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a b s t r a c t

The emergence and ubiquity of Artificial Intelligence in the form of Machine Learning (ML) systems
have revolutionized daily life. However, scant if any attention has been paid to ML in computing
education, which continues to teach rule-based programming. A new, promising research field in
education consists of acquainting children with ML to foster this much-needed shift from traditional
rule-driven thinking to ML-based data-driven thinking. This article presents the development of
computational thinking competencies in 12-year-old students who participated in a learning-by-design
or a learning-by-teaching ML course. The results, based on a qualitative and quantitative evaluation of
the students’ achievements, indicate that they demonstrated computational thinking competencies
at various levels. The learning by design group evidenced greater development in computational
skills, whereas the learning by teaching group improved in terms of computational perspective. These
findings are discussed with respect to promoting children’s problem-solving competencies within a
constructionist approach to ML.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Societies and education are undergoing radical changes as
result of what is known as the digital turn (Levin, & Mam-

ok, 2021). These changes impact our daily lives, but also raise
undamental questions about our understanding of the world
round us. Preparing the younger generation for life in the new
igital world is of crucial interest to educators, and in particular
he best ways to enable elementary school students to master
merging technological phenomena. Students can and should
nderstand not only the basics of interactions with digital re-
lity, but also its construction and ontological principles. The
se of ML systems in education has grown exponentially in the
ast few years, mainly due to the increased availability of ML
esources (Domingos, 2015; Druga, Vu, Likhith, & Qiu, 2019).
he current study reports on a pilot experimental program to
oster students’ computational thinking (CT) skills as they develop
hrough the implementation of ML systems in elementary school.

This paper employs several key concepts that are widely used
n both the mass media and academic sources. Because these
oncepts are often ascribed different meanings, it is crucial to
efine them at the outset in terms of the context in which they
re used in this article.

Computational Thinking (CT) can be defined as the thought
rocesses involved in formulating problems and their solutions in
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ways that a computer could also execute (Wing, 2006). The prob-
lems can be tackled by an information-processing agent which
can be a computer or a human. CT attempts to solve complex
problems by implementing a three-step problem-solving process:
(1) decomposing the problem into sub-problems, (2) solving the
sub-problems, and then (3) combining the solutions to the sub-
problems into an overall solution (Leiser, 1996). This process
requires the use of competencies such as decomposition, pattern
recognition, abstraction, and algorithm design. These are now
widely accepted as comprising CT and form the basis of curric-
ula that aim to support its learning and assess its development
worldwide (Grover, 2017), and in particular in Israel (Ministry of
Education Israel, 2021). They can be referred to as ‘‘traditional CT’’
or ‘‘automation CT’’ competencies because they are used in the
cognitive effort of automating a solution to a problem. It is worth
noting that the computing education community has yet to find
a consensual definition of CT (Tedre, & Denning, 2016).

• Artificial Intelligence (AI) systems are computer systems that
can perform tasks that would normally require human intelli-
gence (McCarthy, Minsky, Rochester, & Shannon, 2006). AI sys-
tems are characterized by their ability to learn. The data gener-
ated by an AI learning process is used to make decisions akin to
those of humans in similar situations. This is often framed by
considering AI as the computer’s ability to create new knowl-
edge from data and use that knowledge to make human-level
decisions (Rouhiainen, 2018).

• An Artificial Neural Network (ANN) can be viewed as an AI sys-

tem that simulates the interaction of human neurons in the brain.

https://doi.org/10.1016/j.ijcci.2021.100415
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n ANN can be represented as a graph consisting of connected
eurons as binary elements, in which outputs of elements are
onnected to inputs of others (Yegnanarayana, 2009).

Machine Learning (ML) is one way to implement AI. The first
ersonal computers were programmed to run predesigned algo-
ithms. In contrast, thanks to ML, today’s computers and their
igital artifacts can accumulate experience and data and improve
heir functioning based on this data to become self-evolving AI
ystems.

Deep learning is a kind of ML. It is based on multilevel neural
etworks consisting of multiple layers of artificial neurons. The
evelopment of deep neural networks is considered one of the
ost important advances in digital technologies in recent years.
hese technologies have made it possible to come very close to
chieving human-like visual perception on recognition tasks. This
act in itself is unprecedented and remarkable. The traditional
oncept of a computer’s capabilities simply viewed the computer
s the executor of a predesigned rigid algorithm. Modern digital
evices equipped with deep learning capabilities have changed
he traditional paradigm of computing significantly. Computers
an now not only execute a program written into its memory in
dvance but also learn and develop from experience.
Both academia and the popular media have taken growing

nterest in ML, its characteristics and its social impact. However,
ome crucial issues remain relatively unexplored although they
re essential for understanding processes taking place in soci-
ty, especially with respect to education. One of these neglected
ssues, which in fact prompted this study, is the change in the
oncept of computing itself. The fact that a computer with ML
bilities no longer merely carries out the program stored in its
emory has had major ramifications for the concept of CT and
ow it is taught. The second key insight motivating this study
s that one of the most important contributions of ML has gone
ostly unnoticed: it can supplement human intelligence (Domin-
os, 2015). Thus the ways in which ML can be integrated into
ducation is both fascinating and of critical importance. Specifi-
ally, how has the emergence of ML affected current computing
chool curricula and what effects will it have on students’ knowl-
dge, skills, and perspectives? To answer these questions, we
xplored the feasibility and effectiveness of introducing ML in
lementary school, not as a new stand-alone discipline, but as a
ay to expand and enrich existing fields, based on CT.
The idea to include ML education as part of CT learning has

ide and justified support (Mariescu-Istodor, & Jormanainen,
019). The current study constitutes a step towards achieving
his goal. Below we describe ways to develop elementary school
tudents’ competencies to construct ML systems, inspired by
he Constructionist Approach. The choice of this pedagogical
pproach is related to the history of Constructionist ideas. The
ounders of Constructionism had a ML research background.
eymour Papert (Papert, 1980) and his followers considered that
here is a profound interconnection between human learning and
achine learning (Badie, 2016; Kahn, & Winters, 2020). Today

his interrelationship continues to elicit considerable scientific
nd practical interest (Levin, & Tsybulsky, 2017).
In Shamir, and Levin (2021) we presented an experimen-

al ML course and its outcomes in terms of students’ motiva-
ion to learn and to understand the fundamentals of ML. Re-
ults showed high engagement during constructionist learning
nd that the novel programmable learning environment, Single-
euron, helped make machine learning understandable. Using
he perceptron mechanism allowed students to create their own
L-based artifacts and explore a wonder of AI: how one artifact
atisfies different purposes when trained with different datasets.
his paper further develops the study and compares CT gains of
2

two different ML courses based on a CT-ML framework that we
designed to study and evaluate elementary school students’ CT
development while constructing ML systems.

The remainder of the paper is organized as follows. The theo-
retical background is provided in Section 2. Section 3 deals with
the methodology, research design, and procedure. The results are
presented in Section 4 and the discussion in Section 5.

2. Background

Machine Learning (ML) has changed practically all the areas
of our lives, from health care to politics to journalism. Whereas
the Industrial Revolution automated manual work and the In-
formation Revolution did the same for cognitive endeavors, ML
has automated automation itself. When working in the tradi-
tional Automation paradigm, a software developer intends these
systems to be internally controlled and self-regulated. In other
words, humans who design programs set down rules for the
system agents and their interrelations. During runtime, when the
software executes, these agents implement the program with
no further human intervention. However, this is not the case in
the automation of automation paradigm. Rather, the system of
agents changes the system’s behavior autonomously in a way
that its creator is not aware of and cannot predict. In such
cases, once the program is executed, there is no human inter-
vention, and the behavior of the agents changes with no outside
intervention (Domingos, 2015).

One of the most exciting aspects of building ML systems is
that it challenges the traditional computational thinking (CT) skill
set. ML does not follow the three classical CT problem-solving
steps mentioned above. In this sense, ML makes problem-solving
different and can redefine CT’s educational goals. If indeed ML is
the automation of automation, what are the CT skills an individual
needs to develop an ‘‘automation of automation’’ solution to a
problem? How can these skills be imparted to elementary school
students?

Here we harnessed the Constructionist approach to teach ML
in elementary school. Constructionism is usually referred to as
learning-by-design. It applies to all domains, and suggests that
students learn best when creating and using external representa-
tions for modeling and reasoning (Blikstein, & Wilensky, 2009;
Papert, & Harel, 1991). The Constructionist approach emerged
from the famous and widely known Constructivist approach (Ack-
ermann, 2001). Papert was influenced by Piagetian principles
and many of Jean Piaget’s Constructivist ideas were adopted by
Constructionism. However, Constructionism also enriched Con-
structivism with remarkable and important innovations. These
innovations relate primarily to the emergence of digital technol-
ogy in the 1980s and include the fact that learning-by-design
involves a new kind of activity; namely, designing software ar-
tifacts. Papert realized that program/algorithm design, which in-
cludes software development, would be similar in many ways to
teaching in the upcoming digital era. This realization was rooted
in the nature of CT itself, which requires the learner to formulate
rules for the behavior of an artifact while in the process of creat-
ing it. Since then, the Constructionist approach has gone beyond
traditional learning-by-design to encompass the new component
of learning-by-teaching, a computer metaphor (Vartiainen, Tedre,
& Valtonen, 2020). As ML has gradually penetrated educational
practices, this component of learning activity has become more
prevalent. This can be seen in the transition to data-driven learn-
ing from the rule-driven learning that characterized traditional
programming. This trend is also reflected in the structure of this
study, which is based on observations of students in the two
different courses developed for our research purposes. The first
course involved designing an artificial neural network and was
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Fig. 1. The two-step machine learning process.

entitled ‘‘Learning ML by Design’’. The second course involved
applying data to train a ML system and was entitled ‘‘Learning
ML by Teaching’’.

One of the important issues when conducting research on
innovative ideas and methods is the choice of the computer
environments used by the students. Numerous studies have con-
centrated on designing introductory programming environments
that make programming more accessible to younger learners as
well as more fun and engaging (Brennan, & Resnick, 2012). A
popular approach in recent years is visual programming environ-
ments that provide visual blocks as connected commands. This
approach is an effective way to allow novice learners to experi-
ence early programming successes. However, a general-purpose
programming environment has its flaws. The major drawback is
that it has endless opportunities, and learning to use it is a time-
consuming process, making it impractical for across-the-board
use in the general subject matters taught in school (Jona et al.,
2014). To overcome this shortcoming, researchers have created
domain-specific micro-worlds based on a general-purpose pro-
gramming environment with a dedicated set of blocks for the
students to use. Here, to scaffold the learning activity of con-
structing a simple artificial neural network (ANN), we developed
a Single-Neuron toolkit (Shamir, & Levin, 2020). Our curriculum
also included additional platforms, as described below.

ML endows computer systems with the ability to learn with-
out being explicitly programmed to solve a predefined problem.
In ML, the computer software is programmed to use example data
to solve a given problem. Once programmed, the system is trained
on given data. The trained ML model can later be used to predict
a future event’s probability within acceptable reliability.

There are different ways to describe the processes of ML con-
struction. One is the two-step Train-Validate process that requires
some intermediary actions (Guyon, & Elisseeff, 2006; Khalid,
Khalil, & Nasreen, 2014; Shamir & Levin, 2020; Zimmermann-
Niefield, Turner, Murphy, Kane, & Shapiro, 2019). Specifically, in
the training step the programmer needs to apply appropriate
data preprocessing such as data acquisition, feature selection and
data splitting. These make the dataset suitable for the machine
to learn from. The next stage involves selecting an algorithm
and activating it on the preprocessed dataset. In the validation
step (also known as predicting or scoring) the model is tested
to maximize the predictive performance of the final system. This
requires establishing a validation dataset that was not part of
the training dataset, predicting the result for each data entity
running the system, and validating the system’s predictions. Fig. 1
illustrates both steps.
3

In this study, we used a traditional CT framework to study and
evaluate CT (Brennan & Resnick, 2012) with the following key
dimensions:

(1) Computational Concepts: the terms and expressions practi-
tioners engage with as they create computational artifacts.

(2) Computational Practices: the techniques and abilities practi-
tioners develop as they engage with the concepts.

(3) Computational Perspectives: the perceptions practitioners
form about themselves and the world around them.

We added a taxonomy for creating ML systems to this CT frame-
work to study and evaluate elementary school students’ CT de-
velopment while constructing ML systems, termed the CT-ML
framework. Since the ML process consists of the training and
validating steps, the computational practices dimension was di-
vided into two sub-dimensions: Machine Training Practices and
Machine Validating Practices. A diagram of the CT-ML framework
is presented in Fig. 2.

In Fig. 2, the orange items are computational ML practices.
The green items are the computational perspectives reflecting
how the practitioners perceive themselves and their surroundings
when constructing ML artifacts. In gray are the computational
concepts, which are what practitioners engage with as they cre-
ate ML artifacts (Guyon & Elisseeff, 2006; Khalid et al., 2014;
Zimmermann-Niefield et al., 2019).

Each computational practice element of the taxonomy is de-
tailed below. Applied examples appear in the Results section.

• Category selection: The ability to find similarities to create
prototype examples of categories.

• Data selection: The ability to choose which data to acquire
that is most likely to improve the system’s prediction abil-
ity and avoid bias. This requires considering the different
features of the object to be labeled and selecting a diverse
dataset.

• Data split: The ability to separate a set of data into two
groups: one for training and one that is held out for vali-
dation.

• Data filtering: The ability to remove specific types of data
before the training phase to improve the system’s classifi-
cation capability.

• Feature selection: (also known as feature extraction): the
ability to find only those attributes that contain information
pertinent to the system’s data classification.

• Prediction: the ability to determine the likelihood of an ML
model’s outcome after it has been trained on a historical
dataset and then applied to new data.

• Evaluation: the ability to assess how well the system can
categorize the validation dataset and determine how the
results can be improved to enhance classification. Evaluation
covers such issues as whether the machine was under-
trained, whether the model was biased towards a certain
object, whether the features were appropriately selected
and whether the dataset was split appropriately into train
and validate.

• Algorithm creation: The ability to create the set of steps that
will be used by the system’s learning mechanism.

Our vision of ML literacy involves stakeholders participating in
ML construction. Given that computational practices for creating
ML systems and traditional systems differ, it is useful to view ML
practices as the expansion and development of conventional CT
practices based on a Constructionist pedagogy. These expansions
are listed in Table 1. Note that the four traditional computational
practices deal with the process of formulating the problem and
creating a solution, and not with the evaluation of the solution;
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Fig. 2. A diagram of the CT-ML framework.
able 1
raditional CT practices vs. ML CT practices.
Traditional CT
practices

ML CT practices

Decomposition Data split: The data is decomposed by splitting the
dataset into a training dataset and a validation dataset,
Feature Selection: To identify the features in a complex
data entity such as an image, it is useful to initially
break down the data item into subparts.

Pattern
recognition

Category selection: Involves classifying the training
dataset into the problem categories the ML will be
trained to recognize. This requires recognizing a pattern.
Data filtering: To use data that are relevant to the
classified categories, the patterns relevant to the
anticipated features need to be identified.
Predict: The need to predict the category of a data
entity in the validation dataset based on features.

Abstraction Feature selection: For a ML model to properly classify
the data entities, only those input dimensions that
contain the relevant information for solving the
problem must be selected.

Algorithm
creation

Algorithm creation: The machine model is based on a
neural network algorithm which needs to be either
programmed or given.

The following are ML CT practices unrelated to PRADA
practices.
Evaluate: Evaluating the verification process requires
comparing the classification prediction to the machine’s
classification.
Data selection: To reap the benefits of ML, decision
biases must be minimized.

therefore, there is no matching transition skill to ‘‘Evaluate’’ in the
table. The traditional CT practices listed are those defined by the
Ministry of Education in Israel, but other traditional CT frame-
works do have some form of ‘Evaluate’ such as the Operational
Definition of Computational Thinking created by CSTA (Interna-
tional Society for Technology in Education & Computer Science
Teachers Association, 2011).

The generally accepted opinion is that the bulk of CT is specif-
cally aimed at figuring out how to get a computer to do a job
or us, while algorithms are the procedures that specify how the
omputer should do this (Denning, & Tedre, 2021). Shifting from
ule-driven to data-driven artifacts may thus reorient the focus of
T. It raises the following essential questions with regard to em-
edding ML in CT curriculum: How do traditional Computational
hinking and innovative Machine Learning thinking relate? Is ML
4

part of CT or an extension of it? Does our concept of CT change
after integrating ML components?

In this section, we presented a possible response to these
questions in the ML-CT framework. In addition, we discussed the
traditional CT practices and the possible associations between
them and ML CT practices. The next section describes the research
design implemented to assess ML CT.

3. Research design

This study investigated the acquisition of the fundamentals
of ML in elementary school. Specifically, we examined students’
computational concepts, practices and perspectives around a set
of learning modules involving two different computational plat-
forms and curriculum.

In his book entitled the Dual Nature of Technical Artifacts (Du
mode d’existence des objets techniques, 1958), the French techno-
logical philosopher, Simondon, considered the genesis of tech-
nical artifacts to be the object of human knowledge (De Vries,
2008). According to Simondon, it is not enough to focus on
working with an artifact; rather a person’s knowledge of artifacts
should be based on theoretical insights into their functional-
ity. Consistent with this notion we believe ML learning should
include constructing an ANN. We designed a computer-based
learning environment called Single-Neuron to be used in conjunc-
tion with ML learning. Single-Neuron is an ML modeling toolkit
that combines general computational primitives and domain-
specific primitives. The primary mode of interaction with this
modeling toolkit is through code. Single-Neuron makes it easy
for a learner to write a program within a short time, and diverse
outcomes can be observed from a small set of rules. It uses a
block-based interface and is created using Scratch (Resnick et al.,
2009).

Introducing the ANN construction activities constitutes a ma-
jor innovation in elementary school. The Single-Neuron toolkit is
used for scaffolding the ANN creation activity, and a correspond-
ing learning module was developed for this purpose. The learning
by design approach was implemented in one course therefore it
is called ‘‘Learning ML by Design’’. The other course was entitled
‘‘Learning ML by teaching’’ and involved using a preexisting ANN
to construct an ML system. In that course, the students created
their own categories, their own training dataset, and validation
set, which they used to train the machine and validate its pre-
dictions. These two courses formed the pedagogical framework
of our study. The results section compares the outcomes of these
two learning approaches in terms of students’ CT gains.



G. Shamir and I. Levin International Journal of Child-Computer Interaction 31 (2022) 100415

3

c
e
T
M
C

t
c
o
s
2
b

l
f
w
t
q
i
i

M

M
g
t
p
W
T
c
w
p
c
w
m

M

w
T
s
c
T
m
g
‘
a

M

m
u
t
t
w
t
w
t
p
t
s
t
t
p

.1. The ML curriculum

To study students’ acquisition and development of CT ML
ompetencies, we developed four learning modules that actively
ngage students with ML using a variety of learning platforms.
he modules were: (1) Introduction to ML, (2) Practicing the
L process, (3) Constructing a data-driven ML system and (4) a
onstructing rule-driven ML system.
The modules comprising the ML curriculum were adminis-

ered in two different courses. The Learning ML by Design course
onsisted of modules 1, 2, and 4, and thus focused on all aspects
f ML, including creating an Artificial Neural Network (ANN). The
econd course, Learning ML by Teaching, consisted of modules 1,
, and 3, which enhanced training and validating an ML system
ut omitted the ANN construction.
The module activities were based on the Use-Modify-Create

earning progression model which facilitates learning using scaf-
olds. It consists of a three-stage progression for engaging in CT
ithin computational environments. It is based on the premise
hat scaffolding increasingly deep interactions promotes the ac-
uisition and development of CT (Lee et al., 2011). Each learn-
ng module focused on one progression level of the model, as
llustrated in Fig. 3.

odule 1 — Introduction to ML
In this module, the students were involved in discovering how

L works and the ways in which it differs from rule-based pro-
ramming. They were given traditional algorithm creation tasks
o demonstrate the uniformity of their results in rule-driven com-
uting. As a contrast, they were shown examples of ML mistakes.
hile doing so they were introduced to data-driven computing.
he students were also given an opportunity to engage in a
onversation with an AI chatbot and were encouraged to decide
hether it passed the Turing test. This module used the Code.org
latform for algorithm creation and the Mitsuku website for AI
onversation. In this module the students’ CT progression level
as the initial 1 – ‘use’, and they did not program ML or train a
achine.

odule 2 — Practicing the ML process
This module advanced students from ML users to modifiers,

hich is the next level in the CT learning progression model.
he students carried out a set of training activities on an ML
ystem that involved classifying images into two categories. The
ategories increased in complexity as the activities progressed.
hey required the students to train and validate the classifier
odel. The context was ecological systems, based on the 6th
rade science curriculum in Israel. The ML platform used was
‘AI for oceans’’ by the Code.org organization, which consists of
ready-made ML algorithm and a given ML training interface.

odule 3 — Constructing a data-driven ML system
In this module the students progressed from modifiers of pre-

ade ML systems to actual creators, which is the top level in the
se-modify-create CT learning progression. They were required
o train a ready-made ML machine and program the software
hat served as its client. The participants chose what the ML
ould classify; in other words, they decided which categories
o form. Module 3 had more requirements than in Module 2,
hich only had pre-made categories. The students also created
he text-based dataset to train the machine. The client software
rogramming was done using a dedicated programming interface
o provide interactions with the pre-made server. Finally, the
tudents activated their software, using a validation dataset of
heir own to evaluate the machine’s performance with respect to
heir predictions. The module used the Machine Learning for Kids

latform, which provides an interface for users to define labeled

5

buckets and populate them with text. The module also uses the
Scratch micro-world.

One student’s project in Module 3 was a ML system that
determines whether a person is a Minecraft fan or a Fortnite fan
based on inputting a statement. The student selected the Fortnite
and Minecraft categories and created the training datasets, which
consisted of statements related to each category. The training set
is shown in Fig. 4.

The next step in Module 3 was to use the IBM Watson en-
gine to train the ML model, which results in a ready-to-use
server. Once the server was ready, the students constructed client
software that interacted with the model and validated its predic-
tion accuracy. The client software was created with Scratch. The
corresponding screenshot is presented in Fig. 5.

As shown in Fig. 5, the egg character instructs the user to
type in a sentence that the ML system classifies. Once the user
types in the sentence, the egg character outputs the classification
the ML model returned and its accuracy probability. During in-
class observations, the students who created the example in Fig. 5
explained they added the saxophone just for laughs. The IBM-
Watson engine does not support classification of text in Hebrew;
hence Fig. 5 shows the student’s project with text in English,
including mistakes.

Module 4 — Constructing rule-driven ML system
In this module students moved from modifiers of ready-made

ML systems, as was done in Module 2, to actual creators, but in a
different way than in Module 3. In Module 4, they did not interact
with a ready-made ANN, but instead constructed it themselves.
The neural network algorithm that the students were asked to
create was based on the logic gate activation function. To enable
a Constructionist pedagogy, we used the Single-Neuron toolkit. As
ML algorithms have become more complex, their reasoning and
the rationales for their judgments have become less accessible
and difficult to examine. This so-called ‘‘black box’’ problem has
been acerbated by recent developments in deep learning that
make use of very complex multi-layered neural networks (Webb
et al., 2019). For this reason, to enable students to understand the
ML algorithm we asked the students to create an ANN consisting
of just one neuron.

Initially, they learned about logic gates through examples of an
AND gate and an OR gate. Then they learned about truth tables.
Next, they created an ANN to operate a simulation of a water
system with two faucets that could be in only one of two modes,
either open or shut. After programming it, the students tested it
on a truth table of an AND gate, and then changed their inputs
to an OR truth table and tested it again. They were encouraged
to monitor the neural network’s weight to better understand
why/where the system was wrong in the initial training iterations
and improve its accuracy as the training process integrated addi-
tional inputs. At the end of the module the students enhanced
their ML system with an additional programmed character that
explained the system. This gave them time to reflect on the
system’s purpose and mechanisms.

One student’s project was a single neuron system that con-
trolled the output of a water pipe flow according to the OR
gate. The student set the truth table values to reflect the OR
gate rules, and constructed the neuron model. The little green
monster character in the system acted as the ‘storyteller’ who
was programmed by the student to explain the system as shown
in Fig. 6.

3.2. Method and procedure

To examine the students’ acquisition and development of CT
ML, the two different ML courses were administered to ele-

mentary school students, and addressed the following research
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Fig. 3. A sequence diagram of the order of the modules for the two ML courses.
Fig. 4. A student’s Fortnite/MineCraft training dataset in Module 3 of the course.
uestions: In what ways are students’ CT reflected in ML learning
sing the Constructionist approach? Do the ’Learning ML by De-
ign’ and ’Learning ML by Teaching’ courses differ in effectiveness
nd if so, how?
This pilot study was conducted with two groups of students.

even students participated in the Learning ML by Design course
nd eleven in the Learning ML by Teaching course. All the stu-
ents were in 6th grade, were 12 years old, and volunteered for
he 12-hour, teacher guided, online ML course. Each participant
nd their parents gave their informed consent to participate in
he study.

This study evaluated the growth of students’ CT competen-
ies as they experienced a novel Constructionist ML course for
lementary school children during the 2020 academic year. A se-
uential explanatory mixed-method approach was used to eval-
ate the quantitative and qualitative data (Shamir & Levin, 2020).
6

Data collection and analysis were based on evaluations. A detailed
description of each instrument is provided below.

Prior to the course, the students’ basic acquaintance with
online conference tools and programming with MIT Scratch were
assessed. In Israel many students learn computer science (CS),
mainly Scratch programming, starting in 4th grade. Participants
in this study who did not have a CS background had to complete
self-learning tasks based on the CS curriculum of the Ministry of
Education prior to the intervention course. Students took a test
at the start of the course. Each course module was composed of
a set of activities and a variety of test activities. A typical lesson
lasted two hours and students took a total of six lessons. After the
course, a post-test was administered. Semi-structured interviews
were also held with small groups which were transcribed for
further analysis.

Students completed the evaluations individually, from their
homes, using their computers during the online course. The tests
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Fig. 5. Screenshot of client software created by a student.
Fig. 6. Screenshot of OR gate neuron-based water system (captions are in Hebrew).
T
q
i
f

o
o
t
w
m

g
d

t
1
a
b
s

were made up of closed and open-ended questions on perspec-
tives on ML, knowledge of ML processes, CT competencies, and
interest in learning ML. The pretest consisted of 19 questions,
and the posttest was comprised of 32 questions. The questions
investigated enjoyment of course activities, self-efficacy with ML
construction, and CT ML competencies in depth. The questions
related to CT competencies were coded, since each question tar-
geted a specific skill. The test items were written by the re-
searchers specifically for this study. The qualitative validity rat-
ings as evaluated by three expert judges indicated an Aiken V
above 0.80 on all items.

To the best of our knowledge, ML learning self-efficacy has not
been reported in the literature. For this reason, the questionnaire
was based on a Constructionist validated robotics learning (Tsai,
Wang, Wu, & Hsiao, 2021) questionnaire modified for ML con-
struction. For example, instead of ‘‘I can make a robot’’, the item
was phrased as ‘‘I can make a ML system’’. Other items were: ‘‘I
can discuss how to make ML systems easily with peers’’ and ‘‘I can
propose ideas for using ML to solve problems’’. The self-efficacy
items were evaluated on a 5-point Likert scale, ranging from 1
(not confident at all) to 5 (very confident).

To examine students’ motivation to learn we implemented the
ARCS Model of instructional design (Keller, 1987) which is based
on empirical investigations to assess students’ motivation. The
model is composed of four conceptual categories that subsume
many of the specific concepts and variables that characterize

human motivation. m

7

1. Attention — should be sustained during the learning pro-
cess.

2. Relevance — why this material is important to me.
3. Confidence — can influence a student’s persistence and

accomplishment.
4. Satisfaction — makes people feel good about their accom-

plishments.

o study the Feature selection skill, pre- and post-proficiency
uestionnaires were used. The questionnaires asked students to
dentify features in a dataset, and to create a mind map of features
or a given dataset.

Students were asked to create a final project working alone
r in pairs. Each of the two courses required a different type
f project. In both, they programmed an ML system, but in one,
hey created their own ANN based on the Single-Neuron toolkit,
hile in the other course, they created an ML system based on
achine-learning-for-kids toolkit, as described above.
Semi-structured interviews were conducted in small groups to

ive participants ample opportunity to express their thoughts in
etail. Interviews were 30 min long.
The interview protocol was organized into several major sec-

ions:
. Breaking the ice
. Why did you decide to sign up for this course?
. How was the course for you? (Students were referred to the
hared bulletin board used during the course to refresh their

emory)
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. About ML
. How would you describe ML to friends or family?
. How can a ML system help people?
. Had you had the opportunity to interact with any type of ML
ystem, what would you like it to be able to classify?
. Final course project
. How did you get started making your project?
. What happened when you got stuck?

uring the course, an online shared bulletin board tool was used
o post ideas and discuss them. This was used to capture students’
houghts and discuss them in the final interviews.

. Results

The fact that the thinking corresponding to ML differs signifi-
antly from more widely known computer thinking has attracted
ttention in the literature and has fueled numerous scientific
ebates (Denning & Tedre, 2021; Shapiro, Fiebrink, & Norvig,
018). Therefore, the inclusion of ML in a CT course calls for
nswers to important questions about the relationship between
L and CT.
For this reason, Table 1 lists how ML CT practices relate to tra-

itional CT practices. To date, there is scant CT ML research; thus,
n this study we examined students’ CT competency in terms
f computational perspectives, machine training practices, and
achine validation practices. This is the essence of the study. In
ddition, we used the qualitative methodology of grounded the-
ry (Shapiro et al., 2018; Strauss, & Corbin, 1997) to characterize
he effects of the ANN construction activity on the students.

The next section compares the students’ CT gains relative to an
L course which did not involve the construction of an ANN (see
ig. 3 for a visual breakdown of the modules of the two courses).
NN is considered difficult to construct, therefore we specifically
anted to assess its effects on students’ CT to better understand

ts role in a CT curriculum.
Students’ CT competency was examined in terms of computa-

ional perspectives, machine training practices, and machine val-
dation practices. The perspectives data from the pre/post ques-
ionnaires were rated on a Likert scale ranging from 1 to 5. The
raining and validation proficiency data were graded from 0 to
00. The results served to compare the Learning ML by Design
ourse and the Learning ML by Teaching course as detailed below.

.1. Computational perspectives

The computational perspective results are presented in Fig. 7.
Analysis of the post questionnaires in both courses indicated

5% increase in motivation as compared to the beginning of the
ourse. Given that the students chose to take the course, it was
atural that their initial motivation was high, so an increase, even
espite the fact that the course was challenging, was meaningful.
his was further supported by the fact that during the course
nd in the final interview, participants asked to participate in a
uture course to learn more. The Learning ML by Teaching course
articipants scored an average of 4.28 out of 5 while the Learning
L by Design score was higher at 4.42. This may indicate that the

earning activity of creating an ANN using the Single-Neuron tool
it had a greater impact on students’ motivation to learn than
nteracting with a pre-made ANN using code.

elf-efficacy with modeling: Self-efficacy is an important part of
successful learning. Thus, we examined modeling confidence us-
ing self-efficacy items. The comparison of the post-questionnaire
Learning ML by Design course results to the Learning ML by
Teaching course results indicated that the Learning ML by Teach-
ing course participants scored an average of 3.2 out of 5. On the
8

other hand, the Learning ML by Design score was 21% higher
at 4.28. This may indicate that constructing an ANN hands-on
contributed to students’ sense of capability.

Understanding ML processes: Using a questionnaire and inter-
views, we collected data on what the participants considered
key to good ML system training and evaluation. For example,
during the course they were shown a video of an autonomous
car that failed to stop at a stop sign. In the interview one student
explained this error: ‘‘The car needs to be trained better. If you
want it to identify these things, you put the sign in all sorts of
places, not just in one place, so the car can be trained in different
situations to recognize the sign’’.

The Learning ML by Teaching course post-questionnaire had
an average score of 4.6 which was lower than the Learning ML
by Design course score of 5 out of 5. This may indicate that
constructing an ANN can enhance students’ ML understanding.

Overall, the scores for the computational perspectives on the
Learning ML by Design course were higher, thus confirming our
hypothesis that constructing an ANN using appropriate scaffolds
such as the Single-Neuron toolkit contributes to young students’
computational thinking.

Students were asked in the interview what ways they thought
a ML system could help people. Their answers varied in content:
‘‘I would like to have a ML robot who is a soccer referee which sees
everything like if someone touches the ball by hand or is offside.
It would be better if the robot was not on the field because it
interrupts the players’’. Another student suggested using ML to
replace judges in a court of law. Yet another student suggested
that ML could help the blind by calling out red lights and other
features of the environment it was trained to identify. Another
suggested an autonomous scooter, so parents will not need to
drive students to after school activities.

4.2. Machine training practices

The results of CT practices related to ML training are presented
in Fig. 8.

Data split proficiency: The end of course evaluation aimed to as-
sess the students’ ability to split a set of images into two groups:
one for training and validation. The purpose was to determine
whether the students would reason in terms of 3 dimensions: (1)
using as many of the full set of images as possible (2) not using
the same image for both datasets (3) splitting each pair of images
with common features in the two datasets. In both courses (see
Fig. 8) students scored high, exceeding 0.75. In addition, the
students had a good grasp of data diversity in terms of covering as
many features as possible. However, they did not fully understand
that a properly validated ML machine should not be tested with
the same images as used during training.

Data filtering proficiency: This part of the evaluation assessed the
students’ ability to filter out data before the training phase. For
instance, when creating an ML system to classify images into
a ‘‘Zebra’’ category and a ‘‘Pedestrian crossing’’ category, having
images with both zebra and pedestrian crossing may cause the
machine to be trained incorrectly. In one of the questions that
tested data filtering proficiency, the students were given a set
of images (see Fig. 9). They were asked to decide which images
to remove from the dataset. This test was designed to determine
whether the students would reason in terms of the following 2 di-
mensions: (1) Remove images with both a zebra and a pedestrian
crossing; (2) Filter out images of a pedestrian crossing that was
painted to look like a zebra. The findings indicated that students
did better on dimension 1 than dimension 2 but that the scores
in general were low (score ≤ 0.35, see Fig. 8).

Category Selection Proficiency: Category selection skills make it
possible to find similarities, including perceptual distances, with
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Fig. 7. Results of computational perspectives for the Learning ML by Design course vs. the Learning ML by teaching course.
Fig. 8. Results of machine training practices per course.
Fig. 9. The dataset of images to be filtered by the students.
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rototype examples of categories. The rationale stems from hu-
an perception studies which posit that these categories are not
efined by lists of features but rather by similarity to prototypes.
he analysis here implemented this argument that categories are
ot merely a list of features. The evaluation showed that the
tudents did less well when asked to find a category (score ≤

.57, see Fig. 8) than when asked to find features for a pre-defined
ategory (score ≥ 0.76, see Fig. 8). In-class observations showed
hat students frequently switched categories on a task that asked
 a

9

hem to select a category for classifying fish images out of a closed
et of obfuscate categories such as ‘‘Glitchy’’ or ‘‘Awesome’’ (see
ig. 10). The students were asked in class to classify images as
‘true’’; i.e., fit the category, or ‘‘false’’; i.e., did not fit the category.
he students verbally explained that it was too difficult for them
o justify some of the categories, which is why they switched
hem during the task.

An interesting observation emerged from an activity that
sked the students to create their own categories. One student
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Fig. 10. The category selection task.
ame up with algorithm primitives (e.g., words which are part
f the algorithm lexicon) as categories. He wanted to categorize
entences into two types of games: Fortnite or Minecraft. The five
ategories he created were ‘‘If’’, ‘‘Input sentence’’, ‘‘Equals’’, ‘‘Fort-
ite’’, ‘‘Minecraft’’. The latter two categories represent proper
ategory selection, but the former three are incorrect.

ata selection proficiency: Data selection is the ability to select
ata that are most likely to improve the system’s prediction
bility and avoid bias. This skill requires considering the different
eatures of the object to be labeled and selecting a diverse dataset.
or instance, when creating an ML system to identify images
ith sheep, insufficient data selection occurs when all the sheep

mages have greenery in the background. This could cause the
L system to mistakenly categorize an image as having sheep
ven if it only shows a green pasture. In the interviews we
oticed that the students did not consider that sheep with only
pasture in the background was a problem. On the other hand,
hen evaluating data selection skills on a multiple-choice test,
he students scored relatively high (score ≥ 0.76, see Fig. 8).

eature selection proficiency: Feature selection is the process of
dentifying attributes that contain relevant information for an ML
ystem’s data classification. The students were evaluated by tests,
asks and interviews, and during class observations. We created
everal assessment tools to analyze feature selection, including
he number of features and their validity ratio. Pilot studies
howed that these skills are extremely challenging; therefore, a
reat deal of care went into the learning module, including a spe-
ific task of creating a feature map using explicit instructions on
ecomposition skills. The students scored relatively high (score >
.86, see Fig. 8) on this skill.
A comparison of the scores in the two courses showed that the

ifferences in proficiency were small (difference <10%) except for
he Category Selection skill. In this case, Learning ML by Teaching
ourse participants scored an average of 0.57 while the Learning
I by Design score was 18% lower at 0.29. This may suggest that
he enhanced engagement with category selection had a stronger
nfluence on this skill than creating an ANN.

.3. Machine validation practices

The results of CT practices related to ML validation are pre-
ented in Fig. 11.

rediction proficiency: Prediction refers to forecasting the likeli-
hood of an ML model’s outcome after it has been trained on a
10
historical dataset and applied to new data. The post-test included
a set of questions that evaluated the ability to predict. It pre-
sented a trained dataset of labeled images and asked the students
to predict the result of a new image and to explain why. For
instance, the students were presented with a training dataset of
6 images the ML system had used to learn whether an object ‘‘be-
longs in the ocean’’, labeled by ‘‘YES’’, or ‘‘does not belong in the
ocean’’, labeled by ‘‘NO’’. The 7th image required a prediction (see
Fig. 12). On this specific question, most participants predicted
the machine would classify the image of a blue can as ‘‘belongs
in the ocean’’. This indicates that they were able to put aside
the human intuition of predicting that a can ‘‘does not belong in
the ocean’’ but instead invoked their ML CT skills. Most student
explanations referred to the ‘‘color feature’’. In other words, the
four objects tagged as ‘‘yes’’ (belongs in the ocean), were blue, as
was the can. Thus, it was more likely that the ML system would
predict that the can belongs in the ocean. They explicitly used the
word ‘‘features’’ in their justification, strengthening our claim that
they had assimilated the notion of feature selection. The results
showed that most students scored well (score > 0.93, see Fig. 11)
on this skill.

One of the students who gave a wrong answer explained it was
based on an ‘‘eyes’’ feature, saying, ‘‘The image of the can object
does not have eyes and neither do the two objects that were
labeled as do not belong in the ocean’’. This reasoning accurately
takes the feature into account but fails to acknowledge that
eyeless jellyfish was also labeled as ‘‘Yes’’,. This response was thus
scored as incorrect for having chosen ‘eyes’ as a differentiating
feature.

Evaluation: Evaluation is the skill related to assessing how well
the ML system categorized the validation dataset and how the
results could be improved so that the labeling could be en-
hanced. Possible issues involved in evaluation included whether
the machine was under-trained, whether the model was biased
towards a certain object, whether the features were appropriately
selected and whether the dataset was split appropriately. One
of the multiple-choice questions to test evaluation skills on the
post-test was: ‘‘The ML system was trained to identify pictures of
‘‘food’’ or ‘‘not food’’. When tested, it gave inconsistent results for
sandwiches, often putting them in the ‘‘not food’’ class. What can
explain this?’’: (a) The person who trained the system does not
like sandwiches and did not put pictures of them into the training
set; (b) sandwiches are not food, so the system is wrong; (c) the
system is correct about oranges, so there is no problem with it;
(d) the programmer developed the system with a bug. The correct
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Fig. 11. Results of machine validation practices for each course.
Fig. 12. Prediction skill question . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
answer is ‘a’. When comparing the course results, the Learning ML
by Teaching course students scored an average of 0.71, whereas
the Learning ML by Design score was lower at 0.63. This may
imply that enhanced engagement with data throughout the ML
process had a stronger influence on the student’s evaluation skills
than creating an ANN which only had two Boolean inputs: 0 or 1.

5. Discussion, limitations and future work

Today, people are surrounded by machine leaning (ML) based
echnology therefore it is only natural that learning ML will is
inding its way into education. The inclusion of ML in a com-
utational thinking (CT) course requires answers to fundamental
uestions about the relationship between ML and CT: Is ML part
f CT or an extension to it? Does our concept of traditional CT
hange after integrating ML components?
This article presents findings exploring the gains of CT com-

etencies of elementary school students who took part in two
ifferent ML courses that implemented constructing ML systems
sing a Constructionist pedagogy.
The results showed that the students learned to successfully

reate a computerized ML system and train it to classify input
atasets. They showed knowledge of how data should be se-
ected and filtered for the system to learn with high probability
f making a successful prediction. They acquired ML concepts
uch as datasets, features and ML-bias, as well as the difference
etween data-driven and rule-driven programming. They were
ble to develop rich ML projects using their own categories,
atasets and evaluations. It was clear that students came up
ith interesting, diverse ML systems for expressing themselves
hrough the constructionist activities.

Several ML environments were used by the students in the

wo constructionist courses. The Learning ML by Design course

11
involved students in programming their own ANN, thus giving
them a white box view of a ML system. The Learning ML by
Teaching course involved using a preexisting ANN, thus giving
them the ANN as a black box without understanding its internals.

Both courses had favorable results with regards to students
gains but there were some differences between the outcomes. The
participants exhibited slightly greater computational perspectives
in the Learning ML by Design course than in the Learning ML by
Teaching course. This may point to the advantages of teaching
a Constructionist ANN activity in a ML course. It may indicate
that the worldview the students formed about their surroundings
and about themselves was enhanced when they worked on a ML
algorithm that enabled the machine to learn.

On the other hand, students performed better in the Learning
ML by Teaching course with respect to computational practices.
The course had more data-driven activities than the Learning
ML by Design course. The skills that resulted in high proficiency
in the Learning ML by Teaching course were category selection,
data selection, data filtering, data split, category prediction and
result evaluation. These are all practices that are profoundly
data-driven, which may explain the students’ greater gains in CT
practices since these skills are based on the identification of data
attributes.

Research on the educational possibilities afforded by ML con-
struction in elementary school is in its infancy. This study pro-
vides new findings and pedagogical insights for future research,
development, and educational efforts. It suggests key design con-
siderations for future development of a Constructionist approach
to ML learning. It presents teacher-guided activities that can be
implemented in school. The activities are adapted for elementary
school students’ mathematical background and incorporates the
appropriate scaffolds. The modules are scalable so students can

be creative with their own intelligent machines and put forward
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odels to address a wide variety of problems. This work can
e extended to different age groups and more ML platforms can
e added to the curricula. This study thus paves the way for
ncorporating a Constructionist ML learning approach into the
lementary school CT curriculum. It addresses the need for con-
tructionist approaches to teaching ML. A CT-ML framework was
ntroduced (Fig. 2) to set the foundations of assessing students’
T engaging in ML activities.
Nevertheless, this study has several limitations. It was con-

ucted on a small group of students, all of whom were volunteers.
hile such small-scale qualitative studies are useful for in-depth

xploration of a phenomenon, they do not allow for generaliza-
ion beyond the sample under investigation (Ivankova, Creswell,
Stick, 2006). In future research, the results should be verified on
larger sample. Since the course was online and not in a regular
lass mode, in-person classes might yield different results.
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