Lindberg, 2011; Glick & Mayrose, 2014;
Freyman & Höhna, 2017; Zenil-Ferguson et al., 2017, 2018;
Blackmon et al., 2019). Among these, the CHROMEVOL probabilis-
tic framework (Mayrose et al., 2010) was the first to incorporate a
continuous time Markov process that describes the instantaneous
rate of change from a genome with i haploid chromosomes to a
genome with j haploid chromosomes via specific types of dys-
ploidy and polyploidy transitions. Further development of this
framework allowed for more intricate types of chromosome-num-
ber transitions (Glick & Mayrose, 2014), to differentiate between
transitions that coincide with speciation events and those that
occur continuously in time along branches of the phylogeny
(Freyman & Höhna, 2017), and to associate patterns of chromo-
some-number change with the evolution of a discrete character
trait (Zenil-Ferguson et al., 2017; Blackmon et al., 2019).

In the CHROMEVOL model, each type of transition is represented
by a parameter describing its rate of change. The inclusion (or
exclusion) of different parameters entails different hypotheses
regarding the pathways by which the evolution of chromosome
number proceeded in the clade under study. In a regular applica-
tion of the CHROMEVOL framework, a model selection procedure
is first employed in which different models are fitted to the data
and the best one is chosen by comparing the relative fit of each
model to the data at hand. This can be done using a number of
alternative model selection criteria, such as the likelihood ratio
test or Akaike Information Criterion (AIC; Akaike, 1974). In
reality, however, no empirical dataset will meet all ofthe assump-
tions of any model and thus relying on the best model (or set of
models) may be vulnerable to incorrect conclusions in datasets
whose underlying evolutionary process deviate substantially from
current modelling assumptions (Brown & Thomson, 2018). Such
instances could be identified using a model adequacy analysis that
simulates datasets under a specified model and tests whether the
generated data are similar to the data at hand. Although the gen-
eral model adequacy procedure is well-developed (reviewed in
Brown & Thomson, 2018), the comparison between the empiri-
cal and simulated data is not trivial and should reflect the speci-
ficities of the type of data analyzed. Here, we develop a model
adequacy test that allows us to determine whether a given model
of chromosome-number evolution provides a realistic description
of the evolutionary process for reliable inferences.

Several assumptions made by existing models of chromosome-
number evolution may be violated when empirical data are ana-
lyzed. For example, all models rely on a memory-less Markovian
process, in which the transition rates are dictated only by the cur-
rent number of chromosomes of the lineage. Thus, for example,
the transition rate from n = 10 to n = 9 is not affected by the
duration of time for which the lineage possessed 10 chromo-
somes, nor by the sequence of events that had led to it. However,
because rates of descending dysploidy may increase following
WGD (Wood et al., 2009; Wendel, 2015; Soltis et al., 2016),
the transition from n = 10 to n = 9 is more probable if n = 5
was the ancestral state compared to n = 11. Additionally, most
models assume that the transition rates are similar across the

phylogeny, although in practice the transition patterns may be
rather different in some subclades compared to others, as has
been demonstrated, for example, in Cyperaceae (Márquez-Corro
et al., 2019). Finally, all current models are based on a phyloge-
netic structure and thus ignore the possibility of hybridizations.
Notably, allopolyploidy, one of the main types of polyploidy, is
defined by such reticulate evolutionary events and the biases
caused by their presence is rather unexplored.

One aspect of understanding the reliability of a model and
interpreting its results is to quantify its adequacy for the data and
the question at hand. The aim of model adequacy tests is to
determine the absolute fit of a model to the data, rather than to
compare its relative fit among a set of models. With some varia-
tions, the general procedure of such tests is composed of several
steps: first, given an empirical dataset, obtain the best-fitting
model and its parameter values. Next, use that model to generate
multiple simulated datasets. Then, compute several test statistics
that describe various characteristics of the data on each simulated
dataset and on the empirical dataset. If the empirical values of the
test statistics fall outside the range of variation encompassed by
the simulated data, then it may be concluded that the model can-
not provide an adequate description of the data at hand. To date,
model adequacy approaches are established for several types of
data and inference tasks, including those related to sequence evo-
lution (Bollback, 2002; Brown, 2014; Duchêne et al., 2015;
Chen et al., 2019), and for continuous and discrete organismal
traits (Slater & Pennell, 2013; Beaulieu et al., 2013; Blackmon &
Demuth, 2014; Pennell et al., 2015). However, these are inap-
propriate for data and analyses concerning the evolution of chro-
mosome numbers as the former rely on statistics derived from
many sites, whereas the latter rely on Brownian motion statistics.

In the following, we first provide the details of the developed
model adequacy framework for likelihood models of chromo-
some-number evolution. We then use simulations to assess the
type I error rate and to explore the consequences of using inade-
quate models in several common inference tasks, such as ancestral
reconstructions of chromosome numbers and ploidy-level infer-
ence. Finally, we apply the developed procedure to a large cohort
of angiosperm genera, as well as to clades that are expected to vio-
late model assumptions.

Description

Model adequacy framework for chromosome-number
evolution

Given chromosome count data (denoted as D) and a compatible
phylogeny, CHROMEVOL can be used to assess the fit of various
models (M1, M2,. . ., MN; N denotes the number of models) to
D. Each model differs with respect to the included rate parame-
ters or the constraints placed on them [θ(M1), θ(M2), . . .,
θ(MN)]. The most general model considered here includes six
free parameters (Glick & Mayrose, 2014) and assumes that five
types of events are possible: a single chromosome-number
increase (ascending dysploidy with rate λ) or decrease (descend-
ing dysploidy with rate δ), whole genome duplication (WGD)

© 2020 The Authors

New Phytologist © 2020 New Phytologist Foundation

New Phytologist (2021) 229: 3602–3613
www.newphytologist.com

New
Phytologist Research 3603



(i.e. exact duplication of the number of chromosomes with rate
ρ), demi-polyploidy (multiplications of the number of chromo-
somes by 1.5 with rate µ) and base-number transitions (the addi-
tion to the genome by any multiplication of an inferred base
number, where β is the inferred base number and ν is its respec-
tive transition rate). A combination of these parameters allows a
range of models to be evaluated (Table 1 shows the various mod-
els considered here). We note that the CHROMEVOL software also
allows the ascending and descending dysploidy rates to depend
on the current number of chromosomes, but this option was not
evaluated here.

In a common application of CHROMEVOL, several models are
fitted to D, the optimal model is selected based on its relative fit
using established model selection criteria (e.g. Aikake Informa-
tion Criterion, AIC), and subsequent inference tasks are per-
formed based on this model. The model adequacy test can be
carried out on any model of interest, whether or not it is the most
fitted one. The general aim of this test is to examine whether a
specified model, Mx, is able to generate data that are similar to D.
Our model adequacy procedure is based on parametric bootstrap-
ping (Goldman, 1993; Efron & Tibshirani, 1994), where the
observed data are compared to a background distribution gener-
ated from simulations. These simulations are generated under the
specified model, whose parameters,bθ(Mx), were optimized with
respect to D and the respective probabilities of chromosome
numbers inferred at the root of the phylogeny (exact details of
the simulation procedure are given in the Supporting Informa-
tion Methods S1). Comparing true and simulated data is per-
formed using a set of test statistics, which reflects various

characteristics of the data. First, the test statistics (T1, T2,. . ., Tm;
m denotes for the number of statistics) are computed for the true
data D. Second, multiple datasets are simulated under the speci-
fied model and its inferred parameters. For each simulated
dataset, the same set of test statistics is computed, resulting in a
distribution for each test statistic (Ts1, Ts2,. . ., Tsm). We then cal-
culate the midpoint two-tailed P-value of each statistic as
described in Höhna et al. (2018). If P > 0.05 the model is con-
sidered capable of generating data similar to the original ones and
is thus inferred as adequate; otherwise it is inferred as inadequate.
A schematic illustration of the developed model adequacy test is
presented in Fig. 1.

In our implementation, four test statistics were calculated
given the chromosome-number data of extant taxa and the corre-
sponding phylogeny.
(1) Variance (∑ðxi � xÞ2=n): higher values in the simulated data
relative to the observed ones may point to some constraints that
were not accounted for by the model (e.g. hard bounds on the
number of chromosomes in the genome), or to errors in the
parameter estimation process.
(2) Shannon’s entropy (Shannon, 1948): lower entropy of the
observed data than predicted by the model is indicative of
higher-than-expected concentration of genomes with certain hap-
loid numbers. This could be due to selective constraints, or to a
very low variability exhibited in certain subclades of the phy-
logeny, such that specific states are clumped into large blocks of
the tree more than expected.
(3) Parsimony score: the most parsimonious number of character
transitions across the phylogeny is calculated based on Fitch
(1971). If the parsimony scores of the observed data are lower
than expected it means that the model assumes more transitions
than actually occurred. This could occur due to rate heterogene-
ity across the tree; for example, if chromosome-number transi-
tions occur more frequently in one subclade relative to the rest of
the phylogeny, this could be accommodated by inferring higher
values of the transition rates.
(4) Parsimony vs time (ParsTime): the parsimonious number of
transitions is computed per branch using the accelerated transfor-
mation criterion (ACCTRAN; Farris, 1970). The regression line
between the divergence times (computed from the root to the
end of the branch) and their parsimony scores is calculated, and
the slope of this line is taken as the test statistic. This statistic is
similar in spirit to that employed by Pennell et al. (2015) for test-
ing the adequacy of models for continuous trait evolution. Under
a time-homogenous model, as implemented in CHROMEVOL, we
expect no relationship between the divergence times and the
number of transitions. Violations of this assumption suggest that
transitions are either concentrated around the root or occur more
frequently towards the tips. We note that aside from these four
statistics, two additional ones were computed (the range and the
number of unique counts). These two statistics were found to be
highly correlated with the other test statistics (r2 = 0.74 between
range and variance and r2 = 0.66 between unique counts and
entropy, when computed over the 200 empirical datasets;
detailed below), and thus we chose to discard them from further
analyses. The coefficient of determinations between all pairs of

Table 1 The set of CHROMEVOL models examined in this study, together
with their rate parameters.

Model
Model
parameters1 Description Nested in2

Dys λ, δ Dysploidy (descending
or ascending)

DysDup,
DysDupDem*,
DysDupDem,
DysBnum,
DysDupBnum

DysDup λ, δ, ρ Dysploidy and
duplication

DysDupDem*,
DysDupDem,
DysDupBnum

DysDupDem* λ, δ, ρ = µ Dysploidy, constraining
equal rates of
duplication and demi-
polyploidy

DysDupDem

DysDupDem λ, δ, ρ, µ Dysploidy, duplication,
and demi-polyploidy

DysBnum λ, δ, β, ν Dysploidy and base
number transition

DysDupBnum

DysDupBnum λ, δ, ρ, β, ν Dysploidy, base
number transition, and
duplication

1The model parameters are the base number (β), and rates of ascending
dysploidy (λ), descending dysploidy (δ), duplication (ρ), demi-duplication
(µ) and base number transition (ν).
2In case all parameters of the model are a subset of other models, the
more complex models are indicated.
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the four remaining test statistics was < 0.36 (Supporting Infor-
mation Table S1). Because the four test statistics are not indepen-
dent and researchers might be interested in revealing the specific
aspects of the data that differ from expectations, we followed
Pennell et al. (2015) and did not apply a multiple testing correc-
tion. Thus, in all analyses presented here a model is considered as
adequate only if all four statistics have P > 0.05 for the simulated
distribution.

Performance assessment using simulations

Simulations were conducted to examine the performance of the
model adequacy procedure. Given an input phylogeny and a set

of model parameters, simulated chromosome numbers were gen-
erated as described previously in Mayrose et al. (2010). As the
number of simulation conditions is infinite, we concentrated on
eight scenarios that vary in terms of data size (the number of tips
in the phylogeny and the observed chromosome-number distri-
bution) and the inferred pattern of chromosome-number change
(Table 2). The phylogenies, chromosome counts and model
parameters were taken from empirical datasets analyzed previ-
ously using CHROMEVOL (Glick et al., 2016; Rice et al., 2019),
thus representing realistic data characteristics. In all simulation
scenarios considered, the input phylogenies were assumed to be
time-calibrated (i.e. ultrametric). For each simulation scenario, a
total of 100 replicates were generated. Each simulated dataset was

Fig. 1 A schematic illustration of the model adequacy framework for likelihood models of chromosome-number evolution. In the case illustrated here, the
model is adequate because all P-values are greater than 0.05.

Table 2 The eight simulation scenarios examined in this study.

1In parentheses: average number of simulated events across the tree. Shaded cells mark parameters that are not included in the generating model.

Model parameters1

Genus
Number 

of taxa 

Generating 

model

Total 

branch 

lengths λ δ ρ β ν

Aloe 120 DysDup 0.57 0 (0) 0.34 (1) 2.61 (8)

Phacelia 53 DysDup 0.61 0.20 (2) 2.33 (21) 0.67 (6)

Lupinus 77 Dys 0.47 0.85 (7) 9.53 (76)

Hypochaeris 38 Dys 0.86 1.14 (5) 0.43 (2)

Brassica 36 DysBnum 0.32 1.24 (11) 0.70 (6) 8 0.55 (5)

Pectis 49 DysBnum 0.26 0 (0) 0.40 (2) 12 0.55 (3)

Crepis 81 DysDupBnum 1.33 2.41 (19) 0.99 (8) 0.26 (2) 8 0.18 (1)

Hordeum 36 DysDupBnum 1.26 0 (0) 0 (0) 1.80 (5) 7 1.36 (4)
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then fitted to a set of four models: Dys, DysDup, DysBnum,
DysDupBnum. For each simulation scenario, one of these models
was the generating model (i.e. the model that was used to simu-
late the data) and three were nongenerating models. We note that
these models share both common and distinct aspects of the
parameter space, such that some – but not all – models are nested
within each other (Table 1). Finally, the adequacy of each model
to the simulated data was assessed.

Inference errors of adequate and inadequate models

Aside from the inferred model parameters, the CHROMEVOL soft-
ware inherently allows several inference tasks to be carried out.
These include ancestral state reconstruction and the inferred
number of each type of transition (dysploidy, WGD, demi-poly-
ploidization and base-number transition) occurring along each
branch of the phylogeny. Additionally, a follow-up analysis pro-
vides an explicit categorization of each tip taxon as either diploid
or polyploid, relative to the group in question (see Glick & May-
rose, 2014). Naturally, these inference tasks are directly affected
by the model in question. The consequences of using an adequate
vs inadequate model were evaluated by comparing the errors of
four common inference tasks:
(1) The chromosome number at the root of the phylogeny; calcu-
lated as the deviation from 1.0 of the posterior probability
assigned to the true (i.e. simulated) chromosome number at the
root.
(2) The total number of dysploidy events across the phylogeny;
calculated as the relative error between the inferred and simulated
number of events: 2�ð x1� x2j j=x1þ x2Þ, where x1 and x2 are
the simulated and inferred number of dysploidy events, respec-
tively. In case both x1 and x2 equal zero, the error was assigned as
zero.
(3) The total number of polyploidization events across the phy-
logeny; the relative error was calculated similar to the total num-
ber of dysploidy events. Duplication events, demi-duplications
and base-number transitions were regarded as polyploidization
events.
(4) Ploidy-level assignments; the ploidy-level inference of tip
taxa, as either diploids or polyploids, was based on the procedure
described in Glick & Mayrose (2014). The assignments of all tips
were compared between the inferred and true values. The num-
ber of falsely inferred taxa, divided by the total number of taxa,
was used as the error measure.

In this analysis, six of the eight simulation scenarios in Table 2
were examined. The two scenarios excluded were those generated
under the simple Dys model, for which not all inference tasks are
relevant. To eliminate possible confounding effects between the
specific model used for inference and the magnitude of the error,
in this evaluation a single nongenerating model (DysDup or
DysBnum) was fitted to the data per simulation scenario (Table
S2). For each simulation scenario, 300 replicates were generated.
For each replicate, the phylogeny and the simulated chromosome
counts were given as input to the model adequacy test and the
dataset was determined as either adequate or inadequate. A one-
sided Student’s t-test was conducted to determine whether the

error of a certain inference task was significantly larger in the
inadequate set compared to the adequate set.

Application to empirical datasets

In order to demonstrate the usability of the model adequacy
framework, we applied it to a dataset of 200 angiosperm genera,
which were selected randomly from a large database consisting of
thousands of plant genera, excluding genera with no variations in
chromosome numbers as well as those with five or fewer species
with both phylogenetic and chromosome-number information.
The initial database was used, in part or as a whole, in several pre-
vious analyses (e.g. Glick et al., 2016; Salman-Minkov et al.,
2016; Zhan et al., 2016; Rice et al., 2019). From this database
we also selected 40 angiosperm genera that each contain at least
one allopolyploid species, based on data from Barker et al.
(2016). As a consequence of overlaps between these two sets, a
total of 233 unique datasets were analyzed. Full details of the
reconstruction of the original database are described in Rice et al.
(2019). Briefly, for each genus, the ONETWOTREE pipeline (Drori
et al., 2018) was used to automatically reconstruct the phylogeny
using publicly available sequence data as they appear in GenBank
(Benson et al., 2013). Chromosome numbers for all species were
retrieved from the Chromosome Counts Database (CCDB; Rice
et al., 2015). These data were given as input to CHROMEVOL,
which was executed on the six models detailed in Table 1. In
addition, we applied similar procedures to seven clades of higher
taxonomical ranks, including five families, one subfamily and
one tribe. The evolution of chromosome numbers in these clades
using CHROMEVOL was examined previously in several studies
(Table S3).

Implementation and availability

The model adequacy procedure was implemented in PYTHON and
R (R Core Team, 2013). The source codes and running instruc-
tions are available at https://github.com/MayroseLab/
chromEvol_model_adequacy. The obligatory inputs were three
files obtained through a CHROMEVOL run of the examined model:
the summary results file, the tree with the inferred ancestral
reconstruction in a NEWICK format, and the original counts file in
FASTA format. The program outputs, for each test statistic exam-
ined, were its midpoint two-sided P-value computed from the
simulated distribution of the test statistics. The model adequacy
test also is available for on-line use through the CHROMEVOL web-
server (http://chromevol.tau.ac.il/). We suggest that any standard
CHROMEVOL analysis should be followed by the model adequacy
procedure to confirm the absolute fit of the model and to deter-
mine whether any deviations of the model are of concern to the
specific inference task.

Results

In this work we developed a statistical framework for testing the
adequacy of likelihood models of chromosome-number evolu-
tion. In essence, the method tests whether a specified model is
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capable of generating data that are similar to the data at hand. If
not, the model is considered as providing inadequate description
of the data, suggesting that other processes than those modelled
have driven the evolution of chromosome numbers along the
examined phylogeny. We first evaluated the performance of the
model adequacy framework using simulations. We then applied
it to a large number of real datasets derived from dozens of
angiosperm genera, as well as to seven clades of higher taxonomic
ranks, that together vary greatly in their extent of divergence time
and patterns of chromosome number variation.

Framework validation

Simulations were used to validate the developed model adequacy
approach. Several simulation scenarios were examined, whose
phylogenies and simulated parameters were derived from real
data analyses and cover various data characteristics (Table 2). In
each scenario, a single model was used to generate the data. Given
the simulated data, the generating model and three additional
models were fitted to the data, and their adequacies were exam-
ined. The four examined models are indicated by the type of
transitions they allow for: Dys, DysDup, DysBnum and
DysDupBnum (Table 1). In total, eight different simulation sce-
narios were examined; two for each type of generating model.

We first examined the type I error rate: inferring the generating
model as inadequate. Our results indicated that when considering
a single test statistic independently, the error rate was generally
below the expected value of 0.05 (average = 0.02, across the
eight simulation scenarios and four test statistics; Table S4). The
four test statistics considered showed the pattern described by
Gelman et al. (2013), with the distributions of the P-values being
more concentrated around 0.5 than expected under ideal condi-
tions (Fig. S1). The statistic closest to the expected 5% was
ParsTime, which rejects on average 4.4% of the simulations. The
P-values obtained using this statistic were more uniformly dis-
tributed than the other three statistics. Combining multiple test
statistics together, we considered a model as inadequate if the P-

value of the simulated distribution of one or more of the statistics
is ≤ 0.05 (see the Description section). Under this definition, the
percentage of generating models that were inferred as inadequate
varied between 0.04 and 0.17 across the eight simulation scenar-
ios (average 8%; Table 3). When Bonferroni correction for mul-
tiple testing was applied, the type I error rate dropped to an
average of 0.03, making the test conservative. We note, however,
that the four test statistics were not independent, violating the
assumption of this correction.

We next examined the capability of the adequacy test to detect
models that deviate from that of the generating models. Three
types of model misspecification were examined: overparameteri-
zation, underparameterization, and misparameterization. In the
case of overparameterization, the tested model allowed for addi-
tional types of chromosome-number change (as represented by
extra free parameters) than those used to generate the data. This
corresponds to cases where the generating model was nested
within the tested model (e.g. generating model DysDup, tested
model DysDupBnum). Our results indicated that the performances
of overparameterized models were very similar to those of the
generating models (Table 3). The few discrepancies were the
result of either: (1) inaccurate parameter estimates of the more
general model due to the extra degrees of freedom; (2) the opti-
mization procedure reaching suboptimal regions of the parameter
space (we note that although CHROMEVOL allows for more thor-
ough likelihood optimization search, which should reduce such
instances, this was not attempted here due to the large number of
simulations employed); and (3) very similar parameter estimates
obtained using the two models, but slight deviations of the test
statistics leading one model to be inferred as inadequate and the
other adequate.

In the case of underparameterized models, the tested model
allowed for fewer types of transitions than the generating model
(e.g. generating model DysDup, tested model Dys). As may be
expected, in all simulation scenarios the underparameterized
models were more frequently inferred as inadequate compared to
the generating models. The adequacy rate was very low when the

Table 3 The inadequacy rates of the four tested models in the various simulation scenarios examined (100 simulations per tested model per scenario).

The diagonal (white cells) are cases where the generating model is also the tested model. Dark grey represents over-parametrized models, light grey under-
parametrized models, and patterned cells miss-parametrized models.

Tested models1Simulation 

scenario

Generating 

model DysDup Dys DysBnum DysDupBnum

Aloe DysDup 0.06 1.00 0.04 0.08

Phacelia DysDup 0.04 0.99 0.04 0.03

Lupinus Dys 0.06 0.09 0.06 0.07

Hypochaeris Dys 0.03 0.06 0.04 0.05

Brassica DysBnum 0.18 0.98 0.05 0.06

Pectis DysBnum 0.86 1.00 0.12 0.07

Crepis DysDupBnum 0.28 0.95 0.11 0.07

Hordeum DysDupBnum 0.78 1.00 0.29 0.17
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tested model allowed only for dysploid transitions whereas in
reality polyploid transitions (either WGD and/or base-number
transitions) have occurred (Table 3; all cases where the tested
model was Dys). The adequacy rates were higher when the gener-
ating model allowed for multiple types of polyploid transitions
(i.e. DysDupBnum allowing for both exact duplications and base-
number transitions), whereas the tested model allowed for a sub-
set of these (DysDup and DysBnum that allow only for duplications
or base-number transitions, respectively). Comparing the ade-
quacy of the two underparametrized models (DysDup and
DysBnum), the DysBnum model that incorporated base-number
transitions had higher adequacy rates compared to the DysDup

model that allowed for exact duplications, as the former allowed
for several transitions that frequently include also exact duplica-
tions (e.g. in case the base number is 8, both 8→16 and 8→24
transitions are allowed).

In the case of misparametrization, the tested and generated
models were not nested within each other and thus their parame-
ters only overlapped partially. For the set of models examined
here, this fits the case with generating model DysDup and tested
model DysBnum, or vice versa. When the tested model was
DysBnum, it obtained similar adequacy rates to those of the gener-
ating DysDup model. By contrast, and similar to the results
detailed in the case of underparameterized models, the DysDup

model was inferred as inadequate a large number of times when
the generating model was DysBnum.

Inference errors of adequate and inadequate models

A central usage of probabilistic models of chromosome number
evolution is their inference capabilities, such as ancestral recon-
structions of chromosome numbers, or predicting the branches
in which dysploidy and polyploidy events have most likely
occurred. Still, it is unclear whether the use of inadequate models
would deteriorate the performance of such inference tasks. To
this end, simulations were used to compare the errors of the fol-
lowing four common inference tasks when adequate and inade-
quate models are employed: (1) the chromosome number at the
root of the phylogeny; (2) the total number of inferred dysploidy
events; (3) the total number of inferred polyploidization events;
(4) inferring the ploidy level of tip taxa as either diploid or poly-
ploid (see Description section for details regarding the error com-
puted for each inference task).

Our results demonstrated that the use of inadequate models fre-
quently led to larger inference errors, although under some simula-
tion scenarios the inference errors of inadequate models were
similar to those obtained using adequate models. For example, the
error in the inference of the root chromosome number was signifi-
cantly larger in the case of inadequate models under two simulation
scenarios, but was nonsignificantly different in the other four (Fig.
2). Likewise, in two out of the six simulation scenarios, the error of
inferring the ploidy level of extant taxa was significantly larger
when computed using inadequate vs adequate models. In this case,
the magnitude of the error was relatively low whether adequate or
inadequate models were applied: when inadequate models were
applied, the mean error was 7.3% across all simulation scenarios,

reaching up to 25% under the Brassica simulation scenario. In
comparison, the mean error was 2% when adequate models were
applied, reaching up to 7% of erroneous inferences under the
Hordeum simulation scenario. Larger differences in the errors
between adequate and inadequate models were observed in infer-
ring the total number of polyploidizations, and even more so in
inferring the total number of dysploidy events. For both of these
inference tasks, significant differences between adequate and inade-
quate models were obtained for three of the six simulation scenar-
ios. Generally, the relative error in inferring the total number of
dysploidy events was larger compared to that of inferring the total
number of polyploidizations (the mean relative error was roughly
twice for dysploidy compared to polyploidy transitions, both in the
adequate set and the inadequate set; Fig. 2).

Application to empirical datasets

We applied the model adequacy framework to 200 datasets, each
corresponding to a single randomly-selected angiosperm genus.
First, we performed a standard model selection procedure based
on the AIC (Akaike, 1974) to evaluate the relative fit of each of
the six CHROMEVOL models to the data. In 24% of the datasets,
the simple Dys model, which allows for dysploid transitions only,
was selected. The model that was most frequently selected was
DysDup (28%), whereas models that allow for demi-polyploidy
transitions and those that allow for base-number transitions were
selected in 27% and 21% of the datasets, respectively (Fig. 3a).
Next, we applied the model adequacy test to the best model iden-
tified for each dataset. We found that in 70% of the genera, the
model that was chosen as best by the AIC was inferred to provide
an adequate description of the data. Examining the inadequacy
rates of each test statistics revealed that the test statistic with the
highest inadequacy rates was ParsTime, whereas that with the low-
est inadequacy rates was the Parsimony statistic (inadequacy rates
0.095, 0.13, 0.075 and 0.17 for variance, entropy, parsimony
and ParsTime, respectively). Applying the model adequacy test to
all six models per dataset (whether or not selected as best), we
found that models that allow for fewer types of transitions were
more frequently predicted as inadequate (Fig. 3b). For example,
the Dys model that allowed only for dysploidy transitions was
adequate in only 23% of the 200 datasets; models that addition-
ally allowed for one type of polyploidy, either duplication or
base-number transition, were adequate in 58% and 63% of the
cases, respectively; whereas the three models that incorporated
two types of polyploidy transitions (DysDupDem, DysDupDem*
and DysDupBnum) were inferred as adequate most frequently. The
adequacy rates of all models were generally related to the com-
plexity of the model that was selected as optimal. Thus, when the
most complex models were selected (DysDupDem and
DysDupBnum), the adequacy rates of all models – including that
of the chosen model – were low (32% and 46%, respectively),
whereas when the least complex model was selected, the adequacy
rates of all models was high (68%; Table S5).

Next, we examined the model adequacy procedure in groups
that have evolved via reticulate evolution at some point in their
histories. In these clades, the underlying assumption of the
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CHROMEVOL framework, in which evolution proceeds along a
phylogenetic structure, is violated, at least to some extent. This
analysis was performed on 40 genera that were identified in the
literature to include allopolyploid species, and thus hybridiza-
tions were reported to occur (data taken from Barker et al.,
2016). In the majority of these genera (23 of 40), the model that
was selected as optimal according to the AIC was found by our
model adequacy procedure to be inadequate. This adequacy rate
was significantly lower (P << 0.05; χ2-test) compared to a ran-
dom set of 193 genera in which allopolyploidy was not reported
(the 200 genera analyzed above, omitting seven that include a
reported allopolyploid species).

Finally, we evaluated the model adequacy procedure on a set of
seven groups whose taxonomic rank was higher than the genus level,
thus representing clades whose divergence time is generally older

than those inspected above. The evolution of chromosome numbers
in these clades likely violates the time homogeneity assumption of
CHROMEVOL, in which the transition pattern is similar across the
phylogeny. For five of these seven clades, the model that was chosen
as optimal according to AIC did not provide adequate description
of the data according to the model adequacy test (Table S3). Taken
together, the last two analyses indicated that the model adequacy
procedure can identify cases in which the evolution of chromosome
numbers is driven by processes that deviate from the basic mod-
elling assumptions of the CHROMEVOL framework.

Discussion

For over a century, the determination of chromosome numbers
has played a vital role in studying evolutionary and genomic

Fig. 2 The mean inference errors obtained under adequate and inadequate models for each simulated scenario. Each row presents the error of a different
inference task. From top to bottom: inferring the total number of polyploid events across the tree, inferring the total number of dysploid events across the
tree, ploidy-level assignments of extant taxa, the probability of the chromosome number at the root of the phylogeny. Each column denotes a different
simulation scenario. For each scenario, 300 simulations were conducted and runs were partitioned to adequate and inadequate models. The violin plots
represent the distribution of the errors obtained for the adequate (light grey, right) and inadequate (dark grey, left) sets. The black dot within each
distribution denotes its mean. Asterisk indicates significant difference between the two groups (***, P < 0.01).
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processes in plants. Probabilistic models of chromosome-number
change are a relatively recent addition to the research toolbox
available to study the evolution of major genomic processes. As
the usage of such models increases, so does the need to assess their
validity when applied to real data. Here, we developed a model
adequacy test for likelihood models of chromosome-number evo-
lution. We focused our analysis on those models implemented in
the CHROMEVOL software (Glick & Mayrose, 2014), but the pro-
cedures are general and can be implemented in other platforms
that use variations to the CHROMEVOL model (Freyman &
Höhna, 2017; Zenil-Ferguson et al., 2017; Blackmon et al.,
2019). The developed test was based on the parametric boot-
strapping approach (Goldman, 1993; Efron & Tibshirani, 1994)
in which observed data are compared to a simulated distribution
generated by the examined model. Using multiple test statistics
that describe various characteristics of the data, the test allows us
to determine whether the model can generate data that are similar
to those found in the observed ones. The described methodology
was implemented under the maximum-likelihood paradigm, fol-
lowing the implementation of the CHROMEVOL software, in order
to naturally link the two implementations. Additionally, the
model adequacy procedure can be implemented under a Bayesian
inference scheme, using posterior predictive simulations.
Although the overall implementation is similar in both
approaches, the Bayesian approach inherently accounts for uncer-
tainty in the parameter estimates, and possibly the phylogeny, by
sampling them from the inferred posterior distribution.

The model adequacy test developed here was based on several
data-based statistics (i.e. statistics that depend on the data alone,

independently of the model being fitted). As an alternative, infer-
ence-based statistics, which depend both on the data and the fit-
ted model, may be used (see Brown & Thomson, 2018; Höhna
et al., 2018). These include, for example, comparison of the
ancestral states reconstructed by the examined model to the simu-
lated ones, or comparison between the inferred and simulated
number of polyploidization and dysploidization transitions. On
the one hand, the computation of these inference-based test
statistics is far more demanding than the data-based test statistics,
because the evaluated model has to be fitted to each simulated
dataset being generated, rendering the entire process several
orders of magnitude slower than the present approach (e.g.
Höhna et al., 2018). On the other, these inference-based test
statistics allow a more meaningful assessment of model adequacy
by directly examining whether the model at hand is adequate for
a desired inference task. Certainly, incorporating additional
meaningful test statistics is a promising direction for future
research.

Our simulation results indicate that the model adequacy
framework had an acceptable type I error rate (i.e. inferring as
inadequate a model that was used to generate the data). However,
higher type I errors were found in models that allowed for base-
number transitions (DysBnum and DysBnumDup). This suggests
that these models might not be appropriate in all cases. The cur-
rent implementation of such models assumes the same rate for all
possible base-number transitions (e.g. given a base number of
β = 7, the additions of 7, 14 or 21 chromosomes are equally
likely). Alternatively, it may be more appropriate to place a prob-
ability distribution over the possible base-number transitions.

(a) (b)

Fig. 3 Application of the model adequacy test to 200 angiosperm genera. (a) A bar plot representing the frequency of selection according to the Aikake
Information Criterion (AIC) of each of the six tested models in the 200 examined angiosperm genera. The height of each bar is partitioned according to the
percentage of genera that were determined as adequate (light blue) or inadequate (red). (b) The adequacy rate of each model when applied to all genera,
regardless of whether the model was selected (n = 200).
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This will allow, for the example of β = 7, higher rates for addi-
tions by 7 chromosomes compared to those by 21.

Our simulation results also demonstrated that the adequacy
rate of overparameterized models, which allows for more types of
transitions than those that truly occurred, is similar to that of the
generating models. Although it is expected that the accuracy of
inferring the model parameters will decrease as overly-complexed
models are evaluated, in many cases the auxiliary parameters were
optimized to very low values, resulting in a process nearly identi-
cal to the generating model. Thus, it seems that the flexibility
offered by complex models does not necessarily lead to their dis-
advantage, at least for some inference tasks, as has been demon-
strated recently for models of nucleotide sequence evolution
(Abadi et al., 2019). In other cases of model violations, either for
underparameterized or misparameterized models, when the rate
parameters deviated substantially from the original ones (e.g. dys-
ploidy rates an order of magnitude larger than the simulated
rates), the model adequacy framework detected such cases as
inadequate. This suggests that the adequacy test was capable of
detecting models that are completely wrong. In other cases, the
nature of model misspecification affected the outcome. In the
simulations examined here, DysBnum was more frequently ade-
quate than DysDup, both in the case of underparameterization
(i.e. when the generating model was DysDupBnum such that both
models miss one type of transition) and misparameterization.
Nevertheless, we note that the DysBnum model may not fit well in
large phylogenies with high dysploidy rates. In its current imple-
mentation, the model assumes that a single base number typifies
a clade. However, if there is a high dysploidy rate, each subclade
of the phylogeny may be characterized by its own base number or
by multiple base numbers, which will necessitate more complex
modelling options.

We further tested the consequences of using an inadequate
model by examining the errors of several inference tasks. First, we
found that the difference in inference error between adequate and
inadequate models depended on the simulation scenarios: in
some simulation scenarios the use of inadequate models resulted
in significantly inflated inference errors compared to the use of
adequate models, in some scenarios it affected only certain infer-
ence tasks and not others, whereas in others the difference was
negligible for all tasks. Second, we found that some inference
tasks were much more sensitive to model misspecification than
others. The assignment of extant taxa as diploids or polyploids
was the inference task that was least affected from using an inade-
quate model, and in general, the error of this inference task was
very low. This indicates that determining the ploidy levels of
extant taxa is generally robust to model misspecification. How-
ever, the error of determining the number of events that had
occurred – either dysploid or polyploid transitions – can be sub-
stantial when inadequate models are employed.

Applying the model adequacy test to hundreds of angiosperm
genera, we found that in the majority of the cases the best-fitted
model provided sufficient approximation to the evolutionary pro-
cesses underlying the data and was determined as adequate. How-
ever, in roughly a quarter of the examined genera, this selection
turned out to be inadequate, suggesting that there is ample room

for future modelling improvements. Examining the inadequacy
rates of each test statistic across the 200 genera showed that
ParsTime was the test statistic that rejected the best-fitted model
most frequently. This statistic tests whether the number of transi-
tions is distributed homogeneously in time across the phylogeny.
Deviation of this statistic from model expectations thus indicates
that transitions in chromosome numbers occurred either closer to
the root of the tree, or located more near the tips. In a further
analysis we found high rates of model inadequacy when applying
the developed procedures to two types of clades that are expected
to violate basic modelling assumptions: (1) clades in which
allopolyploidy events are known to occur, thus violating the
assumption that evolution proceeds via a phylogenetic structure;
and (2) large and diverse clades in which a single transition pro-
cess is fitted to the entire phylogeny, thus violating the time
homogeneity assumption. Together, these results indicate that
promising future developments would be to focus on analytical
procedures based on phylogenetic networks (Nakhleh, 2010),
rather than on bifurcating phylogenies, and to further incorpo-
rate time-heterogeneous processes.

It was shown previously that the power of model adequacy
tests tends to increase with data size (Brown & Thomson, 2018).
Indeed, in our analysis of 200 angiosperm genera we found that
the size of the tree, approximated by its number of tips, was larger
when the best selected model was determined as inadequate com-
pared to when it was determined as adequate (36 tips on average
in the inadequate set, compared to 20 tips on average in the ade-
quate set; P < 0.01 Student’s t-test). In addition, there were
inverse correlations between the tree size and the P-values of all
test statistics, suggesting that our test is more powerful when
larger trees are analyzed. Nevertheless, larger trees may exhibit
lower adequacy rates due to genuine rate heterogeneity present in
the data, thus violating one of the assumptions underlying the
CHROMEVOL model. However, the association between data size
and the test statistic that specifically reflects rate heterogeneity
across the phylogeny (ParsTime) was lower than two of the other
test statistics (r2 = 0.012, 0.13 and 0.14 for ParsTime, entropy
and variance, respectively), suggesting that the tree size influences
the power of the test, irrespective of whether rate heterogeneity is
present.

Phylogenetic model adequacy tests previously have been devel-
oped for other data types and inference tasks, although their use
has not been adopted widely. This could be a consequence of the
apparent limited benefit offered to a researcher if all examined
models are deemed inadequate when applied to a clade of inter-
est. We argue, however, that model adequacy tests are of practical
use to methods developers and end users alike, and should thus
be practiced regularly as part of a broader model assessment rou-
tine. For researchers interested in data analysis, inadequate mod-
els can hint at errors in the input data, which should thus be
more carefully inspected. In the case studied here, possible
sources of errors include those in the assumed phylogenetic
hypothesis, in the collection of chromosome counts or in taxa
sampling. Inadequacy also could point to additional attributes
that should be considered in the analysis. For example, if all mod-
els that assume a time-homogenous transition process fail, it
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could suggest that patterns of chromosome-number change are
clade-specific (Márquez-Corro et al., 2019) or depend on an
organismal trait (e.g. the plant growth form) The analysis thus
could be enhanced if such factors are accounted for using more
complex models (e.g. Zenil-Ferguson et al., 2017; Blackmon
et al., 2019; see Zenil-Ferguson et al., 2019 for discussion about
the advantages of using complex models). For researchers inter-
ested in large-scale analyses that include multiple datasets, where
the in-depth examination of each inadequate dataset is not feasi-
ble, the filtration of such clades is one obvious possible direction.
For some inference tasks, such as the identification of ploidy
levels of extant taxa, the effect of using an inadequate model is
rather negligible, indicating that the treatment of the flagged
clades should be tuned to the analysis in question. For developers,
the frequent application of model adequacy tests should provide
interesting test cases on which new models are trained. Moreover,
when a model is deemed inadequate, the test statistics that fail to
align may point to processes absent from existing models, which
could be included in the future. Model adequacy should thus
take a vital part in this recurrent chain of scientific progress in
which new methods are developed, regularly used, and then
replaced by more advanced alternatives.
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